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Abstract

Network Models for Battery Electric Vehicles

Sudesh Kumar Agrawal, M.S.E.
The University of Texas at Austin, 2015

Supervisor: Stephen D. Boyles

In this thesis a nonadditive shortest path problem to model the route

choice of battery electric vehicle (BEV) drivers has been proposed. Based on

this nonadditive shortest path framework several multiuser (with heteroge-

neous risk attitude) network models which take congestion into account have

also been proposed. The proposed route choice model relaxes several assump-

tions of earlier literature and allows for a continuum of range limits and hetero-

geneous drivers who have varying risk preferences. The model also accounts for

nonlinearity in travel choices — drivers value a small amount of charge more

when they are close to running out of range than when the battery is close to

full charge. A nonlinear nonconvex optimization problem is formulated and

an approximation of the objective function leads to a convex problem which is

solved using an outer approximation algorithm. A tour-based analysis, which
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is more appropriate for BEVs is considered; but a network transformation

makes the formulation simpler. Numerical experiments on a small network

demonstrate how the routes taken by BEV drivers are influenced by their risk

attitudes and the uncertainty in the predicted range of the vehicle. The models

developed in this thesis are applicable to networks with flows of BEVs. This

work will hopefully inspire researchers to explore nonlinear travel models for

BEVs and develop more general network models. These network models using

survey data (extensive surveys will need to be carried out for this) will be able

to predict system-wide effects of the choices made by BEV drivers and help

planners and policy makers in their decision making.

Keywords: battery electric vehicles, network route choice model, nonadditive

shortest path, outer approximation algorithm, traffic assignment
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Chapter 1

Introduction

1.1 Background

The past decade has experienced a growing concern about the impact

of fossil-fuel powered vehicles on the environment. This growing environmen-

tal concern regarding the sustainability of the conventional fuel sources has

led to policy discussions to reduce emissions. Consequently, there has been

a renewed interest in developing battery electric vehicles (BEVs) (1), which

some believe to be an answer to clean personal transportation in the future .

As BEVs gain market penetration, transportation planners would require to

incorporate them in their planning models. 50 years down the line the traf-

fic stream will possibly consist of BEVs mostly. In any case travel behavior

and choices exclusively associated with BEVs will have to be accounted for in

urban planning models.

BEVs have the potential to significantly reduce pollution — they do not

have tailpipe pollutants, and so the green-house gas savings depend on how

electricity is generated upstream. Certain BEVs have the ability of regenerative

braking which further reduces wastage of energy. Also, electric motors are

more sustainable than combustion engines. So, BEVs have the potential to
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(and will) possibly impact the motor industry. The most attractive benefit of

a BEV for a driver is its comparatively lower operating cost (2).

A distinction between plug-in hybrid electric vehicles (PHEVs) and

BEVs need to be made at this point. PHEVs are vehicles which are equipped

with both internal combustion engines (found in gasoline vehicles, GVs), and

electric motors; it has hybrid characteristics and can store electricity from the

electrical grid to reduce their gasoline consumption. This helps in extending

the total driving range. Chevrolet Volt and Toyota Prius are two popular

PHEVs. BEVs on the other hand, completely rely on electricity for their

range. Nissan Leaf and Ford Focus Electric are two popular vehicles in this

category.

BEVs are recharged by plugging its battery into the electric grid. They

are marooned once the battery runs out of charge. BEVs are associated with

the issue of range anxiety — the fear of being stranded because of battery

exhaustion. On a full charge and a full tank, the 2015 Chevrolet Volt (PHEV)

has range up to around 350 miles (of which only around 10% is from the

battery); while the 2014 Nissan Leaf (BEV) has a range of around 80 miles.

A typical BEV with current battery technology lasts for around 40 miles in

real-world driving conditions. Another concern for BEVs is their long charging

times and the low density of charging stations in the country. A 240 V charging

outlet can charge a BEV overnight (6 to 8 hours). It can take almost a day
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to fully charge the vehicle with a 120 V outlet though.1 Consequently most of

the charging occurs at home or the workplace. Other probable locations for

a charging infrastructure include restaurants, and shopping centers. The US

government is aiding Research & Development in advancing battery technology

through the Department of Energy.2

Currently BEVs take significantly long time to recharge and there aren’t

enough charging stations: for now hybrid variety is more desirable. Battery

technologies are improving, but it will take time before charging speeds im-

prove substantially. The cost of BEVs is another deterrent factor to their large

scale adoption. However, innovation and substantial improvement in battery

technology are likely to improve sales and fuel mass production and noteworthy

reduction in cost.

1.2 Motivation

Recently, there has been innovation in battery technologies and expe-

dited growth of charging infrastructure. Understanding the travel behavior

of BEV drivers is essential to envisage the effects of large-scale adoption of

BEVs on transportation infrastructure. In current planning models BEVs are

assumed to be like traditional vehicles with a hard distance constraint to re-

flect the range limit. However, the true impact of battery charge is hard to

1http://www.pluginamerica.org/faq/how-long-does-it-take-charge-plug-car
2Currently Nickel Metal Hydride (NiMH) and Li-ion are the two major battery technolo-

gies.
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quantify both technologically (for example, impact of grade and speed on the

battery charge) and behaviorally (for example, risk attitude of drivers). Policy

decisions and their implementation too requires capturing the travel behavior

of BEV drivers. For example, travel models will need to account for charging

behavior of BEV drivers for developing a better charging infrastructure and

improving accessibility to charging stations. Therefore, it is necessary to study

the network-wide effects of BEV adoption.

Network effects are often studied through traffic assignment models,

assuming that travelers choose routes to minimize travel time (or travel cost).

The routing behavior of BEV drivers may differ from GV drivers because the

limited refueling opportunities and comparatively shorter range of BEVs may

lead to range anxiety. A survey by Rowe et al. (3) found that the issue of range

anxiety concerned BEV users and was amplified when travelers observed the

battery charge decreasing while driving. Drivers are more anxious when close

to the range limit. This nonlinearity in travel behavior of BEV drivers needs

to be included in travel models for BEVs.

Literature on the range anxiety issue in network routing is limited —

most of the previous works (4, 5, 6) have assumed a fixed range limit and

formulated the network routing problem as a distance-constrained shortest

path problem. However, travelers are unlikely to choose paths that use close

to the full battery because of lack of complete faith in the remaining range

prediction. Furthermore, the level of range anxiety varies among drivers —

some are more risk-prone than others and are willing to nearly exhaust the
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battery before recharging, while others leave a significant margin (called the

reserved range). Basically, there is variation of the reserved range across the

population, and the risk-sensitivity of drivers determines to what extent they

are willing to use the battery before charging it again. The range limit is

not absolute, and as mentioned before, the actual range also varies as per

driving conditions (grade profile of the road, climate control of the vehicle,

etc.). Previous studies have not included these aspects of the travel behavior

of BEV drivers. Therefore, a new routing behavior model is needed, which

reflects the uncertainty in the actual range limit in BEV drivers’ decision and

accounts for nonlinearity of drivers’ response to the remaining charge.

As mentioned earlier, network-wide effects are studied through traffic

assignment models, and so the network route choice model can be extended

to consider the effects of interaction between multiple BEV users present in

the network when congestion is in play. Traffic assignment helps determine

the number of travelers on each link of the network and their travel time i.e.

it tells us the traffic pattern and the traffic delay experienced by users. If

extensive surveys are carried out to capture the range anxiety experienced

by the drivers under different scenarios and the change in route choice when

driving BEVs (compared to traditional vehicles), then the network models

can leverage information gained from these surveys to predict system-wide

effects of large-scale BEV adoption. These new network models will eventually

better reflect reality. The models described in this research also accounts

for nonlinear travel preferences, and a nonadditive shortest path problem to
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model the route choice of BEV drivers is proposed. Though the nonadditive

shortest path model developed in this thesis is quite simple, hopefully it will

inspire more research into nonlinear models for BEV drivers. Also, this model

can be used an input for other nonlinear models like emission models. Once

surveys are carried out, the network models can be calibrated which will help

get a better understanding of how people will use BEVs; this will play an

important role in improving next generation network models providing better

guidance to transportation planners for planning network enhancements and

locating charging stations. Other potential applications include developing

utility models for setting prices at charging stations, finding location to set up

infrastructure for inductive charging, etc. Jafari and Boyles (7) tried to couple

transportation network with the power grid for pricing as a tool for demand

management and optimization of the electric grid usage to ensure resilience of

the system’s power grid. Regional power grid operators can provide electricity

more effectively if they know the traffic flow pattern.

1.3 Objectives

Limited refueling opportunities for BEV drivers beg a different routing

model for BEVs. This thesis develops such a model based on the shortest path

problem with nonadditive costs, which generalizes the distance-constrained ap-

proach found in earlier literature and can accommodate differences in drivers’

risk attitudes towards range.

