
The Dissertation Committee for Abigail June Crocker
certifies that this is the approved version of the following dissertation:

Post Disaster Transportation Network Recovery

Committee:

Stephen D. Boyles, Supervisor

Anantaram Balakrishnan

John J. Hasenbein

Erhan Kutanoglu

1

Post Disaster Transportation Network Recovery

by

Abigail June Crocker, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2024

2

Acknowledgments

I have been extremely fortunate to be supported and mentored by a number

of outstanding advisors during my graduate studies at The University of Texas at

Austin. First and foremost, I would like to thank Dr. Stephen Boyles, whose contin-

ual advice, mentorship, and editing have enabled this dissertation to reach its present

form, and whose courses on transportation networks helped set the stage for my grad-

uate studies and research. Thank you, also, to my committee members, Dr. Anant

Balakrishnan, Dr. John Hasenbein, and Dr. Erhan Kutanoglu, for their advice and

insights that pushed me to continually explore new ideas and new ways of looking at

problems. I have been doubly fortunate to enjoy the camaraderie of both my fellow

ORIE students and my fellow students in the SPARTA Lab. Graduate studies would

not have been nearly as rewarding without your collaboration. Thank you to my

husband, Matt, for his continual support and unwavering belief in me, inspiring me

to always push to excel, and to my parents for their continual support and encour-

agement. Finally, I would like to thank Dr. Paul Mlakar, COL Patrick Sullivan, COL

Matthew Rogers (Ret.), and MAJ David Picard for supporting this journey from the

start and for their advice and mentorship.

The views expressed herein are those of the author and do not necessarily

reflect the position of the Department of the Army or the Department of Defense.

3

Abstract

Post Disaster Transportation Network Recovery

Abigail June Crocker, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Stephen D. Boyles

Transportation network recovery after an extreme hazard or natural disaster is

time-sensitive, resource-intensive, and often involves repairing hundreds or thousands

of damaged links. Furthermore, optimal sequencing or scheduling of those hundreds or

thousands of links for repair is extremely computationally intensive, and intractable

by exact solution methods for over about twenty broken links. Previous methods

which search the solution space and incorporate travel time into the objective have

not been demonstrated on instances exceeding fifty broken links. In this dissertation,

I focus on road networks and examine both the single-crew sequencing problem and

the multi-crew scheduling problem, greatly expanding the number of broken links

which can be handled within a reasonable planning time period. Specifically, my

methodology handles up to about 250 broken links in 72 hours for the single-crew

problem and up to about 170 broken links in the same time frame for the multi-crew

problem, both on the Anaheim and Berlin-Mitte-Center test networks.

For the single-crew problem, I define two problem formulations with the ob-

jective of minimizing total travel delay over the repair horizon and explore resulting

insights on complexity. Additionally, I define both a lower bound using free flow

travel times and a simpler heuristic lower bound. I parameterize a simulated an-

nealing heuristic capable of generating high quality solutions in less than 24 hours

4

for problems with up to 175–185 broken links on the Anaheim and Berlin-Mitte-

Center test networks. Finally, I compare my simulated annealing algorithm and

selected heuristic solution methods on the two test networks with 8–48 broken links

and quantify trade-offs in terms of solution quality and solution time. These exper-

iments allow for practical recommendations of solution method given instance size,

network characteristics, and computational time available.

I extend the formulation to allow for multiple identical work crews, maintaining

the objective of minimizing total travel delay over the repair horizon. I establish that

this problem is NP-hard by proving that minimizing weighted completion time on

identical parallel machines reduces to the multi-crew scheduling problem. I compare

heuristic methods, borrowing from machine scheduling literature as well as previously

proposed methods for the special case of sequencing repairs for a single work crew

as opposed to for multiple crews. Additionally, I propose a simulated annealing

parameterization and compare multiple neighborhood definitions and combinations.

The resulting simulated annealing algorithm outperforms each other method tested in

terms of solution quality, handling up to about 120–130 broken links on the Anaheim

and Berlin Mitte-Center networks in 24 hours.

Finally, I develop two decomposition methods which first assign broken links

to work crews, and then sequence links for repair within those crews using one of

four methods. The first decomposition method is based on an approximation of

minimal makespan, and the second is a novel method based on characterising asym-

metric interaction coefficients between broken links. These decomposition methods,

however, do not achieve sufficient solution quality to recommend their use over sim-

pler sequencing methods. The developed simulated annealing heuristic maintains the

highest solution accuracy by a significant margin, though the greedy methods provide

quicker solutions.

5

Table of Contents

List of Tables . 8

List of Figures . 10

Chapter 1: Introduction . 11

1.1 Resilience and Recovery . 11

1.2 Framework and Assumptions . 14

1.3 Overview and Contributions . 16

Chapter 2: Disaster Recovery Sequencing . 19

2.1 Introduction . 19

2.2 Literature Review . 19

2.3 Problem Formulation . 24

2.4 Alternate Formulation and Complexity 29

2.5 Toy Examples . 30

2.5.1 Constant Link Performance Function 31

2.5.2 Linear Link Performance Function 34

2.6 Solution Methods . 35

2.6.1 Greedy Methods . 36

2.6.2 Bidirectional Beam Search Heuristic 37

2.6.3 Simulated Annealing Heuristic 42

2.7 Obtaining Lower Bounds . 49

2.8 Comparison of Methods . 53

2.9 Conclusions . 67

Chapter 3: Multi-crew Disaster Recovery Scheduling 68

3.1 Introduction . 68

3.2 Literature Review . 69

3.3 Problem Formulation . 71

3.4 NP-Hardness . 75

3.5 Solution Methods . 78

3.5.1 Heuristic Methods from Machine Scheduling 78

3.5.2 Adapting Existing Sequencing Methods 79

3.5.3 Novel Simulated Annealing Neighborhoods 83

3.5.4 Decomposition Methods . 86

3.6 Results . 91

3.7 Conclusions . 100

6

Chapter 4: Conclusion . 104

4.1 Summary and Implications . 104

4.2 Future Work . 105

Appendix A: Single-crew Summary Statistics 107

A.1 Simulated Annealing Run Time Summary Statistics 107

A.2 Simulated Annealing Accuracy Gap Summary Statistics 108

A.3 Comparison Summary Statistics for 48 broken links 110

A.4 Varied Demand Multiples Summary Statistics 111

A.4.1 Anaheim – Run Time Comparisons 111

A.4.2 Anaheim – Accuracy Gap Comparisons 113

A.4.3 Berlin-Mitte-Center – Run Time Comparisons 114

A.4.4 Berlin-Mitte-Center – Accuracy Gap Comparisons 115

Appendix B: Multi-crew Summary Statistics 117

B.1 Direct Solution vs Post-processing Summary Statistics 117

B.2 Multi-crew Simulated Annealing Summary Statistics 118

B.3 Multi-crew LAFO/LASR Summary Statistics 119

Bibliography . 121

Vita . 127

7

List of Tables

2.1 Sequence comparisons, constant LPF, N = 2 32

2.2 Sequence comparisons, constant LPF, N = 3 32

2.3 Sequence comparisons, linear LPF, N = 2 35

2.4 1-neighborhood of sequence (a, b, c, d, e) 43

A.1 SA run time summary statistics – Anaheim – 8–15 broken links . . . 107

A.2 SA run time summary statistics – BMC – 8–15 broken links 107

A.3 SA run time summary statistics – Anaheim – 16, 24, 32, 48 broken links108

A.4 SA run time summary statistics – BMC – 16, 24, 32, 48 broken links 108

A.5 SA accuracy gap summary statistics – Anaheim – 8–15 broken links . 108

A.6 SA accuracy gap summary statistics – BMC – 8–15 broken links . . . 109

A.7 SA accuracy gap summary statistics – Anaheim – 16, 24, 32, 48 broken
links . 109

A.8 SA accuracy gap summary statistics – BMC – 16, 24, 32, 48 broken links109

A.9 Methods comparison run time summary statistics – Anaheim – 48 bro-
ken links . 110

A.10 Methods comparison run time summary statistics – BMC – 48 broken
links . 110

A.11 Methods comparison accuracy gap summary statistics – Anaheim – 48
broken links . 110

A.12 Methods comparison accuracy gap summary statistics – BMC – 48
broken links . 111

A.13 BS run time summary statistics – Anaheim – demand multipliers . . 111

A.14 SA run time summary statistics – Anaheim – demand multipliers . . 112

A.15 LASR run time summary statistics – Anaheim – demand multipliers . 112

A.16 LAFO run time summary statistics – Anaheim – demand multipliers 112

A.17 BS accuracy gap summary statistics – Anaheim – demand multipliers 113

A.18 SA accuracy gap summary statistics – Anaheim – demand multipliers 113

A.19 LASR accuracy gap summary statistics – Anaheim – demand multipliers113

A.20 LAFO accuracy gap summary statistics – Anaheim – demand multipliers114

A.21 BS run time summary statistics – BMC – demand multipliers 114

A.22 SA run time summary statistics – BMC – demand multipliers 114

A.23 LASR run time summary statistics – BMC – demand multipliers . . . 115

8

A.24 LAFO run time summary statistics – BMC – demand multipliers . . 115

A.25 BS accuracy gap summary statistics – BMC – demand multipliers . . 115

A.26 SA accuracy gap summary statistics – BMC – demand multipliers . . 116

A.27 LASR accuracy gap summary statistics – BMC – demand multipliers 116

A.28 LAFO accuracy gap summary statistics – BMC – demand multipliers 116

B.1 Multi-crew accuracy gap summary statistics – 20 broken links, two crews117

B.2 Multi-crew accuracy gap summary statistics – 20 broken links, three
crews . 117

B.3 Multi-crew accuracy gap summary statistics – 20 broken links, four crews118

B.4 Multi-crew SA run time summary statistics – Anaheim 118

B.5 Multi-crew SA run time summary statistics – BMC 119

B.6 Multi-crew LAFO/LASR run time summary statistics – Anaheim . . 119

B.7 Multi-crew LAFO/LASR run time summary statistics – BMC 120

B.8 Multi-crew LAFO/LASR accuracy gap summary statistics – Anaheim 120

B.9 Multi-crew LAFO/LASR accuracy gap summary statistics – BMC . . 120

9

List of Figures

1.1 Resiliency triangle . 12

2.1 Total travel delay over repair horizon 26

2.2 Induced network for N = 3 . 30

2.3 Example network with three links, one OD pair 31

2.4 Marginal impact histograms . 41

2.5 Runtime versus OBJ function improvement for SA neighborhoods . . 44

2.6 SA OBJ function accuracy gap box and whisker plots 48

2.7 SA largest accuracy gap versus best found 49

2.8 Free flow lower bound vs. optimal shortest path method run times . . 52

2.9 Anaheim comparison graphs for 8–15 broken links 56

2.10 BMC comparison graphs for 8–15 broken links 57

2.11 Run time comparison graph for 16, 24, 32, and 48 broken links 58

2.12 Comparison graphs for 48 broken links 59

2.13 Anaheim comparison graphs for varied demand multiples 60

2.14 BMC comparison graphs for varied demand multiples 61

2.15 Single-crew BS run time curve fits . 62

2.16 Single-crew SA run time curve fits . 64

2.17 Single-crew SA and BS run time curve fits 66

3.1 Total travel delay over the repair horizon, reformulation 77

3.2 SA neighborhoods comparison . 85

3.3 Broken arcs in sequence vs. parallel 87

3.4 Post-processing vs. K-crew box and whisker plots 93

3.5 Multi-crew comparison graphs for 12 broken links 96

3.6 Multi-crew comparison graphs for 20 broken links 97

3.7 Accuracy gap vs. makespan increase 99

3.8 Multi-crew graphs for 10–100 broken links 101

3.9 Multi-crew SA run time curve fits . 102

10

Chapter 1: Introduction

When transportation systems are damaged by extreme hazards or natural

disasters such as hurricanes, seismic events, floods, or terrorist attacks, efficient long-

term recovery actions are essential to re-establishing service. Transportation system

damage in these scenarios can affect hundreds or even thousands of links, as evidenced

in reports by Zhuang et al. (2009) on the 2008 earthquake in Wenchuan, China, af-

fecting 1,657 bridges and by Lunderville (2012) on over 300 bridges and 2,000 road

segments impacted by Hurricane Irene in Vermont. The network degradation after

an extreme event can result in elevated congestion on functional routes, economic

losses due to lost demand, or even fully disconnected portions of the network with

implications for emergency services accessibility. For these reasons, efficiency is key

in recovering the network to a fully operational state, highlighting a critical balance

between solution time and quality in long-term recovery planning. I have not encoun-

tered a previous study which both incorporates travel time in the objective function

and utilizes search methods rather than greedy heuristic orderings on instances ex-

ceeding fifty broken links. In this dissertation, I examine road networks in particular,

and parameterize a search heuristic which handles up to about 250 broken links in 72

hours for the single-crew problem and up to about 170 broken links in the same time

frame for the multi-crew problem, both on the Anaheim and Berlin-Mitte-Center test

networks.

1.1 Resilience and Recovery

The term resilience originally stems from physics where it describes the ca-

pability of a material to regain its original shape after deformation, typically due

to compressive stress (Merriam-Webster). However, this concept is applied across

widely varied fields with similar but distinct definitions. Specific to transportation,

11

System
Functionality

TimeDisruption

Disrupted

Normal

Full Recovery

Rapidity
Robustness &
Redundancy

Resourcefulness impacts
trajectory of recovery

Figure 1.1: Resiliency triangle

Zhou et al. (2019) conducted a structured literature review in 2019 of 101 papers

from 2006 to 2017 dealing with resilience in transportation. Their results indicated

two key perspectives on resilience in transportation: “the ability to maintain func-

tionality under disruptions” and “time and resources required to restore performance

level after disruptions” (Zhou et al., 2019). In earthquake engineering, Bruneau et al.

(2003) defines resiliency in three parts as the ability of the system to reduce the prob-

ability of a disruption, mitigate the initial loss of functionality due to a disruption,

and rapidly return to full functionality after a disruption.

Bruneau et al. (2003) also first introduced the resiliency triangle to quantita-

tively describe the impact of a disruption and subsequent recovery efforts on a system.

Figure 1.1 graphically depicts the lost functionality over time due to a disruption. The

initial drop in capability reflects system robustness and redundancy within the sys-

tem. Rapidity describes the time between the initial disruption and returning to full

pre-disruption functionality. The trajectory of recovery – the two dimensional path

from decreased functionality immediately post-disruption to fully restored function-

ality – is determined by resourcefulness including the timely availability of recovery

assets and organizational effectiveness to employ them. A more complex graph for

many extreme events such as hurricanes would additionally depict the initial drop

12

in system functionality over some initial time period, rather than an instantaneous

event. However, for the purposes of evaluating long-term recovery efforts, I will focus

on the time period between full disruption – after the extreme event and immediate

clean-up efforts – and full recovery.

Operationally in terms of a roadway network, Zhang et al. (2018b) categorizes

comprehensive resiliency in terms of mitigation strategies, emergency response, and

long-term recovery. Mitigation strategies encompass actions taken prior to a disrup-

tion to increase one or more components of resiliency. These actions seek to harden

the network against potential disruptions and increase resiliency through robustness

of individual components and redundancy within the network. In terms of the func-

tionality of a transportation network, emergency response might including clearing

obstructions such as power lines, fallen trees, and debris, or even patching minor

damage to restore immediate functionality. For those network links which cannot

be rapidly restored, long-term recovery actions are necessary. Long term recovery

actions might include rebuilding a washed-out road, or repairing a bridge or road

segment which is structurally unstable and unusable due to an earthquake.

Because there is no general consensus of how to define and break down phases

of resiliency and recovery, in this dissertation I distinguish between emergency re-

sponse and long-term recovery based on the durations involved and the typical ob-

jectives to be met. With this framework, though emergency response may extend for

weeks or even months in severe scenarios, the focus is still on immediate connectivity

of the network and basic functionality of key links (even if still degraded), whereas

long-term recovery seeks to return the network to full functionality. In order to model

the two phases independently, I structure the problem such that emergency response

must be complete before long-term recovery begins. In some cases, the operational

strategy can be brought full circle, where mitigation strategies are implemented in tan-

dem with long-term recovery, and certain damaged network components are repaired

to a higher standard than their condition prior to disruption and/or the placement

of new links does not exactly correspond to the locations of the destroyed links. In

13

the following chapters, I focus on long-term recovery of road networks to their pre-

disruption state, leaving the integration of emergency response, long-term recovery,

and future mitigation strategies to future research.

1.2 Framework and Assumptions

In the framework developed by Bruneau et al. (2003), my efforts focus on

minimizing the cumulative loss of system functionality, as represented by the shaded

triangle in Figure 1.1, from a post-disruption point of view. I differentiate between

immediate actions taken to clear roads which are temporarily impeded or constricted

and long-term actions taken to restore roads which are damaged such that they are

unusable without major repairs or reconstruction. Cheng and Zhang (2022) address

the scenario of short-duration road repair where repair times are on the order of 1–12

hours and therefore travel time and routing given damaged links are integrated into

the model. In contrast, I focus on long-term recovery where durations are measured

in days, and full recovery requires months. I set up the problem such that a subset

of network links are initially broken and choose to minimize total travel delay over

the repair horizon, with the static traffic assignment problem (TAP) as a lower level

problem. I use the user equilibrium formulation, which assumes that all drivers have

perfect knowledge of system conditions and seek to minimize their own travel time.

Given these assumptions on driver behavior, at user equilibrium, for each origin-

destination pair every used path from that origin to that destination has equal and

minimal travel time (Wardrop, 1952). Stated differently, no single driver could achieve

a lower travel time by shifting routes. In Chapter 2, I focus on sequencing the repair

of broken links for a single repair crew. In Chapter 3, I study the scheduling of broken

links among multiple identical repair crews. In both chapters, I employ the following

assumptions:

• Broken links are unusable until fully repaired.

• Repair times for each link are fixed and known.

14

• User equilibrium is reached after each repair.

• Repair crews cannot be subdivided.

• Preemption (pausing a link repair to shift to another link before returning to

the first link) is not permitted.

In Chapter 3 I additionally assume that:

• Repair crews are identical.

• Each broken link is repaired by a single repair crew.

The chosen problem structure, along with the first general assumption above,

results in binary repair states – either a link is fully broken and unusable or at full

operational capacity. While this structure could be extended in future research to

allow partial service restoration, or even service upgrade beyond original capacity,

both extensions would result in a drastic increase in solution space over the current

formulation. Therefore, for this research I restrict links to binary repair states. The

use of static TAP as the lower level problem in both the single- and multi-crew formu-

lations is contingent on the third general assumption above, that user equilibrium is

reached after each repair, and furthermore that equilibrium is reached in a negligible

amount of time in comparison to repair durations. Similarly, I treat transitions be-

tween repairs as instantaneous, with set up times included in repair durations and not

dependent on previous repairs or repair order. These assumptions together represent

simplifications of the repair and traffic routing processes, but are reasonable for the

time scale under study and useful for examining the underlying problem structure,

which may be extended in future research to study the impacts of relaxing these

assumptions.

In terms of structure, the resulting network recovery sequencing and schedul-

ing problems share characteristics with scheduling road maintenance and repairs and

15

expanding an existing road network. In the case of routine or periodic road mainte-

nance and repair, rather than being unusable, links may have lower capacity prior to

maintenance or repair and either return to design capacity or improve upon original

capacity upon completion. In the case of network expansion, if the set of new links is

already fixed, and their repair durations are known and fixed, the links could simply

be considered broken until constructed, and methods presented in Chapters 2 and 3

could be applied as appropriate.

1.3 Overview and Contributions

In Chapters 2 and 3, I specifically address balancing the trade-off between

solution time and quality when determining which method is “best” for a particu-

lar application for the single-crew sequencing problem and the multi-crew scheduling

problem, respectively. I develop a simulated annealing method which delivers solu-

tions of comparable quality to those found by a previously proposed beam search

(Gokalp et al., 2021) for single-crew instances while achieving much lower run times.

I adapt the simulated annealing heuristic for multi-crew problems, maintaining com-

parable accuracy to the single-crew formulation, while the beam search accuracy

degrades due to the change in underlying structure. Additionally, I benchmark pro-

posed solution methods from the literature on equivalent problem instances on the

Anaheim and Berlin-Mitte-Center (BMC) networks from the Transportation Net-

works for Research repository (2022) with 8–100 broken links, and 10–100 instances

for each tested parameter combination. The code used for the experiments in this

dissertation is available on GitHub (Gokalp and Crocker, 2024).

In Chapter 2, examining the sequencing problem, I compare a shortest path

method to find the exact optimal solution, a beam search heuristic, my simulated

annealing heuristic, and six greedy heuristics, using instances with 8–48 broken links.

The bidirectional beam search provides the highest quality solutions in the majority

of single-crew experiments, but the simulated annealing heuristic runs significantly

16

faster, with minimal to no loss in solution quality. Only the greedy heuristics using

Rey and Bar-Gera’s (2020) approximation method reliably come within a 50% ac-

curacy gap from the beam search or simulated annealing objective function values.

While those methods can more rapidly obtain a reasonable repair sequence, beam

search and simulated annealing both obtain much higher quality solutions and can

solve instances with up to 55 and 250–260 broken links, respectively, in under 72

hours. Additionally, I explore the extension of the described methods to scenarios

with multi-class demand. This extension allows relative weighting of critical logis-

tic movements versus residential and commercial traffic, versus emergency services

traffic within the damaged network. My primary contributions in Chapter 2 are:

1) a single-crew simulated annealing heuristic; 2) a comparison of solution methods

by run time and solution quality; 3) methods of obtaining lower bounds on objec-

tive value; 4) recommendations on appropriate greedy methods for use when severely

time-constrained.

In Chapter 3, I extend the problem formulation to allow for multiple iden-

tical work crews, rather than a single work crew, increasing applicability and real-

ism. First, I place the multi-crew problem within the class of NP-hard problems,

demonstrating that a restricted version of the multi-crew problem is equivalent to

minimizing weighted completion time on identical parallel machines from the general

scheduling literature. I then adapt the simulated annealing heuristic developed for

the sequencing problem for the scheduling problem, additionally assessing multiple

novel neighborhood definitions, and adapt the brute force and greedy methods to

account for repairs completing in parallel. Additionally, I develop two methods of

decomposing links into work crew assignments and subsequently sequencing links for

repair within those work crews. The first decomposition method is based on a four-

thirds greedy approximation of the minimal makespan assignment, and the second

method uses novel asymmetric interaction coefficients between broken links derived

from the impact on other link flows of breaking each link. The simulated annealing

method consistently achieves the highest solution quality of the methods tested, and

17

can process up to about 120–130 broken links in 24 hours or 170–180 broken links in

72 hours on the Anaheim or BMC networks. My primary contributions in Chapter 3

are: 1) establishing the multi-crew scheduling problem as NP-hard; 2) a multi-crew

simulated annealing heuristic; 3) exploration of the effect of neighborhood definition

on simulated annealing performance; 4) adapted sequencing methods for scheduling

application; 5) two methods of decomposition into crews and four methods of se-

quencing links for repair within each crew; 6) comparison of developed methods by

run time and solution quality; 7) recommendations on appropriate greedy methods

for use when severely time-constrained.

