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Abstract 

 

Reliable Routing in Schedule-Based Transit Networks 

 

Tyler James Beduhn, MSE 

The University of Texas at Austin, 2014 

 

Supervisor:  Stephen D. Boyles 

 

A framework is proposed for determining the least expected cost path in a 

schedule-based time-expanded public transit network where travel times, and thus bus 

arrival and departure times at stops, are stochastic. Transfer reliability is incorporated in a 

label-correcting algorithm with a penalty function for the expected waiting time when 

transferring that reflects the likelihood of making a successful transfer. The algorithm is 

implemented in transit assignment on an Austin, Texas test network, using actual bus 

arrival and departure time distributions from vehicle location data. Assignment results are 

compared with those of a deterministic shortest path based on the schedule and from a 

calibrated transit assignment model. Simulations of the network and passenger paths are 

also conducted to evaluate the overall path reliability. The reliable shortest path algorithm 

is found to penalize transferring and provide paths with improved transfer and overall 

reliability. The proposed model is realistic, incorporating reliability measures from 

vehicle location data, and practical, given the efficient shortest path approach and 

application to transit assignment.  
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Chapter 1: Introduction 

1.1 BACKGROUND 

Urban transportation systems are facing numerous challenges including increasing 

demand and congestion, limited funding and inadequate public transit facilities. The 

effects are felt by households and businesses alike, putting strain on economic and social 

development. Public transportation is a vital component of an urban transportation 

system. It has the capability of addressing many transport problems with more efficient 

use of limited right-of-way and increased vehicle occupancy, and it enhances personal 

mobility for a diverse group of the population. Public transit, however, has its own share 

of challenges. Service reliability continues to be a topic of growing interest and is 

regularly cited by users as an important quality of service measure. Reliability has 

significant implications on users’ choice of transit routes, departure time, or even to use 

the mode at all. Uncertainty when using public transit can result from a variety of sources 

as outlined in Table 1 (TCQSM, 2013). Improved reliability can benefit passengers with 

more certain travel times and service operators with lower costs and increased ridership 

(Van Oort, 2011). 

Transfers between routes is an integral part of transit service due to scattered 

origin and destination patterns and the high costs of supplying direct service between all 

areas of a city. Considering this, uncertainty in travel times becomes even more 

problematic as missing a transfer can result in costly delays. With the increasing adoption 

of automated data collection systems like automated vehicle location (AVL) and 

automated passenger counting (APC) systems that track vehicle travel times, schedule 

adherence and passenger activity, reliability measures can be easily obtained. These data 
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sources and reliability measures are useful in evaluating operational performance and in 

developing more advanced planning models. 

Table 1:  Causes of unreliability in transit service. 

Traffic condition Differences in operator driving skills 

Vehicle and maintenance quality Wheelchair lift usage 

Vehicle and staff availability Route length and number of stops 

Transit preferential treatments Weather 

Schedule achievability Incidents and construction 

Evenness of passenger demand Operations control strategies 

From a planning perspective, there is a desire for models that realistically capture 

user behavior and transportation system performance. Advanced transit assignment 

models, which assign passengers for given origin-destination (OD) pairs to a specific 

path, are useful in predicting the utilization of a public transit system.  Route choice is a 

core component to these models and can take several forms including a priori routing, 

adaptive routing policies or utility maximization. Incorporating reliability into the transit 

routing problem adds more realism to assignment; for example, a transfer that should be 

made on the basis of the schedule is not always made in reality, and experienced 

passengers may choose their routes with their perception how the system operates. In 

short, an assignment tool that reflects the importance of reliability in a user’s trip 

planning process can be a more realistic model and is useful in evaluating the impacts of 

service improvements. 
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1.2 MOTIVATION 

Optimal routing in a transit network can be quite complex. There are several 

elements of transit network that make this challenging: 

1. Routing involves waiting to board a vehicle at the origin and at transfer locations. 

2. Transit service is time-dependent and often follows a schedule. 

3. Passengers have the opportunity to transfer between routes. 

4. Actual transit service can deviate from the schedule. 

Given these challenges there is a need for a framework for determining an optimal 

reliable path in a schedule-based transit network that considers the stochastic nature of 

the service. 

 This thesis is motivated by the importance placed on reliability by transit users 

and the impacts it has on their route choice. While reliability can have many definitions, 

it can be generally thought of as the variability of a service attribute. In public transit, it is 

often associated with the timeliness of vehicles and the difference between a passenger’s 

scheduled and actual travel time. Unreliability of transit can have a compounding effect 

on travel time with missed boardings leading to additional waiting costs to the user and 

potential disruptions in later planned segments of the trip. Balcombe et al. (2004) review 

studies that indicate that the ‘excess’ waiting time due to unreliable service has a much 

higher disutility to passengers than ordinary waiting time. This value is typically 2 to 3 

times the valuation for normal waiting (Bly, 1976). Several others have emphasized the 

significant impacts unreliability at transfer points has on overall trip reliability and 

attractiveness of the mode (Turnquist and Bowman, 1980; Mai et al., 2012; Cedar et al., 

2013).  
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 As important as it is to recognize the value placed on a reliable transit service by 

users, it is equally important to incorporate such realizations into planning models. A 

realistic and practical transit model has many benefits. It can be the answer to questions 

such as “What will be the ridership of the new transit line? How will improved reliability 

benefit transferring passengers? How will passengers adjust their trip making to service 

changes? How much will ridership increase if the timeliness of a bus route is improved?” 

The usefulness of knowing the path which provides good reliability at transfer points is 

not limited to transit assignment modeling, though this is the main application in this 

thesis. It can also be useful for trip planning tools. 

1.3 CONTRIBUTIONS 

In this thesis a framework is presented for determining the a priori least expected 

cost path with reliable transfers in a stochastic schedule-based transit network. The term 

reliable transfer is used because the variability of transfer timing is considered with 

actual distributions of vehicle arrival and departure times at stops from AVL data. 

Unreliable transfers have a high probability of being missed, resulting in additional travel 

cost to the passenger. By minimizing the expected cost, unreliable transfers are penalized. 

The primary contributions are (1) modeling network stochasticity and its impact on 

transfers, (2) a computationally efficient and practical algorithm for finding the reliable 

path and (3) the use of empirical transit data for model development and testing. The 

algorithm is applied in passenger assignment, and network and passenger simulation is 

conducted to evaluate the paths of three assignment approaches. The results provide 

insight into the tradeoffs that exists relating to reliability. 
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1.4 ORGANIZATION OF THESIS 

The thesis is organized as follows. Chapter 2 reviews related literature on routing 

in stochastic networks, routing with reliability and transit assignment. A background on 

the specific transit assignment model used for comparison and common public transit 

data sources is also included. Chapter 3 presents the proposed shortest path approach and 

solution algorithm. Numerical results of passenger assignment and simulation in the 

Austin, Texas transit network are included in Chapter 4, and concluding remarks are 

provided in Chapter 5.  
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Chapter 2: Literature Review and Background 

2.1 INTRODUCTION 

This chapter reviews relevant literature on routing in stochastic networks and on 

transit assignment, and provides a background on the tools and data sources used in the 

application of the developed routing framework. This research is based on the shortest 

path concept in transportation networks. Shortest path problems have long been 

considered in transportation applications for several reasons; they generally describe how 

users choose their travel routes, they can be adapted to optimize different objectives, and 

algorithms exist to efficiently solve them. The routing problem in a transportation 

network considers how an individual user would behave, specifically the path taken from 

a trip origin to the destination. Collectively knowing how people choose their routes leads 

to assignment, an important planning tool. The following sections review routing in a 

stochastic network, routing with reliability and transit routing. Literature that has 

considered transfer reliability in contexts other than assignment is also reviewed, along 

with the assignment model used in comparing the developed framework and useful transit 

data sources. 

2.2 ROUTING IN A STOCHASTIC NETWORK 

Optimal routing in transportation networks is a problem that has been studied 

from many approaches. The routing problem has many variants based on the nature of the 

network. One broad classification is static versus dynamic; often transportation networks 

are better viewed as dynamic as conditions (e.g. travel time) are dependent on time of 

day. Routing in dynamic networks, commonly referred to as time-varying or time-

dependent, is also subject to uncertainty given that stochasticity in travel times arises 
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from many causes. Stochastic routing can furthermore be classified into either a priori or 

adaptive problems. Hall (1986) was the first to study the shortest path problem in time-

dependent networks with discrete stochastic link travel times and proved that link travel 

times cannot be simply replaced with their expected value at each time interval to solve 

an equivalent deterministic shortest path problem. Instead, a dynamic programming 

approach is used to determine an a priori least expected time (LET) path. Other related 

research includes a heuristic algorithm for a similar problem with continuous stochastic 

travel time proposed by Fu and Rilett (1998) and a modified label-correcting algorithm 

for generating LET paths and method for determining the lower bound on expected times 

of LET paths by Miller-Hooks and Mahmassani (2000).  