The range of a typical BEV is significantly higher than the length of a
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typical trip. However, for BEV drivers who can only recharge overnight, the

total energy consumption of all trips made in a day may be close to the battery

limit. Therefore, a tour-based approach is more appropriate for the route

choice model. Considering tours means considering a driver’s daily activity

pattern. It is assumed that drivers do not charge their vehicles during a

tour. The assumption is reasonable since few charging stations exist (5) and

charging may require a significant amount of time; Morrow et al. (8) and

Bakker (9) found that most BEV drivers will need to charge their vehicles at

home. The setting mentioned above describes a route choice as a constrained

minimum cost tour problem. However, an equivalent trip formulation has been

constructed.

It is essential to develop a network equilibrium model to analyze the

effects of large scale BEV adoption in the future. This would help planners

and policy makers in their decisions. For example, it is important to know the

locations where charging stations should be installed to make efficient use of

the electric power grid and also to provide better accessibility and convenience

to BEV drivers. Within the nonadditive shortest path framework described by

the network route choice in this research, a number of extensions are possible

for a network equilibrium model. This work also proposes traffic assignment

models for some of those extensions.

The models developed in this thesis are applicable to networks with

flows of BEVs subject to uncertainty in their range limit. The contributions

of this research are developing a BEV routing behavior model incorporating a
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more general travel behavior and a continuum of range limit for the analysis

of the network-wide effects of electric vehicle adoption and proposing a non-

additive shortest path problem to account for nonlinear travel preferences of

BEV drivers. The network-wide analysis would provide improved guidance to

policy makers. For example, it would be helpful in determining the locations

of new charging infrastructure. To summarize:

• Unlike earlier models we do not assume deterministic range limits.

• We also relax two major limiting assumptions of earlier literature —

all BEVs have the same range limits, and all drivers have identical risk

preferences (homogeneity of BEV drivers).

• We allow for a continuum of range limit.

• Nonlinear travel preferences are accounted for through non-additivity of

travel costs in the nonadditive shortest path problem.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews

existing literature on multiobjective routing, constrained shortest path algo-

rithms, nonadditive shortest path algorithms, and network equilibrium in the

context of BEVs. Chapter 3 discusses the nonadditive shortest path problem

developed in Agrawal et al. (10) to model routing of BEVs and presents nu-
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merical analysis on some networks 3. Chapter 4 then builds on the network

routing model to describe how different BEV drivers interact in a network

when congestion comes into play. Chapter 5 concludes this thesis with a sum-

mary of the route choice and network equilibrium model and their limitations,

and discusses possible directions for future research.

3The coauthors of this paper helped with the ideas for the paper and provided reviews for
the manuscript, and Mehrdad Shahabi also helped with the implementation of the algorithm.
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Chapter 2

Literature Review

2.1 Battery Electric Vehicles

Advancement in EV technologies has led to an increasing market share

of EVs. Gardner et al. (11) draw the connection between transportation and

electric power systems and discuss how the market penetration of plug-in elec-

tric vehicles (PEVs)1 a few years down the line could adversely affect the power

grid of a city. Regional power grid operators can provide electricity more effi-

ciently if they know PEVs’ travel pattern. They state that range anxiety may

cause PEV drivers to take more reliable routes based on energy consumption.

They assume PEVs are charged only at home, have the same range limit, and

PEV drivers and non-PEV drivers are the same from a behavioral standpoint,

differing only in their consumption (or emission) rate. Jiang and Xie (2) talk

about why EVs have garnered attention with their market share prediction and

about the vehicle ownership composition, and they anticipate that households

will prefer to own both GVs and BEVs for a long time in the coming years.

They emphasize the problem of insufficient charging infrastructure and long

charging time which leads to most vehicles being charged either at home or

1A PEV is a vehicle which can use an external electricity source to recharge itself. PHEVs
and BEVs are PEVs.
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at the workplace. A similar assumption has been adopted in this thesis. As-

suming a linear dependence of travel distance on operating costs, they propose

a mathematical formulation of a simultaneous mode and route choice mixed

equilibrium with GVs and BEVs where the travel impedance comprises of a

travel time component and the operating cost, and system users comprise of

people who own both GVs and BEVs. Their combined model is characterized

by the equilibrium principle rather than utility theory. They suggest two so-

lution algorithms — based on Frank-Wolfe framework with a modified label

setting algorithm, and Gradient Projection framework with a pre-processing

and label setting algorithm; and compare the computational advantages of

both. Unlike their model, which allows for discrete choices of range limits

through the incorporation of multiclass vehicles, the model proposed in this

thesis allows for a continuum of range limits. Also, they use range limit only

to define feasible paths for BEVs, and there has not been any focus on the

behavioral change in drivers due to range anxiety. Adler et al. (5) propose

polynomial time algorithm to find a shortest walk with minimum detour (to

refuel at charging stations). More importantly, they suggest algorithms to find

routes that minimize range anxiety.

An important behavioral aspect from a modeling perspective of BEV

users’ behavior is the nonlinearity and non-additivity in travel preferences —

a small quantity of charge is valued more when one is close to exhausting the

battery than when the battery is near full charge. Hensher and Truong (12),

and Pinjari and Bhat (13), through experiments and surveys, emphasize the
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importance of incorporating nonlinear travel preferences. Using a non-nested

likelihood ratio test on the Austin commuter stated preference survey data

Pinjari and Bhat (13) show that not incorporating nonlinear travel preferences

could lead to erroneous estimates of willingness-to-pay measures. Gabriel and

Bernstein (14) identify issues associated with assuming additive link costs

and enumerate situations (like nonadditive tolls and fares) in which the link

costs are nonadditive, and they discuss the consequences of the nonadditive

structure of travel costs. They prove existence and uniqueness of arc flows

and the shortest travel time for the nonadditive equilibrium problem. The

nonadditive aspect of travel behavior has not been captured in previous EV

studies. In the formulation given in this research the disutility component

associated with battery exhaustion captures the non-additivity of the range

anxiety.

We are not aware of any work on the distribution of range anxiety

in the population. However, Lin et al. (15) find that the variation in daily

vehicle miles traveled can be modeled by a gamma distribution for appraisal

of energy use by plug-in hybrid electric vehicles (PHEVs) and comment that

this can be used to estimate range anxiety for BEVs. However, doing so will

not be trivial considering that a BEV driver’s range anxiety could be affected

by many factors. The network route choice model we develop in chapter 3 is

general and can be extended to consider any distribution once relevant data

are available.
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2.2 Multiobjective Routing

Chen et al. (16) examine how travelers with different risk attitudes re-

spond to uncertainty in their travel cost (which they consider as risk). They

stress that for most users travel time reliability is almost as important as the

travel time itself, and it plays a significant role in the route choice decision

process. Though they investigate only individual risk preferences and model

the risk attitude using exponential functions, for the aggregation of these pref-

erences at the network level they suggest segmentation of the population into

groups sharing a common behavior (risk prone, risk averse, or risk neutral) or

use of a random-coefficient logit model. Another thing they emphasize is that

“to model risk-taking behavior, it is necessary to include network uncertainty

in the route choice models”.

Road users may have objectives other than reaching their destination

in the shortest time. Researchers have tried to capture those objectives (mini-

mize — monetary costs, travel time uncertainty, etc.) either by incorporating

them as constraints or by including a new travel cost component reflecting that

objective. Sen et al. (17) formulate a quadratic multiobjective model which

minimizes the weighted expected travel time and variance in travel time and is

efficiently solved by a series of parametric binary quadratic integer programs

that take advantage of the network structure. Their model provides an effi-

cient frontier to offer travelers with a set of alternative routes to choose from.

Sivakumar and Batta (18) speak about finding a safe path for transporting

hazarding materials. A safe path could be anticipated to have the least ex-
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pected risk; however, it probably might have a high variance in risk, which is

not desirable and not preferable. They introduce a hard constraint in their

model to find the shortest expected risk route — the variance of risk on the

optimal path should be within a certain predetermined threshold. Their for-

mulation can be used whenever the travel costs are stochastic, and there is a

possibility that there is a correlation in these costs across links. They propose

an exact method based on Lagrangian relaxation followed by a duality gap

closure procedure to solve the formulation. In the context of BEVs the other

objective would be to minimize the probability of battery exhaustion, and so

we have used expected disutility from running out of range as the new travel

cost component.

2.3 Constrained Shortest Path Algorithms

Most of the research while considering the route choice for EV drivers

have formulated the problem as a constrained shortest path (CSP) problem.