Finally, in Chapter 4, I summarize this dissertation’s contributions as well as

detailing several potential directions for future research. Additionally, I discuss in

greater depth the implications of the set of assumptions used to frame the problem at

hand and describe potential relaxations of particular assumptions for future research.

18

Chapter 2: Balancing Solution Time and Quality

in Disaster Recovery Sequencing

2.1 Introduction

Natural disasters significantly disrupt road networks, and sequencing link re-

pairs exactly optimally is intractable for even moderate numbers of damaged links.

In this section, I present a simulated annealing heuristic which can offer high quality

solutions in less than 24 hours for problems with up to 165 and 175 broken links

on the Anaheim and BMC test networks, respectively, corresponding to 18–20% of

network links. I generate 1800 random problem instances over the two test networks

with 8–48 broken links to compare optimal sequencing, the bidirectional beam search

heuristic, simulated annealing heuristic, and six greedy heuristics in order to quantify

trade-offs in terms of solution quality and solution time.

2.2 Literature Review

This chapter focuses on methods of balancing run time and solution quality

when sequencing the repair of links in a damaged transportation network, using TSTT

to represent the functionality of any network state. Multiple authors have looked

at this general formulation of the problem and proposed heuristics for finding the

optimal repair sequence (Rey and Bar-Gera, 2020; Gokalp et al., 2021), but I have

not encountered a review which focuses on comparing available proposed methods on

equivalent problem instances and enunciating the trade-offs involved.

Additionally, many authors have studied similar problems with objective func-

tions capturing some combination of functional, topological, and economic perfor-

mance metrics, often on small-scale case studies. Zhang et al. (2017) measure per-

formance by the average number of reliable independent pathways. Chen and Miller-

Hooks (2012) quantify performance by the amount of demand met in an intermodal

19

freight network, identifying recovery actions to be taken with a stochastic mixed-

integer program. Merschman et al. (2020) and Zhang et al. (2018a) combine perfor-

mance metrics from multiple categories to seek an optimal repair sequence. Several

authors use performance metrics related to TSTT, but as part of multi-stage frame-

works with varied solution methods (Bocchini and Frangopol, 2012; Vugrin et al.,

2014; Ye and Ukkusuri, 2015).

Bocchini and Frangopol (2012) model capacity restoration as a time-continuous

process in that the repair rate for a link is determined by the level of funding applied,

with multiple link repairs able to proceed in sequence. They then use a genetic algo-

rithm to solve the resultant multi-objective bilevel optimization model to maximize

total network resilience, minimize time to reach a certain level of network function-

ality, and minimize present cost of repairs. The application focus is a network with

damaged bridges and specific detours prescribed for each damaged bridge. Vugrin

et al. (2014) take into account the cost of recovery operations as well as system im-

pact measured by TSTT, solving their bilevel optimization model using a modified

simulated annealing algorithm. They demonstrate their method on a network with

nine nodes and 30 links, four of which are designated as broken, but with eight re-

covery tasks for each broken link, and varying levels of service during recovery.

Ye and Ukkusuri (2015) seek to maximize system resilience, defined as the

sum of the recovery ratios of system performance during reconstruction. In contrast

to other papers, they use day-to-day traffic assignments, using a logit-based loading

model with fixed demand, incorporating drivers’ learning rates and perceived costs

for each path to model traffic flow evolution during reconstruction. The authors solve

this model using tabu search, with the largest network being a modification of the

Sioux Falls test network with 24 nodes, only two origin destination pairs, and only

36 links, six of which are designated as broken. Extension of this method to larger

networks, or even the unmodified Sioux Falls test network, would require overcoming

the challenge of enumerating path flows.

20

For this study, I choose to use the single performance measure of TSTT, and

focus on algorithmic contributions to balance solution time and quality, which may

in turn also be useful for solving similar or extended formulations. The performance

gains with minimal accuracy loss achieved by the bidirectional beam search heuristic

over the exact enumerative approach (within the range where enumeration is ten-

able) inspired the desire to further explore high quality heuristic solution methods.

I establish that the single-crew sequencing problem can be formulated as a shortest

path problem from the immediately post-disruption state to the fully repaired state,

with the other network nodes representing intermediate repair states and links rep-

resenting feasible transitions between repair states. This representation allows for

some discussion of computational complexity, given the most efficient known shortest

path algorithms. For my results, given the structure of the induced network, I rely

on the computational complexity for finding the shortest path in a directed acyclic

network, as presented by Ahuja et al. (1993). Fully defining this induced network,

however, would require computing the state transition (link) costs by solving static

TAP for each potential repair state. Indeed, the beam search presented by Gokalp

et al. (2021) explores this induced network from both the source and the destination,

using estimates of link costs and exploring the most promising branches, rather than

computing all necessary link costs a priori.

Static TAP is well-researched and efficient algorithms have been developed for

finding the solution given a network and demand matrix. TAP was first formulated

as a convex program by Beckmann et al. (1956). The first two classes of algorithms

developed for solving TAP were link based and path based methods. Link based

methods directly reflect the convex nature of Beckmann’s formulation by identifying a

search direction and then a step size at each iteration until some convergence criterion

is met. Examples of link based methods include MSA (Powell and Sheffi, 1982),

Frank-Wolfe (Frank and Wolfe, 1956), and Conjugate Frank-Wolfe (Mitradjieva and

Lindberg, 2013). These methods are memory efficient, but slow to converge in large

networks. In contrast, path based methods are memory intensive, since they store

21

the set of used paths, but converge much faster than link based methods. Two well-

known examples of path based methods are gradient projection (Jayakrishnan et al.,

1994), wherein each step is taken in the direction of steepest descent and the new

solution is projected onto the set of feasible flows, and projected gradient (Florian

et al., 2009), wherein the direction of steepest descent is projected onto the set of

feasible flows and then a step is taken in the projected direction.

More recently, bush based methods have been developed to efficiently store

path flows while optimizing computational time. For computational experiments, I

use Algorithm B, proposed by Dial (2006) and implemented by Boyles (2022). This

method stores current flows in a connected and acyclic graph from each zone, and

shifts flows from the longest to shortest path within each bush, iterating over the

bushes until convergence. Other bush based methods include origin based assign-

ment (OBA) and traffic assignment by paired alternative segments (TAPAS). OBA,

authored by Bar-Gera (2002), allows for simultaneous shifts involving many paths.

TAPAS is a more recent bush based algorithm which finds path flows satisfying pro-

portionality, proposed by Bar-Gera (2010) and further developed by Xie and Xie

(2014).

In seeking to solve the repair sequencing problem, a variety of greedy methods

have also been proposed or recommend themselves to potential use, but these sacrifice

significant accuracy in pursuit of efficiency. Gokalp et al. (2021) use three greedy

methods to benchmark their beam search heuristic. The first method targets the

greatest immediate benefit at each stage of repairs. Specifically, at each stage, the

link chosen for repair is the one which maximizes the decrease in TSTT from repairing

that single link over the repair duration of that link. The second greedy method orders

links for repair based on the myopic greatest immediate benefit, or the decrease in

TSTT due to repairing that link first over the repair duration of that link. Finally,

the importance factor ordering prescribes that links are repaired in decreasing order

of pre-disruption flow. All three methods are tested against the beam search heuristic

over instances with 8 and 16 broken links on the Sioux Falls network and 8, 16, and

22

32 broken links on the Anaheim network. For 8, 16, and 32 broken links, the exact

enumeration method would need to examine approximately 4.0 × 104, 2.1 × 1013,

and 2.6× 1035 sequences respectively, while the induced graphs for the shortest path

method contain approximately 1.0× 103, 5.2× 105, and 6.9× 1010 links respectively.

Rey and Bar-Gera (2020) assume that links are grouped into projects a priori

and use a sampling method developed by Rey et al. (2019) which is quadratic in the

number of projects to approximate the first order effects of each project. Then, they

order projects greedily based on either largest average first order effects, or decreasing

Smith’s ratio (weight-to-duration) using the average first order effects as the weight

parameter. In Rey and Bar-Gera’s paper (2020), between three and nine work crews

are used, and each instance consists of either nine or ten projects on the BMC network.

In these scenarios, the exact enumeration method would need to evaluate between

nine (for nine projects and eight work crews) and 6.0×105 (for ten projects and three

work crews) unique repair sequences. As a comparison case, another greedy algorithm

– shortest processing time – is used which simply ranks projects by increasing repair

duration.

Hackle et al. (2018) propose simulated annealing (SA) as a heuristic for solving

a variation on the repair scheduling problem which seeks to minimize costs (namely

the costs of repair as well as costs such as increased travel times and disconnections).

Additionally, Hackle et al. (2018) allow for multiple types of repair interventions, with

each link having a finite set of possible interventions – each with a commensurate cost,

duration, and resource requirement – to bring that link back to full functionality. Sim-

ulated annealing is a stochastic local search algorithm which uses the neighborhood

of a current solution to propose a new solution. The new solution is accepted if it

improves upon the current solution, and accepted with some probability less than

one if it is worse than the current solution. This heuristic method was first developed

by Kirkpatrick et al. (1983) based on ideas put forward by Metropolis et al. (1953).

Franzin and Stützle (2019) extensively describe the parameterization of simulated

23

annealing algorithms, providing a unifying framework with which to compare various

implementations and variations of simulated annealing.

With numerous proposed formulations and varied solution methods with dif-

fering small degrees of scalability in the literature, I seek to compare some of the

available methods to characterize when one method recommends itself over others.

At present, none of the proposed non-greedy methods I have encountered handle real-

istic instances of multiple hundreds of links within a reasonable planning time period

of, say, 72 hours. In order to address these areas, I select the single performance

measure of TSTT as a foundation on which to build such a comparison of general

methods, which could potentially be adapted for extended or similar formulations,

and additionally propose a simulated annealing algorithm which seeks to balance

solution time and quality considerations.

2.3 Problem Formulation

The model is a bilevel optimization problem, where the upper level objective

is to minimize the total travel delay over the full repair horizon, and the lower level

problem is the static traffic assignment problem of computing equilibrium flows for

a given repair state. The traffic assignment problem was originally formulated by

Beckmann et al. (1956) and is extensively described in books by Patriksson (1994)

and Boyles et al. (2023). In defining the upper and lower level problems, I use the

same notation as described in Gokalp et al. (2021). Given a network with a set of

nodes N , a set of links A, and a set of zones Z, each link a has a travel time Ta,

which is a non-decreasing function of the flow on link a only. I assume that the travel

demand is fixed, and define drs as the travel demand from zone r to zone s. The set

of simple paths connecting zone r to zone s is defined as Πrs and Π = ∪(r,s)∈Z2Πrs is

the set of all such paths.

For this model, if a link is damaged (broken) it cannot be traversed until fully

repaired. Let B ⊂ A be the set of broken links, and N = |B| be the number of broken

24

links. The time needed to repair a broken link b ∈ B is designated Db and is assumed

to be both fixed and known a priori. There is no restriction that the network must

be strongly connected while links remain broken, and a penalty cost is imposed for

lost trips resulting from a broken network. A trip is considered lost if the travel

time increases more than Q times from the base case (undamaged network) or if the

origin and destination are no longer connected through the network. I represent this

by creating artificial links directly connecting origin-destination (OD) pairs, with a

constant travel time of Q times the equilibrium travel time in the full network. This

formulation avoids numerical stability issues in severely damaged networks caused by

using the same large constant for all disconnections. I create these artificial links after

selecting the set of broken links, and only for OD pairs which have been disconnected

or whose new equilibrium travel time is high enough that such a link would be used.

In this way, I avoid computational challenges created by the näıve method of adding

an artificial link between every OD pair. The set of artificial links is denoted R in

the formulation below. This is a deviation from the problem formulation used by

Gokalp et al. (2021), and results in slightly longer solution times in order to extend

the formulation’s realism and broaden applicability.

I assume that repairs proceed sequentially and that user equilibrium is reached

after each repair. More precisely, I assume Wardrop’s principle (Wardrop, 1952) is

satisfied and the time to reach user equilibrium after completion of a repair is negli-

gible compared to the repair duration. Thus, the time to reach user equilibrium can

be approximated as an instantaneous transition. This assumption is common in this

type of problem formulation and in representing ordinary conditions in transporta-

tion networks. The assumption of user equilibrium allows the use of the static traffic

assignment problem, for which extremely efficient algorithms exist, as the lower level

problem (Dial, 2006).

Because there are N broken links, there are N network stages in a repair

sequence as the broken links are repaired. These non-terminal states are indexed by

t ∈ {1, . . . , N}. The sequence of repairs is defined by the binary variables ytb, where

25

Figure 2.1: The shaded area is total travel delay over the repair horizon

ytb = 1 iff link b is repaired during stage t. The variable ztb equals 1 iff link b was

repaired prior to stage t and is therefore useable during stage t. For a given link a

in stage t, the flow on that link is xt
a, and ht

π represents an equilibrium flow on path

π. During stage t, the total system travel time is then
∑

a x
t
aTa(x

t
a), and stage t lasts

for Db days where b is the link under repair in stage t. The shorthand TSTTt will be

used to compactly denote the TSTT during stage t. Figure 2.1 illustrates the total

travel delay over the repair horizon for a possible repair sequence in a network with

N = 4 broken links. The x-axis in this graph is set at the TSTT before disruption

TSTT0, equivalently TSTTN+1, after all repairs are complete.

The following bilevel optimization problem expresses minimizing the total

travel delay over the repair horizon, where M is a sufficiently large constant:

min
x,y,z

N∑
t=1

(∑
a∈A∪R

xt
aTa(x

t
a)− TSTT0

)∑
b∈B

ytbDb (2.1)

s.t.
t−1∑
t′=1

yt
′

b = ztb ∀b ∈ B, t ∈ {1, . . . , N} (2.2)∑
b∈B

ytb = 1 ∀t ∈ {1, . . . , N} (2.3)

N∑
t=1

ytb = 1 ∀b ∈ B (2.4)

ytb ∈ {0, 1} ∀b ∈ B, t ∈ {1, . . . , N} (2.5)

ztb ∈ {0, 1} ∀b ∈ B, t ∈ {1, . . . , N}, (2.6)

26

where each xt is optimal to:

min
xt,ht

∑
a∈A∪R

∫ xt
a

0

Ta(x)dx (2.7)

s.t.
∑
π∋a

ht
π = xt

a ∀a ∈ A ∪R (2.8)∑
π∈Πrs

ht
π = drs ∀(r, s) ∈ Z2 (2.9)

ht
π ≥ 0 ∀π ∈ Π (2.10)

xt
b ≤Mztb ∀b ∈ B. (2.11)

The upper level objective function, Equation 2.1, minimizes the total travel

delay (equivalently, TSTT) over the repair horizon, captured by multiplying the sys-

tem cost for each stage by the stage duration. The first upper level constraint ensures

that each link is available for use only after it is repaired. The second and third up-

per level constraints ensure that only one link is repaired per stage and each link

is repaired at some stage, respectively. The last two upper level constraints define

y and z as sets of binary variables. The lower level problem consists of Equations

2.7–2.11 and represents the standard user equilibrium formulation of the static traffic

assignment problem (TAP), with the addition of the artificial links and a constraint

to ensure the flow on broken links is equal to zero.

As formulated, exactly solving the above bilevel optimization problem would

require enumerating all possible repair sequences, and evaluating each to determine

the optimal sequence, including solving TAP at each repair state encountered. Solving

the upper level problem quickly becomes intractable because the number of unique

repair sequences is factorial in N , representing all permutations of the broken links

(1, . . . , N). A näıve evaluation method would solve N !×N instances of TAP, further

impacting solution time and tractability. However, by storing repair states and the

TSTTs for their respective TAP solutions, the number of TAP evaluations required

decreases to 2N . The repair state at any time t is characterized by a vector zt of

length N , where each entry is either 1, if the indexed link is repaired, or 0, if the

27

indexed link is not yet fully repaired. Because each of the N entries has only two

possible values, the total number of feasible states is 2N .

As shown by Gokalp et al. (2021), because links are repaired in sequence,

an analogue to Bellman’s optimality principle applies: once a subset of repairs is

complete, optimizing the repair sequence of the remaining links is independent of the

completion order of the first links. This principle holds for any fixed partitioning into

subsequences, in that the optimal ordering within each subsequence can be determined

independently. The bidirectional beam search heuristic which Gokalp et al. propose

and demonstrate within the same paper exploits this principle and is based in dynamic

programming.

Until this point, the formulation has treated demand across the network equally,

as a single class of demand. However, with a modification to the objective function, a

subset of demand can be prioritized, as might be desirable for emergency vehicles and

construction crews after a natural disaster. Given a set of demand classes (1, . . . , d),

the modified upper level objective function is presented below, with class weights

wi for i = 1, . . . , d. In this manner, the lower level problems, and therefore route

choices given a network configuration, are unaffected. Allowing for multiple classes

of demand, the modified upper level objective function is:

min
x,y,z

N∑
t=1

(∑
a∈A∪R

(d∑
i=1

wix
t
a,i

)
Ta(x

t
a)− TSTT0

)∑
b∈B

ytbDb,

where xt
a,i is the flow on link a from class i during stage t and

∑d
i=1 x

t
a,i = xt

a.

Another technique to prioritize different classes of demand might be to modify

parameters of the demand classes themselves. However, this type of modification

would cause commensurate changes in individual vehicle behavior, rather than simply

influencing the objective function. By elevating, for example, the distance factor for

the priority class, an EMS or construction vehicle could be penalized more heavily

than a private car for having to take a longer route, in addition to the penalty

of increased travel time. However, this weighting technique risks unintentionally

28

incentivizing undesirable behavior because the underlying route choices would be

altered by the modified lower level objective function.

2.4 Alternate Formulation and Complexity

While I choose to formulate the problem at hand as a bilevel optimization prob-

lem in order to incorporate calculation of TSTT for each visited state as the lower

level problem, with TSTTs treated as known (or calculated as needed) the problem

can be reformulated as a single-pair shortest path problem. This reformulation was

briefly described by Gokalp et al. (2021), but not tested computationally. Ng and

Schonfeld (2023) also present the same shortest path reformulation, testing computa-

tionally with four broken links on the Sioux Falls test network. In this reformulation,

there are 2N nodes, corresponding to the 2N possible repair states (zt vectors). The

network links are those which connect a repair state zt to a valid successor state zt+1.

In this way, a link in the network represents repairing one additional link not yet

repaired in state zt. The link cost for a link (k, l) from state k to state l where state

l differs from state k by the repair of link b is (TSTTk − TSTT0) ·Db where TSTT0

is the TSTT after the disruption and before any links are repaired. The number of

links in the network is N · 2N−1. Figure 2.2 depicts the induced network for N = 3,

where the shortest path from z0 = (0, 0, 0) with no links repaired to z4 = (1, 1, 1)

with all links repaired defines the optimal repair order for the three broken links.

Since the induced network is a directed acyclic graph, a topological order

exists, and can be used to solve for the shortest path with a time complexity of O(E)

where E = N · 2N−1 is the number of edges (Ahuja et al., 1993). Therefore, the time

complexity of finding the optimal sequence after calculating the link costs (which

involves finding the TSTT for 2N instances of TAP) is O(N · 2N−1). While this is

the time complexity for solving single-source shortest paths to all nodes, due to the

network structure, any link and any node in the network can be on the single-pair

shortest path from z0 to zN+1, and no paths can be excluded from consideration

29

Figure 2.2: Induced network for N = 3

a-priori due to only requiring the single-pair shortest path from z0 to zN+1.

2.5 Toy Examples

A logical next question in regards to complexity is whether the induced net-

work, and therefore the problem complexity, can be reduced by some property of

the original network, either by combining or eliminating nodes, thus also eliminat-

ing links, or by simply eliminating links. If certain links could be removed a priori,

without calculating TSTTs, then the worst case complexity of solving the shortest

path problem, and therefore the complexity of the equivalent bilevel problem would

be reduced. In order to determine whether the problem can be simplified or reduced,

I first examine the toy instance depicted in Figure 2.3 with source node s, destination

node t, three links from s to t, and total demand d from s to t. The top link a remains

functional, while links b and c are selected as the broken links. While in practice the

most common link performance function (LPF) is the Bureau of Public Roads (BPR)

function

tij(xij) = t0ij

(
1 + α

(xij

uij

)β)
with α = 0.15 and β = 4 as common defaults, I first examine this toy network using

constant, and then linear link performance functions.

30

Figure 2.3: Example network with three links, one OD pair

2.5.1 Constant Link Performance Function

In order to obtain a constant link performance function, I set α = 0 and β = 1,

resulting in the simplified function

tij(xij) = t0ij

where travel time is equal to free flow time t0ij and no longer depends on link flow.

In this case, at each stage of repairs, all traffic will route on the link with the lowest

free flow time out of the set of currently usable links. Indexing by link name (a, b, c)

for this example, rather than by origin and destination, if t0a = min{t0a, t0b , t0c}, then

the total travel delay will equal zero, since the fastest path is always available and

travel time does not depend on link flow. Mathematically, if t0a = min{t0a, t0b , t0c}, the

TSTTs before the network disruption, immediately after the disruption, and for each

possible intermediate repair state are all equal to d · t0a since all demand uses link a.

Since the objective function measures travel delay, and there is in fact no delay, the

objective value is zero, and the order in which links b and c are repaired is immaterial,

regardless of link repair durations and free flow times on links b and c, given that the

free flow times are greater than t0a.