The second class of stochastic shortest path problems involves an adaptive 

routing policy, also known as routing with recourse, where a user may update his or her 

route at any point. This problem has been considered in both a time invariant stochastic 

network (Waller and Ziliaskopoulos, 2002; Fan et al., 2005) and its time-dependent 

counterpart (Miller-Hooks and Mahmassani, 2000; Gao and Chabini, 2006). With the 

exception of a few studies (Waller and Ziliaskopoulos, 2002; Fan et al., 2005), the 

majority of the stochastic routing problems in literature assume link travel times (or 

costs) to be independent random variables (Fu and Rillete, 1998; Miller-Hooks and 

Mahmassani, 2000; Gao and Chabini, 2006; Frank, 1969; Fan et al. 2005). This thesis 

builds upon several of these past studies by determining the a priori least expected time 

path in a realistic public transit network, where the time the bus arrives/departs from a 

stop is an independent random variable. Thus, the reliability of transfers between bus 

routes is also inherently considered. 
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2.3 RELIABILITY IN ROUTING 

Numerous researchers have incorporated reliability into the stochastic routing 

problem in one form or another. Frank (1969) defines an optimal path in a stochastic 

network as one which maximizes the probability of the travel time being less than a 

threshold, but the solution approach consists of an inefficient pairwise comparison of 

enumerated paths. An adaptive policy algorithm based on dynamic programming is used 

by Fan et al. (2005) in the problem of maximizing the probability of arriving on time in a 

static network; the convergence properties of the algorithm is investigated by Fan and 

Nie (2006). A corresponding a priori shortest path problem guaranteeing a given 

probability of arriving on-time while minimizing the time budget is developed by Nie and 

Wu (2009); the authors solve the problem with an exact label-correcting algorithm and 

extend the formulation to the time-dependent case. This problem is also considered with 

correlations in link travel times and solved with a simulation-based algorithm (Zockaie et 

al., 2013). Reliability has been incorporated in other forms as well. For example, 

Sivakumar and Batta (1994) introduce a variance constraint into the shortest path 

problem while Sen et al. (2001) use a linear combination of mean and variance in the 

objective function of the stochastic routing problem. 

2.4 TRANSIT ASSIGNMENT 

There have been several studies that consider transit service explicitly.  Tong and 

Richardson (1984) develop algorithms for time-dependent (schedule-based) shortest path 

in a transit network based on either travel time or cost, however uncertainty in travel time 

is not considered. Adaptive routing strategy or hyperpath approaches have received 

greater attention in literature on transit networks. The passenger’s choice of bus line to 
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board from an attractive subset of lines was first characterized by Chirque and Robillard 

(1975) in a probabilistic framework and was extended to strategies, hyperpaths and 

assignment in frequency-based transit networks (Spiess and Florian, 1989; Nguyen and 

Pallottino, 1988). Variations of schedule-based models which use more detailed arrival 

and departure time information for each vehicle have also been developed (Tong and 

Wong, 1999; Wilson and Nuzzolo, 2004; Hamdouch and Lawphongpanich, 2008).  

Though the transit assignment problem has been studied from many different 

approaches over the last decades, very little consideration has been given to the impacts 

of reliability. Yang and Lam (2006) develop a probit-type reliability-based transit 

assignment model in which in-vehicle times are stochastic and assumed to follow a 

normal distribution, and the behavior of risk averse travelers is captured in a disutility 

function of travel time and its variation. However, their model relies on a simulation-

based solution algorithm. Recently, reliability has also been incorporated into frequency-

based assignment with capacity constraints (Szeto et al., 2011; 2013) and into schedule-

based assignment with strategies using a mean variance approach (Hamdouch et al., 

2014).  

Aside from assignment, reliability in public transit networks has been considered 

at transfer locations in a scheduling, control and transit system performance measurement 

context (Knoppers and Muller, 1995; Muller and Furth, 2009; Lee et al., 2014). From a 

user perspective, transfers have a very high associated penalty due to their inconvenience 

(Guo and Wilson, 2011), and this penalty can range from 5 to 50 minutes of equivalent 

in-vehicle time depending on the mode and location (Currie, 2005). Since transfers 

depend on the arrival of two vehicles at a transfer point, they also undoubtedly contribute 

significantly to overall path unreliability. A framework is needed that links the time-
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dependent nature of the transit schedule, transfer timing and realistic performance 

characteristics (i.e. reliability) to passenger routing. 

2.5 FAST-TRIPS ASSIGNMENT MODEL 

In Chapter 4, the shortest path framework developed in this thesis for determining 

the least expect cost path in a realistic transit network is applied to transit assignment. 

The passenger paths obtained from this assignment are compared with the deterministic 

shortest path based on the posted schedule and the paths from a previously developed 

assignment model. FAST-TrIPs1 is a disaggregate passenger assignment and simulation 

model for schedule-based transit systems. It was developed as part of the SHRP 2 C10(B) 

project and has been tested in applications in Sacramento, CA, San Francisco, CA, 

Portland, OR and  Austin, TX (Khani et al., 2013; 2014a; 2014b).  

FAST-TrIPs models the transit network in a schedule based format, so each 

vehicle within a route is modeled separately according to the schedule. Several options 

are built into the model, one of which is the path choice model. Assignment can be done 

using either a deterministic shortest path (or least cost) or a stochastic multiple-path 

assignment. In the stochastic assignment a set attractive paths, or hyperpath, is generated 

for each passenger, who is stochastically assigned to an elementary path using utility 

values. The model requires a utility function, calibrated for the study area, that places 

weights on different components of a transit trip, for example in-vehicle time, waiting 

time, walking distance and number of transfers. Passengers are then assigned to a path in 

the choice set using the logit probability function 

                                                

1 FAST-TrIPs: Flexible Assignment and Simulation Tool for Transit and Intermodal Passengers 
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 P(j)=
e-θUj

∑ e-θUii∈Π
 (1) 

where P(j) is the probability of selecting path j among all paths in the attractive set Π, Uj 

is the utility of path j and θ is a dispersion parameter. The dispersion parameter reflects 

the sensitivity of users to cost differences across paths; a very large value may result in 

few alternative paths in the hyperpath whereas a small positive value results in more 

alternatives. Another feature of FAST-TrIPs is its ability to enforce vehicle capacity 

constraints. A simulation module captures the interaction between passengers and 

vehicles, and if a passenger is unable to board a crowded vehicle a penalty can be applied 

to its path. This could result in passengers adjusting their path choice with an iterative 

assignment. 

 Assignment using the stochastic path choice model of FAST-TrIPs is used as a 

comparison to assignment with the shortest path framework established in this thesis, 

using the bus system in Austin, Texas as the study area. In previous work, the logit-based 

route choice model for FAST-TrIPs was calibrated for transit passengers in Austin, TX 

(Khani et al., 2014b). The route choice model was estimated using data from an on-board 

survey conducted by the Capital Metropolitan Transit Authority (Capital Metro). Using 

reported origin, destination, boarding location, and bus route from the survey 

respondents, their observed path choices were inferred. The choice set of paths was then 

generated for each passenger using origin and destination locations and the approximate 

time of the intercept interview, and finally the logit model was estimated. FAST-TrIPs is 

a flexible tool that is calibrated to reflect user behavior and models individual vehicles 

based on the schedule, making it a good grounds for comparison to the methodology 

presented in this thesis. 
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2.6 TRANSIT DATA SOURCES 

Many transit related data sources exist that are not only important to service 

operations, but can also be used in generating and testing planning models. Two sources 

in particular, General Transit Feed Specification (GTFS) files and automatic passenger 

counting/automatic vehicle location (APC/AVL) data, are critical to the implementation 

of the modeling framework in this work. In this section, a brief description of these data 

sources as well as how they are used is provided. 

2.6.1 GTFS 

Google’s GTFS is a standard format for public transportation schedules published 

by transit agencies and made publicly available (Google Developers, 2012). GTFS is 

series of text files that describe the transit service in a trip-based format; the files are 

linked together with common attributes (see Figure 1). Six files are required to publicly 

post the feed, while seven additional files are optional. A description of each of the 

required files is provided in Table 2. In general, each route is made up of unique vehicle 

trips, and the scheduled arrival and departure time of each trip is listed for each stop it 

visits. The exact location of stops can be referenced in a separate file, and a calendar file 

specifies which days of the week a trip is in service. Though not required, a shape file can 

provide the geometry of each trip, and fares can be associated with each route. 
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Figure 1: GTFS file relationships. 

While the primary use of GTFS is for trip planner and time table publishing 

applications, it is also a powerful data source as the network input to planning models. It 

is an appropriate input to models with high temporal resolution, given its representation 

of individual vehicle trips. For example, it is used in generating many of the input files 

for the transit assignment model, FAST-TrIPs, described in the previous section. GTFS 

published by Capital Metro is used to generate the Austin transit network used for testing 

in Chapter 4. 
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Table 2: Required GTFS files. 