CSP problems, which are NP-complete (19), are typically solved using ei-

ther Lagrangian relaxation based frameworks (20), which are efficient for a

single constraint, labeling schemes (21), or k-shortest path based algorithms

(22, 23). Pre-processing is an important aspect of labeling schemes. Du-

mitrescu and Boland (24) modify previous pre-processing methods, and their

exact algorithm is based on closing the gap between the lower and upper bound

using “weight scaling”. Dumitrescu and Boland (25) through numerical exper-

iments show how pre-processing can effectively reduce the network structure
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and speed up the labeling scheme.

Artmeier et al. (26) develop a navigation system for energy efficient

routing, and they extend the general shortest path algorithm and use “prefix-

bounded” shortest path trees to solve their formulation for BEVs. Given their

limited battery capacity, long charging times, and the ability to recharge from

braking, routes are to be energy efficient and not just least cost. Regenerative

braking creates the possibility of negative costs on links, which precludes the

use of many commonly used routing algorithms. Their model has a hard

constraint on the energy required for a path and a soft constraint on energy

regeneration, hence a path where energy gained can cause the battery charge

to exceed its capacity is less likely to be taken.

2.4 Nonadditive Shortest Path Algorithms

A vast amount of literature on the shortest path problem assumes ad-

ditive link costs to satisfy Bellman’s principle which allows the use of efficient

solution algorithms. However, in many cases (for instance, tolls) link costs are

nonadditive.

The travel cost in our model has a similar structure to the cost used

by Chen and Nie (27) who find the optimal path by solving many constrained

additive shortest path sub-problems. They approximate the nonlinear cost by

piecewise linear functions. The algorithm uses an efficient frontier to update

the bounds of the original problem. In the worst case if the optimal path of

the sub-problems are not on the efficient frontier, then path enumeration is
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required. They enlist a number of problems (like distance based congestion

pricing schemes) where this cost structure is used. The most important facet of

their work is that they assume a very general cost structure for the nonadditive

shortest path problem. Tsaggouris and Zaroliagis (28) suggest an efficient

exact algorithm for solving the nonadditive shortest path problem (NASP)

which needs travel cost functions to be convex and non-decreasing. They

use an extended hull algorithm (also proposed in the same paper) to reduce

network size and improve gap closure.

Shahabi et al. (29) propose an outer approximation (OA) algorithm

based on cutting plane methods for nonadditive shortest path problems with

continuous and convex path cost functions. Cutting planes method iteratively

improves the feasible set of the convex problem by introducing linear inequali-

ties called cuts. The OA algorithm iteratively closes the gap between the upper

bound provided by the sub-problem and the lower bound given by the master

problem to get to the optimal solution. Through numerical experiments they

establish the efficiency of their method in finding the exact global solution.

This algorithm has been adopted in this work to find the optimal path for a

BEV user.

2.5 Equilibrium

Jiang et al. (4) present a network user equilibrium model with distance

constrained shortest path problem as its sub-problem. Their travel costs in-

cludes an out-of-range cost which ensures that flow on paths whose length
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exceeds the range limit is zero. Their model allows BEVs to have discrete

range limits, and their solution method is based on the Frank-Wolfe algo-

rithm. Jiang et al. (6) analyze network flows from a combined destination,

route and parking choices subject to the distance constraint, and Jiang & Chi

(2) evaluate mixed equilibrium flows of GVs and BEVs.

Xie et al. (30) extend the path-constrained traffic assignment (TA)

model of Jiang et al. (4) and allow for stochastic distance constraints. A con-

tinuous distribution of the range limit leads to an infinite number of constraints

for the TA problem; so they propose a convex program with finite constraints

by presenting an alternative flow variable (called cumulative path flow rate).

To solve it they use a k-shortest path algorithm for the linear sub-problem

obtained by approximating the nonlinear objective function.

Zhang et al. (31) propose a stochastic user equilibrium (SUE) problem

for BEV drivers to appraise how charging prices influence the route choice

behavior of drivers. Their SUE model uses random utility theory and the UE

principle to obtain the flow pattern, and they use a simplicial decomposition

scheme to solve it.

Zhang et al. (32) formulate a variational inequality to model the tem-

poral and the spatial impact of a BEV driver’s behavior. They present a

time-dependent network model for travel choices which takes departure time,

duration of stay at charging stations and route choice into consideration for

a mixed flow of GVs and BEVs. A nested Logit structure has been used for

the combined choices. The choice of charging station has been changed to a
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route choice using an expanded transformed network with charging stations

as nodes. Their model takes the variation of charging prices across stations

into account (apart from the waiting costs in case of congestion at charging

stations). Their multiclass VI uses an optimization-based heuristic to solve

the model which produces equilibrium solution for the combined choices.

He at al. (33) suggest three different network equilibrium models for

BEVs with different assumptions on recharging time and flow dependency of

battery consumption. They examine how limited range and refueling opportu-

nities affect route choices and the network equilibrium flow distribution. One

of their equilibrium models allow the battery depletion to depend on conges-

tion which is not there in earlier literature. However, they solve it only for a

small network because of the computational intractability of their nonlinear

complementarity problem.
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Chapter 3

Network Route Choice Model for BEV drivers

The concern about the impact of fossil-fuel powered vehicles calls for

the need of a cleaner personal transportation and BEVs are considered to be

the answer to this concern. A network equilibrium model to study the effects

of BEV adoption is therefore needed. Such effects are often studied through

traffic assignment models, which generally assume that travelers choose routes

to minimize their travel time or travel cost.

The limited driving range, and the paucity of charging stations com-

pounded with potentially long recharging time i.e. limited refueling opportu-

nities, lead to range anxiety in drivers — the concern of running out of fuel

before completing a trip. The issue of range anxiety inevitably affects their

route choices. Although even GV drivers refuel at gas stations, the recharging

of BEVs is more frequent given their shorter range.

Literature on range anxiety has been limited to formulating the net-

work route choice as a distance-constrained shortest path problem. What that

means is that if the range limit for a vehicle is say, 50 miles, then the driver

is perfectly fine taking a route which is 49.9 miles, but a path which is 50.1

miles is right out of consideration. This is not how people are likely to behave
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— they are probably not willing to run right up to the limit because, the limit

may not be exact and is likely to vary based on driving conditions.

Lack of complete faith in the remaining range prediction of the vehicle

leads to drivers choosing routes which are comfortably within the predicted

range. This reserved range varies across the population and is determined

by the risk attitude of drivers. Additionally, the actual range depends on

the driving conditions. Essentially, the battery consumption rate, and the

heterogeneity in drivers’ perception and risk preference lead to stochasticity in

the range limit which determines the route choice of BEV drivers. Therefore, a

new routing model has been proposed in this chapter to reflect the uncertainty

in the actual range limit in a BEV driver’s decision.

As mentioned earlier, a tour-based approach is more appropriate since

the range of typical BEVs is significantly higher than the length of a typical

trip. Also, since charging stations are scarce even in areas with high market

permeation of BEVs and that charging requires substantially long time, it is

reasonable to assume that drivers do not charge their vehicles during a tour

(charging occurs only at the origin).

3.1 Problem Description and Model

It is reasonable to believe that people do not perceive the range limit

as a hard constraint and intrinsically strive to minimize their disutility while

choosing their routes under uncertainty of the range (34). In the model pro-

posed in this chapter this disutility has two components — travel time, and a
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function which represents the potential disutility from battery exhaustion and

is based on the path distance and the perception of the range limit. Rather

than an all-or-nothing decision where any path under the range limit is ac-

ceptable and any path above it is not allowed, the framework allows for a

smoother transition in the response of a driver. As people get closer to the

range limit their concern about the remaining battery charge may increase.

This nonlinearity in the response of the drivers to the battery charge leads to

a nonadditive shortest path problem i.e. the travel cost of on a path (route) is

not just the sum of the sum of the travel cost on its links.

As discussed earlier, a tour based approach would be appropriate to

model the route choice of BEV drivers. However, a network transformation

discussed later in section 3.3 allows formulation in terms of the traditional

shortest path problem and simplifies the model.

Let G = (N,E) be a directed graph of the network, where N is the set

of nodes with r and s denoting the origin and destination nodes respectively,

and E is the set of directed links1. Suppose Π is the set of all simple paths

and aij is the link from node i to node j. Let Tπ be the travel time on a path

π and Dπ be the length of that path. Also let xij be a 0− 1 decision variable

that determines if the optimal path uses link aij (xij = 1 if the optimal path

uses link aij).