If instead t0a > t0b > t0c and the repair times for links b and c are Db and Dc,

respectively, then Table 2.1 gives the objective function for the two possible repair

sequences, with TSTT0 = d · t0c since link c has the lowest free flow time. Setting the

two objective functions equal and simplifying, when

t0a − t0b
Db

=
t0a − t0c
Dc

,

31

Repair Sequence Total Travel Delay
(b, c) dt0aDb + dt0bDc − dt0c(Db +Dc)
(c, b) dt0aDc + dt0cDb − dt0c(Dc +Db)

Table 2.1: Sequence comparisons, constant LPF, N = 2

Repair Sequence Unit Total Travel Delay
(b, c, d) t0aDb + t0bDc + t0cDd − t0c(Db +Dc +Dd)
(b, d, c) t0aDb + t0bDd + t0dDc − t0c(Db +Dc +Dd)
(c, b, d) t0aDc + t0cDb + t0cDd − t0c(Db +Dc +Dd)
(c, d, b) t0aDc + t0cDd + t0dDb − t0c(Db +Dc +Dd)
(d, b, c) t0aDd + t0dDb + t0dDc − t0c(Db +Dc +Dd)
(d, c, b) t0aDd + t0dDc + t0dDb − t0c(Db +Dc +Dd)

Table 2.2: Sequence comparisons, constant LPF, N = 3

the objective functions for the two repair sequences are equal. If instead

t0a − t0b
Db

>
t0a − t0c
Dc

,

then sequence (b, c), repairing link b first, achieves a lower objective value than se-

quence (c, b). Note that the answer is not necessarily to fix the link with the lowest

free flow time first, as a long repair duration for this link might offset its benefits.

In this case, because link travel times are not dependent on link flows, and all traffic

routes on the available link with the lowest free flow time, the optimal repair order is

in accordance with a decreasing Smith’s ratio (a weight to duration ratio), where the

weight parameter is the difference in travel time between the always available link

and the link chosen for repair. Once the link with the lowest free flow time has been

repaired, however, the remainder of the repair order does not affect the objective

value.

With four links total, three of which (b, c, d) are broken in a disruption, the

possible repair sequences and their objective values are enumerated in Table 2.2.

Since demand is not split between paths at any stage and in constant over the repair

horizon, I drop it from the equations below for readability, calculating unit total

travel delay. I assign t0a > t0b > t0c > t0d. Of note, the last two repair sequences have

32

equivalent objective functions, because once link d is repaired, traffic no longer shifts

due to further repairs because link d has the lowest free flow time of the four links. As

in the case above with only two broken links, any two sequences can be compared by

comparing their objective functions. For example, in order for repairing link d first

to be optimal, the following four inequalities must hold, corresponding to comparing

either of the last two sequences (which are equivalent in terms of objective value) to

each of the first four sequences:

t0aDd + t0dDb + t0dDc < t0aDb + t0bDc + t0cDd

t0aDd + t0dDb + t0dDc < t0aDb + t0bDd + t0dDc

t0aDd + t0dDb + t0dDc < t0aDc + t0cDb + t0cDd

t0aDd + t0dDb + t0dDc < t0aDc + t0cDd + t0dDb

Using the second inequality, the third term on each side cancels out, and the

inequality reduces to
t0a − t0b
Db

<
t0a − t0d
Dd

,

indicating that the Smith’s ratio for link d must be greater than for link b in order

to fix d before b when fixing c last. The fourth inequality provides a corresponding

result when fixing link b last. I have now established that for fixing link d first to be

optimal, it must have the highest Smith’s ratio of the links to be repaired, and the

order of links b and c in that case is immaterial. I can similarly establish that links

b and c should be sequenced in order of descending Smith’s ratio if link d is repaired

last, by comparing sequences (b, c, d) and (c, b, d). Therefore, for b to be optimally

repaired first, the inequality
t0a − t0b
Db

>
t0a − t0c
Dc

must hold, as well as
t0a − t0b
Db

>
t0a − t0d
Dd

,

33

from above (because it cannot be optimal for both b and d to be repaired first using

a single crew unless (t0a− t0b)/Db = (t0a− t0d)/Dd). The same logic indicates that link c

must have the largest Smith’s ratio in order to be optimally repaired first. Once the

optimal first link is established, due to the analogue to Bellman’s optimality principle

discussed in §2.3, if the link with the lowest free flow time has not yet been repaired,

the next optimal link can be solved for recursively, applying the logic from the case

above with only two broken links. Therefore, the optimal repair order will always be

in descending order of the links’ Smith’s ratios, with the caveat that once the link

with the lowest free flow time has been repaired the remaining repair order does not

affect the objective value. This result can be easily extended recursively to a case

where there are l links from s to t, and (l − 1) or fewer of the links are broken.

2.5.2 Linear Link Performance Function

The next simplest link performance function is linear. In the context of a

BPR function, a linear function is obtained by setting α > 0 and β = 1 such that the

simplified function is

tij(xij) = t0ij

(
1 + α

(xij

uij

))
.

Once again, I start with the toy instance depicted in Figure 2.3. The top link a

remains functional, while links b and c are selected as the broken links. Unless link

a dominates (or is dominated by) link b or c in terms of travel time for the demand

level d, flow will be split between link a and the first link to be repaired (link b or c)

while the final link is being repaired. In order to determine whether link a dominates

link b, for example, I would compare the quantities ta(d) and tb(0). If ta(d) < tb(0),

that is the travel time on link a with 100% of the demand from s to t assigned to link

a is still less than the travel time on link b with zero demand, then link a dominates

link b in terms of travel time, and fixing link b first will not result in reassignment of

any demand to link b or a reduction in travel delay.

Travel times tij(xij) on each link now depend on the flow on that link. Fur-

34

Sequence Total Travel Delay
(b, c) dta(d)Db + [xa1ta(xa1) + (d− xa1)tb(d− xa1)]Dc − TSTT0(Db +Dc)
(c, b) dta(d)Dc + [xa2ta(xa2) + (d− xa2)tc(d− xa2)]Dc − TSTT0(Db +Dc)

Table 2.3: Sequence comparisons, linear LPF, N = 2

thermore, xa1 is the flow on link a after link b is repaired first, or alternately, xa2 is the

flow on link a after link c is repaired first. The two possible objective functions are

represented in Table 2.3. Unless link a dominates (or is dominated by) link b or c for

the demand level d, thereby eliminating either xa1 or xa2, setting the two equations

in Table 2.3 equal to each other does not yield a meaningful relationship without

numerically solving for xa1 and xa2. In the same toy problem, but with l links from

s to t, this would require solving balance equations for flows at each repair state for

each possible repair sequence in order to find the optimal repair sequence. Unfortu-

nately, this result indicates that even for linear link performance functions, a single

OD pair, and single-link paths, the overall problem complexity does not decrease ex-

cept in specific cases of link dominance, though the individual TAP calculations are

less intensive for linear link performance functions and single-link paths.

2.6 Solution Methods

This section outlines solution methods that will be compared in the experi-

ments below. In light of the complexity results for solving to optimality, I first specify

six “greedy” methods which can be evaluated fairly quickly, followed by two iterative

methods which examine a larger set of repair sequences. The first iterative method

is a refinement of the bidirectional beam search heuristic proposed by Gokalp et al.

(2021), and the second is an implementation of the simulated annealing metaheuris-

tic. These methods are not fully independent, since the greedy methods can be used

to initialize simulated annealing, or to provide upper bounds to limit branching in

the beam search.

35

2.6.1 Greedy Methods

I implement and compare six greedy methods: shortest processing time, im-

portance factor, lazy greedy, sequential greedy, largest average first-order effect, and

largest average Smith’s ratio. The shortest processing time (SPT) heuristic is the

simplest heuristic proposed in that the only information required is the link repair

duration for each link. SPT simply orders the links from shortest repair time to

longest repair time, repairs the links in that order, and requires no preprocessing.

The importance factor (IF) heuristic is also a simple indexing, however, since links

are ordered for repair in descending order of pre-disruption flow. A single TAP must

be solved to obtain this information.

The lazy greedy method (LZG) constructs the repair sequence by ordering

links by greatest immediate benefit, defined as decrease in TSTT due to repairing the

link first in the repair sequence over the link repair duration, solving O(N) TAPs.

The sequential greedy method (SQG) constructs the repair sequence myopically at

each stage, choosing for repair the link which provides the greatest immediate benefit

at that stage of repairs, defined in the same manner as for LZG. At each stage in

building the repair sequence, the link is chosen which immediately maximizes this

value, and finding a repair sequence using SQG requires solving O(N2) TAPs.

The final two greedy methods were developed by Rey and Bar-Gera (2020)

for sequencing projects of multiple simultaneous link repairs, but can be applied to

the current problem by considering projects consisting of a single link repair. These

methods first solve TAP for a subset of all possible network states during the repair

sequence, and then use this sample to approximate the average first-order effects of

repairing each link at any point in time. The sampling method is detailed in Rey et al.

(2019) and requires solving a number of TAPs quadratic in the number of projects.

Once this sampling is complete, link repairs can be sequenced in order of largest

average first-order effects (LAFO), or largest average Smith’s ratio (LASR). Smith’s

ratio is the quotient of approximate first-order effect and repair duration, allowing

36

LASR to account for repair duration alongside estimated benefit.

2.6.2 Bidirectional Beam Search Heuristic

I extend the bidirectional beam search heuristic of Gokalp et al. (2021) to

handle cases where the network is no longer strongly connected while links remain

broken. This extension is key to greater realism in scenarios where large portions

of the network are strongly impacted by damage, such as has been recorded after

extreme hazards or natural disasters. The implementation also improves numerical

stability by using a disconnection cost as discussed in §2.3 of Q times the base travel

time (in the undamaged network) rather than a single large constant. This extension

results in longer solution times for all methods which involve solving TAP, since an

artificial link is added for each disconnected origin-destination pair. The following

description is a summary of the beam search method with my modifications; the full

original algorithm with all details can be found in the original paper by Gokalp et al.

(2021).

The base procedure for the bidirectional beam search is the same as that

presented by Gokalp et al. (2021), but using a modified network as discussed above,

as well as modified initialization and pruning parameters. Algorithm 1 is directly

adapted from that paper. To initialize the beam search, I seed the search with a

best feasible solution (BFS), taken as either the sequential greedy solution or the

importance factor solution, based on which has the lower objective function. Two

search fronts are established, with the root node for the forward search (starting with

no links repaired) labeled α and the root node for the backward search (starting from

the state once all links are repaired) labeled ω. As a shorthand, TAP (R ∪ A \ B)

represents solving for user equilibrium and returning the TSTT when all links in A

and R are usable except for the links in B (i.e. TSTT (α)). Similarly, TSTT (ω) is

set to TAP (R∪A).

The sets Yf (s) and Yb(s
′) represent the set of links repaired in state s on the

37

Algorithm 1 Pseudocode for bidirectional beam search (B, D, r)

Initialization
Openf ← α,Openb ← ω, (BFSB, BFS)← min(SQG, IF), counter ← 0
gf (α)← 0, gb(ω)← 0, pf (α)← ∅, pb(ω)← ∅, Yf (α)← ∅, Yb(ω)← ∅
TSTT (α)← TAP (R∪A \ B), TSTT (ω)← TAP (R∪A)
Preprocessing
for each b ∈ B do

TSTT ← TAP (R∪ (A \ B) ∪ {b})
wbb ← TSTT (α)− TSTT
TSTT ← TAP (R∪A \ {b})
bbb ← TSTT − TSTT (ω)
if bbb < wbb then swap bbb, wbb

Search Loop
while Openf ̸= ∅ and Openb ̸= ∅ and max(mins∈Openf

h(s),mins∈Openb
h(s)) <

BFSB do
if |Openf | ≤ |Openb| then

Expand the forward front
else

Expand the backward front
if counter (mod r) ≡ 0 then

for each s′ ∈ Openb ∪Openf do
Update bounds

Use beam search in order to reduce the search space
counter ← counter + 1

38

forward front or not repaired in state s′ on the backward front, respectively. Because

Bellman’s optimality principle applies, and a single link is added in each successive

state, it is sufficient to store the predecessor state label for each successive state

generated on either the forward or backward front. These predecessors are designated

pf (s) and pb(s
′) for the forward and backward predecessors, respectively. Similarly,

gf (s) and gb(s
′) store the cost corresponding to each of these partial sequences. Openf

and Openb contain the states on each search front which are not yet expanded. Once

a state is expanded, it is then removed from the corresponding search front.

The preprocessing procedure finds heuristic bounds on the best and worst

benefit for each link b ∈ B (highest and lowest marginal impact of repairing b).

Due to the structure of the problem, the calculated quantities used for each link b

are the marginal impact of repairing b first and the marginal impact of repairing

b last. The higher marginal impact of the two is assigned as the best benefit and

the lower marginal impact is assigned as the worst benefit. During each iteration

of the search loop, a state is selected for expansion from the search front which has

more states not yet expanded. If the heuristic best bound from the selected state is

greater than the current BFS, that state is pruned, rather than expanded. Otherwise,

potential expansions (child nodes) are found, evaluated, and added to the appropriate

search front if their heuristic best bound is less than the current BFS. Every r = 128

iterations, a greedy procedure is used to obtain a feasible solution and update the

BFS if the found feasible solution is better than the previous BFS.

I experiment with seeding the beam search algorithm with various best known

feasible solutions to include those found by SQG, IF, SPT, and my SA algorithm,

presented in §2.6.3. Based on numerical experimentation, I find the SQG and IF

solutions for each instance where I solve using the beam search and seed the beam

search with the better solution of the two (lower objective function value), since the

approaches operate by distinct mechanisms and neither dominates the other for every

instance in terms of solution quality. Although this procedure requires the solution of

O(N2) TAPs in order to find the SQG and IF solutions and evaluate their objective

39

function values, the TAP solutions found during the SQG procedure are saved to

memory and can be used without resolving TAP whenever the beam search encounters

those states, regaining some of the initial time spent. My numerical experiments show

that this seeding procedure results in minor overall gains in terms of solution time,

at equal solution quality.

When I experiment with seeding the beam search heuristic with the results

of the SA heuristic, I discover that while the time from seeding to termination often

decreases, the decrease does not fully compensate for the time spent finding the SA

solution, and solution quality does not increase in most instances. After fixing the

method of seeding, I retune when to start pruning nodes in the beam search, resulting

in pruning starting once 3N iterations complete instead of at iteration 100, so that

the pruning rule scales linearly with instance size. Pruning refers to eliminating nodes

from the search tree if their estimated lower bound is greater than the current best

feasible solution.

In addition, I investigate the ordinal location in the repair sequence which

results on average in the best benefit, that is, the highest marginal impact of repairing

a specific link. I use an average because for positions other than first or last, the links

already repaired will impact the benefit gained by repairing the next link. I investigate

values of N = 8 and N = 10 on the Anaheim and BMC networks. I find the average

marginal impact of repairing each broken link at each ordinal position in the repair

sequence, and transform the results into count data for the best and worst repair

positions over 25 repetitions on each network for each instance size. For example, in

the top left quadrant of Figure 2.4, the blue bar of height 0.70 in category 8 on the x-

axis indicates that for 70% of the 8× 25 = 400 links tested, the best marginal benefit

(largest immediate decrease in TSTT) occurred when the link is repaired eighth out

of the eight broken links in the instance.

Approximately 65–80% of the time, the best benefit (highest average marginal

impact) which can be achieved by fixing a single link is achieved by fixing that link

40

F
ig
u
re

2.
4:

O
rd
in
al

lo
ca
ti
on

s
of

b
es
t
an

d
w
or
st

av
er
ag
e
m
ar
gi
n
al

im
p
ac
t;
h
or
iz
on

ta
l
ax

is
in
d
ic
at
es

lo
ca
ti
on

in
re
p
ai
r

or
d
er

(1
st

th
ro
u
gh

8t
h
,
or

1s
t
th
ro
u
gh

10
th
)

41

either first or last. This statistic is critical to the performance of the beam search

algorithm, because the beam search relies on the “best benefit” and “worst benefit”

of repairing each link to establish upper and lower bounds for branching and pruning.

These values are obtained by finding the marginal impact of repairing each link first

and the marginal impact of repairing each link last, with the higher marginal impact

of the two for each link assigned as the best benefit and the lower marginal impact

assigned as the worst benefit. If the true best or worst benefit were often achieved

by repairing a link in the middle of the repair sequence, rather than first or last,

these bounds would be invalid, and potentially lead to poor branching and pruning

decisions.

Interestingly, the majority of the time (55–70%) the best benefit is achieved

by fixing a link last, rather than first or in the middle of the sequence. A poten-

tial intuition for this result is that breaking a single link in a fully functional network

typically has a greater impact on TSTT than breaking an eighth or tenth link. Specif-

ically, since in my numerical experiments broken links are geographically clustered,

the paths disrupted by the eighth or tenth broken link may have already been signifi-

cantly impacted by one of the other broken links in close proximity, and therefore the

additional increase in TSTT is often marginally smaller if a link is broken last versus

first.

2.6.3 Simulated Annealing Heuristic

While the beam search developed by Gokalp et al. (2021) and refined above

provides high quality solutions in much quicker run times than solving the recovery

sequencing problem by brute force, simulated annealing has the potential to provide

further significant run time improvements. First, the neighborhood of a given solution

must be defined. For the simulated annealing algorithm, I define a 1-neighborhood

where a single link in the current recovery sequence (other than the last link in the se-

quence) is selected and swapped with the link immediately following. In other words,

the 1-neighborhood consists of sequences formed by exactly one adjacent swap. For

42

example, with five broken links, designated link a through e, and a current sequence

(a, b, c, d, e), the 1-neighborhood consists of these sequences:

(b, a, c, d, e),
(a, c, b, d, e),
(a, b, d, c, e),
(a, b, c, e, d).

Table 2.4: 1-neighborhood of sequence (a, b, c, d, e)

With this definition, for a network with N broken links, the size of the 1-

neighborhood is always N − 1. An analogous definition of a k-neighborhood involves

moving a single link k positions or fewer forward or backward in the repair order, thus

including all similarly defined smaller neighborhoods. Testing 2- and 3-neighborhoods

on the Anaheim and BMC networks indicates slightly improved solution quality in

some instances, but at a computational time cost outweighing the improvement. Fig-

ure 2.5 depicts the solution’s percentage improvement relative to the initial BFS over

the running time of the algorithm for five instances on the Anaheim network, com-

paring 1-, 2-, and 3-neighborhoods. The top, middle, and bottom ovals highlight

cases where the solutions obtained using 2- and 3-neighborhoods are somewhat supe-

rior, slightly inferior, and equivalent, respectively, to the solution obtained using the

1-neighborhood. However, constant to all cases is that the algorithms using 2- and

3-neighborhoods have a higher computational time.

Larger neighborhoods exhibit a larger computational time than the 1-neigh-

borhood. When using the 1-neighborhood, at most four instances of TAP are solved to

find the objective value of the new proposed solution due to the analogue to Bellman’s

principle which underpins the beam search discussed in §2.6.2 (Gokalp et al., 2021).

Specifically, let link a be selected to be swapped with b (a is repaired immediately

before b in the current solution) and Yb(s
′) be the set of links repaired after both link

a and b. Then, in order to obtain the objective function value of the new proposed

solution, only the following values must be calculated:

43

F
ig
u
re

2.
5:

R
u
n
ti
m
e
el
ap

se
d
(m

in
u
te
s)

ve
rs
u
s
O
B
J
fu
n
ct
io
n
im

p
ro
ve
m
en
t
(%

)
fo
r
A
n
ah

ei
m

w
it
h
20

b
ro
ke
n
li
n
k
s;

co
lo
rs

re
p
re
se
n
t
d
iff
er
en
t
ru
n
s,
li
n
e
st
y
le

d
iff
er
en
ti
at
es

ch
oi
ce

of
n
ei
gh

b
or
h
o
o
d
(s
ol
id

fo
r
1-
n
ei
gh

b
or
h
o
o
d
,
d
as
h
ed

fo
r

2-
n
ei
gh

b
or
h
o
o
d
,
d
ot
te
d
fo
r
3-
n
ei
gh

b
or
h
o
o
d
)

44

TSTT after both a and b are repaired TAP (R∪A \ (a ∪ b ∪ Yf (s
′))),

TSTT after only a is repaired TAP (R∪A \ (a ∪ Yf (s
′))),

TSTT after only b is repaired TAP (R∪A \ (b ∪ Yf (s
′))).

For larger k-neighborhoods, the number of TAPs which may need to be solved

to find each new objective value also grows. None of the three methods (1-, 2-, and 3-

neighborhoods) dominates the others, but given the generally small and inconsistent

performance gaps, and further testing on the Anaheim and BMC networks, I choose

to focus on the 1-neighborhood in subsequent computational experiments.

In building the simulated annealing algorithm, the remaining parameter choices

to be selected and tuned are: initial temperature, stopping criterion, exploration cri-

terion, acceptance criterion, temperature length, cooling scheme, and temperature

restart (Franzin and Stützle, 2019). Based on numerical experimentation, the num-

ber of iterations required to reliably obtain high quality solutions varies significantly

with instance size (number of broken links, N). Therefore, based on that experi-

mentation, I tune max iterations (stopping criterion) to 1.2N3. I choose the initial

temperature, T0, to obtain an initial probability of approximately 10% to accept a

move which increases the objective function by 10%. I use a variant on the Lundy-

Mees cooling scheme where Ti+1 = Ti/(a+ b×Ti), with a = b = 1 as proposed by Szu

and Hartley (1987), with a temperature length of one, indicating temperature updates

every iteration. I also explored geometric cooling schemes as defined by Kirkpatrick

et al. (1983), varying both geometric parameters and epoch (temperature) length, but

these did not result in comparable solution quality to that produced by Szu and Hart-

ley’s variant of Lundy-Mees. No temperature restarts are tested within the scope of

these experiments, but would be an interesting direction for research to further tune

the simulated annealing method.

The exploration criterion used at each step is to randomly select a proposed

new solution from the current 1-neighborhood. I also test a slight modification to

this default behavior, maintaining a dictionary of the indices of current successive

45

failures, that is, those since the last accepted movement. In this manner, resources

are not wasted by re-evaluating the same solution multiple times without intermediate

movement. If all possible moves from a current solution are evaluated and rejected by

the acceptance criterion defined below, then either the smallest increase in objective

function is taken as the new solution to escape the local minimum, or a random

solution from the 1-neighborhood is simply accepted with probability one.