File Name Description 

Trips.txt 
List of all vehicle trips and their stops (service provided for a sequence 

of two more stops at a specific time) 

Stop_times.txt 
List of times when a vehicle (trip) arrives and departs from individual 

stops (schedule) 

Stops.txt 
Locations where vehicles pick up or drop off passengers (latitude and 

longitude) 

Routes.txt 
Transit routes (a group of trips provided as a single service to 

passengers) 

Calendar.txt 
Services IDs associated with when days of the week where service is 

available and  the dates service starts and ends 

Agency.txt Information on the transit agency(ies) providing the data feed 

2.6.2 APC/AVL 

Automated data collection (ADC) systems are being widely adopted by transit 

agencies to provide both real-time and offline data. Two types of ADC systems are 

automated passenger counting and automated vehicle location systems. These systems 

are capable of capturing and storing enormous amounts of temporal and spatial data of 

different types that can be used to characterize a transit system’s utilization and 

performance. AVL systems consist of GPS receivers positioned on vehicles which, when 

paired with other onboard sensors, provide a full picture of a route’s spatial and temporal 

performance. In most AVL systems, a central computer does round-robin polling to 

identify bus locations in real-time, but additional “time at location” records can be 

created at designated stops or time points. Automatic passenger counting (APC) systems 

can use a variety of technologies for counting passengers; this includes pressure-sensitive 

mats and horizontal or overhead infrared sensing (Furth et al. 2006). Typically APC 
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systems are installed on a fraction in a fleet due to cost, and buses equipped with the 

sensors are rotated around routes so that data on all routes can be collected. Capital 

Metro, for instance, has equipment installed on approximately 22% of their buses. The 

accuracy of the counting can fluctuate on the technology used and the algorithms used to 

convert sensing into passenger counts. In addition to passenger counts, the system usually 

includes location measurement and stop matching. When the bus leaves a stop an on-

board computer creates a record with its on-off counts. 

The data set used in this study is APC data with both spatial and temporal 

information from Capital Metro. The data set contains observed arrival and departure 

times at stops for a sample of vehicle trips during January – June 2013. The primary use 

of this data is to obtain measures of reliability, or timeliness, for bus routes in the PM 

peak period. During data processing each observed vehicle trip was matched to a GTFS 

trip ID to obtain the scheduled time and thus schedule deviation using the observed 

arrival and departure times for each stop in the trip. For each route and direction (e.g. 

northbound), data from all trips within the PM period was aggregated to get a mean and 

standard deviation for both arrival and departure time deviation from the schedule for 

each stop. This aggregation was used to ensure a large enough sample size at each stop as 

not every scheduled vehicle trip had a large number of observations during the data 

collection period. The final sample size across routes and stops ranges from 37 to 368 

observations. The result is a mean and standard deviation of schedule deviation for both 

arrival time and departure time for each stop in each route and direction, reflective of 

service in the PM period. These measures are an integral part to the methodology 

described in the following chapter. 
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APC data can also reveal travel patterns that are needed when preparing 

disaggregate passenger demand input to a transit assignment model. Planning agencies 

typically have aggregate transit demand during various time periods for use in their 

models, for example, person trips demanded between two traffic analysis zones in the 

AM peak period. However when modeling passenger trips at a finer temporal resolution 

such as in the application of the routing framework of this thesis, demand needs to be 

disaggregate with passengers assigned a preferred arrival time (PAT)/preferred departure 

time (PDT). In order to disaggregate demand, a distribution of passenger boarding and 

alighting based on APC data can be used. Using the APC data from Capital Metro, this 

distribution has been estimated for Austin transit users (Figure 2). The distribution has 

been adjusted to consider that some passengers’ trips included transfers, using an average 

number of boardings per trip of 1.25 and average unlinked trip time of 30 minutes 

(estimated from on-board survey and APC). The profiles show the expected peaks in the 

AM and PM with the lag between the boardings and alightings corresponding to in-

vehicle time. Applying these profiles to an aggregate transit demand assigns a PAT (from 

alighting profile) or PDT (from departure profile) that is reflective of actual passenger 

behavior in Austin. The resulting disaggregate demand is used in the transit assignment 

applications in Chapter 4. Though not utilized in this thesis, the ridership estimates from 

APC can also be used to validate the outputs of transit assignment models. 
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Figure 2: Distribution of boarding and alighting passengers based on APC 
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Chapter 3: Methodology 

In this chapter, the framework for determining the optimal shortest path in a 

stochastic public transit network is provided. The transit network is represented with a 

time expanded graph with in-vehicle, walking and waiting links. The problem 

formulation, including the transfer waiting time model, reliable shortest path model and 

assumptions, is presented along with a label-correcting solution algorithm. Finally, an 

exercise to evaluate the primary assumption on the distribution of bus schedule deviations 

is discussed. The notation used in the problem is presented in Table 3 and is discussed in 

further detail throughout the following sections. 

3.1 TIME EXPANDED NETWORK 

In order to model the time-dependent schedule of the transit system, the network 

is represented in a time-expanded fashion that contains all possible movements 

passengers can take to their destinations at any point in time. A transit route is defined as 

a fixed set of stops that a vehicle visits to serve passengers; a route consists of individual 

vehicle trips that start at different times, and the time between successive trips is the 

headway. Throughout this thesis the problem is approached from the bus mode, though 

the methodology is generalizable to other fixed-route transit submodes such as rail. The 

network consists of nodes and links, represented by sets N and A respectively. A subset of 

nodes, NV, represents the scheduled stop times of individual vehicles at each bus stop. 

These nodes are expanded further to represent separate arrival and departure times; 

subsets NV-A and NV-D (NV-A ∪ NV-D = NV) represent the scheduled arrival and departure 

times for the stop, respectively.  Additionally, a subset of nodes, NW (NV ∪ NW = N), 
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Table 3: List of notation. 

Notation Description 

NV Set of vehicle nodes representing the scheduled stop time at a stop; subsets 

NV-A and NV-D represent scheduled arrival and departure times, respectively 

NW Set of walking arrival nodes representing the time passenger arrives at a 

physical stop after walking from another node 

AV Set of in-vehicle links 

AW Set of walking links 

AT Set of waiting links (initial or transfer waiting time) 

t̂i Scheduled time associated with node i ∈ N, either the schedule arrival time 

if i ∈ NV-A, the schedule departure time if i ∈ NV-D or the arrival time after 

walking if i ∈ NW  

tĩ Random variable of time associated with node i ∈ N 

Yij Random variable of the difference in time between two nodes i and j, 

equivalently tj̃ – tĩ  

VTij Equivalent to Yij if link (i, j)∈ AV; in-vehicle time between nodes i and j 

WTij Equivalent to Yij if link (i, j)∈ AW; walking time between nodes i and j 

TTij Equivalent to Yij if link (i, j)∈ AT; (transfer) waiting time between nodes i 

and j 

Pij Probability of a successful transfer from node i to node j 

Hj Headway of vehicle serving node j ∈ NV-D 

Lj Subset of NV-D; all nodes in the same route as, at the same physical stop as 

and scheduled later in time than node j ∈ NV-D  representing subsequent 

potential connections if the transfer to j is missed 

r Origin node 

s Destination node 

Xij Binary decision variable indicating if link (i, j) is on the optimal path from 

origin to destination 

μi Mean of tĩ 

σi Standard deviation of tĩ 

Φ(·) Standard normal cumulative distribution function 

E[·] Expected value 

P(·) Probability 
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represents a passenger’s arrival time at a bus stop after walking from another node (i.e. 

from the origin or another bus stop if transferring). In the small network shown in  

Figure 3, node 9 is in set NW, representing arrival at Stop B after walking from node 8, 

while all others are in NV.  Each node i ∈ N has an associated time, t̂i, either the scheduled 

arrival or departure time of the bus if i ∈ NV or the arrival time at a stop after a 

deterministic walking time from a previous vehicle node at a different stop if i ∈ NW. 

Nodes in the set NV are unique to bus trips, that is, two buses scheduled to serve the same 

stop at the same time are modeled as two separate pairs of nodes. For the first stop in a 

bus route only a departure vehicle node (NV-D) is needed, while only an arrival vehicle 

nodes (NV-A) is needed for the last stop in a route. 

Links include in-vehicle (AV), walking (AW) and waiting (AT) (AV ∪ AW ∪ AT = A). In-

vehicle links connect each vehicle node associated with a given bus trip. The in-vehicle 

link connecting a given arrival time node with a corresponding departure time node is 

considered as dwell time. Walking links are created from each node in NV-A with an 

incoming in-vehicle link (i.e. not the start of a route) to corresponding nodes in NW at 

nearby stops within a walking distance threshold. Waiting links are created from each 

node in NW and NV-A to each other node in NV-D at the same bus stop that have a scheduled 

time of at most 30 minutes later, representing a transfer between vehicles or waiting to 

initially board a vehicle. Links to nodes scheduled earlier in time are not considered; 

while such transfers may be possible depending on the distributions of stop times, it is 

argued that they would be viewed as unreliable by the passenger. This constrained time 

window keeps the network size manageable, avoids the need to consider very unattractive 

transfers and should be chosen with typical bus headways in mind so that reasonable 

transfers are considered. Table 4 summarizes the allowable adjacent link types and 
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quantity (if restricted) for each node type. The network can loosely be thought of as a 

space-time graph where the horizontal axis is space and the vertical axis is time. In this 

manner, a collection of vertical nodes represents a physical bus stop (see  

Figure 3). This network representation explicitly represents all possible passenger 

movements, while prohibiting unrealistic movements such as transferring twice in a row 

(i.e. use of two consecutive waiting links) or walking after waiting to transfer (i.e. use of 

a walking link after a waiting link). 