In the absence of evidence for a more complicated decision rule, we use

1Table 3.1 enlists the major mathematical notations used in this chapter.
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Table 3.1: Nomenclature
G : Directed graph of the network
N : Set of nodes
E : Set of directed links
r : An origin node
s : A destination node

Π : Set of all simple paths
aij : A link from node i to node j
Tπ : Travel time on a path π
Dπ : Length of a path π
tij : Travel time on link aij
dij : Length of link aij
tπ : Generalized travel cost
xij : 0 – 1 decision variable that determines if the optimal path

uses link aij
S̃ : Disutility from running out of range
R̃ : Random variable denoting the perceived range limit

UD : Disutility incurred if one actually runs out of range
FR̃ : Cumulative distribution function of R̃
fR̃ : Probability density function of R̃

g(Tπ, Dπ) : Generalized travel cost
α : Value of time (in terms of disutility)

ĝ(Tπ, Dπ) : Approximating function for g
h : Iteration count in OA algorithm
H : Maximum iteration for OA algorithm
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expected disutility to represent the potential disutility (for instance, disutility

from requiring towing) from running out of range. This disutility function is

assumed to capture the range anxiety of drivers. The distribution of the range

limit is built on how drivers perceive the range limit based on their driving

conditions. Consider a random variable S̃ denoting the disutility from running

out of range to be given by

S̃ =
{

0, Dπ ≤ R̃
UD, Dπ > R̃

, (3.1)

where R̃ is a random variable denoting the (random) perceived range limit,

and UD is the disutility incurred if one actually runs out of range. Then the

expected disutility from running out of range on a path would be

E[S̃] = UD · P (R̃ ≤ Dπ) = UD · FR̃(Dπ), (3.2)

where FR̃ is the cumulative distribution function (CDF) of the perceived range

limit R̃.

Let g(Tπ, Dπ) denote the generalized travel cost, which we assume to

be an increasing function of Tπ and Dπ and is given by2

g(Tπ, Dπ) = αTπ + UD · FR̃(Dπ), (3.3)

where α is the value of time (in terms of disutility). The parameter UD is

constant for a given user, depends on the risk affinity of the user and is likely

2The travel cost function is assumed to be linear in time to focus on the nonlinearity in
response to the range limit.
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to be higher for a risk averse user compared to a risk seeking user. The use

of expected disutility results in a nonadditive path disutility function. The

formulation for the nonadditive shortest path problem is

min
∑
π∈Π

g(Tπ, Dπ)

subject to

∑
{j:aij∈E}

xij −
∑

{j:aji∈E}
xji =


1, i = r
−1, i = s

0, otherwise
xij ∈ {0, 1} ∀aij ∈ E,

(3.4)

where the first constraint of program 3.4 ensures connectivity of the shortest

paths, and the second one ensures integer solutions.

 

𝑔 

Figure 3.1: Approximating function ĝ (for a given Tπ′).
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However, the generalized travel cost function g may be non-convex

which would make it computationally intractable to obtain the global optimal

solution. For a fixed travel time Tπ′ we believe g would be an S-shaped curve

(convex at the beginning and concave later), the shape of many CDFs. To

make the travel cost function convex, we have approximated this curve by

a linear tangent beyond the inflection point (D∗) of the S-shaped curve (see

Figure 3.1). The approximating function ĝ can be written as:

ĝ(Tπ, Dπ) =

 g(Tπ, Dπ), Dπ ≤ D∗

UD · fR̃(D∗)(Dπ −D∗) + g(Tπ, D∗), otherwise
, (3.5)

where fR̃ is the probability density function (PDF) of R̃.

We believe it is unlikely that the approximation will affect the optimal

solution since we are increasing the objective function in the concave region

where the optimal solution is unlikely to lie (otherwise a person will not choose

to drive a BEV in the first place). Nonetheless, we derive a condition under

which this approximation will certainly not introduce any error.

3.2 Derivation of the Condition

Four distinct regions (A,B,C, and D) have been marked in Figure 3.2.

The plane defined by Dπ = D∗ separates the graph into two regions such that

region A and region C are on the same side. Let (T ∗, 0) be a point such

that g(0, D∗) = g(T ∗, 0). Intuitively, region A is a region having routes with

relatively high travel time but small path length as opposed to region D having

routes with low travel time but large path length; and region B is a region
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𝑔 

(a) 3D view
 

 

(b) 2D view (contours)

Figure 3.2: Division of the graph into four distinct regions (A,B,C,D).
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having routes with relatively high travel time and large path length in contrast

to region Chaving routes with low travel time and small path length. If the

optimal path (in terms of the value of g) is in A or C, then the approximation

doesn’t change the optimal path. The approximation doesn’t alter the optimal

path even when it is in B because g is increasing in Tπ and Dπ. The problem

arises only when the optimal path lies in D. When the optimal path lies in D:

Case I: If no path in the given network lies in region A, then the approxima-

tion doesn’t change the optimal path.

Case II: There exists a path in the given network which lies in region A.

Let πa be the shortest path (in terms of the value of g) of all the paths

in region A, and similarly πd for region D. Clearly, g(πd) < g(πa)

since the optimal path lies in D.

Now if ĝ(πd) < ĝ(πa), then the approximation will not change the

optimal path. However, the optimal path may change if ĝ(πd) ≥

ĝ(πa).

Therefore, the approximation finds the true optimal path when it lies in either

A,B, or C, and the condition required for it to work when the optimal path

lies in D is given by (3.6):

ĝ(πd) < ĝ(πa)

⇒ UD · fR̃(D∗)(Dπd −D∗) + αTπd + UD · FR̃(D∗) < αTπa + UD · FR̃(Dπa)

⇒ α
(
Tπd − Tπa

)
+ UD

[
FR̃(D∗)− FR̃(Dπa)

]
+ UD · fR̃(D∗)(Dπd −D∗) < 0.

(3.6)
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The condition in 3.6 requires that the generalized cost of the optimal

path in region D should be smaller than the generalized cost of the optimal

path in region A. Equality may be allowed in the above condition if we assume

that a user would prefer a path with longer travel time over a path with greater

chance of running out of range given both the paths have the same cost. It is

important to note that the condition not only depends on the distribution of

the range limit but also on the network structure.

The new formulation after incorporating the approximation is:

min
∑
π∈Π

ĝ(Tπ, Dπ)

subject to

∑
{j:aij∈E}

xij −
∑

{j:aji∈E}
xji =


1, i = r
−1, i = s

0, otherwise
xij ∈ {0, 1} ∀aij ∈ E.

(3.7)

Now the problem formulation has the same structure to the one in

Shahabi et al. (29) and satisfies the convexity and differentiability conditions.

Therefore, their OA algorithm can be applied. OA algorithm can minimize a

convex function over a convex feasible region by sequentially defining linear

cuts instead of the nonlinear terms of the program (see Figure 3.3). Theoreti-

cally, OA is capable of delivering the global optimal for convex mixed integer

programs.

One can refer to Shahabi et al. (29) for the actual algorithm and to Sha-

habi et al. (35, 36) for specific cases of the nonadditive shortest path problem.

The formulation corresponding to the algorithm is presented in section 3.4.
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Figure 3.3: Intuition for Outer Approximation algorithm.

A flowchart of the OA framework has been reproduced from the paper in

Figure 3.4.

3.3 Network Transformation

This section describes a network transformation which allows analysis

of tours in a trip based formulation. For example, if we know that a BEV

driver tours through nodes 1, 3, 5, and 7 in a given network, then the trans-

formed network ensures that any trip from node 1 to node 7 in the transformed

network passes through nodes 3 and 5 in the original network. In a constrained
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Initialization: Find the ini-
tial feasible assignment x̂rslk

1.
Set UB = +∞ and LB = −∞.

Set ε,H, and set h = 1.

OA Sub-problem (SP): Calculate the
value of the continuous variable through

the SP, and update the upper bound.

OA Master Problem (MP): Add
the linear approximation of the non-
linear terms, solve the master prob-
lem, and update the lower bound.

(UB − LB) ≤ ε
or

h ≥ H

Stop and report the solutions.

Yes

No
h = h+ 1

Figure 3.4: OA framework.
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minimum cost tour problem corresponding to the problem described in this

paper, the origin, the destination, and an ordered set of locations (nodes) to

be visited in the tour, are given. Assuming that BEVs are fully charged at the

start of the tour and cannot recharge during the tour, the objective is to find

the optimal path which passes through all the given nodes while observing the

range limit. In a basic constrained problem it is simple to find the shortest

path, but with a constrained tour, the distribution of battery charge has more

possibilities and is more complex to optimize.
 

 

𝒊𝟑
𝟏 

𝒊𝟐
𝟏 

𝒊𝟏
𝟎 

𝒊𝟐
𝟎 𝒊𝟑

𝟐 

𝒊𝟒
𝟐 

Figure 3.5: Network transformation.

To find the optimal tour connecting the nodes [i1, i2, . . . , ik], where

i1 and ik are the origin and the destination nodes respectively, the following

network transformation (steps) is applied (see Figure 3.5 for a demonstration):
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1. The original network G is copied k − 2 times so that the final expanded

network has k − 1 original networks.