However, both procedures for maintaining a dictionary of successive failures

result in a significant decrease in solution quality over the simulated annealing method

without maintaining the dictionary of rejected indices. When testing on the Anaheim

and BMC networks, with instance sizes from 16 to 24 broken links and testing 10

random instances at each size, the base simulated annealing method finds the best

solution of the three methods in every single tested instance. The average objective

function accuracy gaps with respect to the best found solution for each network

and instance size when maintaining a dictionary of successive failures range between

15% and 29%. The standard deviations of the accuracy gaps range between 9% and

28%. The first procedure (smallest increase in objective function in 1-neighborhood

taken as the new solution after rejecting each with the normal acceptance criterion)

results in the fastest solution times among tested simulated annealing methods in

many instances, but, due to the higher likelihood of becoming stuck in the vicinity

of a local minimum, fails to achieve quality solutions. The second procedure avoids

the locally quasi-deterministic quality of the first procedure, but demonstrates less

consistent decreases in solution time, while still degrading solution quality. For these

reasons, neither modification is used in further experiments.

For acceptance criterion, I use the generalized simulated annealing variant

proposed by Bohachevsky et al. (1986), with g = −1 and β = (1/T)2/3. The general

formula is:

pGSA =

{
1 if ∆(s′, s) ≤ 0

exp(−βf(s)g∆(s′, s)) otherwise,

46

where s is the current solution, f(s) is the current solution’s objective function value,

s′ is the proposed new solution, and ∆(s′, s) is the change in objective function value

due to the proposed step. Applying the selected values for g and β, the formula used

in this application is

pGSA =

{
1 if ∆(s′, s) ≤ 0

exp
(

−∆(s′,s)

f(s)×T 2/3

)
otherwise.

Finally, I explore using multiple, shorter runs of the simulated annealing algo-

rithm, rather than a single run. Instead of a single run with max iterations equal to

1.2N3, I conduct four runs with max iterations of 1.2N2.5 each, selecting the solution

with the lowest objective function value from among the four runs. I hypothesized

that this method might improve solution quality by exploring on four distinct paths,

while saving computation time when the number of broken links is greater than 16.

However, solution quality decreases due to the shorter runs, and diversification does

not regain the lost solution quality.

Finally, in order to quantify the consistency of the fully parameterized sim-

ulated annealing method, I run a series of experiments where I conduct ten runs of

simulated annealing on each problem instance, over ten instances each for 16, 20, and

24 broken links on the Anaheim and BMC networks. The box and whisker plots in

Figure 2.6 show that while there is variability in the solutions and objective function

values obtained for the same problem instance on different simulated annealing runs,

the objective function gaps are reasonably small for the majority of instances tested.

Specifically, the percentage gap of the worst solution obtained versus the best

solution obtained was no more than 5.5% for two-thirds of instances tested across the

three instance sizes and two networks. Under 12% of instances tested exceeded a 10%

gap between the worst and best solutions obtained. Figure 2.7 depicts the combined

frequencies of the largest observed relative accuracy gap for each instance over all

tested configurations.

47

Figure 2.6: OBJ function accuracy gap versus best found OBJ function for ten in-
stances (randomly generated maps) for Anaheim and BMC networks with 16, 20, and
24 broken links; the shaded area is the interquartile range (IQR) containing the me-
dian (horizontal line), the X indicates the mean, and outliers are shown as individual
dots; standalone horizontal lines above and to the right of each bar indicate the BFS
used to initialize SA

48

Figure 2.7: Largest accuracy gap versus best found; frequency over 60 instances
(maps) tested, 10 random instances each on Anaheim and BMC networks for each of
16, 20, and 24 broken links

2.7 Obtaining Lower Bounds

While a feasible upper bound on travel delay can be established by any of the

greedy methods discussed in §2.6.1, depending on the time available, establishing a

valid and tight lower bound is challenging. When solving to optimality, there are two

areas of significant computational effort: evaluating the TSTT at each of the 2N pos-

sible repair states, and finding the repair sequence with the lowest objective function

value given the TSTT at each possible repair state. If the TSTTs are precalculated,

the optimization problem can be reformulated as follows:

49

min
p,y,z

N∑
t=1

(2N−1∑
s=0

TSTTsp
t
s − TSTT0

) N∑
b=1

ytbDb (2.12)

s.t.
t−1∑
t′=1

yt
′

b = ztb ∀b ∈ {1, . . . , N}, t ∈ {1, . . . , N} (2.13)

N∑
b=1

ytb = 1 ∀t ∈ {1, . . . , N} (2.14)

N∑
t=1

ytb = 1 ∀b ∈ {1, . . . , N} (2.15)

pts = 1
{ N∑

b=1

2b−1ztb = s
}
∀t ∈ {1, . . . , N}s ∈ {0, . . . , 2N − 1} (2.16)

pts ∈ {0, 1} ∀t ∈ {1, . . . , N}, s ∈ {0, . . . , 2N − 1} (2.17)

ytb ∈ {0, 1} ∀b ∈ {1, . . . , N}, t ∈ {1, . . . , N} (2.18)

ztb ∈ {0, 1} ∀b ∈ {1, . . . , N}, t ∈ {1, . . . , N} (2.19)

where zt is the state vector during stage t, and pt is the induced state during stage

t used to index the precalulated TSTT values. In this formulation, broken links are

indexed 1, ..., N , so that zt vectors can be treated as binary representations of integer

repair state for the purpose of indexing, as implemented in Equation 2.16. Because

the TSTT depends on the full z state vector, rather than its components due to the

nonlinearities inherent in TAP, this updated formulation induces an objective function

with N · 2N quadratic terms. From computational experiments, after presolving the

2N TAP instances, even solving to optimality by brute force (computing the objective

function for each of the possibleN ! repair sequences, and choosing the lowest objective

function) is faster than solving the induced IP. The time gap between the two methods

grows with instance size. Furthermore, given precalculated TSTTs, the problem

can be reformulated as a shortest path problem, with a computational complexity

of O(N · 2N−1) rather than O(N · N !) for the enumeration approach (N ! possible

sequences each of length N).

50

I can simplify the lower level problem by disregarding the effects of congestion

and link capacities by setting travel times equal to free flow times for all links. In this

simplification, the lower level problem reduces to shortest path, taking into account

fixed toll and distance costs if desired. The Beckmann function in the objective

function of the lower level problem, which was the source of nonlinearity, becomes

linear when using a constant link performance function. Because travel time Ta no

longer depends on xa, the Beckmann function simplifies to the linear expression:

∑
a∈A∪R

∫ xt
a

0

Ta(x)dx =
∑

a∈A∪R

Ta

∫ xt
a

0

dx =
∑

a∈A∪R

Tax
t
a.

The TSTT obtained by an all or nothing assignment, placing each unit of

demand on its shortest path with travel times equal to link free flow times, will be

less than or equal to the TSTT obtained by TAP for that repair state using the

original link performance functions, assuming congestion effects are not permitted

to be negative. This reflects the assumption that as more vehicles drive on a link,

increasing congestion, travel times on that link also increase. In other words, for this

inequality to hold, travel time using the original link performance function may never

be lower than free flow time, a feature of any nondecreasing link performance function

such as the BPR function. Therefore, the objective function value for any repair

order will be the same or lower using the simplification than the original formulation.

Of note, the bound obtained may validly be negative, since the objective function

minimizes travel delay, rather than TSTT, over the repair horizon. Furthermore, the

optimal objective value for the upper level problem using the simplified lower level

problem will be lower than or equal to the optimal objective value for the original

problem, indicating a valid lower bound on the original objective value. The simplified

problem could be formulated and solved as a single level MIP. However, based on my

computational experiments for the previous single level formulation, and tailored

methods to solve shortest path problems, I instead solve the shortest path problem in

51

Figure 2.8: Mean run time comparisons on Anaheim and BMC for free flow lower
bound vs. optimal shortest path method, 100 random instances at each number of
broken links

the modified induced network after computing the TSTT resulting from all or nothing

assignment flows for each possible repair state.

Though the lower bound obtained by relaxing the lower level problem and

solving to optimality is valid, computational experiments show that it is not a tight

bound, and indeed, in 80% of a total of 1200 experiments over two networks and six

instance sizes, this lower bound is negative. On average, for the Anaheim network,

finding the free flow bound (FF LB) took about 60% as long as finding the optimal

solution by solving the induced shortest path problems (OPT SP), as depicted on

the left side of Figure 2.8. For the BMC network, that average was just over 80%,

indicating minimal time savings from using the simplified lower level problem. No-

tably, the mean run times to find the free flow lower bound on the Anaheim and BMC

networks were very similar for each instance size tested, while the mean run times to

find the optimal solution using the shortest path method were notably longer on the

Anaheim network than on the BMC network. This result is reinforced logically, as

both networks are of similar size, but the number of trips on the Anaheim network

is about nine times higher than the number of trips on the BMC network. The num-

52

ber of trips in the network does not affect finding free flow times or the number of

potential repair sequences – governed only by the number of broken links – but may

affect the time required to solve each instance of TAP.

Due to the excessive time involved in the previous calculation method relative

to the tightness of the resulting bound, I propose an alternate method of obtaining

a heuristic lower bound. While not guaranteed by theory, the proposed method

produces a valid lower bound in 90% of experiments conducted over two networks

and varied instance sizes. Borrowing from the method used to establish heuristic

upper and lower bounds for individual states during the beam search, I make use of

the “best benefit” of repairing each link, as defined in §2.6.2, to obtain a heuristic

lower bound. Using this definition, the best benefit of repairing a link is set to the

greater of the benefit of repairing that link first or last in a repair order. The repair

order used to obtain the lower bound is descending order of best benefit. However,

because I seek a lower bound, not a feasible solution, I use the following formula to

calculate the total travel delay:

N∑
t=1

min
{
TSTT1 − TSTT0 −

t−1∑
t′=0

N∑
b=1

ytbbbb, 0
} N∑

b=1

ytbDb

where TSTT0 is the TSTT before network disruption, and TSTT1 is the TSTT during

stage 1, which occurs after disruption and before any links complete repairs.

2.8 Comparison of Methods

Numerical experiments are conducted on a desktop computer running Ubuntu

with a 16-core 3.4 GHz processor and 32 GB RAM. The test networks used are

Anaheim and BMC from the Transportation Networks for Research repository (2022).

The Anaheim network has 416 nodes, 914 links, and 38 zones, with just over 100,000

trips. The BMC network has 398 nodes, 871 links, and 36 zones, with nearly 11,500

trips. These networks were chosen for their similar size, in order to test algorithms

on multiple networks with similar size but varied structure. All instances of TAP

53

are solved using Boyles’ implementation of Dial’s Algorithm B (Boyles et al., 2023;

Dial, 2006). In order to obtain randomized problem instances, I first select a network

node at random as the epicenter of the extreme event. Then, I sample a set of

additional nodes based on proximity to the epicenter, and sample N broken links

from those adjacent to sampled nodes, weighted by predisruption flow in order to

ensure impactful network disruption. I set the disconnection parameter Q = 10,

representing adding artificial links for any disconnected OD pair post-disruption, as

well as for any OD pair where post-disruption travel times increase at least tenfold

from the base case (pre-disruption).

In order to quantify relative solution quality and solution time of optimal

(shortest path), beam search, and simulated annealing algorithms, I solve 100 random

instances at each of eight through twelve broken links. In order to measure solution

quality, I report an accuracy gap for each method, which captures the difference

between the solution value found by that method and the best solution value (lowest

objective value) found by any of the three methods for a particular instance. At 12

broken links, the mean solution time to optimality using shortest path is about 4.5

minutes on the Anaheim network and 3.4 minutes on the BMC network. Above this

threshold, I solve 100 random instances by beam search and by simulated annealing

for 13 through 15 broken links. The accuracy gap in these cases is measured against

the best solution found (i.e. at least one of the heuristic methods will have a reported

accuracy gap of zero for any given individual instance).

Figures 2.9 and 2.10 depict the accuracy gap and run time results on the Ana-

heim and BMC networks, respectively. For both networks, the accuracy gap means

for the BS heuristic remain extremely close to zero for each instance size, with few

high outliers. On both test networks, the top of the IQR for the SA heuristic remains

below a 1.5% accuracy gap from the best found solution value for each instance size,

indicating that for at least 75% of instances at each size, the SA heuristic is within

1.5% of the best found solution value. The mean for the SA heuristic, however, de-

noted by an X in the figure, is pulled as high as 2.7% (for 15 broken links on the BMC

54

network) because the distribution is right-skewed, with more high outliers (defined

as points which are over 1.5 × IQR larger than the top of the IQR) than the BS

heuristic. Indeed, up to 13% of data points are considered outliers for some instance

sizes, because the IQR is extremely small (< 1.5%). These observations demonstrate

that BS is more consistent than SA, though both achieve high accuracy in the ma-

jority of instances tested on both networks. Tabulated summary statistics are found

in Appendix A, Tables A.1 and A.5.

On both the Anaheim and BMC networks, as instance size (number of broken

links) increases, the mean and median run times increase monotonically for all three

methods depicted. Because artificial links are added to the network on an as-needed

basis for each random instance as discussed in §2.3, the effective size of the network for

solving TAP varies with each individual instance, and not necessarily proportionately

to the number of broken links. For this reason, while run time central tendency

measures vary monotonically with instance size, it is unsurprising that outliers are

evidenced on both networks for all three methods.

Above 15 broken links, I add in the six greedy methods in order to compare

their performance against the simulated annealing heuristic for instance sizes of 16,

24, 32, and 48 broken links, instantiating 25 random instances at each instance size.

Tabulated summary statistics for these experiments for both run times and accuracy

gaps are found in Appendix A, Tables A.3 and A.7. Due to increasing computational

time for the beam search heuristic as seen in Figure 2.11, I drop that heuristic for

instance sizes over 24 broken links. For both methods, the run time distributions are

generally somewhat right-skewed with the potential for a few high outliers. These

outliers are non-trivial because in a practical scenario, only the solution to one in-

stance is required, and if that instance is a high outlier compared to benchmarked run

times, results will not be available when expected. An advantage to SA in this sce-

nario is that the current BFS can be retrieved at any point in the run time, accepting

the risk that a better solution may have been found if the algorithm were allowed to

run for longer. In contrast, in order to function as intended, the bidirectional beam

55

Figure 2.9: Anaheim accuracy gap and run time comparison graphs for 8–15 broken
links, 100 random instances at each number of broken links

56

Figure 2.10: BMC accuracy gap and run time comparison graphs for 8–15 broken
links, 100 random instances at each number of broken links

57

Figure 2.11: Run time comparison graph for 16, 24, 32, and 48 broken links, 25
random instances at each number of broken links

search needs to run to completion in order for the forward and backward fronts to

meet in the middle, and ensure that promising open search fronts are explored.

In computing solution times for each method, I carefully ensure that all infor-

mation used is “paid for” by each algorithm. Since the goal is to compare algorithms

on equivalent instances and provide insights on relative strengths, weaknesses, and

potential use cases, the only pre-processing not included in solution times is loading

the network into the data structure and establishing artificial links. For example,

evaluating the objective function value is not technically part of finding the SQG

solution, because all a client actually needs if the method is already set in stone is

the repair sequence. However, in order to use the SQG solution as the BFS to seed

the beam search or simulated annealing methods, these methods require the objective

function value and must pay for the time to not only find the solution sequence, but

also evaluate it. Additionally, as mentioned when discussing greedy methods, every

58

Figure 2.12: Accuracy gap and run time comparison graphs for 48 broken links, 25
random instances

method other than SPT requires knowledge of either network flows or TSTT in the

undamaged network, and thus requires solving at least one instance of TAP. Due to

this extreme diligence, and use of artificial links to account for network states which

are not strongly connected while ensuring numerical stability, the solution times for

all methods tend to be higher than reported in other studies.

Figure 2.12 depicts accuracy gap and run time comparisons at 48 broken links

on both Anaheim and BMC networks. Of note, the SA heuristic finds the best

solution of any method in all 25 instances on the BMC network, but only 23 out

of 25 instances on the Anaheim network. In one of those instances, SA misses the

best found value by about 2.7%, with the best solution found by LAFO, and LASR

achieving an objective value between LAFO and SA. However, in the other instance,

the best objective value is found by LAFO, LASR is 22% higher than LAFO, and SA

is 43% higher than LAFO. These results demonstrate that SA is certainly the most

accurate method in general, but it does not dominate LAFO and LASR in terms of

accuracy gap. This is due to the randomness inherent in simulated annealing and the

fact that LAFO and LASR use a different mechanism, approximation by sampling,

than SQG and IF which are used to seed the SA heuristic. Tabulated summary

59

Figure 2.13: Accuracy gap and run time comparison graphs for varied demand mul-
tiples; Anaheim network with 16 broken links, ten random instances at each demand
multiple

statistics for 48 broken links are found in Appendix A, Tables A.9 and A.11.

In terms of run time, SA evidences the longest and most variable run times.

LZG, IF, and SPT run times are still negligible with 48 broken links, though their

accuracy does not particularly recommend these methods for use if a more accu-

rate method is tenable given the available time. LAFO and LASR provide a middle

ground if the time necessary for SA is unacceptable based on operational constraints,

significantly outperforming other greedy methods tested in terms of solution quality.

The accuracy loss is certainly not negligible, with mean and median values for the

two methods and networks falling between 23% and 44%, and the top of the IQR

falling between 45% and 56%. However, at around one-fifth the run time of SA at

this instance size, these methods may be operationally feasible when SA is not. Ad-

ditionally, as noted by Rey and Bar-Gera (2020), LAFO and LASR can both be run,

and the better solution accepted, in approximately the same time required to execute

each method individually. The only additional time required is essentially the time to

evaluate each solution in order to compare the objective values, since the algorithm

time is primarily used to complete the average first order effects approximations.

60

Figure 2.14: Accuracy gap and run time comparison graphs for varied demand mul-
tiples; BMC network with 16 broken links, ten random instances at each demand
multiple

In addition to testing on multiple networks of similar size, I investigate the

impact of inflated and deflated demand across both networks on run times and solu-

tion accuracy gaps. The results are depicted in Figures 2.13 and 2.14 for Anaheim

and BMC, respectively, and tabulated summary statistics are found in Appendix A,

Tables A.13 – A.28. Mean and median run times increase for all four methods inves-

tigated when demand is increased above baseline values. For the beam search and

simulated annealing heuristics, neither increasing nor decreasing the demand multi-

plier significantly affects their accuracy gap distribution. Accuracy gaps for LAFO

and LASR methods, however, exhibit inconsistent effects due to either increasing or

decreasing the demand multiplier. Interestingly, when demand is increased four-fold,

the median values remain close to those for the original parameters, but the means

increase significantly, in this case reflecting that the upper half of the distribution is

much more spread out, while the lower half does not change as significantly.

The definition of an “acceptable” solution time will vary with application,

however, a time allowance of 24–72 hours is not unreasonable when considering long-

term recovery planning. Starting with the same data as Figures 2.9 through 2.11, I

61

Figure 2.15: Run time curve fits for beam search on Anaheim network, testing out of
sample performance

62

used least squares regression, excluding outliers as defined in the discussion on Figures

2.9 and 2.10, to fit run time curves for BS and SA to predict approximately how many

links each algorithm can handle in 24 and 72 hours. For the beam search, I explored

both fitting polynomials (third and fourth degree) and fitting a power function. I

first fit a curve for each of the three functions using the beam search run time results

on Anaheim for 8–16 broken links, then added in the data for 24 broken links and

refit each function, then added five random instances at 32 broken links to further

test out of sample performance, and refit each function a final time. The results of

these experiments are shown in Figure 2.15. This procedure was critical to obtaining

reliable estimates for the number of broken links feasible to process in 24 and 72

hours, since those values are out of the range of the testing conducted. When using

a third degree polynomial fit, as seen in the top graph of Figure 2.15, the fit lines

obtained by only considering instances up to 16 and even 24 broken links clearly miss

the observed mean for instances with 32 broken links. The divergence between fit

lines obtained with the restricted and expanded sample spaces decreases when using

a fourth order polynomial, as observed in the middle graph of Figure 2.11, but is still

easily noticeable within the testing range. In contrast, the three fit lines obtained for

the power function are almost exactly superimposed on one another in the bottom

graph of Figure 2.11 and pass through the center of the cluster at 32 broken links.

This indicates that the fit obtained using data only up to 16 broken links provides

the same predictive performance as the fit obtained using data up to 32 broken links

when predicting the mean, and the prediction is accurate, at least to 32 broken links.

This consistency provides an indicator that using the power function will result in

reliable out of sample performance in terms of higher numbers of broken links.

Next, I conduct similar experiments with the collected simulated annealing run

time data for Anaheim network. For SA, a third degree polynomial fit with intercept

fixed at zero is a natural choice since the stopping criterion used is max iterations

of 1.2N3, but I also explore second and fourth degree polynomials and the power

function. I first fit a curve for each functions using the simulated annealing run time

63

Figure 2.16: Run time curve fits for simulated annealing on Anaheim network, testing
out of sample performance

64

results on Anaheim for 8–48 broken links, then added five random instances at 75

and 100 broken links and refit each function, then added five random instances at 150

broken links to further test out of sample performance, and refit each function a final

time. Among the polynomial fits, the third degree polynomial clearly offered the best

fits, and Figure 2.16 contrasts fitting to a third degree polynomial with fitting to a

power function. While the power fit is more consistent in out of sample predictions,

it systematically estimates too low of run times, with all three predictions falling

below all realized values for 150 broken links. From the top graph in Figure 2.16, it

is apparent that while a third degree polynomial results in a reasonable estimator,

its accuracy does decay farther from the sampled area. Due to the underestima-

tion evidenced by the power fit, I choose to use the third degree polynomial fit for

approximating run times for higher numbers of broken links.

Using the selected functions, Figure 2.17 depicts run time curve fits for SA on

Anaheim and BMC networks using the data described above to include the additional

experiments at 32 broken links for the beam search and 75, 100, and 150 broken links

for simulated annealing on both networks. Given a time allowance of 24 hours, the

beam search heuristic is able to solve instances with up to about 45 broken links on

the Anaheim or BMC network. In the same time period, the simulated annealing

algorithm can solve instances with up to 175–185 broken links. Assuming a time

allowance of 72 hours, the beam search method could only solve instances with up to

about 55 broken links, while the simulated annealing algorithm tackles instances of up

to 250–260 broken links, or about 24–29% of network links. Based on the consistency

demonstrated by each method, I would recommend using the beam search heuristic

over the simulated annealing heuristic if the time investment required for the beam

search will not impact the start of reconstruction operations. If broken links can

be identified very early into initial recovery operations, then significant time may be

available for optimization in a real world scenario before long-term reconstruction

assets can be deployed due to initial recovery operations and restricted access to

affected areas.