 

 

Figure 3: Sample network representation. 
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Table 4: Allowable adjacent links. 

 Incoming Links Outgoing Links 

NV-A AV (1) AV (1*), AW, AT 

NV-D AV (1**), AT AV (1) 

NW AW (1) AT 

 *Zero if last stop in route, **Zero if first stop in route 

3.2 PROBLEM FORMULATION AND ASSUMPTIONS 

3.2.1 Transfer Waiting Time Model 

A transfer between routes depends both on passengers’ arrival time at the 

boarding stop of the connecting route (either by another vehicle at the stop or by walking 

from another stop) and the departure time of the connecting vehicle. The actual arrival 

and departure times of vehicles are considered random variables, thus incorporating 

transit supply uncertainty. The notation used for the random variable of arrival or 

departure time of a vehicle, or arrival time of a walking passenger in the case of nodes in 

NW, at a node i is tĩ. The distributions of these random variables can be easily obtained 

from AVL data collected by transit operators. Generally, let Yij = tj̃ – tĩ be the random 

variable of the difference in time of two nodes i and j. Depending on the type of link 

connecting the two nodes, Yij is equivalently denoted as VTij, WTij or TTij if link (i, j) is in 

sets AV, AW or AT, respectively. For in-vehicle links VTij is the travel time or dwell time of 

a bus between two nodes; similarly WTij is walking time. In the case of waiting links, TTij 

is the transfer waiting time. A transfer from i to j can be made successfully if Yij ≥ 0, so 

the probability of making and missing the transfer is P(Yij ≥ 0) and P(Yij < 0), 

respectively. Thus the expected waiting time is formulated in Equation 2 (reduced to 
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Equation 3) where Hj is the headway of the route serving node j. This formulation is 

made on the assumption that passengers attempt to board the next vehicle in the same 

route if a transfer to that route is missed. If the transfer is made, the expected waiting 

time is the expected time between service of nodes i and j given that this value is 

nonnegative (i.e. the transfer can be made). If the transfer is missed, the expected waiting 

time is the initial expected time between service of nodes i and j and the expected 

headway of the route. This additional wait time for a missed transfer serves as a penalty 

for unreliable transfers. 

 
E[TTij] = P(Yij

 ≥ 0) E[Yij | Yij ≥ 0] + P(Yij < 0)[E[Hj] + E[Yij | Yij < 0] 
(2) 

 
E[TTij] = E[Yij] + P(Yij < 0) E[Hj] 

(3) 

Figure 4 shows example stop time distributions from node 1-A to node 2-D in the 

network in Figure 3. The first bus is scheduled to arrive at Stop A at t̂1 = 8 while the 

second bus is scheduled to depart at t̂2 = 14. However the actual stop times follow a 

distribution due to stochasticity in transit supply; there is a probability that Bus 1 will 

arrive after Bus 2 departs, and thus the transfer will be missed. 
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Figure 4: Example of stop time distributions at a transfer point. 

3.2.2 Reliable Shortest Path Model 

The objective of the routing problem in this paper is to determine the least 

expected cost path from an origin to a destination. A passenger’s path is defined as a 

single, connected sequence of nonrepeating links in the underlying scheduled network 

that a passenger aims to take from an origin, r, to a destination, s. From a real-world 

perspective this is an a priori path that a passenger would decide on prior to the start of a 

journey and not necessarily the specific path the passenger would traverse due to realized 

instances of random vehicle stop times. The model is formulated in Equations 4-6 where 

Xij is a binary decision variable indicating if link (i, j) is on the least expected cost path. 

The objective function (Equation 4) is the sum of the expected costs of used links by link 

type. Equation 5 is the conservation constraint, that is, for every node that is not the 
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origin or destination, exactly one incoming and one outgoing link can be on the shortest 

path or else the node is not used.  

 min Z = ∑ E[VTij]Xij+ ∑ E[WTij]Xij

(i, j)∈AW

+ ∑ E[TTij]Xij

(i, j)∈AT(i, j)∈AV

 (4) 

 
s.t.    ∑ Xij

j| (i, j) ∈ A

 – ∑ Xki

k| (k, i) ∈ A 

 = {

1     ∀ i = r

0   ∀ i ≠ r,s

-1   ∀ i = s

 
(5) 

 
         Xij ∈ {0,1}  

(6) 

While transfer reliability is not an explicit constraint in the model, it is implicitly 

considered in the calculation of E[TTij] (recall Equations 2-3). The model does not 

enforce that only reliable transfers are used but it does penalize unreliable transfers with 

the additional waiting time the passenger should expect if the transfer is missed. It is 

possible for an optimal path to include a transfer with high probability of being missed, 

perhaps if the route is high frequency and the passenger would only have to wait a few 

minutes to board the next vehicle. In other cases, there may be simply no other options 

and an unreliable transfer is required. 

3.2.3 Assumptions 

The routing model is based on the following assumptions: 

Assumption 1: Bus stop times of different vehicles are independent random 

variables that are normally distributed. 

Assumption 2: Passengers behave such that if a transfer is missed, they wait to 

board the next bus in the same route. 
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Assumption 3: Headways are sufficiently long so that vehicles within the same 

route do not overtake one another 

The first assumption is a reasonable approximation that has been used in the 

literature (Knoppers and Muller, 1995; Muller and Furth, 2009). While the underlying 

vehicle stop time distributions may not be exactly normally distributed, this distribution 

generally captures the idea that transit vehicles operate around a schedule but are usually 

ahead or behind. It is also a reasonable estimate of how passengers interpret recurring 

uncertainty in transit service. It is hypothesized that the exact shape of the distribution 

will not have a substantial impact on the optimal path and that a normal distribution is 

reasonable approximation; this assumption is evaluated at the end of this chapter. This 

first assumption allows the use of closed form expressions when calculating expected 

transfer waiting times. The probability distribution of Yij is the convolution of the 

individual distributions of the arrival time of node i and departure time of node j, thus Yij 

~ N(μij = μj – μi, σij
2 = σj

2 + σi
2) where μ and σ is the mean and standard deviation, 

respectively, of a bus’s arrival or departure time at a node. The probability of making and 

missing a transfer is then given in Equations 7-8 where Φ(·) is the standard normal 

cumulative distribution function. 

 
P(make) = Pij = P(Yij ≥ 0) = 1 – Φ(-μij/σij) 

(7) 

 
P(miss) = P̅ij = P(Yij < 0) = Φ(-μij/σij) 

(8) 

The second and third assumptions are needed to penalize for the risk of missing a 

transfer. When passengers behave according to Assumption 2, the expected headway of 

the connecting vehicle serves as a penalty (see Equation 3). The expected headway, 

E[Hj], of the route serving node j is calculated by considering all later nodes in NV-D at 
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the same stop that have an outgoing vehicle link in the same route as j. Let Lj be this set 

of nodes that share the stop and route of node j but have a scheduled stop time later than 

that of j (|Lj| = n), and let l index this set. The expected headway is then defined by 

Equation 9. This is interpreted as the expected headway that the user experiences. 

 
E[Hj] = ∑ PiLj(l) [∏ P

iLj(l
')l

'
< l

] E[Y
jLj(l)

]n
l=1   

(9) 

The expected headway is the sum over all nodes in Lj of the probability that the transfer 

to a node in Lj from j is made and all other prior transfers are missed multiplied by the 

expected difference in time from j to the connecting node. Alternatively the expected 

headway can solely be the expected time until the next bus in the route; however this 

implies that the transfer to the next bus is guaranteed to be made. This may not always be 

possible, for example, for a high frequency route. 

Together Equations 3, 7, 8 and 9, with E[Yij]= Y̅ij = μij, determine the expected 

waiting time at a transfer point under the stated assumptions while penalizing for the 

possibility of missing the transfer. The following subsection presents a solution algorithm 

proposed to solve the routing problem in Equations 4-6. 