2. A link is added between ip+1 of Gp and ip+1 of Gp+1 ∀p ∈ {1, 2, . . . , k−2}.

3. All the newly created links have zero length and zero travel time.

To find the minimum cost tour, a constrained shortest path algorithm

can be used in this new expanded network. Once the focus is on trips we no

longer need to consider a hard distance constraint. It is easy to see that if only

individual trips are considered for analysis, then we’d essentially be solving the

regular shortest time path problem (assuming the battery is fully charged at

the beginning of each trip) since the disutility component for each trip due to

charge exhaustion will be insignificant in comparison to travel time for most

of the trips.

3.4 Formulation

This section provides the OA framework given in Shahabi et al. (29) in

the context of the model developed in earlier section.
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The problem in its general form is

Z = min
∑
π∈Π

ĝ

 ∑
aij∈E

tijxij,
∑
aij∈E

dijxij


subject to

∑
{j:aij∈E}

xij −
∑

{j:aji∈E}
xji =


1, i = r
−1, i = s

0, otherwise
xij ∈ {0, 1} ∀aij ∈ E,

(3.8)

where tij is the travel time on link aij and dij is the length of that link. The

formulation above (3.8) is nonlinear and convex in the objective function and

linear in the constraints.

(Note3: Tπ is the travel time on a path π, tπ is the generalized travel cost —

the sum of travel time and disutility from running out of range, on a path π,

and tij is the travel time on a link aij.)

The mixed integer nonlinear program (MINLP) corresponding to the

formulation above is

Z = min
∑
π∈Π

tπ

subject to

ĝ

 ∑
aij∈E

tijxij,
∑
aij∈E

dijxij

 ≤ tπ ∀π

∑
{j:aij∈E}

xij −
∑

{j:aji∈E}
xji =


1, i = r
−1, i = s

0, otherwise
xij ∈ {0, 1}, tπ ≥ 0 ∀aij ∈ E,∀π.

(3.9)

3To prevent confusion
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The formulation above (3.9) is linear in the objective function but non-

linear and convex in the constraints — it is a nonlinear program (NLP). The

sub-problem is formed by removing the last constraint from this NLP. The first

constraint in 3.9 enables the solution of the SP to be expressed through closed

form equations once integer assignments (xij) are fixed by the master problem,

thereby reducing the OA algorithm to solving only the master problem. The

objective function of the sub-problem provides the upper bound (UB) of the

algorithm for every iteration h and is given by Zh = min ∑
π∈Π

thπ . The master

problem of the algorithm, whose solution provides the lower bound (LB) is

given by the following set of equations (H is the maximum iterations):

LB = min
∑
π

tπ (3.10)

 ∑
aij∈E

{
tij
∂ĝ(Tπ, Dπ)

∂Tπ
× (xij − xhij)

}
+

∑
aij∈E

{
dij
∂ĝ(Tπ, Dπ)

∂Dπ

× (xij − xhij)
}

− (tπ − thπ) ≤ 0 ∀π ∈ Π,∀h = 1 . . . H (3.11)

∑
{j: aij∈E}

xij −
∑

{j: aji∈E}
xji =


1, i = r
−1, i = s

0, otherwise
(3.12)

LBh−1 ≤
∑
π

tπ ∀h = 1 . . . H (3.13)

LBh ≤ UB ∀h = 1 . . . H (3.14)

xij ∈ {0, 1} ∀aij ∈ E (3.15)

tπ ≥ 0 ∀π ∈ Π. (3.16)
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The program formed by the set of conditions above (3.10–3.16) is a

mixed integer linear program (MILP). The inequality in 3.11 is basically a

linear approximation of the nonlinear counterpart in the MINLP (supporting

hyperplane of the first constraint in program 3.9) and adds linear cuts (or OA

cuts) at every iteration of the algorithm. The condition in 3.13 ensures that

the lower bounds are produced in a non-decreasing sequence by the algorithm,

and the condition in 3.14 guarantees that the solution of the MP is less than

the upper bound. To summarize:

• MP is obtained by a Taylor series approximation of the MINLP.

• MP is a MILP and gives a lower bound.

• SP is obtained by fixing integer variables in the MINLP through the

solution of MP.

• SP is a NLP and gives an upper bound.

• The continuous variable (tπ) is optimized through the SP.

3.5 Numerical Experiments

In this section we first demonstrate how route choice changes with a

change in the risk attitude of drivers (as measure by UD), using a small artificial

network. Risk averse users are likely to choose routes with a lesser chance of

exhausting the battery, and so they will have a higher value of UD. It is

expected that as drivers become more risk averse, length of the optimal path
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should decrease. Next, we run some experiments to demonstrate the effects

of uncertainty in range prediction on route choice. And finally, we present

some running time statistics of the OA algorithm on some large networks (37)

to give an idea of the amount of time it would take to solve the formulation

for real life scenarios. The model was implemented in GAMS and CPLEX

was used as the solver. All the experiments have been done on a server with

Intel(R) Xeon(R) CPU X5680 @ 3.33GHz with 23.45 GB RAM. All instances

in the experiments have been solved to zero optimality gap.

 

(a) Network graph (b) Link attributes

Figure 3.6: Artificial network Z (length is in km; time is in minute).
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The aim of the first experiment is to illustrate the change in the optimal

path with a varying risk attitude of the user (given by UD). Drivers who are

more risk averse choose routes to minimize their probability of running out

range, and so it is expected that as we increase UD the length of the optimal

path should decrease. For this experiment we choose network Z shown in

Figure 3.6 along with the link attributes. A truncated normal distribution

with the following parameters have been used to model the perceived range

limit: α = 1;µ = 10, σ = 10, a = 0, b = 20 where, µ and σ are the mean

and the standard deviation of the parent normal distribution, and a and b are

the truncation parameters. It should be noted that the formulation is not

restricted to any distribution and a truncated normal distribution was used

for lack of any data on the distribution of the range limit. The tour chosen

for the experiment is [1 5 11] i.e. a trip from node 1 to node 11 via node 5.

Figure 3.7 shows the network transformation for this tour. Table 3.2 shows

the results of the experiments. When UD = 0 the optimal path is the regular

shortest time path which is the optimal path for a driver who is not risk averse

at all and does not care about the battery getting exhausted. The optimal

path remains the same for drivers who are relatively less risk averse or are

risk seeking (low value of UD). As drivers get more risk averse (UD increases)

optimal path changes such that the path length decreases at the cost of an

increased travel time. From the table we can see that a driver who is less

averse to risk (UD = 1) will choose a route with a travel time of 5 minutes and

a length of 7 km while another user who is fifty times more averse to risk will
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choose a route with a travel time of 8 minutes and a length of only 2 km.

 

 

Figure 3.7: Schematic of the transformation of network Z for tour [1, 5, 11].

The distribution and the value of the parameters used for this exper-

iment are not based on real data as no survey data were available, and so

they may seem unrealistic. Nevertheless, such trade-offs between travel time

and distance as demonstrated in the experiment can be found when one of the

available routes comprises mainly of freeways and highways while the other

routes consist of arterials with shorter distance but longer travel time due

to congestion. Similar trade-offs (between faster routes with high costs and

slower routes with low costs) have been found on some routes as mentioned

by Gabriel and Bernstein (14).

The aim of the second experiment is to demonstrate how the routes
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Table 3.2: Results of the first experiment on network Z
Probability of running

UD Optimal Path ĝ Tπ Dπ out of range (%)
0 [1, 7, 5, 4, 6, 11] 5.000 5 7 32.7
1 [1, 7, 5, 4, 6, 11] 5.327 5 7 32.7
5 [1, 7, 5, 11] 6.610 6 3 12.2
10 [1, 7, 5, 11] 7.220 6 3 12.2
20 [1, 7, 5, 11] 8.441 6 3 12.2
30 [1, 7, 5, 11] 9.661 6 3 12.2
40 [1, 7, 5, 11] 10.88 6 3 12.2
50 [1, 3, 5, 11] 11.90 8 2 7.8

taken by a given driver change with the uncertainty of predicted range of the

vehicle. The standard deviation of the distribution describes the uncertainty

in the prediction. We expect that as the standard deviation converges to zero,

the result converges to the constrained shortest path ([1, 7, 5, 4, 6, 11]). In

this experiment UD was kept constant and the standard deviation was varied,

and this process was followed for different values of UD. Table 3.3 reports the

results of the experiment for three values of UD. It can be seen from the table

that for a given BEV driver (i.e. for a fixed UD) as the uncertainty increases

(i.e. σ increases) the disutility of the optimal path increases, and when the

uncertainty increases to a particular value (for instance, σ = 2 for UD = 20)

optimal path changes to a path with a decreased probability of running out of

range.