65

F
ig
u
re

2.
17
:
R
u
n
ti
m
e
cu
rv
e
fi
ts

fo
r
si
m
u
la
te
d
an

n
ea
li
n
g
an

d
b
ea
m

se
ar
ch

on
A
n
ah

ei
m

an
d
B
M
C

n
et
w
or
k
s

66

2.9 Conclusions

In this chapter, I present a simulated annealing heuristic for the link repair

sequencing problem in a damaged road network. Additionally, I compare an ex-

act (shortest path) method, bidirectional beam search heuristic, simulated annealing

heuristic, and six greedy heuristics, computationally testing on Anaheim and Berlin-

Mitte-Center networks. My experiments indicate that the bidirectional beam search

provides the highest quality solutions in the majority of experiments, but the simu-

lated annealing heuristic runs significantly faster, with minimal loss in solution qual-

ity. Across the board, none of the greedy heuristics except for LASR and LAFO using

Rey and Bar-Gera’s approximation method reliably came within a 50% accuracy gap

from the beam search or simulated annealing objective function. While LASR and

LAFO are fast methods of obtaining a reasonable repair sequence, beam search and

simulated annealing both obtain much higher quality solutions and can solve instances

with up to 55 and 220–250 broken links, respectively, in under 72 hours.

An area for future research would be to explore which greedy heuristic most

reliably designates the optimal (or near optimal) first link for repair. While greedy

heuristics performed significantly sub-optimally when finding the full optimal repair

sequence, if a greedy heuristic could find the optimal first link to repair with some high

degree of accuracy, say 95%, the repair assets could begin work almost immediately

on that link, and the rest of the sequence could be optimized using a heuristic with

a much higher solution quality, but longer solution time, while the first repair is

completed.

67

Chapter 3: Scheduling Disaster Recovery using

Multiple Identical Crews

3.1 Introduction

This chapter focuses on the assignment and ordering of broken links in a road

network for repair using multiple identical work crews. In the single-crew formula-

tion without preemption, link repairs are started and completed in a strict sequence,

and an analogue to Bellman’s optimality principle applies such that once a subset of

repairs are complete, optimizing the repair sequence of the remaining links is inde-

pendent of the completion order of the first links (Gokalp et al., 2021). Given the

urgency of regaining network functionality, if multiple repair assets are available, then

the network can be brought to full operational performance more rapidly. However,

the modification from single-crew to uniform multi-crew (where all crews have identi-

cal properties) is not trivial in terms of solution methods. The analogue to Bellman’s

optimality principle is lost, since the total system travel time (TSTT) at a repair state

is multiplied by the duration in that repair state in the objective function, which is no

longer independent of the repair sequence (since link repairs can now start partway

through other link repairs).

In this chapter, I continue to use the same assumptions as in the previous

chapter including that broken links are unusable until fully repaired and repair dura-

tions and known and fixed, but the assumptions differ in the key point that repairs

of multiple links are allowed to proceed in parallel, with each work crew repairing a

different link, rather than in strict sequence. The objective is to minimize the total

travel delay over the repair horizon, assuming that traffic reaches user equilibrium in

a negligible amount of time after each repair is completed. I establish that this prob-

lem is NP-hard by restriction by proving that minimizing weighted completion time

on identical parallel machines reduces to the multi-crew scheduling problem. I adapt

both the existing sequential greedy method and the sequential simulated annealing

68

method for the multi-crew formulation, and explore alternative neighborhoods for the

simulated annealing algorithm. For the other greedy methods identified in Chapter

2, I apply post-processing to the single-crew sequence in order to assign each link in

the sequence to the first available crew, sequentially. Additionally, I develop a novel

method of solving specifically the multi-crew scheduling problem, decomposing the

set of broken links B into clusters assigned to each repair asset, and subsequently

optimizing only within each repair crew.

The remainder of this chapter is broken into six sections. §3.2 reviews previ-

ous and related literature. In §3.3, I define the problem formulation and the solution

space. §3.4 compares this problem to a standard problem from machine scheduling

literature to establish the multi-crew problem as NP-hard. §3.5 presents and discusses

solution methods, including adapted sequencing methods from the single-crew prob-

lem, novel simulated neighborhoods, and decomposition methods. In §3.6, I report

computational results, and the chapter concludes with key findings and directions for

future research.

3.2 Literature Review

This chapter addresses methods of balancing run time and solution quality

when scheduling links for repair by multiple identical crews in a damaged trans-

portation network, with TSTT representing the functionality of any network state.

Multiple authors have looked at this general formulation of the problem and proposed

heuristics for finding the optimal repair sequence (Rey and Bar-Gera, 2020; Gokalp

et al., 2021), but I have not encountered a review which focuses on comparing avail-

able proposed methods on equivalent problem instances, directly obtains heuristic

solutions to the multi-crew problem, and enunciates the trade-offs involved. I turn to

the general scheduling literature in order to frame the problem within that field and

examine whether generic scheduling techniques can be adapted to solve this particular

problem, as well as adapting sequencing heuristics for the multi-crew formulation.

69

Choosing the single performance measure of TSTT, I focus on algorithmic

contributions in order to balance solution time and quality for the multi-crew prob-

lem. These in turn may also be useful for solving similar or extended formulations.

In Chapter 2, I review various choices of performance measures and formulations

spanning maximum number of independent pathways, amount of demand met, and

combinations of functional, topological, and economic performance metrics (Chen and

Miller-Hooks, 2012; Merschman et al., 2020; Zhang et al., 2017, 2018a). Furthermore,

several authors have used performance metrics related to TSTT, but as a portion of

a multi-stage framework (Bocchini and Frangopol, 2012; Vugrin et al., 2014; Ye and

Ukkusuri, 2015).

A variety of greedy methods have been proposed or recommend themselves to

potential use in solving the repair sequencing problem, and I extend their use to the

multi-crew formulation in order to compare against other proposed and developed

heuristics. Gokalp et al. (2021) use three greedy methods to benchmark their beam

search heuristic for the sequencing problem: SQG, LZG, and IF. I adapt the SQG

method to account for links completing repairs in a different order than repairs are

started due to using multiple repair crews. The LZG and IF methods require no adap-

tation, since the sequencing is completed myopically, and I post-process the resulting

sequence to obtain a multi-crew schedule by assigning each link in the sequence to

the earliest available crew, as done by Rey and Bar-Gera (2020), and described by

Anderson et al. (2003) in a multiple identical machine scheduling context.

Rey and Bar-Gera (2020) assume that links are grouped into projects a priori

and use a sampling method presented by Rey et al. (2019) to approximate the first

order effects of each project. Then, projects are ordered greedily based on the LAFO

or LASR heuristic using the approximated average first order effects. As a comparison

case, they use the simple and time-effective SPT heuristic. In their paper, each

resultant ordering (sequence) is post-processed as described above to obtain a schedule

for multiple crews.

70

Turning to general scheduling literature, Anderson et al. (2003) specifically

address the application of local search heuristics to machine scheduling problems.

This application is particularly pertinent to the development of promising simulated

annealing neighborhoods for the present problem since it shares characteristics with

traditional scheduling problems from the literature. Complexity results for related

problems in machine scheduling (Bruno et al., 1974; Lenstra et al., 1977; Garey and

Johnson, 1990) as well as heuristics and polynomial time approximation schemes

(PTAS) for related parallel machine problems (Kawaguchi and Kyan, 1986; Smith,

1956; Skutella and Woeginger, 2000) additionally inform my search for tailored heuris-

tic solutions.

3.3 Problem Formulation

I use the same objective function to be minimized as in the single-crew for-

mulation, which is total travel delay over the repair horizon. In this formulation, as

in the sequencing formulation, TSTT is used to represent the functionality of any

network state. Consider a network G = (N ,A), with a set of broken links B. With

only one repair asset (work crew) available, exactly determining the optimal repair

sequence requires examining |B|! possible sequences. I demonstrate in the proofs of

Propositions 3.1 and 3.2 that for the multi-crew formulation the degrees of freedom

are reduced such that withK identical crews, solving to optimality requires examining

only |B|!/K! unique repair sequences, rather than |B|!. However, for realistically-sized

transportation networks, solving to optimality still becomes quickly intractable.

The model is once again a bilevel optimization problem, where the upper level

objective is to minimize the total travel delay over the full repair horizon, and the

lower level problem is the static TAP of computing equilibrium flows for a given repair

state. I use the same notation as described in Chapter 2. I maintain the assumptions

that if a link is broken (damaged) it cannot be traversed until fully repaired, the link

repair durations are fixed and known a priori, and user equilibrium is reached after

71

each repair. I assume that each crew works on a single link repair at a time until its

completion, without preemption and without idle time. Because there are N broken

links, there are once again N network stages in a repair schedule as the N broken

links complete repairs. These non-terminal stages are indexed by t ∈ {1, . . . , N}.

Since there are multiple crews, it is possible for two repairs to finish simultaneously.

In this case, the duration of one stage would simply be zero, and two repair schedules

would have identical objective values.

The sequence of repair completions is defined by the binary variables ytb, where

ytb = 1 iff link b completes repairs during stage t. The variable ztb equals 1 iff link

b completed repairs prior to stage t and is therefore usable during stage t. Crew

assignments are defined by the binary variables ckb where ckb = 1 iff link b is repaired

by crew k. This formulation does not explicitly define the sequence of what order in

which to start repairs, but that sequence can be recovered from the crew assignments

and repair completion sequence defined by y. For a given link a in stage t, the flow

on that link is xt
a, and ht

π represents an equilibrium flow on path π. During stage t,

the total system travel time is then
∑

a x
t
aTa(x

t
a), and stage t lasts for Ft−Ft−1 days

where Ft is the completion time of the tth link to complete repairs, and F0 = 0. The

shorthand TSTTt will again be used to compactly denote the TSTT during stage

t, with TSTT0 being the TSTT before disruption, equivalently TSTTN+1, after all

repairs are complete.

The following bilevel optimization expresses minimizing the total travel delay

over the repair horizon, where M is a sufficiently large constant:

72

min
x,y,z,c

N∑
t=1

(∑
a∈A∪R

xt
aTa(x

t
a)− TSTT0

)
[Ft − Ft−1] (3.1)

s.t. Ft =
K∑
k=1

∑
b∈B

ckby
t
b

[t∑
t′=1

∑
b′∈B

ckb′y
t′

b′Db′

]
∀t ∈ {1, . . . , N} (3.2)

F0 = 0 (3.3)

K∑
k=1

ckb = 1 ∀b ∈ B (3.4)

t−1∑
t′=1

yt
′

b = ztb ∀b ∈ B, t ∈ {1, . . . , N} (3.5)∑
b∈B

ytb = 1 ∀t ∈ {1, . . . , N} (3.6)

N∑
t=1

ytb = 1 ∀b ∈ B (3.7)

ytb ∈ {0, 1} ∀b ∈ B, t ∈ {1, . . . , N} (3.8)

ztb ∈ {0, 1} ∀b ∈ B, t ∈ {1, . . . , N} (3.9)

ckb ∈ {0, 1} ∀b ∈ B, k ∈ {1, . . . , K} (3.10)

where each xt is optimal to:

min
xt,ht

∑
a∈A∪R

∫ xt
a

0

Ta(x)dx (3.11)

s.t.
∑
π∋a

ht
π = xt

a ∀a ∈ A ∪R (3.12)∑
π∈Πrs

ht
π = drs ∀(r, s) ∈ Z2 (3.13)

ht
π ≥ 0 ∀π ∈ Π (3.14)

xt
b ≤Mztb ∀b ∈ B (3.15)

The upper level objective 3.1 is to minimize the total travel delay (equivalently,

total TSTT) over the repair horizon, captured by multiplying the system cost for each

stage by the stage duration. The first upper level constraint defines the completion

73

time of the tth link to complete, and the second constraint defines the boundary

condition of F0. The third upper level constraint ensures that each link is only

assigned to one of the K crews. The fourth upper level constraint ensures that each

link is available for use only after it is repaired. The fifth and sixth upper level

constraints ensure that only one link is repaired per stage and each link is repaired

at some stage, respectively. The last three upper level constraints define y, z, and

c as sets of binary variables. The lower level problem (Equations 3.11 – 3.15) is the

standard user equilibrium formulation of the static TAP, with the addition of the

artificial links and a constraint to ensure the flow on broken links is equal to zero.

As formulated, exactly solving the above bilevel optimization problem would

require enumerating all possible unique repair sequences, and evaluating each to de-

termine the optimal sequence, including solving TAP at each repair state encountered.

The repair state at any time t is characterized by a vector zt of length N , where each

entry is either 1, if the indexed link is repaired, or 0, if the indexed link is not yet fully

repaired. Minimizing total TSTT over the repair horizon is analogous to minimizing

weighted completion time in an identical parallel machines scheduling problem, with

the complicating factor of state-dependent weights. The computational time to cal-

culate each of the 2N state-dependent weights (TSTTs) is the time required to solve

TAP for each state for the full network, with set of nodes N , set of links A, and set of

zones Z. The computational time to evaluate the objective function for each unique

repair sequence, once weights are established, depends only on the number of broken

links, |B| = N . The number of unique repair sequences (start orders) is demonstrated

in Propositions 3.1 and 3.2.

Proposition 3.1. The single-sequence repair start order fully defines a K-crew non-

delay schedule.

Proof. A non-delay schedule is one in which no crew is allowed to be idle while a job

is waiting to be processed (Pinedo, 2016). Given the order in which each link begins

to be repaired, the first K links immediately begin repair, one by each of the K crews,

74

at time 0. If these K links did not begin to be repaired at time 0, either the repair

start order would not be respected or the resulting schedule would not be non-delay.

After time 0, in order to both adhere to the repair start order and maintain a

non-delay schedule, as soon as a crew completes a link repair, it immediately begins

to repair the next link in the repair start order which is not yet underway.

Proposition 3.2. Using the single-sequence representation defined above, there are

N !/K! potential non-delay repair schedules for N broken links and K identical crews.

Proof. By Proposition 3.1, each single-sequence repair start order fully defines a K-

crew non-delay schedule. There are N ! ways to order N unique items. Therefore,

there are N ! repair start orders. However, because the crews are identical, the label

assigned to a particular crew is arbitrary. Therefore, the first K links in any repair

start order, which all start repair at time 0, can be sorted by increasing repair duration

without affecting the repair schedule.

More precisely, the link in the K + 1 position in the repair start order will

always be assigned to the same crew as the link among the first K links with the

shortest repair duration in order to maintain the non-delay property and respect the

repair start order. Therefore, for a given set of K links which comprise the first K

elements of a repair start order and begin repairs at time 0, there are K! possible

orderings of those K links which result in the same non-delay repair schedule (since

crew labels are arbitrary). Therefore, while there are N ! single-sequence repair start

orders, there are only N !/K! potential non-delay schedules.

3.4 NP-Hardness

Now that I have laid out the problem formulation and discussed some of the

computational challenges of an exact solution method, I formally establish that find-

ing that optimal repair schedule is NP-hard, even without the additional calculations

required to find the 2N TSTTs. In order to establish that the problem is NP-hard,

75

I start with a standard problem within scheduling – minimizing the sum of weighted

completion times on identical parallel machines, where the number of machines is a

problem input. To represent this problem compactly, I refer to it as P ||
∑

wbCb using

the three field classification α|β|γ common in scheduling literature and introduced by

Graham et al. (1979), with β being an empty set in this instance. In the first field,

α = P indicates the machines used are identical. The second field is unused, but

would indicate further restrictions on the problem, such as precedence constraints

or job release times. Finally, γ =
∑

wbCb identifies the objective function to be

minimized, which is the sum of weighted completion times over all jobs b ∈ B.

Theorem 3.3. P ||
∑

wbCb reduces to multi-crew scheduling where state-dependent

TSTTs are already calculated a-priori.

Proof. Suppose that N jobs (b = 1, ..., N) need to be scheduled on K identical ma-

chines (i = 1, ..., K) where K is an input parameter, and each job has a duration

pb and weight wb. The objective function to be minimized is γ =
∑

wbCb, the sum

of weighted completion times. I will show that P ||
∑

wbCb is a special case of the

multi-crew scheduling problem defined in §3.3, proving Theorem 3.3 by restriction.

In the multi-crew problem, the objective function is to minimize

N∑
t=1

(∑
a∈A∪R

xt
aTa(x

t
a)− TSTT0

)
[Ft − Ft−1] =

N∑
t=1

(
TSTTzt − TSTTN+1

)
[Ft − Ft−1],

where TSTTzt is the TSTT corresponding to repair state zt, and TSTT0 is the TSTT

before disruption, which is equal to TSTTN+1, the TSTT after all links are repaired.

I assume for this proof that the TSTT values for all 2N possible repair states are

calculated a-priori. This formulation of the objective function sums over the travel

delays during time periods 1, ..., N depicted as vertical bars in the left side of Figure

3.1, but can be reformulated to instead sum over horizontal bars, as in the right side

of Figure 3.1. The reformulated equivalent objective function to be minimized is

N∑
t=1

(
TSTTzt − TSTTzt+1

)
Ft.

76

Figure 3.1: The shaded area is total travel delay over the repair horizon

From §3.3, Ft is the completion time of the tth link to be repaired. There is

a one-to-one mapping f : t → b between the time indices in the multi-crew problem

and the job indices in P ||
∑

wbCb for any given repair schedule. Therefore, I assign

Cb = Ff(t). If I restrict the multi-crew problem such that the improvement in TSTT

from repairing a link b (equivalently completing job b) is not dependent on repair

state, but fixed at a constant ∆TSTTb, then
(
TSTTzt − TSTTzt+1

)
= ∆TSTTf(t). I

assign wb = ∆TSTTf(t). Combining, the objective function for the restricted problem

is now equal to the P ||
∑

wbCb objective function:

N∑
t=1

∆TSTTf(t)Ft =
N∑
b=1

wbCb.

Therefore, by restriction, P ||
∑

wbCb reduces to multi-crew scheduling where state-

dependent TSTTs are already calculated a-priori.

Because P ||
∑

wbCb is strongly NP-hard when the number of machines (crews)

is an input parameter (Garey and Johnson, 1990), and the above reduction is com-

pleted in polynomial time for any instance, Corollary 3.4 immediately follows.

Corollary 3.4. Multi-crew scheduling where state-dependent TSTTs are already cal-

culated a-priori is strongly NP-hard.

77

3.5 Solution Methods

Next, I examine solution methods. I begin with a short discussion of heuristic

methods from machine scheduling, and adapt methods from the single-crew sequenc-

ing problem for application to the multi-crew scheduling problem. Subsequently, I

propose and evaluate novel simulated annealing neighborhoods specifically for use

with multiple crews. Finally, I propose two methods of decomposing links into crews

a priori, as well as four methods of sequencing links within each crew.

3.5.1 Heuristic Methods from Machine Scheduling

In order to provide a starting point for solving the multi-crew scheduling prob-

lem, I first examine heuristic methods applied to P ||
∑

wbCb in the literature. A basic

heuristic is to apply the weighted shortest processing time (WSPT) rule, also known

as Smith’s ratio, which optimally solves 1||
∑

wbCb by ordering jobs by non-increasing

wb/Db ratios (Smith, 1956). Sahni (1976) and Kawaguchi and Kyan (1986) extend

this concept to provide a PTAS for Pm||
∑

wbCb and a performance ratio guaran-

tee for P ||
∑

wbCb, respectively. Skutella and Woeginger (2000) further establishes

a PTAS for P ||
∑

wbCb. However, since the weights in the multi-crew scheduling

problem are state-dependent, rather than only link or job dependent, these methods

do not translate to performance guarantees for the multi-crew scheduling problem,

since any uniform weight wb used for a link repair would be an approximation. In

fact, one of the heuristics proposed by Rey and Bar-Gera (2020) approximates this

weight (the first-order effect of repairing a particular link) by sampling, and orders

projects greedily by the resulting Smith’s ratio, in effect applying the WSPT rule

using approximate weights. I do not adapt the significantly more complex PTAS

established for P ||
∑

wbCb to the multi-crew scheduling problem.

78

3.5.2 Adapting Existing Sequencing Methods

Additionally, I adapt existing methods applied to the single-crew sequencing

problem, as the single-crew problem is a special case of the multi-crew problem.

However, not all methods can be effectively generalized from single- to multi-crew

because Bellman’s optimality principle is lost in the generalization. The bidirectional

beam search heuristic developed by Gokalp et al. (2021) is one such method which

fundamentally relies upon this principle, and does not translate readily to the multi-

crew problem. Strictly greedy methods, however, which order links for repair based

on a performance measure calculated a-priori, rather than sequentially as the repair

order is constructed, transfer more readily to the multi-crew problem. Therefore, I

consider and evaluate five strictly greedy sequencing methods from the literature. The

sequential greedy method can also be adapted for multi-crew by taking into account

repair start and completion times, rather than simply repair order. The simulated

annealing heuristic parameterized for the single-crew problem, while not a greedy

method, can be modified to solve the multi-crew method, taking into account the

more complex structure, and examining the effect of the neighborhood definition.

3.5.2.1 Post-processing Greedy Sequencing Methods

The SPT heuristic is the simplest heuristic proposed in that the only informa-

tion required is the link repair duration for each link. SPT simply orders the links

from shortest repair time to longest repair time and repairs the links in that order.

The IF heuristic is also a simple indexing, however, since links are ordered for repair

in descending order of pre-disruption flow, a single TAP must be solved to obtain

the link flows required. LZG repairs links in order of the greatest immediate benefit,

defined by decrease in TSTT due to repairing a link while all others remain broken

divided by that link’s repair duration.

The approximation methods proposed by Rey and Bar-Gera (2020) first solve

TAP for a subset of all possible network states during the repair sequence, and then

79

use this sample to approximate the average first-order effects of repairing each link

at any point in time. The sampling method is detailed in Rey et al. (2019) and

requires solving a number of TAPs quadratic in the number of projects. In Rey

and Bar-Gera (2020), the objects sequenced are projects, rather than links, but the

method can be applied to projects of a single link each, in order to compare to

other methods on equal footing. The first approximation method ranks projects and

greedily sequences them in descending order of largest average first-order effects. The

second approximation method takes into account repair duration, as well as first-order

effects, ranking projects based on descending largest approximated Smith’s ratio, and

then sequencing greedily. Smith’s ratio, in this case, is implemented as the ratio of

approximated first-order effects over repair duration.

For each of the above methods, once obtaining the sequence, I assign one of

the first K links in the sequence to each one of the K crews. Then, I assign each

subsequent remaining link in the sequence to the crew with the shortest already

assigned work duration. I refer to this assignment procedure as post-processing.