3.3 RELIABLE SHORTEST PATH ALGORITHM 

The solution approach proposed is a modified label-correcting algorithm for 

determining the a priori least expected cost path in a realistic, time-expanded transit 

network, denoted Reliable Shortest Path (RSP). A one-to-all labeling is implemented, that 

is, the optimal path to all other nodes is found from a single origin. The commonality 

between shortest path algorithms is the concept of distance labels. At any point in an 

algorithm, a distance label is associated with each node in the network that represents the 

distance (or time, cost, etc.) from the origin node to that node on a given path. In a 
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modified label-correcting algorithm a scan eligible list (SEL) of nodes is maintained; the 

list represents nodes with outgoing links that, if used, might decrease the label of 

downstream nodes. Nodes in the list are removed one by one and outgoing links scanned 

and considered for updating the tail nodes. The node labels are an upper bound on the 

shortest path distance, and at termination these labels are the shortest path distance. More 

details on shortest-path algorithms can be found in Ahuja et al. (1993). 

In the proposed RSP algorithm (see Figure 5), two labels are maintained for each 

node, a time label and a cost label, as well as the predecessor node that is used if a label is 

updated. The time label reflects the time incurred to reach a node from the origin based 

on the schedule. The cost label considers the actual distributions of vehicles arrival and 

departure times and transfer reliability and is based on the expected value of travel time. 

For example, the cost label of node j is determined based on the expected value of the 

random variable Yij associated with the link from the previous node i.  The cost label need 

not be interpreted as a time at specific location in the network but instead a measure of 

the reliability of a path when compared against other labels. A SEL is used, and if the 

cost label of a node can be improved then the node is added to the list because labels on 

adjacent nodes can potentially also be improved. When a node is removed from the SEL 

the tail node of each outgoing link is scanned and considered for updating. When a label 

is improved the predecessor node used is also noted; this ensures the continuity in a path 

from the origin (i.e. Equation 5 constraint holds). The algorithm terminates when the SEL 

is empty, and the optimal path is revealed by following the predecessor pointers from the 

destination node back to the origin. The following notation is used in the algorithm, in 

addition to that already defined, 

ti : time label of node i 
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ci : cost label of node i 

ci’ : temporary cost label of node i 

Li = [ti, ci] : label of node i 

qi : predecessor node used on shortest path to node i from the origin 

 

 As with many shortest path algorithms, the proposed algorithm relies on 

Bellman’s Principle of Optimality (Bellman, 1958). Simply stated, the shortest path can 

be found by breaking the problem into smaller subproblems (e.g. scanning one node at a 

time from the SEL) because every subpath in the shortest path from the origin to the 

destination is itself a shortest path. The RSP algorithm utilizes the following optimality 

conditions ensuring the cost labels represent the least expected cost from the origin: 

 
cj ≤ ci + E[VTij] ∀ (i, j) ∈ AV 

(10) 

 
cj ≤ ci + E[WTij] ∀ (i, j) ∈ AW 

(11) 

 
cj ≤ ci + E[TTij] ∀ (i, j) ∈ AT 

(12) 

They state that the for every link (i, j) the least expected cost path to j is no greater than 

the least expected cost path to i plus the expected cost of using link (i, j). Under the stated 

assumptions, E[VTij] and E[WTij] is simply the difference in the mean times of nodes i 

and j, or Y̅ij, and E[TTij] is calculated with Equation 3. 
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Figure 5: Reliable shortest path (RSP) solution algorithm 

In the algorithm, cost labels are set considering the expected time of using a given 

link in the time expanded network (i.e. E[VTij], E[WTij] or E[TTij]), so there is 

consistency with the objective function and the optimality conditions. Any time the 

optimality conditions are violated, the label is updated to remove the violation (i.e. lines 

17-18). At termination the label on a given node cj is the least expected cost from the 

1 algorithm Reliable Shortest Path 

2 begin 

3 Lr ← [0, 0] and qr ← 0; 

4 Li ← [∞, ∞] and qi ← ∅ for each node i ≠ r; 

5 SEL = {r}; 

6 while SEL ≠ ∅ do 

7 Remove the first element from SEL, i ← SEL(1); 

8 for each link (i, j) ∈ A do 

9 Yij= μ
j
 - μ

i
; 

10 σij =√σj
2+σi

2; 

11 if (i, j) ∈ AT then 

12 tj = ti + (t̂j – t̂j); 

13 cj’ = ci + E[TTij]; 

14 else 

15 tj = ti + (t̂j – t̂j); 

16 cj' = ci+ Yij; 

17 end if; 

18 if cj > cj’ then 

19 Lj ← [tj, cj’]; 

20 qj ← i; 

21 if j ∉ SEL then SEL ∪ {j}, append j to the end of SEL; 

22 end if; 

23 end if; 

24 end for; 

25 end while; 

26 end; 
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origin to that node; no other path exists that has a shorter expected travel time. If one did 

exist then cj would have been replaced with the shorter path’s label in the algorithm. 

Given this, the optimal path is provided at the termination of the RSP algorithm; an 

adaptation of a proof from Ahuja et. al (1993) is provided. 

 

Proposition: The RSP algorithm terminates with cost labels on every node j ∈ N that 

represent the least expected cost of the optimal path from origin, r, to j. 

Proof: Consider any solution cj satisfying the conditions in Equations 10-12. Let the path 

from r to j consist of nodes [i1 = r, i2,…, ik-1, ik = j]. The conditions in Equations 10-12 

imply 

 
cik

≤ cik-1
+ E[Yik-1ik

] 
 

 
cik-1

≤ cik-2
+ E[Yik-2ik-1

] 
 

 
⋮ 

 

 ci2
≤ ci1

+ E[Yi1i2
] = E[Yi1i2

]  

since ci1
= cr = 0. Adding the inequalities yields 

 cik
≤  E[Yik-1ik

]+ E[Yik-2ik-1
]+…+ E[Yi1i2

]= ∑ E[Yij]

(i, j) ∈ A

   

which shows that cj is a lower bound on the expected cost of any path from the origin to 

node j. The cost label is also an upper bound on the expected cost of the path, therefore cj 

is the least expected cost. □ 
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A small example of the RSP algorithm applied to a portion of the network (nodes 

1-4) in Figure 3 is included.  A detailed representation of the subnetwork is again shown 

in Figure 6, and Table 5 contains scheduled as well as the mean and standard deviation of 

vehicle arrival/departure times. The expected headways of vehicles serving nodes 2 and 3 

are also given (an additional vehicle departure node at Stop A in the same route as links 

(2-D, 4-A) and (3-D, 6-A) is assumed to have a scheduled and mean time of 44 and 

standard deviation of 0; the reader can confirm the expected headways given are 

consistent with Equation 9).  

 

 

Figure 6: Subnetwork for algorithm example. 
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Suppose node 1-A is the origin; the algorithm proceeds as follows: 

Iteration 0, Initialization: 

L1-A = [0, 0]; q1-A = 0 

L2-D = L3-D = L4-A = [∞, ∞]; q2-D = q3-D = q4-A = ∅ 

SEL = {1-A} 

Iteration 1, i = 1-A: 

Remove node 1-A from SEL 

Consider link (1-A, 2-D) 

j = 2-D 

Y̅1-A2-D = μ2-D – μ1-A = 5 

σ1-A2-D = √σ
2-D
2 +σ

1-A
2  = 4.47 

Link (1-A, 2-D) ∈ AT, consider the transfer 

t2-D = t1-A + (t̂2-D – t̂1-A) = 0 + (14 – 8) = 6 

c2-D’ = c1-A + E[TT1-A2-D]  where E[TT1-A2-D] = Y̅1-A2-D + P̅1-A2-D E(H2-D) 

 P̅1-A2-D = Φ(-5/4.47) = 0.13 

 E[TT1-A2-D] = 5 + (0.13)(11.03) = 6.43 

c2-D’ = 0 + 6.43 = 6.43 

c2-D’ = 6.43 < c2-D = ∞, so L2-D = [6, 6.43]; q2-D = 1-A 

SEL = {2-D} 

 

Consider link (1-A, 3-D) 

j = 3-D 

Y̅1-A3-D = 16 

σ1-A3-D = 5.39 
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Link (1-A, 3-D) ∈ AT, consider the transfer 

t3-D = 21 

c3-D’ = 16.01; P̅1-A3-D = 1.5E-3; E[TT1-A3-D] = 16 + (1.5E-3)(8.00)  = 16.01 

c3-D’ = 16.01 < c3-D = ∞, so L3-D = [21, 16.01]; q3-D = 1-A 

SEL = {2-D, 3-D} 

Iteration 2, i = 2-D: 

Remove node 2-D from SEL 

Consider link (2-D, 4-A) 

j = 4-A 

Y̅2-D4-A = 5 

σ2-D4-A = 5 

Link (2-D, 4-A) ∉ AT 

t4-A = 6 + (19 – 14) = 11 

c4-A’ = 6.43 + 5 = 11.43 

c4-A’ = 11.43 < c4-A = ∞, so L4-A = [11, 11.43]; q4-A = 2-D 

SEL = {3-D, 4-A} 

Table 5: Sample network information. 