Let Π1 denote the path [1, 7, 5, 4, 6, 11], Π2 denote the path [1, 7, 5, 11],

and Π3 denote the path [1, 3, 5, 11]. The standard deviation corresponding

to a change in the optimal path from Π1 to Π2 was found for a few values of
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Table 3.3: Results of second experiment
Probability of running

σ Optimal Path ĝ Tπ Dπ out of range (%)
UD = 20
0.1 [1, 7, 5, 4, 6, 11] 5.000 5 7 32.7
1 [1, 7, 5, 4, 6, 11] 5.027 5 7 32.7
2 [1, 7, 5, 11] 6.005 6 3 12.2
3 [1, 7, 5, 11] 6.188 6 3 12.2
4 [1, 7, 5, 11] 6.686 6 3 12.2
5 [1, 7, 5, 11] 7.215 6 3 12.2
10 [1, 7, 5, 11] 8.441 6 3 12.2
UD = 40
0.1 [1, 7, 5, 4, 6, 11] 5.000 5 7 32.7
1 [1, 7, 5, 4, 6, 11] 5.054 5 7 32.7
2 [1, 7, 5, 11] 6.009 6 3 12.2
3 [1, 7, 5, 11] 6.376 6 3 12.2
4 [1, 7, 5, 11] 7.371 6 3 12.2
5 [1, 7, 5, 11] 8.431 6 3 12.2
10 [1, 7, 5, 11] 10.88 6 3 12.2
UD = 50
0.1 [1, 7, 5, 4, 6, 11] 5.000 5 7 32.7
1 [1, 7, 5, 4, 6, 11] 5.067 5 7 32.7
2 [1, 7, 5, 11] 6.012 6 3 12.2
3 [1, 7, 5, 11] 6.470 6 3 12.2
4 [1, 7, 5, 11] 7.714 6 3 12.2
5 [1, 7, 5, 11] 9.039 6 3 12.2
10 [1, 3, 5, 11] 11.90 8 2 7.8
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Table 3.4: Standard deviation corresponding to change in optimal path from
Π1 to Π2

UD σ
1 Very Large
5 4.7
10 2.4
20 1.9
30 1.7
40 1.6
50 1.5

UD and the same has been shown in Table 3.4. It can be seen that as the risk

averse nature of the driver increases the range prediction of the vehicle needs

to get better for the optimal path to have lesser travel time. For, a change

from Π2 to Π3 the required standard deviation was very large for most of the

cases, and so the results have not been presented here.

Finally, the running time statistics of the algorithm on some large net-

works is presented in Table 3.5. The statistics are for implementation on a

server with Intel(R) Xeon(R) CPU X5680 @ 3.33GHz with 23.45 GB RAM4.

The running time is for a transformed network (for a tour with 4 nodes) ob-

tained via the network transformation discussed in section 3.3. Given that the

formulation is nonlinear and the network transformation increases the net-

work size (more than 100 thousand links in the transformed Chicago Regional

Network) the running times of the algorithm for the networks seem reasonable.

4With the transformation described in section 3.3, the number of nodes is linear in the
number of stops in the tour. So, ‘classical’ Dijkstra’s algorithm — which is O(n2) for an
origin, will take O(n2p2) for a tour with n nodes (in the original network) and p stops.
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Table 3.5: Running time statistics (in seconds) for OA algorithm
Original Transformed Running
Network Network time

Network Nodes Links Nodes Links (seconds)
Anaheim 416 914 1248 2744 0.23
Winnipeg 1052 2836 3156 8510 0.66

Austin 7388 18954 22164 56864 5.25
Chicago Regional 12982 39018 38946 117056 27.1

3.6 Discussion

In this chapter a network route choice model based on range anxiety

has been proposed. A constrained minimum cost tour problem which is more

appropriate is considered and is converted to an equivalent shortest path prob-

lem on a transformed network. The non-additivity over links of the disutility

from running out of range leads to a nonadditive shortest path formulation

which is solved using OA algorithm. Numerical experiments have been con-

ducted to demonstrate the effect of the risk attitude and the uncertainty in

predicted range on the route choice, and also to check the efficiency of the OA

algorithm in solving the model formulation.

The proposed model is very general because it does not assume any

particular distribution for the disutility from running out of range i.e. it can

be extended to distributions other than the truncated normal which has been

used for conducting numerical experiments in this chapter. Lack of survey data

is the reason for using the distribution. Extensive surveys need to be carried

out to know the form of the distribution and calibrate the model. However,

some distributions like the exponential distribution
(
f(x) = λe−λx · [x > 0]

)

42



are unlikely to correctly describe disutility from running out of range because

that would mean that an increase in unit path length would cause more in-

crease in disutility when a driver has a fully charged battery than when the

driver is near running out of range. We expect the distribution to be close to

an S-shaped curve.

Understanding the decision regarding the choice of routes is indispens-

able to develop a network model for contemplating the effects of BEV adoption

on transportation infrastructure. The proposed model is the key step in de-

veloping a network equilibrium model. The next chapter explores how the

route choices of different drivers are affected when congestion effects come

into play and develops network models for different possible scenarios based

on the model developed in this chapter.
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Chapter 4

Traffic Assignment

Chapter 3 formulated a route choice model for BEV drivers, which

is essential to develop a network model for traffic assignment. This chapter

builds on this route choice model and discusses possible extensions.

Traffic assignment is the process of accruing trips on links for all trip

interchanges between each origin-destination (OD) pair (38). It is the fourth

step in the conventional four-step forecasting model (the first three are trip

generation, trip distribution, and mode choice) and gives us the pattern of the

traffic delay. It accounts for the fact that the cost of trips depends on route

choices, and vice-versa.

User equilibrium (UE) and system optimal (SO) are the two traditional

ways of traffic assignment. While the UE principle tries to predict the ex-

pected traffic pattern by assuming that drivers have perfect knowledge of the

transportation network and try to minimize travel cost while making travel

decisions, the SO traffic assignment produces flows which planners should aim

for when designing the network or building infrastructure on existing net-

work. User equilibrium assignment follows Wardrop’s first principle, which

says drivers cannot unilaterally reduce their travel costs by choosing a differ-
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ent route. Beckmann proposed an optimization formulation (popularly known

as the Beckmann formulation) in the 1950s for solving the UE assignment

problem. Optimization formulations are desirable because there exist a large

literature on efficient ways to solve an optimization problem. Equation 4.1

presents the Beckmann formulation for the UE assignment. Finding the opti-

mality conditions after Lagrangianizing (equation 4.2) gives us a set of condi-

tions (equation 4.5) which defines the UE principle — every used path between

each OD pair has equal and minimal travel cost.

min
x, h

∑
(i,j)∈A

xij∫
0

tij(ω)dω

subject to xij =
∑
π∈Π

δπijh
π, ∀(i, j) ∈ A

∑
π∈Πrs

hπ = qrs, ∀(r, s) ∈ Z2

hπ ≥ 0, ∀π ∈ Π,

(4.1)

where

δπij : 0–1 variable to determine if path π use link aij

hπ : flow on path π

Πrs : set of all paths between OD pair (r, s)

qrs : demand between r and s

Z ⊆ N : set of all origins and destinations in the network.

Lagrangianizing the second constraint (‘no vehicle left behind’ constraint) in
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program 4.1 we get

min
h

∑
(i,j)∈A

∑
π∈Π

δπijh
π∫

0

tij(ω)dω +
∑

(r,s)∈Z2

κrs

qrs − ∑
π∈Πrs

hπ


subject to hπ ≥ 0, ∀π ∈ Π,

(4.2)

where κ is the Lagrange multiplier for the ‘no vehicle left behind’ constraint.

For a general optimization formulation with nonnegativity constraints,

the optimality conditions are given by

∂L

∂hπ
≥ 0 ∀hπ

hπ ≥ 0 ∀π ∈ Π

hπ
∂L

∂hπ
= 0 ∀π ∈ Π,

(4.3)

where L is the Lagrangian of the objective function. For the formulation in

program 4.1,

L(h,κ) =
∑

(i,j)∈A

∑
π∈Π

δπijh
π∫

0

tij(ω)dω +
∑

(r,s)∈Z2

κrs

qrs − ∑
π∈Πrs

hπ

 .
Differentiating1 the Lagrangian L(h,κ) w.r.t. flow h∗ on path π∗ be-

1 d
dx

(
f2(x)∫
f1(x)

g(t) dt

)
= g(f2(x))f ′

2(x)− g(f1(x))f ′
1(x)
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tween OD pair (r∗, s∗):

∂L

∂h∗
=

∑
(i,j)∈A

∂

∂h∗


∑
π∈Π

δπijh
π∫

0

tij(ω)dω

− κr∗s∗

=
∑

(i,j)∈A
tij

∑
π∈Π

δπijh
π

 · δπ∗ij − κr∗s∗
= Cπ∗ − κr∗s∗ ,

(4.4)

where Cπ∗ is the cost of using path π∗, and κr∗s∗ can be interpreted as the cost

of using the least cost path of OD pair (r∗, s∗).