3.5.2.2 Multi-crew Sequential Greedy Method

For the single-crew problem, SQG constructs the repair sequence myopically,

by choosing the link to repair which provides the greatest immediate benefit at each

stage, defined by decrease in TSTT due to repairing the link over the link repair

duration. At each stage in building the repair sequence, the link is chosen which

maximizes this value. At any point in the repair order in the single-crew setting,

the baseline TSTT is the TSTT after repairing all previous links already chosen for

repair. The comparison TSTT for each link yet to be repaired is the TSTT given that

all previous links and the newly selected link are repaired. The next link is chosen

for repair based on the greatest decrease from the current baseline.

In the multi-crew setting, the first K links (the first link for each of the K

crews) are chosen based on the greatest immediate benefit, with the baseline being

80

no repaired links, and the comparison being a single link repaired. This selection

method is a simplification, since naturally only one of the first K links can actually

complete first, unless there are multiple identical repair durations among them. The

underlying simplifying (though inaccurate) assumption is that the next link chosen

for repair will complete before any other links already in progress (being worked on

by other crews). While inaccurate, this simplification is necessary for the heuristic in

order to avoid significantly increasing the number of required TAPs. Subsequently,

at each stage, the crew with the shortest combined work duration assigned so far is

chosen for the next link assignment, and the repair state at that time is established

by examining completion times of links already assigned to crews. This TSTT forms

the baseline for comparison, and each remaining eligible link’s immediate benefit is

calculated using the assumption that it would complete before any additional links

from other crews complete.

3.5.2.3 Adapting Simulated Annealing for Multi-crew

In adapting the single-crew simulated annealing method for the multi-crew

application, the primary areas of focus are the definition of a neighborhood and

the size of the solution space. In representing a candidate solution, I continue to

use a vector of length N , which is a sequence of links for repair representing their

start (though not necessarily completion) order. In order to calculate the multi-crew

objective function, the links are assigned in sequence order to the first open crew, in

the same manner as post-processing a greedy solution as discussed above. In this data

representation, the first K links in any sequence are interchangeable without affecting

the objective function. Therefore, the solution space for a problem with N broken

links decreases as K increases. For this reason, while I used a stopping criterion of

max iterations equal to 1.2N3 for the single-crew heuristic, based on this insight as

well as computational experiments, I use a stopping criterion of max iterations equal

to 1.5(N −K + 1)3 for the multi-crew heuristic.

To obtain a performance baseline for exploration of other neighborhoods, I

81

first maintain the definition of a 1-neighborhood used in the single-crew heuristic.

The impact of swapping a single link in the repair sequence (other than the last

link in the sequence) with the link immediately following, however, changes signifi-

cantly. In the multi-crew setting, swapping the start order of two links adjacent in

the repair start order will generally result in one or both links swapping to a different

crew. Additionally, if the swapped links have different repair durations, the start and

completion times as well as potentially repair crew assignments of later links (links

occurring in the repair order after those swapped) will additionally shift. Therefore,

while the neighborhood definition is the same, the impact of a single swap on the

repair schedule is significantly greater in the multi-crew setting.

I hold constant the parameter choices of initial temperature, exploration cri-

terion, acceptance criterion, temperature length, cooling scheme, and temperature

restart from the single-crew parameterization in Chapter 2. I choose the initial tem-

perature, T0, to obtain an initial probability of approximately 10% to accept a move

which increases the objective function by 10%. I use a variant on the Lundy-Mees

cooling scheme where Ti+1 = Ti/(a+ b× Ti), with a = b = 1 as proposed by Szu and

Hartley (1987), with a temperature length of one, indicating temperature updates

every iteration, and no temperature restarts. The exploration criterion used at each

step is to randomly select a proposed new solution from the current 1-neighborhood.

For acceptance criterion, I use the generalized simulated annealing variant proposed

by Bohachevsky et al. (1986), with g = −1 and β = (1/T)2/3, resulting in the formula

pGSA =

{
1 if ∆(s′, s) ≤ 0

exp
(
− ∆(s′,s)

f(s)×T 2/3

)
otherwise.

Finally, since the multi-crew performance of the greedy algorithms does not

directly mirror their performance in the single-crew setting, I reinvestigate the set of

greedy solutions to use in selecting the best feasible solution (BFS) with which to

seed the simulated annealing algorithm. The selected greedy methods are evaluated

prior to initializing the simulated annealing algorithm, and the solution with the

82

lowest objective value is used as the BFS to seed the local search. The individual

candidate methods under consideration were SPT, IF, LZG, SQG, and LAFO/LASR.

I consider LAFO/LASR together, selecting the better solution of the two, because the

vast majority of the computational effort is spent in finding first-order effect estimates,

after which both LAFO and LASR solutions can be evaluated with minimal additional

effort. Based on initial testing, I discard SPT and LZG due to poor solution accuracy

and choose the combinations IF/SQG and IF/LAFO/LASR for computational testing

as seeds for the simulation annealing algorithm. In all computational testing, I ensure

that all used information is “paid for” in terms of run time. For example, in order

to seed the local search with IF/SQG, the run time for the local search starts at the

sum of the time required to find the IF and SQG solutions, plus the time to evaluate

both objective functions in order to determine which sequence to use as the seed.

While IF/LAFO/LASR requires more time initially than IF/SQG, the increased seed

quality results in overall shorter run times for the simulated annealing algorithm,

including the time to find the seed solution, while maintaining or increasing final

solution quality. Based on these results, I seed all additional multi-crew simulated

annealing experiments using IF/LAFO/LASR.

3.5.3 Novel Simulated Annealing Neighborhoods

In order to explore additional neighborhoods – and even combinations of neigh-

borhoods – for use in simulated annealing, I first define a new structure to store the

current repair schedule. Instead of storing a single sequence which is then post-

processed to K crews, I store K repair sequences, one for each crew. This structure

allows for deliberate swaps of links within a crew without necessarily shifting any

links between crews, which I refer to as a within-crew update. Alternatively, I can

choose to swap two links in, say, the same ordinal position on two different crews,

e.g. swap the second link in crew a’s sequence with the second link in crew b’s se-

quence. I refer to a proposed movement using this method as a crew-swap update.

These two methods can be mixed in a single simulated annealing strategy to balance

83

diversification (changing which links are assigned to which crews) and intensification

(optimizing the order of links within a crew, given crew assignments) within the local

search.

I compare three strategies which combine these two update types and bench-

mark them against the performance of the 1-neighborhood adapted from the sequenc-

ing problem described in §3.5.2.3. The first strategy tested alternates within-crew and

crew-swap updates, regardless of whether each proposed update results in updating

the current sequence. On odd numbered iterations, a within-crew update is pro-

posed and on even iterations a crew-swap update is proposed. The second strategy

only proposes a crew-swap update every ⌈N/K⌉ iterations, where N is the number

of broken links and K is the number of crews, and all other proposed updates are

within-crew updates. Finally, the third strategy only proposes a crew-swap update

whenever a within-crew update failed (was not accepted) on the previous iteration,

otherwise relying on within-crew updates. In order to directly compare the effects of

the neighborhood combinations, I do not modify any other parameter choices from

the single-crew algorithm.

To assess solution time and quality, I conduct five simulated annealing runs for

each of the four strategies for each generated map of broken links. In this manner, I

can assess not only performance, but consistency of performance, due to the random-

ness inherent in any given simulated annealing run. From Figure 3.2, I observe that

none of the proposed strategies outperform the 1-neighborhood using post-processing

in terms of average solution quality or consistency. Since all four methods evidence

roughly comparable run times, I maintain the 1-neighborhood strategy described in

§3.5.2.3 for subsequent experiments. A possible intuition for these results is that

since total travel delay is determined by link completion order and times, irrespective

of crew breakdown, the global repair start sequence is a better proxy than the crew

sequences.

84

Figure 3.2: Comparison of SA neighborhood strategies; 20 broken links with three
crews on Anaheim network; the shaded area is the interquartile range (IQR) contain-
ing the median (horizontal line), the X indicates the mean; BFS lines indicate BFS
used to initialize SA

85

3.5.4 Decomposition Methods

In addition to adapting sequencing methods for the multi-crew problem, I

explore first decomposing the set of broken links into sets assigned to each crew,

and then ordering the links for repair within each crew. The motivation behind this

approach is to increase the computational tractability of large scale problems with

several available work crews. I propose two methods of decomposing the set of broken

links into crew assignments, and four within-crew sequencing methods.

3.5.4.1 Minimum Makespan Decomposition

The simplest decomposition method I propose is to assign broken links to

crews by approximating a minimum makespan (MM) assignment. I approximate this

objective for decomposition rather than the desired weighted completion objective be-

cause minimizing makespan requires knowledge of only repair durations, rather than

state-dependent weights. Exactly solving minimum makespan on identical parallel

machines is an NP-hard problem because 2-PARTITION, which is NP-hard, reduces

to minimum makespan on two identical parallel machines (Bruno et al., 1974; Karp,

1972). Therefore, I use a largest processing time (LPT) first greedy assignment, shown

by Graham (1969) to obtain a 4/3 approximation of the optimal minimum makespan

objective. Specifically, where Cmax(LPT) is the makespan using LPT assignment and

Cmax(OPT) is the optimal minimum makespan assignment, Graham shows that

Cmax(LPT)

Cmax(OPT)
≤ 4

3
− 1

3K

where K is the number of available crews (machines).

3.5.4.2 Interaction Coefficient Decomposition

For a more sophisticated decomposition, I define pairwise interaction coeffi-

cients (IC) between broken links. Each interaction coefficient IC[a, b] captures the

fraction by which flow on link b increases (positive coefficient) or decreases (negative

86

coefficient) due to breaking only link a (with all other broken links already repaired).

If the flow on link b increases due to breaking link a, then the links function in parallel

to some extent given the network demand and structure. Similarly, if the flow on link

b decreases due to breaking link a, then the links function in sequence to some extent

given the network demand and structure. I hypothesize that two arcs in sequence

which are required to repair the same paths should be assigned to different crews (to

be potentially worked simultaneously), whereas two arcs which run in parallel, such

that a shortest path chooses between the two, should be assigned to the same crew

(such that only one should be prioritized for repair) (Figure 3.3).

Figure 3.3: Broken arcs (dashed) in sequence, parallel, and unrelated

Algorithm 2 presents the crew assignment method once interaction coefficients

are calculated for each pair of broken links, while Algorithm 3 gives the method of

calculating interaction coefficients. Interaction coefficients need not be symmetric

since the fractional impact of breaking link a on the flow on link b need not be equal

to the fractional impact of breaking link b on the flow on link a, especially if the

initial flow values are significantly different. Given the N ×N interaction coefficient

matrix, for each available crew I choose the highest interaction coefficient IC[i, j]

corresponding to unassigned broken links and assign the two corresponding links i

and j to that crew. In order to avoid initial assignments which are likely to be

suboptimal, I use a safety duration of 1
K

∑
b∈B Db. If the selected pair of links would

exceed the safety duration when assigned to the same crew, only the link with the

longer duration is assigned during the first phase. Once each crew is assigned a link

or pair of links, the second assignment phase distributes the remaining links to crews

one by one, always assigning to the crew with the shortest currently assigned work

duration. The link chosen for assignment at each step is the link for which the sum

87

of interaction coefficients between that link and links already in the chosen crew is

maximized.

Algorithm 2 Interaction Coefficient Crew Assignments

Input: B (set of broken links), duration (dictionary with keys: broken links and
values: repair durations), K (integer, number of crews)
crew-time ← [0] ·K, which-crew ← dict(), safety = sum(duration for b ∈ B)/K
∆← Initialize
Set ∆′ as a deep copy of ∆
toassign = set(b ∈ B)
Assignment
for k in range(K) do ▷ Assign first link(s) to each crew

b, b′ ← links corresponding to indices of argmax(∆′)
if duration[b] + duration[b′] > safety then

if duration[b] > duration[b′] then add← [b]
else add← [b′]

else add← [b, b′]
for a in add do

which-crew [a]← k
crew-time[k]← crew-time[k] + duration[a]
Remove a from toassign
Set row and column corresponding to a in ∆′ to −1

while toassign ̸= ∅ do ▷ Assign remaining links to crews
k ← index of min(crew-time)
temp← ∅
for b ∈ toassign do

t1 ← sum(∆[b, j] where j is assigned to crew k)
t2 ← sum(∆[i, b] where i is assigned to crew k)
Append max(t1, t2) to temp

a← link in toassign corresponding to max value of temp
which-crew [a]← k
crew-time[k]← crew-time[k] + duration[a]
Remove a from toassign

return which-crew

3.5.4.3 Optimal Within Crew Sequencing

Once broken links are assigned to crews, I then sequence the links within their

crew. Of note, within crew sequences are not fully independent, since the overall

88

Algorithm 3 Interaction Coefficient Crew Assignments, Initialize

Input: B (set of broken links), duration (dictionary with keys: broken links and
values: repair durations), K (integer, number of crews)
Initialize ∆ as N ×N array of zeros
Solve TAP (A ∪R) (pre-disruption network state)
Initialize dictionary initflow with keys: b ∈ B and values: flows from TAP (A∪R)
for b ∈ B do

Solve TAP (A ∪R \ b) and store flows for b ∈ B in dictionary tempflow
for b′ ∈ B do

if initflow[b′] = 0 then
if tempflow[b′] > 1 then ∆[b, b′]← 1
else ∆[b, b′]← 0

else
∆[b, b′]← (tempflow[b′]− initflow[b′])/initflow[b′]

return ∆

network repair state determines the incremental benefit of repairing any link, and

that network repair state may change between the start and completion of a single

link repair, due to operating multiple crews. However, in order to develop a heuristic

with a reasonable time-complexity, I find “locally” optimal repair sequences for each

crew, rather than “globally” optimal sequences. Specifically, I find the optimal re-

pair sequence for each crew’s assigned broken links, as if all other links (assigned to

other crews) were already repaired. To demonstrate the impact of this simplification,

optimally sequencing by brute force enumeration without decomposition requires eval-

uating approximately N !/K! sequences, since the first K links in the global sequence

are effectively interchangable as discussed in §3.5.2.3. Finding the globally optimal

sequences for each crew given crew assignments using Algorithm 4 requires evaluating

approximately
(
N
K
!
)K

sequences. In contrast, finding the locally optimal sequences for

all K crews independently using Algorithm 5 requires evaluating ⌈N
K
⌉!×K sequences.

3.5.4.4 Importance Factor Within Crew Sequencing

In contrast to attempting to find the optimal within crew sequencing, either

globally or locally, I alternatively use an importance factor to sequence links within

89

Algorithm 4 Globally Optimal (Brute Force) Within Crew Sequencing

Input: B, duration, K, which-crew (dict w/ key: broken link, val: crew assignment)
Initialize list damaged of length K
for b ∈ which-crew do

k ← which-crew [b]
Append b to damaged[k]

Initialize list subsequences of length K
for k in range(K) do

subsequences[k]← iterator of all permutations of damaged[k]
allsequences← cartesian product of subsequences[k] for k in range(K)
mincost←∞, minseq ← None
for seq in allsequences do

cost← evaluate seq objective function value
if cost < mincost then

mincost← cost
minseq ← seq

return minseq

Algorithm 5 Locally Optimal (Brute Force) Within Crew Sequencing

Input: B, duration, K, which-crew (dict w/ key: broken link, val: crew assignment)
Initialize list damaged of length K
for b ∈ which-crew do

k ← which-crew [b]
Append b to damaged[k]

Initialize lists subsequences, mincost, and minseq of length K
for k in range(K) do

subsequences[k]← iterator of all permutations of damaged[k]
mincost[k]←∞, minseq[k]← None
for seq in subsequences[k] do

cost← evaluate seq objective value (with all links not in damaged[k] func-
tional)
if cost < mincost[k] then

mincost[k]← cost
minseq[k]← seq

return minseq

90

crews. This simple strategy orders links for repair within their already assigned

crews in decreasing order of pre-disruption flows. Algorithm 6 overviews this method

of post-crew assignment sequencing.

Algorithm 6 Importance Factor Within Crew Sequencing

Input: B, duration, K, which-crew (dict w/ key: broken link, val: crew assignment)
Solve TAP (A ∪R) (pre-disruption network state)
Initialize dictionary initflow with keys: b ∈ B and values: flows from TAP (A∪R)
Sort B in order of decreasing pre-disruption flow (using initflow), store as order
for b ∈ order do

k ← which-crew [b]; append b to seq[k]
return seq

3.5.4.5 Sequential Greedy Within Crew Sequencing

The final method I use to order links within crews is a sequential greedy

method, referred to as MM (greedy) or CC (greedy) in figures. Essentially, the order

for all crews is solved for concurrently. At each repair stage, from the crew with the

shortest set of repairs so far, I next repair the link from that crew with the greatest

immediate benefit, as depicted in Algorithm 7. Sequential greedy nor local optimal

dominates the other in time complexity for every combination of N and K. Local

optimal sequencing is highly sensitive to the ratio N/K (average number of links

assigned to each crew) as well as the maximum number of links assigned to a single

crew due to evaluating approximately ⌈N
K
⌉! × K sequences. In contrast, sequential

greedy evaluates approximately (N/K)2 ×K = N2/K sequences.

3.6 Results

Numerical experiments are conducted on a desktop computer running Ubuntu

with a quad-core 3.3 GHz processor and 8 GB RAM. The test networks used are

again Anaheim and Berlin-Mitte-Center from the Transportation Networks research

repository (2022). All instances of TAP are solved using Boyles’ implementation of

91

Algorithm 7 Sequential Greedy Within Crew Sequencing

Input: B, duration, K, which-crew (dict w/ key: broken link, val: crew assignment)
Initialize list damaged of length K; eligible← Ø
for b ∈ which-crew do

k ← which-crew [b]; append b to damaged[k]; append b to eligible
seq ← [0] ·K, crew-order ← Ø, crew-time ← [0] ·K, tstts← dict(), bb← dict()
after ← TSTT from solving TAP (A ∪R \ B)
for b ∈ eligible do ▷ Find best immediate benefit (bb) of repairing each link first

temp← TSTT from solving TAP (A ∪R \ (B \ b))
bb[b]← after − temp, tstts[b]← temp

Initialize list order of length K
for k in range(K) do

order[k]← damaged[k] sorted by decreasing bb[b]/duration[b]
temp← [first element of order[k] for k in range(K)]
for b in sorted(temp) do ▷ Assign first link to each crew

k ← which-crew [b]; crew-time[k]← crew-time[k] + duration[b]
Append b to crew-order and to seq[k]; remove b from eligible and from damaged

after ← tstts[first link in crew-order]
while eligible ̸= Ø do ▷ Assign remaining links to crews

k ← index of min(crew-time), tstts← dict(), bb← dict()
if damaged[k] = Ø then ▷ If crew k links are assigned, move longest unassigned
link to k

mover ← argmax(duration[b] for b ∈ eligible)
Remove mover from damaged[which-crew [mover]]
which-crew [mover] = k, append mover to damaged[k]

for b ∈ damaged[k] do ▷ Find current bb of repairing each link in crew k not
yet repaired

temp← TSTT from solving TAP (A ∪R \ [B\ (crew-order [:1−K] ∪ b)])
bb[b]← after − temp, tstts[b]← temp

order ← damaged[k] sorted by decreasing bb[b]/duration[b]
b← first element in order; k ← which-crew [b]; crew-time[k]← crew-time[k] +
duration[b]
if crew-time[k] = max(crew-time) then

Append b to crew-order and to seq[k]; after ← tstts[b]
else

i← K + 1− index of sorted(crew-time)[k]
Insert b into crew-order at the ith to last position; append b to seq[k]
after ← TSTT from solving TAP (A ∪R \ [B\ crew-order [:1−K]])

Remove b from eligible and from damaged
return seq

92

Figure 3.4: Comparison of accuracy gap versus best found OBJ function for post-
processing vs. directly solving for K-crews for ten instances on the Anaheim network
with 10 and 20 broken links; shaded area is the interquartile range IQR containing
the median (horizontal line), the X indicates the mean, and outliers are shown as
individual dots

Dial’s Algorithm B (Boyles et al., 2023; Dial, 2006). Randomized problem instances

are sampled in the same manner as in Chapter 2. I once again set the disconnection

parameter Q = 10, representing adding artificial links for any disconnected OD pair

post-disruption, as well as for any OD pair where post-disruption travel times increase

at least tenfold from the base case (pre-disruption).

For the strictly greedy methods – LASR, LAFO, LZG, IF, and SPT – post-

processing versus solving directly for K-crews produces the same results because the

greedy ordering is a simple sequence, and none of the ordering criteria depend on

93

how many crews are used. For the beam search, simulated annealing, and sequential

greedy heuristics, however, solving for a single-crew sequence and subsequently post-

processing often gives a different multi-crew schedule than solving the multi-crew

problem directly. Therefore, for each of these three methods, I compare the objective

value accuracy gap (from the best found objective value) on the Anaheim network

with 10 and 20 broken links, for ten instances each, in order to compare results

obtained by post-processing versus solving the K-crews problem directly. For each of

the 20 instances (ten with 10 broken links and ten with 20 broken links), I solve the

problem for one, two, three, and four crews, using the same randomly instantiated

broken links and link repair durations, additionally post-processing the single-crew

solution for two, three, and four crews. The results are presented as box and whisker

plots in Figure 3.4 and corresponding tabulated summary statistics are found in

Appendix B, Tables B.1, B.2, and B.3.

For the beam search heuristic, solving directly for K-crews by using the multi-

crew objective function whenever it is evaluated within the heuristic leads to higher

accuracy gaps than post-processing. This result follows logically since the theory

supporting the use of a beam search relies upon an analogue to Bellman’s optimality

principle only present in the single-crew formulation. However, in post-processing

for multi-crew, the high accuracy evidenced by the beam search for the sequencing

problem is diminished. Simulated annealing demonstrates a very similar solution

quality degradation in post-processing to beam search, however, SA exhibits the

opposite behavior to beam search when solving directly for K-crews. When solving

directly for K-crews, using the multi-crew simulated annealing heuristic described in

§3.5.2.3, the accuracy obtained is the highest of any method tested, and comparable

to simulated annealing’s single-crew accuracy. The direct multi-crew formulation

of the sequential greedy method performs similarly to post-processing the single-

crew sequential greedy sequence. Combined with the fact that both methods of

implementing SQG are outperformed by LASR and LAFO (which have similar average

run times and run time variation to SQG), SQG does not recommend itself to use

94

when multiple crews are available.