Node t̂ μ σ E[H], (link) stop 

1-A 8 10 2 -- A 

2-D 14 15 4 11.03, (1-A, 2-D) A 

3-D 29 26 5 8.00, (1-A, 3-D) A 

4-A 19 20 3 -- B 

 

The algorithm described suggests the SEL be maintained as a list, applying the 

FIFO (first-in, first-out) rule to select the next node to be scanned, however a deque 
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structure can also be used. Additionally, expected waiting times for transfer links can be 

calculated during preprocessing and stored with the associated link to reduce 

computational time. The solution approach can easily be extended to also consider 

generalized costs. Often in transit routing passengers have different perceived weights 

associated with the various attributes of a trip (e.g. walking, waiting). This concept can be 

used in the RSP algorithm by applying the respective weight to the cost of using a link 

based on the link type. An additional transfer penalty could also be applied for the 

inconvenience or discomfort incurred which may not be captured in the penalty already 

incorporated for missing a transfer. 

3.4 EVALUATION OF SCHEDULE DEVIATION DISTRIBUTION ASSUMPTION 

A primary assumption in the methodology is that the bus stop time of different 

vehicles are independent random variables that are normally distributed. It was 

previously suggested that this is a reasonable assumption because it generally represents 

transit service operating around a schedule and a passenger’s perception of service. 

However, in reality this distribution may not be normal, especially if control policies are 

in place to discourage vehicle operators from departing from stops ahead of schedule. In 

this section, the expected transfer time under the normal assumption is compared with the 

expected transfer time using the actual schedule deviation distributions observed from 

APC/AVL data in Austin, TX using simulation. 

The test network that is used in this exercise is a subset of 7 bi-directional bus 

routes from the Austin transit network, specifically looking at service in the PM peak 

period. The reader can refer to the following chapter for more detail on the network. As 

described in Section 2.6.2, APC/AVL data was used to obtain a mean and standard 
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deviation of schedule deviation for each stop within a route/direction. By applying this 

mean deviation to the scheduled times of vehicle nodes in the same route/direction in the 

time-expanded network, the mean arrival/departure times are obtained. This mean time 

and standard deviation of schedule deviation are used in calculating the expected transfer 

time, E[TTij], according to Equation 3. This yields the expected transfer time under the 

normal assumption. 

Alternatively, the APC/AVL data can be used to estimate the expected transfer 

time with simulation, using the observed stop time distributions. This is done by 

iteratively generating instances of the time-expanded network and determining the 

transfer time that would be experienced by a passenger. An instance of the network is 

generated by, for each vehicle trip, pulling a random observation of a bus in the same 

route/direction and in the PM peak period from APC/AVL. The schedule deviations 

observed at each stop are applied to scheduled time of the corresponding vehicle nodes in 

the time-expanded network; this is designated as the simulated time. Nodes in AW are also 

assigned a simulated time by adding the deterministic walking time of the associated 

walking link to the simulated time of the previous vehicle node. For each possible 

transfer in the network (i.e. every link in AT) the simulated transfer time is equal to the 

difference in simulated times of the two nodes making up the transfer, unless this 

difference is negative. A negative difference signifies the transfer would not be made in 

the instance of the network; later vehicle nodes in the same route, direction and stop are 

then considered until the transfer is possible, consistent with the assumed passenger 

behavior. This process of network and transfer simulation is repeated 10,000 iterations. 

The expected transfer time is simply determined by then averaging the simulated transfer 
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times, since each instance of the transfer has an equal probability of occurrence in the 

simulation. 

The expected transfer wait time under the normal assumption is compared with 

the simulated transfer wait time in the scatter plot shown in Figure 7. The slope of the 

best fit line, 0.98, indicates the expected wait time using the normal assumption 

marginally underestimates the actual expected wait time using the real distributions. This 

is seen particularly when the expected transfer time is long (i.e. over 35 minutes), 

however it is unlikely such long transfers would be used in an optimal path anyways.  

Two lines are offset 5 minutes from the best fit line to indicate nearly all of the transfers 

fall within this range. This suggests the normal assumption provides an estimate within 5 

minutes of the actual expected transfer wait time. The mean difference between these two 

quantities over all possible transfers is only -0.35 minutes, or 21 seconds. This leads to 

the conclusion that the use of the normal assumption for vehicle arrival/departure time 

distributions is a reasonable approximation that will not likely lead the misidentification 

of optimal paths using the proposed framework. 
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Figure 7: Comparison of expected transfer waiting times. 
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Chapter 4: Application to Transit Assignment Model 

The RSP algorithm is applied in passenger assignment using a subset of routes 

from the Austin, Texas public transit network and PM peak demand.  Assignment is done 

using both the RSP approach and a deterministic, scheduled-based, shortest path (DSP) 

approach.  The RSP considers transfer timing and uncertainty whereas the DSP is only 

based on the schedule. The goal is to show how passenger routing can be improved with 

RSP over routing based on the timetable. Additionally, the results of the RSP assignment 

are compared with those of FAST-TrIPs, a schedule-based transit assignment model that 

has been calibrated for the behavior of Austin transit users (Khani, et al., 2014b). 

Passenger paths from all three approaches are simulated to demonstrate how each would 

perform under representative instances of the network and to determine the overall path 

reliability. 

4.1 NETWORK 

A subset of seven bi-directional bus routes from the Austin, TX transit network is 

used to implement passenger assignment (see Figure 8). A time-expanded network is 

generated for vehicles trips that start between 2:30 PM and 7:30 PM using General 

Transit Feed Specification (GTFS) files (Google Developers, 2012). Vehicle nodes (set 

NV) are created for stops in each vehicle trip, and are connected with in-vehicle links. 

Transfer walking links are created from every vehicle arrival node to walking arrival 

nodes (set NW) at every stop within 0.25 miles. Waiting links are created from each 

arrival node (sets NV-A and NW) to vehicle departure nodes scheduled no more than 30 

minutes later at the same stop. 
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Figure 8: Austin, TX test network. 

As discussed in Chapter 2, APC/AVL data was processed to obtain means and 

standard deviations of the deviations from the scheduled arrival/departure times for each 

stop in the routes.  The mean deviations are applied to scheduled times of the vehicle 

nodes (NV) and standard deviations are associated with the nodes for use in the solution 

algorithm. For walking arrival nodes (NW), the mean and standard deviation is carried 

from the previous vehicle arrival node since walking time is assumed to be deterministic. 

The aggregated measures shown in Table 6  provide an idea of the overall reliability of 
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each route. The mean schedule deviation across all routes and stops is 3.74 ± 6.23 

minutes indicating service is usually behind schedule, as expected. 

Table 6: Aggregate route reliability measures. 

Route Direction 
Schedule Deviation 

Mean Std. Dev. 

3 
NORTHBOUND +2.19 4.90 

SOUTHBOUND +4.04 6.92 

383 
NORTHBOUND +2.58 4.38 

SOUTHBOUND +3.15 4.69 

392 
EASTBOUND +4.99 7.09 

WESTBOUND +5.11 6.75 

982 
NORTHBOUND +2.10 5.84 

SOUTHBOUND +3.24 8.22 

983 
NORTHBOUND +2.03 5.75 

SOUTHBOUND +1.79 6.95 

1L 
NORTHBOUND +6.43 7.60 

SOUTHBOUND +4.63 6.19 

1M 
NORTHBOUND +4.35 6.04 

SOUTHBOUND +2.90 5.76 

All Routes 

 

+3.74 6.23 

 Assignment models require a means of loading users onto the network. This is 

typically done using traffic analysis zones (TAZs), with their centroids connected to the 

network with centroid connector links. In a transit network, these connectors represent 

access from the origin to the boarding stop and egress from the alighting stop to the 

destination. TAZs with centroids within 0.5 miles from a stop in the included routes are 

used in this analysis. Each of the 343 centroids are split into two nodes, one for departure 

(origin) and the other for arrival (destination). Access links are connected from every 

TAZ departure node to a newly generated walking arrival node at every accessible stop. 

To accommodate passengers with different departure times within the analysis period, 
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waiting links are created from these walking arrival nodes to every vehicle departure at 

the corresponding stop. For a given passenger, only initial waiting links to nodes with a 

scheduled time of at most 30 minutes past the passenger’s arrival time at the boarding 

stop are considered. This setup allows for the same time-expanded network to be used for 

all passengers regardless of their PDT. Egress links are also created from every vehicle 

arrival node at accessible stops to TAZ arrival nodes. A walking speed of 4 mph is 

assumed for access and egress.  The network representation with the inclusion of TAZs 

and access and egress links is shown in Figure 9. The complete time-expanded network 

contains 60,922 nodes (16,041 vehicle, 44,195 walking arrival and 686 TAZ nodes) and 

331,937 links (15,913 in-vehicle, 39,771 transfer walking, 4,424 access, 91,025 egress, 

91,858 initial waiting and 88,946 transfer waiting links). 

 

 

Figure 9: Time-expanded network with access/egress from TAZs. 
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The aggregate transit O-D trip table from the local metropolitan planning 

organization is used to generate disaggregate passenger demand. PM peak trips are 

assigned a specific preferred departure time by applying a departure time profile obtained 

from APC/AVL data (i.e. see Figure 2 in Chapter 2). The total passenger demand for the 

included TAZs with a PDT in the PM peak period (3:30 – 6:30 PM) used in assignment is 

7,260. 