Finally we have (for each OD pair (r, s)),

Cπ − κrs ≥ 0 ∀π

hπ ≥ 0 ∀π

hπ (Cπ − κrs) = 0 ∀π

(4.5)

as the optimization conditions for the UE assignment. The UE assignment

principle has been demonstrated using travel time as the travel cost. However,

it may be possible to formulate an optimization formulation for a generalized

travel cost function — one can work backward from the optimality conditions

to get an optimization formulation.

We can see that when link travel costs are fixed, a route choice model

like the one in chapter 3 performs this user equilibrium assignment. However

with many BEV drivers using the networks, congestion effects are likely to

come into play. Due to interactions between network users, travel time and

battery charge (and consequently the travel cost) will depend on the traffic
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state of the network. These drivers will have different risk preferences too, so

UD will vary across the population. We also need to consider the possibility of

different distribution of the range limit — different BEV drivers would have

different types of BEVs (for example, BEVs manufactured by different com-

panies) and will face different traffic conditions; and so the distribution of the

range limit could be different. Essentially, we need to include the possibility

of travel time and battery charge depending on the flow, and variation of risk

preferences of BEV drivers and distribution of range limit across the popula-

tion. Table 4.1 shows some of the possible extensions to the model developed

in Chapter 3. The sections that follow discuss some of these extensions based

on how the distribution of the range limit and the risk attitude (as measured

by UD) vary across the population of BEV drivers and on the flow dependency

of travel time and battery charge (which affects distance traveled). The case

where travel time and battery charge is independent of flow and the distribu-

tion of the range limit is same across the population has already been dealt

with in Chapter 3.

4.1 Models

We could model the variation of risk preferences of BEV drivers and

distribution of range limit across the population either as a continuous vari-

ation or as discrete set of user classes where each user class in the set has a

different behavior in terms of risk preferences and the underlying distribution

of range limit. (User classes can be defined by a combination of the distribu-
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Table 4.1: Possible extensions (t is link travel time and d is a proxy for battery
charge.)

Same UD &
distribution

Same UD,
different

distribution

Different UD,
same

distribution

Different UD

&
distribution

Constant
t, d

Chapter 3 section 4.1.1 section 4.1.2 section 4.1.3

Flow
dependent

t
section 4.1.4 section 4.1.5 section 4.1.5 section 4.1.5

Flow
dependent

t, d

Future
Research

Future
Research

Future
Research

Future
Research

tion of range limit — defined by a location parameter and a scale parameter,

and the risk preference of BEV drivers.) Continuous variations will allow us to

develop models which are not very sensitive to scaling of the network. It may

seem that developing a model which allows all these variations would be the

best thing to do, but it may not be useful and worth the extra complexity in

certain scenarios — “Essentially, all models are wrong, but some are useful.”2

The following subsections describe optimization formulations for some cases,

and comments on the possible ways to model others.

2A quote by George Edward Pelham Box from his book Response surface methodology
with Norman R. Draper.
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4.1.1 Constant t and d; same UD; discrete sets of distribution of
range limit

As described earlier, let the generalized travel cost be given by

ĝ(Tπ, Dπ) =

 αTπ + UD · FR̃(Dπ) Dπ ≤ D∗

αTπ + UD · FR̃(D∗) + UD · fR̃(D∗)(Dπ −D∗) otherwise
.

(4.6)

Let the variation of the distribution of the range limit across the pop-

ulation be described by a finite set L whose elements are an ordered pair of a

location parameter and a scale parameter. Each element (or user class) l ∈ L

then describes a different distribution. Let F l
R̃

and f l
R̃

denote the CDF and

the PDF of the distribution for user class l, respectively. Since t and d are

constant, we can treat each user class of BEV drivers (following a particular

distribution) differently and solve the nonadditive shortest path problem for

each class independently to get the traffic pattern of the network. For each

l ∈ L we have

min
∑
π∈Π

ĝl(Tπ, Dπ)

subject to
∑

{j:aij∈E}
xlij −

∑
{j:aji∈E}

xlji =


1 i = r
−1 i = s

0 otherwise
xlij ∈ {0, 1}, ∀aij ∈ E,

(4.7)

with,

ĝl(Tπ, Dπ) =

 αTπ + UD · F l
R̃

(Dπ) Dπ ≤ D∗

αTπ + UD · F l
R̃

(D∗) + UD · f lR̃(D∗)(Dπ −D∗) otherwise
.

(4.8)
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The link flows can then be obtained by

xij =
∑
l∈L

qlxlij, (4.9)

where ql denotes the number of BEV drivers that belong to user class l. So,

we need to just solve the nonadditive shortest path problem for each user class

and sum the ‘weighted’ link flows to obtain the link flow solution.

4.1.2 Constant t and d; discrete sets of UD; same distribution of
range limit

This case is similar to the one above (section 4.1.1). Let the generalized

travel cost be given by

ĝ(Tπ, Dπ) =

 αTπ + UD · FR̃(Dπ) Dπ ≤ D∗

αTπ + UD · FR̃(D∗) + UD · fR̃(D∗)(Dπ −D∗) otherwise
.

(4.10)

Let the variation of the risk attitudes UD across the population be described

by a finite set H. Each user class h ∈ H then describes a group of BEV

drivers with a different risk preference. Let Uh
D denote the risk preference of

user class h. Since t and d are constant, we can treat each user class of BEV

drivers differently and solve the nonadditive shortest path problem for each

class independently to get the flow pattern. For each h ∈ H

min
∑
π∈Π

ĝh(Tπ, Dπ)

subject to
∑

{j:aij∈E}
xhij −

∑
{j:aji∈E}

xhji =


1 i = r
−1 i = s

0 otherwise
xhij ∈ {0, 1}, ∀aij ∈ E,

(4.11)
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with,

ĝh(Tπ, Dπ) =

 αTπ + Uh
D · FR̃(Dπ) Dπ ≤ D∗

αTπ + Uh
D · FR̃(D∗) + Uh

D · fR̃(D∗)(Dπ −D∗) otherwise
.

(4.12)

The link flows can then be obtained by

xij =
∑
h∈H

qhxhij, (4.13)

where qh denotes the number of BEV drivers that belong to user class h. So,

we need to just find the nonadditive shortest path for each user class and sum

the ‘weighted’ link flows to obtain the link flow solution.

4.1.3 Constant t and d; discrete sets of UD; discrete sets of distri-
bution of range limit

This case is again similar to the two above (section 4.1.1 and sec-

tion 4.1.2). To formulate the optimization problem for this case we just need

to create a new set of user classes W = L×H. This set encompasses all pos-

sible combinations of risk attitude UD, the location parameter, and the scale

parameter of the distribution. Let Fw
R̃

and fw
R̃

denote the CDF and the PDF

of the distribution for user class w, respectively, and let Uw
D denote the risk

preference of user class w. The formulation then for each user class w ∈ W is

min
∑
π∈Π

ĝw(Tπ, Dπ)

subject to
∑

{j:aij∈E}
xwij −

∑
{j:aji∈E}

xwji =


1 i = r
−1 i = s

0 otherwise
xwij ∈ {0, 1}, ∀aij ∈ E,

(4.14)
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with,

ĝw(Tπ, Dπ) =

 αTπ + Uw
D · Fw

R̃
(Dπ) Dπ ≤ D∗

αTπ + Uw
D · Fw

R̃
(D∗) + Uw

D · fwR̃ (D∗)(Dπ −D∗) otherwise
.

(4.15)

The link flows can then be obtained by

xij =
∑
w∈W

qwxwij, (4.16)

where qw denotes the number of BEV drivers that belong to user class w.

The final link flows can therefore be obtained by just solving the nonadditive

shortest path problem for each user class and doing a weighted sum of the link

flow solutions obtained from each problem.

4.1.4 t is flow dependent; d is constant; same UD and same distri-
bution

Let the generalized cost be given by (for simplicity we assume α = 1)

ĝ(Tπ, Dπ) =

 Tπ + UD · FR̃(Dπ) Dπ ≤ D∗

Tπ + UD · FR̃(D∗) + UD · fR̃(D∗)(Dπ −D∗) otherwise
.

(4.17)

Let

G(Dπ) =

 FR̃(Dπ) Dπ ≤ D∗

FR̃(D∗) + fR̃(D∗)(Dπ −D∗) otherwise
. (4.18)

Then the generalized cost can be written as

ĝ(Tπ, Dπ) =
∑

(i,j)∈A
tij(xij) · δπij + UD ·G(Dπ). (4.19)
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The UE formulation for this case can be written as:

min
h

∑
(i,j)∈A

∑
π∈Π

δπijh
π∫

0

tij(ω)dω +
∑
π∈Π

hπ (UD ·G(Dπ))

+
∑

(r,s)∈Z2

κrs

qrs − ∑
π∈Πrs

hπ

 (4.20)

subject to hπ ≥ 0, ∀π ∈ Π.