In order to test the decomposition methods, I compare them to SA, LAFO,

LASR, and IF. I choose LAFO, LASR and IF from among the greedy methods,

because these three methods outperform SQG, LZG, and SPT for multi-crew in terms

of solution accuracy. I test the selected methods with 12 and 20 broken links on the

Anaheim network, with K = 2, 3, 4 for N = 12 and K = 3, 4, 5, 6 for N = 20. The

accuracy gap and run time comparisons are presented as box and whisker plots in

Figures 3.5 and 3.6 for instances with 12 and 20 broken links, respectively. I include

finding the globally optimal within crew sequences only for 12 broken links due to

computational time.

Examining run times in Figure 3.5, finding the globally optimal within crew

sequences is more time intensive than SA, though as K increases, the run times for

the two methods grow more similar. This observation is significant for two reasons.

However, as N increases, run times to find the globally optimal within crew sequence

drastically exceed the run times for simulated annealing, regardless of the number of

crews. These observations are significant for two reasons. Firstly, with the present

methods of decomposition, spending the time to find globally optimal within crew

sequences is not advised, since SA has significantly better solution accuracy, and faster

or comparable run times. Secondly, the run time to find the globally optimal within

crew sequence is highly dependent on the relationship between K and N . In Figure

3.6, there is a similar decrease in run times for locally optimal within crew sequencing

as K increases, which is more pronounced when using IC decomposition. Because

MM uses the longest processing time first assignment method, it is reasonable that

MM will more often have near-equal numbers of links in each crew, whereas IC may

result in more uneven link count distribution among crews.

From Figures 3.5 and 3.6, it is clear that SA exhibits the highest solution

quality among methods tested, though it also has the longest run times, with the ex-

ception of globally optimal within crew sequencing. For this reason, when time allows,

95

Figure 3.5: Run time and accuracy gap comparisons for multi-crew methods on Ana-
heim network with 12 broken links, 10 instances at each K value

96

Figure 3.6: Run time and accuracy gap comparisons for multi-crew methods on Ana-
heim network with 20 broken links, 10 instances at each K value

97

I would recommend using SA for multi-crew scheduling. If time does not allow for

the use of SA, then I would recommend the use of LAFO/LASR, taking advantage

of the solution between the two with the lower objective function, since the incre-

mental cost in computational time is minimal to obtain both solutions. While locally

optimal within crew sequencing using IC decomposition rivalled the solution qual-

ity of LAFO and LASR with only 12 broken links, particularly at lower numbers of

crews, this performance is not maintained when the number of broken links increased,

within the scope of my testing. Neither greedy nor importance factor within crew

sequencing recommend themselves to use, due to poor solution quality. At the ob-

served solution qualities, if the most rapid scheduling solution is desired and LAFO

and LASR are computationally intractable within operational constraints, I would

point to the simple method of importance factor scheduling using post-processing.

This method requires the solution of a single TAP, while outperforming the two other

options tested for rapid solutions, LZG and SPT.

Finally, I generate 10 instances each for 10, 20, 30, 40, 50, 60, 70, and 80

broken links on the Anaheim network to investigate performance as the number of

broken links increases. I set the number of crews available to K = ⌊
√
N⌋ at each

instance size. First, I examine the relationship between solution accuracy gap (from

best found objective function value) and makespan increase from the best found

(minimal) makespan using the data generated by solving each of the 800 instances

with seven heuristics – SA, LASR, LAFO, SGQ, LZG, IF, and SPT. As shown in

Figure 3.7, the two gap measures do not exhibit a clear correlation. The points along

the vertical axis represent solutions where the solution quality varies widely while

the makespan is at the best known value for the instance solved. These points are

somewhat unsurprising since a makespan is determined completely by which links are

assigned to which crews, whereas the objective function value depends heavily on the

completion times of each link – determined by not only crew assignments, but also

repair order. The density of points along or immediately adjacent to the horizontal

axis, however, is more enlightening. This density of points, specifically between 0%

98

Figure 3.7: Comparison of accuracy gap versus best found OBJ function and
makespan increase versus best found makespan for 800 instances (randomly gen-
erated maps) and seven heuristics for Anaheim network with 10-80 broken links

99

and 10% on the horizontal axis, shows that many solutions achieve or nearly achieve

the best found objective value while having a makespan that is up to 10% higher

than the minimal makespan found. In other words, a near optimal makespan does

not seem to be either a reliable predictor of a low objective value or reliably predicted

by a low objective value.

Using the same data from above as well as five random instances at 90 and 100

broken links, and additionally conducting the same experiments for 10–100 broken

links on the BMC network, I generate Figure 3.8. Corresponding tabulated summary

statistics are found in Appendix B, Tables B.4 – B.9. The top graph in Figure 3.8

depicts the distribution of accuracy gaps on Anaheim and BMC networks for SA

and LAFO/LASR at each instance size. LAFO/LASR refers to approximating first

order effects, evaluating both the LAFO and LASR objective values, and adopting

the solution with the lower objective value. The bottom graph depicts the run time

distributions for the same experiments. Figure 3.9 displays run time curve fits for

SA on Anaheim and BMC networks, using the same data as figure 3.8, but with

outliers removed. As in §2.8, I use a third degree polynomial fit with intercept fixed

at zero. In 24 hours, SA can solve instances with up to about 120–130 broken links,

and handles instances with about 170–180 broken links in 72 hours.

3.7 Conclusions

In this chapter, I define the multi-crew scheduling problem with the objective

of minimizing total travel delay over the repair horizon and establish that the problem

is NP-hard by restriction by reducing minimal weighted completion time on parallel

machines to this problem. I adapt my simulated annealing heuristic for multi-crew

scheduling problems. In addition, I adapt a sequential greedy method for use in the

multi-crew setting, and post-process five other greedy methods for comparison using

multiple identical crews. Finally, I present two methods of decomposing links into

crews and subsequently sequencing within those crews, using one of four methods.

100

Figure 3.8: Run time and accuracy gap comparisons for simulated annealing and
LAFO/LASR on Anaheim network with 10–100 broken links, ten instances at each
value 10–80 and five instances at 90 and 100

101

F
ig
u
re

3.
9:

R
u
n
ti
m
e
cu
rv
e
fi
ts

fo
r
si
m
u
la
te
d
an

n
ea
li
n
g
on

A
n
ah

ei
m

an
d
B
M
C

n
et
w
or
k
s

102

Ultimately, however, these decomposition methods do not evidence sufficient solution

quality relative to their run times.

I compare the benefits of directly solving the K-crews problem versus post-

processing for those methods which are not strictly greedy methods. These experi-

ments demonstrate the importance of using the multi-crew SA heuristic when more

than one crew is available, rather than simply post-processing the sequencing result.

In addition, the results illustrate the importance of knowing how many crews will be

available upfront, and points to an interesting question for further research. If the

number of crews which will be available is unknown, variable over the repair hori-

zon, or otherwise stochastic, how does the observed total travel delay over the repair

horizon compare to the initially calculated value?

Finally, the multi-crew accuracy gap and run time comparisons indicate that

the multi-crew SA heuristic produces the highest quality solutions, and recommends

itself to use if operational constraints allow. The combination method LAFO/LASR

demonstrates higher solution quality than any other greedy method tested, in addi-

tion to outperforming the computationally feasible decomposition methods in solution

quality testing at a higher number of broken links. Among the other greedy methods,

if time-constraints prohibit the use of LAFO/LASR, then IF with post-processing

would be the recommended method to obtain a very rapid, though not as advanta-

geous, solution. An area for future research would be to explore the performance of

an SA algorithm where run time is used as the stopping criterion – i.e. stop after 24

hours, rather than a certain number of iterations.

103

Chapter 4: Conclusion

This dissertation proposed and benchmarked heuristic solution methods for

the disaster recovery sequencing and scheduling problems. Chapter 2 focused on

sequencing, demonstrating a simulated annealing method which delivers very high

solution quality and handles significantly larger problem instances than any previous

search method which accounts for travel times in the objective function. In Chapter

3, I formally established the multi-crew scheduling problem as NP-hard. I adapted

the simulated annealing method for the multi-crew problem formulation and demon-

strated comparably high solution quality to the single-crew formulation of the same

heuristic. Additionally, I developed two methods of decomposition into crews, prior

to sequencing within those crews, one of which is a novel method of quantifying the

extent to which a link is in parallel or sequence with another link.

4.1 Summary and Implications

Chapter 2 addressed the single-crew sequencing problem. I presented two for-

mulations of the problem, the first a bilevel optimization problem with static TAP

as the lower level problem, and the second a shortest path formulation, treating

the TSTTs for each encountered state as known (or calculated as needed). I used

the second formulation to explore complexity, demonstrating the need for heuristic,

rather than exact solution methods. I proposed a simulated annealing heuristic which

achieves high quality solutions for problem instances with up to 165–175 broken links

on the Anaheim and Berlin-Mitte-Center networks in 24 hours, and instances with up

to 250–260 broken links on the same networks in 72 hours. Because extreme hazards

and natural disasters often affect hundreds or thousands of links, these statistics are

critical when considering this heuristic’s application to real world scenarios. While

other methods and heuristics exist to solve the sequencing problem, simulated an-

104

nealing offers the most compelling balance between solution time and quality given

the ongoing negative effects of a damaged network.

In Chapter 3 I extended the problem to a multi-crew formulation which I

demonstrated to be NP-hard, further establishing the need for heuristic solutions. I

proposed a multi-crew adaptation of the simulated annealing heuristic developed in

Chapter 2 and demonstrated the merits of solving the multi-crew problem directly as

opposed to post-processing a solution to the sequencing problem. Additionally, I de-

veloped two methods of decomposing links into sets for assignment to crews a priori,

and four methods of subsequently ordering links within crews. One of these decom-

position methods, using interaction coefficients, is a novel approach to quantifying

the degree to which a link is in parallel or sequence with another link given demand

between an arbitrary number of origin-destination pairs. Ultimately, these decompo-

sition methods did not achieve sufficient solution quality relative to their run times

to recommend their use over other methods, but the method of assigning interaction

coefficients may have additional applications not yet explored. The multi-crew simu-

lated annealing heuristic achieved the highest solution quality of the methods tested,

with only LAFO/LASR consistently coming within even a 50% accuracy gap of the

solution value found by simulated annealing. In 24 hours, simulated annealing han-

dles instances with up to 120–130 broken links on Anaheim and Berlin-Mitte-Center,

extending to instances with 170–180 broken links in 72 hours.

4.2 Future Work

The simulated annealing algorithms presented for single- and multi-crew rep-

resent significant strides towards handling realistically-sized instances on small to

medium networks. However, there is significant space for future work in developing

additional algorithms which can further increase the size of problems solvable to high

levels of accuracy. Notably, establishing a tight lower bound or developing another

method which could rival simulated annealing’s solution accuracy with reasonable

105

run times would allow for more precise characterization of the accuracy achieved by

simulated annealing at higher numbers of broken links. Additionally, a parallelized

implementation optimized for computational speed may significantly extend the size

of instance which can be handled by the presented simulated annealing algorithm in

reasonable planning time periods.

Additional directions for future research include relaxing key assumptions or

introducing stochasticity, potentially in the number of repair crews available or in the

project durations. Strategically introducing stochasticity to the deterministic models

presented in Chapters 2 and 3 has the potential to more accurately reflect realistic

scenarios and provide additional insights for sequencing and scheduling road repair

projects after extensive network damage. Stochastic repair times recommend them-

selves to study especially after an extreme event when the full extent of underlying

road damage may not be known until construction begins. Investigating stochastic

repair times may also lead to incorporating preemption, potentially with setup times

in order to avoid unrealistic job hopping behavior.

For a different line of inquiry, the structural assumption that there are a fixed

number of available identical crews over the entire repair horizon could be loosened.

This relaxation could be accomplished deterministically, potentially with some crews

becoming available later than time zero, some crews only having availability until some

later fixed time, or both. Comparing these relaxations to the base case could provide

insight on the importance of having a large number of repair crews immediately

available as well as the impact of tapering off the number of crews later in the repair

horizon. Alternately, allowing for stochasticity in the number of available repair crews

naturally leads to the question of whether a sequence, schedule, or scheduling policy

is most effective given uncertainty about future numbers of available crews. Another

related extension would be to allow multiple work crews to be assigned to a single link

simultaneously, increasing the repair rate (though likely not linearly). This extension

could provide insight on the relative benefits of concentrating or diffusing repair efforts

with multiple available crews.

106

Appendix A: Single-crew Summary Statistics

A.1 Simulated Annealing Run Time Summary Statistics

The below tables correspond to run time graphs in Figures 2.9, 2.10, and 2.11.

Statistic
Number of Broken Links

8 9 10 11 12 13 14 15

Mean 0.098 0.145 0.185 0.228 0.332 0.384 0.466 0.564

Q1 0.080 0.108 0.144 0.179 0.242 0.287 0.362 0.411
Median 0.089 0.126 0.174 0.217 0.293 0.350 0.432 0.524
Q3 0.107 0.165 0.199 0.252 0.369 0.440 0.506 0.646

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 6% 6% 9% 7% 7% 4% 7% 3%

Table A.1: SA run time (minutes) summary statistics for 8–15 broken links on Ana-
heim, 100 random instances at each number of broken links

Statistic
Number of Broken Links

8 9 10 11 12 13 14 15

Mean 0.088 0.104 0.142 0.179 0.239 0.301 0.375 0.462

Q1 0.067 0.091 0.124 0.149 0.200 0.250 0.299 0.372
Median 0.078 0.104 0.140 0.171 0.227 0.291 0.348 0.438
Q3 0.088 0.114 0.159 0.200 0.266 0.323 0.444 0.508

Low Outliers 0% 0% 1% 0% 0% 0% 0% 0%
High Outliers 2% 2% 1% 0% 5% 7% 1% 3%

Table A.2: SA run time (minutes) summary statistics for 8–15 broken links on Berlin-
Mitte-Center, 100 random instances at each number of broken links

107

Statistic
Number of Broken Links
16 24 32 48

Mean 0.736 2.693 6.901 22.934

Q1 0.503 2.091 5.140 17.979
Median 0.600 2.591 5.989 22.089
Q3 0.923 3.122 8.858 27.590

Low Outliers 0% 0% 0% 0%
High Outliers 0% 0% 0% 0%

Table A.3: SA run time (minutes) summary statistics for 16, 24, 32, and 48 broken
links on Anaheim, 25 random instances at each number of broken links

Statistic
Number of Broken Links
16 24 32 48

Mean 0.590 1.837 4.742 17.392

Q1 0.445 1.478 3.741 13.605
Median 0.516 1.718 4.556 16.147
Q3 0.616 2.006 5.625 21.325

Low Outliers 0% 0% 0% 0%
High Outliers 4% 8% 0% 0%

Table A.4: SA run time (minutes) summary statistics for 16, 24, 32, and 48 broken
links on Berlin-Mitte-Center, 25 random instances at each number of broken links

A.2 Simulated Annealing Accuracy Gap Summary Statistics

The below tables correspond to accuracy gap graphs in Figures 2.9, 2.10, and 2.11.

Statistic
Number of Broken Links

8 9 10 11 12 13 14 15

Mean 1.4% 0.9% 1.5% 1.2% 1.7% 1.7% 1.8% 2.4%

Q1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
Q3 0.0% 0.0% 0.1% 0.3% 0.5% 1.1% 1.3% 0.5%

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 18% 18% 17% 16% 18% 17% 15% 20%

Table A.5: SA accuracy gap summary statistics for 8–15 broken links on Anaheim,
100 random instances at each number of broken links

108

Statistic
Number of Broken Links

8 9 10 11 12 13 14 15

Mean 0.3% 0.7% 1.2% 1.5% 1.7% 1.3% 2.3% 2.7%

Q1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%
Q3 0.0% 0.0% 0.1% 0.2% 0.8% 0.3% 0.7% 1.3%

Low Outliers 0% 1% 0% 0% 0% 0% 0% 0%
High Outliers 15% 11% 17% 21% 18% 19% 21% 17%

Table A.6: SA accuracy gap summary statistics for 8–15 broken links on Berlin-Mitte-
Center, 100 random instances at each number of broken links

Statistic
Number of Broken Links
16 24 32 48

Mean 2.9% 1.6% 0.0% 0.3%

Q1 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0%
Q3 1.9% 0.0% 0.0% 0.0%

Low Outliers 0% 0% 0% 0%
High Outliers 20% 20% 0% 12%

Table A.7: SA accuracy gap summary statistics for 16, 24, 32, and 48 broken links
on Anaheim, 25 random instances at each number of broken links

Statistic
Number of Broken Links
16 24 32 48

Mean 0.9% 6.3% 0.0% 0.0%

Q1 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0%
Q3 0.4% 3.7% 0.0% 0.0%

Low Outliers 0% 0% 0% 0%
High Outliers 12% 16% 0% 0%

Table A.8: SA accuracy gap summary statistics for 16, 24, 32, and 48 broken links
on Berlin-Mitte-Center, 25 random instances at each number of broken links

109

A.3 Comparison Summary Statistics for 48 broken links

The below tables correspond to Figure 2.12.

Statistic
Method

SA LASR LAFO SQG LZG IF SPT

Mean 22.934 2.561 2.561 1.279 0.054 0.001 0.000

Q1 17.979 1.997 1.997 0.986 0.041 0.001 0.000
Median 22.089 2.278 2.278 1.087 0.048 0.001 0.000
Q3 27.590 2.929 2.929 1.505 0.061 0.001 0.000

Low Outliers 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 4% 4% 0% 8% 0% 8%

Table A.9: Methods comparison run time (minutes) summary statistics for 48 broken
links on Anaheim, 25 random instances

Statistic
Method

SA LASR LAFO SQG LZG IF SPT

Mean 17.392 2.423 2.423 1.120 0.048 0.001 0.000

Q1 13.605 2.064 2.064 1.021 0.044 0.001 0.000
Median 16.147 2.238 2.238 1.128 0.046 0.001 0.000
Q3 21.325 2.501 2.501 1.182 0.050 0.001 0.000

Low Outliers 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 8% 8% 4% 4% 8% 0%

Table A.10: Methods comparison run time (minutes) summary statistics for 48 broken
links on Berlin-Mitte-Center, 25 random instances

Statistic
Method

SA LASR LAFO SQG LZG IF SPT

Mean 0.3% 30.9% 37.3% 181.1% 228.4% 196.4% 318.0%

Q1 0.0% 14.7% 21.2% 97.0% 121.8% 97.3% 208.8%
Median 0.0% 26.3% 37.7% 183.8% 217.9% 153.5% 296.5%
Q3 0.0% 46.6% 49.0% 252.1% 320.1% 279.9% 409.1%

Low Outliers 0% 0% 0% 0% 0% 0% 0%
High Outliers 12% 4% 4% 0% 0% 0% 0%

Table A.11: Methods comparison accuracy gap summary statistics for 48 broken links
on Anaheim, 25 random instances

110

Statistic
Method

SA LASR LAFO SQG LZG IF SPT

Mean 0.0% 37.2% 44.3% 100.5% 166.1% 180.2% 231.1%

Q1 0.0% 26.3% 29.1% 45.6% 92.9% 113.2% 176.7%
Median 0.0% 33.8% 45.2% 74.2% 151.1% 169.3% 219.5%
Q3 0.0% 45.5% 53.5% 146.9% 227.5% 239.3% 259.6%

Low Outliers 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 4% 4% 0% 0% 0% 4%

Table A.12: Methods comparison accuracy gap summary statistics for 48 broken links
on Berlin-Mitte-Center, 25 random instances

A.4 Varied Demand Multiples Summary Statistics

The below tables correspond to Figures 2.13 and 2.14.