4.2 PASSENGER ASSIGNMENT 

Passengers are assigned paths in the time-expanded network using DSP, RSP and 

FAST-TrIPS, and passenger trajectories from each approach are recorded. The hyperpath 

assignment of FAST-TrIPs is used, and capacity constraints are not enforced because not 

every route serving the included TAZs is included in the test subnetwork. For the RSP 

assignment, an addition to the solution algorithm is included for determining the optimal 

departure time within a 30 minute window after the preferred departure time. The 

algorithm in Figure 10 is called after line 8 in the original RSP algorithm (Figure 5) if the 

link being scanned, (i, j), is an initial waiting link after an access link to a bus stop. 

Essentially, the departure time is incremented from the PDT to determine which 

departure time yields the least cost label on j. The resulting time and cost labels, tj and cj’, 

are returned to determine if the label on j should be updated (i.e. line 18 of Figure 5). At 

the termination of the RSP algorithm, the departure time for the optimal path of the 

passenger can be determined as the difference between scheduled time of the initial 

boarding node and time label of this node because the time label includes both walking 

and initial waiting time. 
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Figure 10: Algorithm for determining optimal departure time for RSP. 

Initial waiting time is not included in the DSP and FAST-TrIPs paths by nature; 

stochasticity in the transit service is not considered in these approaches so the resulting 

paths suggest passengers arrive at the stop at the scheduled bus departure time (i.e. 

passenger departure time is the scheduled time of the initial boarding node minus the 

access walking time). In reality, passengers may plan to arrive at the boarding stop earlier 

than the vehicle departure time to minimize the chance of missing the bus. To enhance 

1 algorithm getOptimalDepartureTime 

2 begin 

3 Access walk time (time label of i): 

4 w = ti 

5 if t̂j ≥ PDT + w and t̂j < PDT + w + 30 then 

6 offset = 0; 

7 optLabel = ∞; 

8 optOffset = 0; 

9 while offset < 30: 

10 arrTime = PDT + offset + w; 

11 if arrTime > t̂j  then break; 

12 end if; 

13 Yij= μ
j
 - arrTime; 

14 σij = σj; 

15 tj = ti + (t̂j – arrTime); 

16 cj’ = ci + E[TTij]; 

17 if optLabel > cj’ then 

18 optLabel = cj’; 

19 optOffset = offset; 

20 end if; 

21 offset = offset + 1; 

22 end while; 

23 tj = ti + [t̂j – (PDT + optOffset + w)]; 

24 cj’ = optLabel; 

25 else continue; 

26 end if; 

27 end; 
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the realism of these paths and to make them compatible with the simulation tests (i.e. so 

that initial boardings are not frequently missed), an estimate of initial waiting time from 

the literature is used to determine passenger departure times. A past study, conducted by 

Fan and Machemehl (2009), developed a predictive linear model for passenger waiting 

time using video data of passenger waiting in Austin, TX. A model using bus line 

headway as the only independent variable was estimated for transit planning purposes. 

This model, as described by Equation 13 where W is waiting time and H is headway in 

minutes, is used to estimate initial passenger waiting time and establish a departure time 

for DSP and FAST-TrIPs paths. Departure time is constrained to be at or later than PDT, 

as done with RSP. 

 
W = 2.28 + 0.29H 

(13) 

4.3 SIMULATION 

The simulation experiment involves generating instances of the network using 

APC/AVL data and simulating passenger’s assigned paths to determine if they can be 

made successfully. An instance of the network is created by, for each vehicle trip, 

drawing a random observation of a vehicle trip in the same route and direction in the PM 

period from APC/AVL. The observed schedule deviations at each stop are applied to 

each corresponding vehicle node’s scheduled time to get a simulated time. When working 

with the data, an issue was observed where an observation of a trip does not include 

records for every stop in the trip. This could be a result of faulty equipment or errors 

when recording the data. To resolve this problem, deviations are inferred from 

neighboring stops in the observed trip with data available. Four cases exist: (1) record 

exists for stop, (2) records exist for both upstream and downstream stops, (3) records 
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exist for upstream stops only and (4) records exist for downstream stops only. This 

process is summarized in Figure 11. The simulated time of walking arrival nodes is the 

deterministic walking time added to the simulated time of the previous alighting vehicle 

node. 

 

Figure 11: Generating an instance of the network from APC/AVL data. 

Passengers’ paths from assignment are then simulated using the instance of the 

network to determine if the suggested paths can be made successfully. A passenger may 

fail to proceed on the assigned path if the initial or transfer, if any, buses are missed. 

Passengers failing to board a bus are loaded onto the next bus in the same route as the 

missed bus, consistent with the assumed user behavior. This process of network and 

passenger simulation is repeated for 5,000 iterations to get path failure rates and arrival 

time at the destination for each passenger. The difference between the simulated arrival 

time and the scheduled arrival time, δ, is calculated and a distinction is made if the 

passenger has path failure or success (δfail and δsuccess, respectively). The travel time 
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index, or the ratio of the simulated travel time to the scheduled travel time from 

assignment, is also determined. 

4.4 COMPARISON OF RESULTS 

The comparison of the DSP, RSP and FAST-TrIPs assignment results is shown in 

Table 7. Under both runs a small fraction of total demand is unassigned; these passengers 

largely have a PDT near the end of the analysis period so a trip cannot be made with the 

buses included in the generated network. While roughly 27% of passengers are assigned 

the same path under both DSP and RSP approaches, approximately 54% of passengers 

have the same final alighting nodes. This difference indicates that over half of the 

passengers are scheduled to arrive at the destination at the same time under both 

approaches, but their intermediate paths may differ. When comparing RSP and FAST-

TrIPs paths, these portions are 15% and 37%, respectively. Path travel times are 

compared in two ways, either as the difference from the arrival time at the destination and 

the actual departure time (ADT) (i.e. including initial waiting time estimate) or as the 

difference from the arrival time and the PDT. The latter includes schedule delay, that is, 

the difference between preferred and actual departure time. When including this schedule 

delay, RSP paths are about 5% and 16% longer than the DSP and FAST-TrIPs paths, 

respectively. 
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Table 7: Comparison of DSP, RSP and FAST-TrIPs assignment results. 

Assignment Results 

Measure DSP RSP FAST-TrIPs 

Assigned passengers 7252 7210 6954 

Passengers with paths in common: 

RSP & DSP ―   9 9  ― 

RSP & FAST-TrIPs ―  864  ― 

FAST-TrIPs & DSP ―   088  ― 

Average travel time (min.)* 45.8, 52.5 39.8, 52.7 45.4, 47.7 

Average travel time ratio*: 

RSP:DSP ―  0.85,  .05  ― 

RSP:FAST-TrIPs ―  0.86,  . 6  ― 

FAST-TrIPs:DSP ―   .0 , 0.93  ― 

Total number of transfers 2379 1433 1141 

Percent of passengers with transfer(s) 24.8% 17.2% 15.8% 

Average boardings per passenger 1.33 1.20 1.16 

Average transfer reliability 0.68 0.84 0.84 

Average transfer offset time: 

Scheduled 4.69 min. 9.01 min. 11.1 min. 

Experienced from AVL 4.96 min. 9.53 min. 11.2 min. 

*First number uses ADT, second number uses PDT 

The number of transfers is reduced considerably with RSP due to unreliable 

transfers being penalized, however FAST-TrIPS is slightly more stringent. Figure 12 

compares the breakdown of number of transfers assigned to passengers in all approaches 

with the transfer rate of passengers from an on-board survey conducted by the local 

transit authority in spring 2010. Survey respondents traveling between the same zones 

used in assignment and during the PM period are considered in the chart. RSP appears to 

resemble the observed transfer rate the closest. The reliability of transfers suggested by 

the assignment (i.e. probability of making the transfer) is approximately the same for 

RSP and FAST-TrIPs, which is greater than DSP, as expected. The offset time between 
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the two buses at a transfer in RSP paths in about 9 minutes; the implications of this are 

discussed later. 

 

Figure 12: Comparison of transfer rate with on-board survey. 

In addition to transfer rate, route ridership and load profile are other aggregate 

comparisons of the assignment methods. Figure 13 shows the total ridership for the PM 

peak predicted for each route. Given that RSP and FAST-TrIPs result in less transfers and 

will therefore have lower ridership predictions collectively, all three generally exhibit the 

same magnitude. Routes 1 and 3 are cross-town routes that serve more TAZs, and are 

generally known to be among the heavily used routes in the system. RSP assigns fewer to 
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route 983, likely because this route has the longest headway (60 minutes) and the penalty 

for missing a boarding is extremely high. Route 982 has much higher ridership in RSP 

than FAST-TrIPs, possibly because it is used by more transferring passengers in RSP (i.e. 