For a given path π∗

∂L
∂hπ∗

= ∑
(i,j)∈A

tij

( ∑
π∈Π

δπijh
π

)
· δπ∗ij + UD ·G(Dπ∗)− κr∗s∗

= CTπ∗ + CDπ∗ − κr∗s∗

= Cπ∗ − κr∗s∗ ,

(4.21)

where

L(h,κ) =
∑

(i,j)∈A

∑
π∈Π

δπijh
π∫

0

tij(ω)dω +
∑
π∈Π

hπ (UD ·G(Dπ))

+
∑

(r,s)∈Z2

κrs

qrs − ∑
π∈Πrs

hπ

 (4.22)

and Cπ∗ = CTπ∗ + CDπ∗ .

Equation 4.21 shows that the nonadditive shortest path problem can be used

as a sub-problem for the TA problem. Any path-based algorithm (like gradient

projection) can be used to solve for the equilibrium flows.
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4.1.5 Flow dependent t; d is constant; discrete sets of UD; same
distribution of range limit

Let the variation of the risk attitudes UD across the population be

described by a finite set W so that Uw
D represents the risk preference of a

driver of user class w ∈ W . Let the generalized cost for this user class be

given by (assuming α = 1)

ĝw(Tπ, Dπ) =

 Tπ + Uw
D · FR̃(Dπ) Dπ ≤ D∗

Tπ + Uw
D · FR̃(D∗) + Uw

D · fR̃(D∗)(Dπ −D∗) otherwise
.

(4.23)

Let

G(Dπ) =

 FR̃(Dπ) Dπ ≤ D∗

FR̃(D∗) + fR̃(D∗)(Dπ −D∗) otherwise
. (4.24)

Then we can write,

ĝw(Tπ, Dπ) =
∑

(i,j)∈A
tij(xij) · δπij + Uw

D ·G(Dπ). (4.25)

Let hπ = ∑
w∈W

hπ,w, where hπ,w is no. of users with risk preference Uw
D on path

π.

For formulating a UE for this case we need to virtually separate flows

on a given path by their user class. The UE formulation for this case can be

formulated as:

min
h

∑
(i,j)∈A

∑
π∈Π

∑
w∈W

δπijh
π,w∫

0

tij(ω)dω +
∑
π∈Π

∑
w∈W

hπ,w (Uw
D ·G(Dπ))

+
∑

(r,s)∈Z2

κrs

qrs − ∑
π∈Πrs

∑
w∈W

hπ,w

 (4.26)
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subject to hπ ≥ 0, ∀π ∈ Π.

For a given path π∗ and user class w

∂L
∂hπ∗,w

= ∑
(i,j)∈A

tij

( ∑
π∈Π

δπijh
π

)
· δπ∗ij + Uw

D ·G(Dπ∗)− κr∗s∗

= CTπ∗,w + CDπ∗,w − κr∗s∗
(4.27)

where

L(h,κ) =
∑

(i,j)∈A

∑
π∈Π

δπijh
π∫

0

tij(ω)dω +
∑
π∈Π

hπ (UD ·G(Dπ))

+
∑

(r,s)∈Z2

κrs

qrs − ∑
π∈Πrs

hπ

 . (4.28)

The case where we have discrete sets of distribution of range limit while

the risk attitude is same throughout the population, and the case where we

have discrete sets of risk preferences and discrete sets of distribution of range

limit can be handled similarly.

4.2 Discussion

The battery consumption rate of BEVs also depends on the speed of

the vehicle, and consequently the equilibrium flows. Therefore, it is essential

to develop an equilibrium model which accounts for the flow dependency of the

rate of battery consumption. He et al. (33) developed an equilibrium model

with flow-dependent energy consumption by relating energy consumption of

the battery to the travel time. However, their model was a nonlinear com-

plementarity problem (NCP). It may be possible to develop a NCP for the
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framework discussed in this research, but an optimization problem3 would be

a better option and will be explored in future research.

The only other case for which a model has not been developed in this

work is one which allows continuous variation of risk preferences and the pa-

rameters of distribution of range limit across the population. Preliminary

ideas based on the work of Dial (38) is in works and will be explored in future

research. He developed a bicriterion equilibrium traffic assignment model that

allows the value of time parameter to vary continuously across the population.

The problem that he solves is similar to the case which allows continuous vari-

ation of risk preferences while the distribution of range limit stays the same;

the only difference is that he assumes a linear generalized cost, while we have a

nonlinear travel cost. The idea hinges on the fact that the OA algorithm does

linear approximation to the nonlinear objective function to find the optimal

solution, and hence it may be possible to formulate an optimization problem

based on Dial’s idea.

3He et al. (33) mentions that the NCP can be converted to a nonlinear optimization
problem through a gap function.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, a nonadditive shortest path problem was proposed to

model the route choice behavior of BEV drivers. The model relaxed some ma-

jor assumptions of earlier literature — all BEVs have the same range limit and

all BEV drivers have the same reserve range. It also allows for a continuum of

range limits and incorporates nonlinear travel preferences of drivers to allow

a smoother transition in the response of drivers. Since it is hard to quantify

the impact of battery charge and the heterogeneity of drivers’ preferences,

the range limit was modeled to be a random variable. Justified approxima-

tions were made to make the objective function convex, and OA algorithm

was used to solve the problem. Numerical experiments were performed which

demonstrated that drivers who are more risk averse choose routes to mini-

mize probability of running out of range, and as drivers get more risk averse

the optimal path changes so that the path length decreases at the cost of an

increased travel time. Also, as uncertainty increases the disutility of the op-

timal path increases. Efficiency of the OA algorithm to solve the model was

also demonstrated. The proposed model is very general and can be extended

to distributions other than the one considered in the numerical experiments.
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Extensive surveys will be required to calibrate the model. Optimization for-

mulations were proposed for extension of the route choice model to model the

congestion effects and the effects of interaction of multiple BEV drivers with

different travel preferences.

Some of the possible extensions mentioned in Chapter 4 were not dis-

cussed and will be investigated in future research . Distance was used as

a proxy for battery charge for network equilibrium models when the charge

consumed was taken to be dependent on traffic flow. It might be practical

and easier to use battery charge instead and make it dependent on the travel

time. Survey data will also be required to quantify this relation. The research

in this thesis is the first step to develop a more general network equilibrium

model. It is a critical next step towards improved guidance to policy makers.

It will help planners in their decision making process. Network equilibrium

model for example can help determine optimal location for charging stations.

Utility models can also be developed for setting prices at charging stations.

While many route choice models have been proposed in literature for BEVs,

the non-additivity of link costs in this research distinguishes it from most ear-

lier research literature. The nonadditive shortest path problem has important

applications in transportation models especially nonlinear models like emission

models. While we emphasized user equilibrium flows, system optimal models

will also need to be developed for congestion pricing and other pricing related

policies.
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5.2 Future Scope

One of the major assumptions for the route choice model was that BEV

drivers charge their vehicles at the start of their tour. This assumption may be

reasonable for now because of the current battery technology and limited refu-

eling opportunities (long charging times and low density of charging stations).

But in future, battery technology will improve and more charging stations are

going to be installed. Travel models should then allow for relay locations. Du-

ration of stay at charging stations will also become important. Quick battery

exchange stations have been established, which allow drivers to quickly replace

almost drained batteries with fully charged ones (5). However, standardiza-

tion issues may arise and it may take a long time before this option becomes

practical and reliable (31). Zhang et al. (32) also considered departure time

choice in their variational inequality network formulation. They change the

choice of charging station to a route choice using an expanded network with

charging station as nodes, and their models takes the variation of charging

prices and waiting costs at charging stations into account.

The models developed in this thesis is for BEV drivers only. Large scale

adoption of BEVs is a future scenario. Until then, households will own both

GVs and BEVs (or probably a hybrid). So, it is essential to explore appropriate

models for mixed equilibrium flows of BEVs and GVs.

We know that the shortest path problem is a subproblem for the Beck-

mann formulation. However, the assumption that drivers have perfect knowl-

edge of the travel times may not hold and there might be stochasticity in the
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perception of travel times. So, a stochastic user equilibrium, which is generally

considered to be more suitable to reflect drivers’ behavior might need to be

explored as well. That involves developing a k-shortest path version of the

problem.

A nonadditive shortest path problem was proposed in this thesis to

model the route choice of BEV drivers. While all the possible extensions to

it were not discussed, this research laid the foundations for nonlinear network

models for BEVs. It will hopefully inspire and initiate more research to develop

nonlinear travel models for BEVs.
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