A.4.1 Anaheim – Run Time Comparisons

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 4.806 4.847 5.123 6.376 11.002

Q1 4.258 4.036 3.940 4.911 8.156
Median 4.974 4.865 4.909 5.908 9.813
Q3 5.619 5.936 6.340 8.056 12.694

Low Outliers 0% 0% 0% 0% 0%
High Outliers 0% 0% 0% 0% 8%

Table A.13: BS run time (minutes) summary statistics for varied demand multipliers
on Anaheim, 25 random instances at each multiplier

111

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.443 0.488 0.737 1.139 3.323

Q1 0.346 0.384 0.500 0.852 2.329
Median 0.409 0.450 0.594 1.083 3.129
Q3 0.509 0.555 0.804 1.192 3.792

Low Outliers 0% 0% 0% 0% 0%
High Outliers 0% 0% 12% 12% 4%

Table A.14: SA run time (minutes) summary statistics for varied demand multipliers
on Anaheim, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.160 0.185 0.303 0.423 1.363

Q1 0.157 0.164 0.206 0.353 1.037
Median 0.158 0.169 0.225 0.424 1.313
Q3 0.158 0.176 0.370 0.488 1.667

Low Outliers 0% 0% 0% 0% 0%
High Outliers 8% 12% 8% 0% 4%

Table A.15: LASR run time (minutes) summary statistics for varied demand multi-
pliers on Anaheim, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.160 0.185 0.303 0.423 1.363

Q1 0.157 0.164 0.206 0.353 1.037
Median 0.158 0.169 0.225 0.424 1.313
Q3 0.158 0.176 0.370 0.488 1.667

Low Outliers 0% 0% 0% 0% 0%
High Outliers 8% 12% 8% 0% 4%

Table A.16: LAFO run time (minutes) summary statistics for varied demand multi-
pliers on Anaheim, 25 random instances at each multiplier

112

A.4.2 Anaheim – Accuracy Gap Comparisons

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.1% 0.4% 0.0% 0.3% 0.1%

Q1 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0% 0.0%
Q3 0.0% 0.0% 0.0% 0.0% 0.0%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 8% 20% 12% 20% 16%

Table A.17: BS accuracy gap summary statistics for varied demand multipliers on
Anaheim, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 1.5% 0.8% 1.7% 4.1% 6.3%

Q1 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.1% 0.0% 0.1% 0.2% 0.9%
Q3 0.7% 0.6% 1.4% 3.8% 4.5%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 12% 16% 12% 12% 12%

Table A.18: SA accuracy gap summary statistics for varied demand multipliers on
Anaheim, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 26.3% 20.0% 23.1% 25.0% 36.2%

Q1 11.7% 10.0% 7.7% 8.2% 11.2%
Median 19.3% 19.4% 17.2% 19.4% 29.1%
Q3 34.9% 27.0% 31.0% 39.1% 57.7%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 8% 0% 4% 0% 4%

Table A.19: LASR accuracy gap summary statistics for varied demand multipliers on
Anaheim, 25 random instances at each multiplier

113

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 31.0% 24.0% 29.4% 29.8% 47.1%

Q1 18.2% 11.1% 11.9% 15.7% 14.7%
Median 27.7% 18.7% 21.8% 27.5% 26.6%
Q3 41.5% 32.1% 42.8% 39.5% 70.6%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 4% 8% 0% 4% 4%

Table A.20: LAFO accuracy gap summary statistics for varied demand multipliers
on Anaheim, 25 random instances at each multiplier

A.4.3 Berlin-Mitte-Center – Run Time Comparisons

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 4.156 4.300 5.127 5.958 8.892

Q1 3.387 3.275 3.543 5.136 7.275
Median 3.955 3.903 4.692 5.765 8.379
Q3 4.538 5.397 5.853 6.502 10.190

Low Outliers 0% 0% 0% 0% 0%
High Outliers 8% 0% 4% 8% 4%

Table A.21: BS run time (minutes) summary statistics for varied demand multipliers
on BMC, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.445 0.452 0.679 0.691 1.233

Q1 0.358 0.359 0.433 0.620 1.152
Median 0.430 0.457 0.523 0.682 1.221
Q3 0.493 0.567 0.735 0.789 1.408

Low Outliers 0% 0% 0% 0% 0%
High Outliers 8% 0% 8% 0% 0%

Table A.22: SA run time (minutes) summary statistics for varied demand multipliers
on BMC, 25 random instances at each multiplier

114

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.175 0.175 0.475 0.284 0.544

Q1 0.161 0.172 0.193 0.274 0.472
Median 0.163 0.175 0.197 0.285 0.527
Q3 0.167 0.179 0.211 0.291 0.599

Low Outliers 4% 0% 0% 1% 0%
High Outliers 12% 0% 4% 8% 0%

Table A.23: LASR run time (minutes) summary statistics for varied demand multi-
pliers on BMC, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.175 0.175 0.475 0.284 0.544

Q1 0.161 0.172 0.193 0.274 0.472
Median 0.163 0.175 0.197 0.285 0.527
Q3 0.167 0.179 0.211 0.291 0.599

Low Outliers 4% 0% 0% 1% 0%
High Outliers 12% 0% 4% 8% 0%

Table A.24: LAFO run time (minutes) summary statistics for varied demand multi-
pliers on BMC, 25 random instances at each multiplier

A.4.4 Berlin-Mitte-Center – Accuracy Gap Comparisons

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 0.0% 0.1% 0.1% 0.1% 0.1%

Q1 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.0% 0.0% 0.0% 0.0% 0.0%
Q3 0.0% 0.0% 0.0% 0.0% 0.0%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 20% 20% 16% 16% 20%

Table A.25: BS accuracy gap summary statistics for varied demand multipliers on
BMC, 25 random instances at each multiplier

115

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 1.4% 2.1% 2.6% 2.6% 1.9%

Q1 0.0% 0.0% 0.0% 0.0% 0.0%
Median 0.1% 0.0% 0.0% 0.1% 0.0%
Q3 1.0% 0.2% 0.4% 3.5% 2.1%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 12% 20% 20% 8% 8%

Table A.26: SA accuracy gap summary statistics for varied demand multipliers on
BMC, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 18.6% 18.5% 21.2% 20.9% 24.4%

Q1 7.0% 9.2% 12.1% 8.8% 12.4%
Median 12.7% 16.0% 19.3% 16.8% 18.5%
Q3 29.1% 21.2% 30.0% 24.1% 26.4%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 0% 12% 0% 12% 8%

Table A.27: LASR accuracy gap summary statistics for varied demand multipliers on
BMC, 25 random instances at each multiplier

Statistic
Demand Multiplier

0.25 0.50 1.00 2.00 4.00

Mean 32.6% 34.0% 26.0% 27.2% 28.1%

Q1 11.9% 13.2% 13.1% 11.4% 19.4%
Median 19.8% 24.5% 22.4% 23.4% 25.5%
Q3 50.7% 35.7% 37.7% 34.7% 34.7%

Low Outliers 0% 0% 0% 0% 0%
High Outliers 0% 4% 0% 4% 8%

Table A.28: LAFO accuracy gap summary statistics for varied demand multipliers
on BMC, 25 random instances at each multiplier

116

Appendix B: Multi-crew Summary Statistics

B.1 Direct Solution vs Post-processing Summary Statistics

The below tables correspond to Figure 3.4.

Statistic
Direct Solution Post-process

BS SA SQG BS SA SQG

Mean 49.4% 0.1% 119.5% 10.1% 7.5% 98.8%

Q1 20.9% 0.0% 45.2% 4.0% 2.8% 39.8%
Median 50.1% 0.0% 130.2% 8.3% 5.7% 101.5%
Q3 67.2% 0.0% 162.6% 12.7% 9.2% 143.0%

Low Outliers 0% 0% 0% 0% 0% 0%
High Outliers 0% 10% 0% 10% 10% 0%

Table B.1: Multi-crew accuracy gap summary statistics for direct solution vs. post-
processing for two crews on Anaheim with 20 broken links, ten random instances

Statistic
Direct Solution Post-process

BS SA SQG BS SA SQG

Mean 42.8% 0.9% 93.1% 8.5% 7.8% 87.0%

Q1 21.2% 0.0% 42.5% 0.2% 2.4% 33.5%
Median 42.9% 0.0% 116.3% 6.1% 5.4% 91.5%
Q3 57.1% 0.0% 138.6% 14.4% 14.4% 133.2%

Low Outliers 0% 0% 0% 0% 0% 0%
High Outliers 0% 20% 0% 0% 0% 0%

Table B.2: Multi-crew accuracy gap summary statistics for direct solution vs. post-
processing for three crews on Anaheim with 20 broken links, ten random instances

117

Statistic
Direct Solution Post-process

BS SA SQG BS SA SQG

Mean 36.6% 0.1% 119.5% 10.1% 7.5% 98.8%

Q1 20.9% 0.0% 46.2% 0.9% 1.7% 24.2%
Median 35.4% 0.0% 106.1% 6.6% 8.4% 74.2%
Q3 54.9% 0.1% 148.5% 13.8% 12.0% 121.8%

Low Outliers 0% 0% 0% 0% 0% 0%
High Outliers 0% 10% 0% 10% 0% 0%

Table B.3: Multi-crew accuracy gap summary statistics for direct solution vs. post-
processing for four crews on Anaheim with 20 broken links, ten random instances

B.2 Multi-crew Simulated Annealing Summary Statistics

The below tables correspond to Figure 3.8. Accuracy gap summary statistics are not

shown for simulated annealing because the SA heuristic uses the LAFO/LASR and

IF solutions in selecting its starting point. While it is structurally possible for one of

the other tested methods (SQG, LZG, SPT) to obtain a lower objective value than

the SA heuristic, this scenario was not observed in any of the test instances.

Statistic
Number of Broken Links

10 20 30 40 50 60 70 80 90 100

Mean 0.01 0.06 0.31 0.78 1.84 3.13 4.15 7.11 10.44 13.11

Q1 0.00 0.04 0.23 0.60 1.37 2.66 3.35 5.47 9.65 11.98
Median 0.01 0.05 0.29 0.75 1.62 3.00 3.81 6.36 10.11 12.97
Q3 0.01 0.07 0.38 0.84 2.10 3.81 4.14 7.23 11.39 14.31

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 0% 0% 10% 10% 0% 10% 10% 0% 0%

Table B.4: Multi-crew SA run time (hours) summary statistics on Anaheim; ten
random instances each for 10–80 broken links; five random instances for 90, 100
broken links

118

Statistic
Number of Broken Links

10 20 30 40 50 60 70 80 90 100

Mean 0.00 0.04 0.16 0.46 0.90 1.63 3.22 4.54 9.50 10.16

Q1 0.00 0.03 0.13 0.38 0.77 1.26 2.97 3.68 8.14 8.92
Median 0.00 0.04 0.16 0.44 0.87 1.56 3.32 4.60 10.18 10.11
Q3 0.00 0.05 0.20 0.55 0.97 2.01 3.65 5.41 10.53 11.43

Low Outliers 0% 0% 0% 0% 0% 0% 10% 0% 0% 0%
High Outliers 0% 0% 0% 0% 10% 0% 0% 0% 0% 0%

Table B.5: Multi-crew SA run time (hours) summary statistics on BMC; ten random
instances each for 10–80 broken links; five random instances for 90, 100 broken links

B.3 Multi-crew LAFO/LASR Summary Statistics

The below tables correspond to Figure 3.8.

Statistic
Number of Broken Links

10 20 30 40 50 60 70 80 90 100

Mean 0.13 0.44 1.23 2.00 9.52 5.02 12.15 8.80 15.36 13.48

Q1 0.09 0.40 0.94 1.79 2.92 4.46 4.93 7.11 10.28 11.15
Median 0.12 0.43 1.21 2.00 3.31 4.83 5.84 7.65 14.43 11.90
Q3 0.15 0.49 1.46 2.15 9.33 5.47 8.98 8.82 20.91 16.62

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 0% 0% 0% 20% 0% 10% 10% 0% 0%

Table B.6: Multi-crew LAFO/LASR run time (minutes) summary statistics on Ana-
heim; ten random instances each for 10–80 broken links; five random instances for 90,
100 broken links

119

Statistic
Number of Broken Links

10 20 30 40 50 60 70 80 90 100

Mean 0.07 0.33 0.74 1.43 2.37 3.35 5.82 6.66 10.70 11.21

Q1 0.07 0.29 0.72 1.31 2.22 3.07 4.54 6.18 9.91 10.84
Median 0.07 0.31 0.73 1.43 2.28 3.24 4.90 6.48 10.32 11.29
Q3 0.08 0.38 0.76 1.53 2.55 3.58 5.53 7.04 11.69 11.54

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 0% 0% 0% 0% 0% 10% 0% 0% 0%

Table B.7: Multi-crew LAFO/LASR run time (minutes) summary statistics on BMC;
ten random instances each for 10–80 broken links; five random instances for 90, 100
broken links

Statistic
Number of Broken Links

10 20 30 40 50 60 70 80 90 100

Mean 10% 12% 16% 23% 13% 28% 23% 33% 23% 37%

Q1 1% 2% 5% 9% 7% 18% 12% 20% 19% 22%
Median 7% 11% 11% 18% 13% 28% 22% 35% 22% 35%
Q3 15% 18% 31% 33% 17% 35% 33% 46% 27% 54%

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 0% 0% 0% 10% 0% 0% 0% 0% 0%

Table B.8: Multi-crew LAFO/LASR accuracy gap summary statistics on Anaheim;
ten random instances each for 10–80 broken links; five random instances for 90, 100
broken links

Statistic
Number of Broken Links

10 20 30 40 50 60 70 80 90 100

Mean 9% 12% 12% 24% 24% 38% 27% 34% 32% 34%

Q1 0% 2% 5% 11% 14% 25% 24% 23% 22% 27%
Median 3% 11% 8% 25% 21% 28% 27% 32% 32% 30%
Q3 18% 22% 13% 32% 33% 47% 32% 42% 42% 43%

Low Outliers 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High Outliers 0% 0% 10% 0% 0% 10% 0% 0% 0% 0%

Table B.9: Multi-crew LAFO/LASR accuracy gap summary statistics on BMC; ten
random instances each for 10–80 broken links; five random instances for 90, 100 broken
links

120

Bibliography

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows.

Prentice Hall, Englewood Cliffs, NJ, 1993.

Edward J. Anderson, Celia A. Glass, and Chris N. Potts. Machine Scheduling.

In E. Aarts and J. Lenstra, editors, Local Search in Combinatorial Optimization,

chapter 2, pages 361–414. Princeton University Press, 2003.

Hillel Bar-Gera. Origin-based algorithm for the traffic assignment problem.

Transportation Science, 36(4):398–417, 2002.

Hillel Bar-Gera. Traffic assignment by paired alternative segments. Transporta-

tion Research Part B: Methodological, 44(8–9):1022–1046, 2010.

Martin Beckmann, C. B. McGuire, and Christopher B. Winsten. Studies in the

Economics of Transportation. Yale University Press, New Haven, CT, 1956.

Paolo Bocchini and Dan M. Frangopol. Restoration of bridge networks after an

earthquake: Multicriteria intervention optimization. Earthquake Spectra, 28(2):

427–455, 2012.

Ihor O. Bohachevsky, Mark E. Johnson, and Myron L. Stein. Generalized

simulated annealing for function optimization. Technometrics, 28(3):209–217,

1986.

Stephen D. Boyles. TAP-B Implementation. Accessed November 19, 2022,

https://github.com/spartalab/tap-b/, 2022.

Stephen D. Boyles, Nicholas E. Lownes, and Avinash Unnikrishnan. Transporta-

tion Network Analysis. 0.91 vol. 1, 2023.

121

https://github.com/spartalab/tap-b/

Michel Bruneau, Stephanie E. Chang, Ronald T. Eguchi, George C. Lee, Thomas D.

O’Rourke, Andrei M. Reinhorn, Masanobu Shinozuka, Kathleen Tierney, William A.

Wallace, and Detlof von Winterfeldt. A framework to quantitatively assess and

enhance the seismic resilience of communities. Earthquake Spectra, 19(4):733–

752, 2003.

James Bruno, Edward G. Coffman Jr., and Ravi Sethi. Scheduling independent

tasks to reduce mean finishing time. Communications of the ACM, 17(7):382–

387, 1974.

Lichun Chen and Elise Miller-Hooks. Resilience: An indicator of recovery ca-

pability in intermodal freight transport. Transportation Science, 46(1):109–123,

2012.

Yanan Cheng and Zilin Zhang. A resilience-based routing planning and schedul-

ing model for post-disaster transportation network recovery with multiple repair

teams. In 4th International Conference on System Reliability and Safety Engi-

neering, pages 97–103. IEEE, 2022.

Robert B. Dial. A path-based user-equilibrium traffic assignment algorithm

that obviates path storage and enumeration. Transportation Research Part B,

40(10):917–936, 2006.

Michael Florian, Isabelle Constantin, and Dan Florian. A new look at projected

gradient method for equilibrium assignment. Transportation Research Record,

2090(1):10–16, 2009.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming.

Naval Research Logistics Quarterly, 3(1-2):95–110, 1956.

Alberto Franzin and Thomas Stützle. Revisiting simulated annealing: A component-

based analysis. Computers & Operations Research, 104:191–206, 2019.

122

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, 1990.

Can Gokalp and Abigail J. Crocker. Recovery sequencing repository. Accessed

March 4, 2024, https://github.com/ajcrocker14/optimal recovery sequencing,

2024.

Can Gokalp, Priyadarshan N. Patil, and Stephen D. Boyles. Post-disaster re-

covery sequencing strategy for road networks. Transportation Research Part B,

153:228–245, 2021.

R. L. Graham. Bounds on multiprocessing timing anomalies. Journal of Applied

Mathematics, 17(2):416–429, 1969.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A.H.G. Rinnooy Kan. Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey.

Annals of Discrete Mathematics, 5:287–326, 1979.

Jürgen Hackle, Bryan T. Adey, and Nam Lethanh. Determination of near-

optimal restoration programs for transportation networks following natural haz-

ard events using simulated annealing. Computer-Aided Civil and Infrastructure

Engineering, 33, 2018.

R. Jayakrishnan, Wei T. Tsai, Joseph N. Prashker, and Subodh Rajadhyaksha.

A faster path-based algorithm for traffic assignment. Technical report, Univer-

sity of California, Transportation Center, 1994.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.

Miler, James W. Thatcher, and John D. Bohlinger, editors, Complexity of Com-

puter Computations, pages 85–103. Plenum Press, New York, 1972.

Tsuyoshi Kawaguchi and Seiki Kyan. Worst case bound of an LRF schedule

for the mean weighted flow-time problem. SIAM Journal on Computing, 15(4):

1119–1129, 1986.

123

https://github.com/ajcrocker14/ optimal_recovery_sequencing

Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.

J. K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

Neale F. Lunderville. Irene recovery report: A stronger future. In: A Repre-

sentative To the Governor of Vermont, State of Vermont, 2012.

Merriam-Webster. Resilience. In Merriam-Webster.com dictionary. Accessed

February 6, 2024, https://www.merriam-webster.com/dictionary/resilience.

Eric Merschman, Mehrnaz Doustmohammadi, Abdullahi M. Salman, and Michael

Anderson. Postdisaster decision framework for bridge repair prioritization to im-

prove road network resilience. Transportation Research Record, 2674(3):81–92,

2020.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-

gusta H. Teller, and Edward Teller. Equation of state calculations by fast

computing machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

Maria Mitradjieva and Per Olov Lindberg. The stiff is moving—conjugate direc-

tion frank-wolfe methods with applications to traffic assignment. Transportation

Science, 47(2):280–293, 2013.

ManWo Ng and Paul Schonfeld. Sequencing interdependent disruption recovery

projects: exact solution via network flow reformulation. Tranportation Research

Part D, 115:103565, 2023.

Michael Patriksson. The Traffic Assignment Problem: Models and Methods.

VSP, Utrecht, The Netherlands, 1994.

Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,

New York, fifth edition, 2016.

124

https://www.merriam-webster.com/dictionary/resilience

Warren B. Powell and Yosef Sheffi. The convergence of equilibrium algorithms

with hpredetermined step sizes. Transportation Science, 16(1):45–55, 1982.

David Rey and Hillel Bar-Gera. Long-term scheduling for road network disaster

recovery. International Journal of Disaster Risk Reduction, 42:101353, 2020.

David Rey, Hillel Bar-Gera, Vinayak V. Dixit, and S. Travis Waller. A branch-

and-price algorithm for the bilevel network maintenance scheduling problem.

Transportation Science, 53(5):1455–1478, 2019.

Sartaj K. Sahni. Algorithms for scheduling independent tasks. Journal of the

ACM, 23(1):116–127, 1976.

Martin Skutella and Gerhard J. Woeginger. A PTAS for minimizing the to-

tal weighted completion time on identical parallel machines. Mathematics of

Operations Research, 25(1):63–75, 2000.

Wayne E. Smith. Various optimizers for single-stage production. Naval Re-

search and Logistics Quarterly, 3:59–66, 1956.

Harold Szu and Ralph Hartley. Fast simulated annealing. Physics Letters A,

122(3):157–162, 1987.

Transportation Networks for Research Core Team. Transportation Networks

for Research. Accessed November 19, 2022, https://github.com/bstabler/

TransportationNetworks, 2022.

Eric D. Vugrin, Mark A. Turnquist, and Nathanael J. K. Brown. Optimal recov-

ery sequencing for enhanced resilience and service restoration in transportation

networks. International Journal of Critical Infrastructures, 10(3/4):218–246,

2014.

John Glen Wardrop. Road Paper. Some theoretical aspects of road traffic

research. Proceedings of the Institution of Civil Engineers, 1(3):325–362, 1952.

125

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks

Jun Xie and Chi Xie. An improved tapas algorithm for the traffic assignment

problem. In 17th International IEEE Conference on Intelligent Transportation

Systems (ITSC), pages 2336–2341, 2014.

Qing Ye and Satish V. Ukkusuri. Resilience as an objective in the optimal

reconstruction sequence for transportation networks. Journal of Transportation

Safety & Security, 7(1):91–105, 2015.

Ning Zhang, Alice Alipour, and Laura Coronel. Application of novel recovery

techniques to enhance the resilience of transportation networks. Transportation

Research Record, 2672(1):138–147, 2018a.

Weili Zhang, NaiyuWang, and Charles Nicholson. Resilience-based post-disaster

recovery strategies for road-bridge networks. Structure and Infrastructure Engi-

neering, 13(11):1404–1413, 2017.

Weili Zhang, NaiyuWang, Charles Nicholson, and Mohammad Hadikhan Tehrani.

A stage-wise decision framework for transportation network resilience planning.

arXiv preprint, 2018b.

Yaoming Zhou, Junwei Wang, and Hai Yang. Resilience of transportation sys-

tems: concepts and comprehensive review. IEEE Transactions on Intelligent

Transportation Systems, 20(12):4262–4276, 2019.

W.L. Zhuang, Z.Y. Liu, and J.S. Jiang. Earthquake-induced damage analysis

of highway bridges in Wenchuan earthquake and countermeasures. Chinese

Journal of Rock Mechanics and Engineering, 28:1377–1387, 2009.

126

Vita

Abigail June Crocker is originally from Houston, Texas, and graduated from

The John Cooper School in The Woodlands, Texas. She matriculated from the United

States Military Academy in 2014 with a Bachelors of Science in Civil Engineering with

Honors. In 2018, she earned a Masters of Science in Engineering Management from

Missouri University of Science of Technology. As part of the U.S. Army Advanced

Civil Schooling program, she entered The Graduate School at the University of Texas

at Austin in August 2021, and joined Dr. Stephen Boyles’ research group, SPARTA

Lab, in June 2022.

Email Address: ajcrocker14@gmail.com

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

127

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Resilience and Recovery
	Framework and Assumptions
	Overview and Contributions

	Chapter 2: Disaster Recovery Sequencing
	Introduction
	Literature Review
	Problem Formulation
	Alternate Formulation and Complexity
	Toy Examples
	Constant Link Performance Function
	Linear Link Performance Function

	Solution Methods
	Greedy Methods
	Bidirectional Beam Search Heuristic
	Simulated Annealing Heuristic

	Obtaining Lower Bounds
	Comparison of Methods
	Conclusions

	Chapter 3: Multi-crew Disaster Recovery Scheduling
	Introduction
	Literature Review
	Problem Formulation
	NP-Hardness
	Solution Methods
	Heuristic Methods from Machine Scheduling
	Adapting Existing Sequencing Methods
	Novel Simulated Annealing Neighborhoods
	Decomposition Methods

	Results
	Conclusions

	Chapter 4: Conclusion
	Summary and Implications
	Future Work

	Appendix A: Single-crew Summary Statistics
	Simulated Annealing Run Time Summary Statistics
	Simulated Annealing Accuracy Gap Summary Statistics
	Comparison Summary Statistics for 48 broken links
	Varied Demand Multiples Summary Statistics
	Anaheim – Run Time Comparisons
	Anaheim – Accuracy Gap Comparisons
	Berlin-Mitte-Center – Run Time Comparisons
	Berlin-Mitte-Center – Accuracy Gap Comparisons

	Appendix B: Multi-crew Summary Statistics
	Direct Solution vs Post-processing Summary Statistics
	Multi-crew Simulated Annealing Summary Statistics
	Multi-crew LAFO/LASR Summary Statistics

	Bibliography
	Vita