FAST-TrIPs has more direct trips). To see finer differences in route ridership between 

RSP and FAST-TrIPs, a visualization tool is used to visualize load profiles (see Figure 

14). Only minor differences are observed, for example, greater ridership at extremities of 

routes 1 and 3 in FAST-TrIPs and a localized “hotspot” mid-route 392 in RSP. 

 

 

Figure 13: Estimated daily ridership. 
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Figure 14: Visualized load profiles for RSP and FAST-TrIPs routes. 



52 

Ideally, these comparisons would also be done using field data such as APC or 

travel survey to see which approach is most representative of observed usage. However, 

since the tests have been done using only a subset of routes and zones, this becomes 

difficult. APC data are just counts and are unable to provide origins and destinations of 

passengers, so it most useful in assignment on the full network. While survey data 

provides these locations, other routes not included in the subnetwork can serve the 

included zones. This issue was observed when using the on-board survey data to compare 

route level ridership with the three assignments. 

Simulation results using the ADT of passengers are shown in Table 8. The path 

failure rates can be interpreted as how frequently a passenger would miss boarding a 

vehicle in their assigned path if he/she were to repeatedly take that trip over time. It also 

represents the overall path reliability. RSP shows to be an improvement over DSP with 

an over 18% lower failure rate for transferring passengers. RSP is also comparable to 

FAST-TrIPs; the slight improvement FAST-TrIPs has in the failure rates is most likely to 

an improved initial boarding failure rate. This is because the process used for estimating 

initial waiting time (i.e. Equation 13) for DSP and FAST-TrIPs is more conservative than 

the process used in RSP. Average scheduled initial waiting times are 9.06, 2.48 and 6.64 

minutes for DSP, RSP and FAST-TrIPs, respectively. FAST-TrIPs also has fewer 

transfers overall and therefore fewer opportunities to miss a boarding. Still, RSP is shown 

to result in less lengthy delays. The difference between passengers’ simulated arrival 

times and scheduled arrival times (δ) are marginally less, suggesting actual arrival time at 

the destination is closer to, although still later than, the scheduled arrival time. The travel 

time indices are nearly identical, however recall that the average scheduled travel time 

using ADT is lowest for RSP (39.8 minutes).  
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Table 8: Comparison of simulation results using actual departure time. 

Simulation Results (ADT) 

Measure DSP RSP FAST-TrIPs 

Average path failure rate: 

Initial boarding failure 1.43% 3.69% 2.71% 

Path failure (all passengers) 10.9% 6.66% 4.97% 

Path failure (transfer passengers) 39.5% 20.9% 17.3% 

Average difference in simulated 

  and scheduled arrival time: 

δ 8.07 min. 6.07 min. 6.46 min. 

δfail 35.2. min. 30.4 min 32.9 min. 

δsuccess 5.03 min. 4.46 min. 5.11 min. 

Average travel time index 1.19 1.19 1.18 

Since the initial waiting time is observed to influence the simulation results and a 

main focus of this work is on transfer reliability, simulation is repeated using the PDT of 

passengers. This assumes passengers depart their origins at the PDT and the schedule 

delay is built into their travel time. These results are given in Table 9. Now, the failure 

rate of RSP paths is marginally improved over FAST-TrIPs and still results in less delay. 

On average, passengers can expect their actual travel time to be about 11% longer than 

scheduled when taking RSP paths compared to 17% longer for DSP and FAST-TrIPs 

paths.  
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Table 9: Comparison of simulation results using preferred departure time. 

Simulation Results (PDT) 

Measure DSP RSP FAST-TrIPs 

Average path failure rate: 

Initial boarding failure 1.23% 0.70% 2.68% 

Path failure (all passengers) 10.7% 3.69% 4.93% 

Path failure (transfer passengers) 39.3% 18.4% 17.2% 

Average difference in simulated 

   and scheduled arrival time: 

δ 8.01 min. 5.32 min. 6.44 min. 

δfail 36.3 min. 32.3 min. 32.8 min. 

δsuccess 5.00 min 4.27 min. 5.10 min. 

Average travel time index 1.17 1.11 1.17 

 

The assignment and simulation results can also give insight into designing more 

reliable transfers. The average scheduled offset or buffer between buses on the optimal 

paths with RSP is 9 minutes. In actual conditions (i.e. from APC/AVL), this difference is 

slightly longer, or 9.5 minutes. From Figure 15, the distribution of scheduled offset time 

is seen to have a large spread; this is most likely because the routes included have a range 

of headways (e.g. 15, 26, 30, 47 minutes). A general preference towards shorter offset 

times is still observed, however there comes a tradeoff with transfer reliability. Figure 16 

shows this tradeoff. At short offset times transfer reliability fluctuates considerably based 

on the operation of the two buses involved, and additional offset time provides a buffer if 

vehicles are off schedule, improving the reliability of the transfer. The RSP approach can 

be used by planners to determine how different transfer offsets, control strategies, and 

improved reliability can impact passengers. 
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Figure 15: Distribution of scheduled transfer offset time in RSP paths. 

 

Figure 16: Tradeoff between transfer offset time and reliability. 
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Chapter 5: Conclusions 

5.1 IMPLICATIONS OF WORK 

This thesis has presented a framework, model and solution algorithm for 

determining the a priori least expected cost path in a schedule-based, time-expended 

public transit network. The framework overcomes many of the complexities of transit 

routing, incorporating time dependent service, all possible passenger movements with a 

careful network setup, and stochasticity in bus arrival and departure times at stops. The 

variability of transfer timing is considered by using actual distributions of bus arrival and 

departure times from AVL data. The probability of missing a transfer is penalized with 

the additional expected waiting time until the next bus in the route. A label-correcting 

algorithm, RSP, is proposed for solving the problem. Such shortest-path algorithms are 

generally regarded as efficient means of solving the routing problem, though the 

efficiency can vary with the approach used. 

The RSP algorithm is integrated into transit assignment using a subset of routes in 

the Austin, TX network and vehicle location data from APC/AVL. Passenger paths are 

compared with those suggested from a deterministic, schedule-based, shortest path 

assignment (DSP) and a calibrated assignment model, FAST-TrIPs, that utilizes a logit-

based route choice model. The network and passengers paths are simulated to determine 

overall reliability of paths from each assignment approach and the resulting delays that a 

passenger is likely to incur. RSP is found to assign passengers to paths with fewer 

transfers, at a rate consistent with a passenger survey, and improved transfer and overall 

path reliability. There is not a significant difference observed between RSP and FAST-

TrIPs results, other than the stricter transfer penalty of FAST-TrIPs resulting in fewer 
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boardings and thus route ridership and localized differences in load profile. In fact, while 

FAST-TrIPs does not explicitly consider reliability, the reliability of suggested transfers 

is nearly identical to that of RSP. This is worthy of future investigation in a complete or 

different transit network. 

5.2 FUTURE WORK 

This study lays the groundwork for future research extensions and consideration 

for reliable routing in transit networks. The proposed framework has some limitations 

that should be explored in the future. The utilized time expanded network setup is able to 

consider all possible movements and is compatible with all passenger departure times, 

but the network size will become very large for complete transit systems. The seven route 

Austin subnetwork used as a test is already very large, so assignment will the full 

network and demand will be computationally expensive. Alternative network setups or 

ways of reducing size should be considered. The main contributor to the size is not 

necessarily the number of routes included, or at least not directly. It is the transfer 

opportunities (e.g. walking links and nodes and resulting transfer waiting links) that make 

up the majority of the network, along with the means by which passengers enter and exit 

the network. For larger networks, the latter could be addressed by creating access and 

initial waiting links each time the algorithm is run for an origin and PDT, then removing 

them afterwards. To make application on a full system feasible, the large network size 

will need to be addressed. Tests on a complete network and comparison with transit data 

like APC and travel surveys will be beneficial in evaluating the difference in the RSP and 

FAST-TrIPs assignment approaches. 
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Future research can also be done to evaluate different user behaviors and 

objectives. The framework relies on the assumption that passengers board the next bus in 

the same route whenever a transfer is missed. In reality, passengers may seek out 

alternative routes to get them to their destination. How or if such strategies can be 

incorporated is something to consider. Alternative objectives such as determining the 

least expected time path that meets a given probability of arrival at the destination on 

time can also be investigated. This would require tracking the probability of getting to 

each node at a stated travel time in the labeling algorithm. At the termination of the 

algorithm, labels at the destination and their corresponding probabilities would be 

compared against a minimum acceptable probability of arriving on time. Finally, travel 

time or transfer reliabilities should be tested as independent variables in the FAST-TrIPs 

route choice model to determine their significance. Work on this has already started using 

Austin on-board survey and AVL data. 

Overall, this thesis provides a methodological framework to begin addressing 

reliability in transit assignment context. The result is a realistic and practical routing 

model that can be used in transit assignment or in quantifying passenger benefits of 

improved reliability. The outcomes can also be useful to transit agencies in designing 

transit schedules and operating strategies to improve transfer reliability. 
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