
Copyright

by

Can Gokalp

2021



The Dissertation Committee for Can Gokalp
certifies that this is the approved version of the following dissertation:

Three Nonlinear Network Flow Problems

Committee:

Stephen D. Boyles, Supervisor

Avinash Unnikrishnan

Erhan Kutanoglu

John Hasenbein



Three Nonlinear Network Flow Problems

by

Can Gokalp

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2021



To mom, great-aunt & great-uncle



Acknowledgments

I would like to extend my gratitude and thanks to many people that have

helped me in many ways – academically, socially, emotionally, and financially

– with their guidance and support throughout my doctoral journey.

Firstly, many thanks to my advisor Steve Boyles! He has been a teacher, an

advisor, and a friend. His expertise in the field, guidance, and edits on our

work has been very valuable in developing this thesis. Without his inputs,

this thesis wouldn’t have been possible. I want to mention that his calm and

encouraging approach helped me navigate the times I got stuck and kept me

believing that I can do it. Besides academics, I would also like to thank him

for creating a healthy research environment by putting together a research

group that is very social and active, and also for sharing valuable/fun off-topic

knowledge and life hacks!

Thanks to all of our faculty for their teaching. Special thanks to my committee

members for their help, contributions, and guidance. Thanks to Erhan Ku-

tanoglu for teaching me Integer Programming and having an open office door

that is always welcoming. Thanks to John Hasenbein for teaching Stochastic

Processes and Markov Decision Processes. I am going to miss his style of

teaching. The most fun and enjoyable classes I have taken in UT! Thanks to

Avinash Unnikrishnan for his comments and guidance on my thesis. Thanks

to Grani Hanasusanto for advising me for a year.

I can not express how grateful I am for my family; my mom (Surreyya Bayrak)

v



my sister (Sila Gokalp), dad (Cengiz Gokalp), great-aunt (Mucella Yildiz

Erkal), great-uncle (Ural Erkal), and uncle (Huseyin Bayrak). Special thanks

to my mom. She was my first teacher through the 3rd grade. After that, we

still went to the school every day together till I graduated high school - she was

teaching elementary at the same school (Ted Istanbul Koleji). I appreciate all

the hard work she put in to make my doctoral journey possible.

I would like to thank all my friends both in Turkey and in the states. Their

friendships made me grow in many different directions. It would be infea-

sible to give a shoutout to all my friends here, but I would like to mention

friends most relevant for their support and friendship during my studies at

UT. Thanks to my long-time friends from Turkey – Oguz Zagra, Alper Aydin,

Melis Aksoy, Ezgi Korba, Alican Ates, Dogakan Toka, Guchan Ozbilgin, and

Ayhan Aydogan – for kept checking in with me and not avoiding their jokes

about me being in school forever. Thanks to Kory Harb, Andrew Daw, Daniel

Schra, and Mark Hettig for including me in their super close friend group, cre-

ating great memories during my Master’s degree at The University of Florida.

Thanks to Will Schievelbein, Dan Kinn, and Claire Herlin for their friendship

that started on my first day at UT. It was a blast to work on classes and

projects together while also exploring and enjoying Austin.

Lastly, I would like to thank National Science Foundation (NSF) for support-

ing the research work presented in this thesis under grant numbers; CMMI-

121562109, CMMI-1254921, CMMI-1562291.

vi



Three Nonlinear Network Flow Problems

Publication No.

Can Gokalp, Ph.D.

The University of Texas at Austin, 2021

Supervisor: Stephen D. Boyles

This dissertation is concerned with network flow problems for which some of

the conventional assumptions are in violation. These violations in the assump-

tions disrupt the exploitable structure that exists in traditional cases. As a

result, the resulting problems are then not amenable to the efficient solution

methods developed for the traditional cases. They still allow convex program-

ming methods. However, the networks considered often represent cities and

states that can be large in size, and therefore there is a need to investigate

more practically scalable approaches for the considered applications.

In particular, in each chapter, we study a different application, each challeng-

ing a different conventional assumption. We then present solution methods

that are more scalable compared to the current approaches for the resulting

problems. Described methods we develop rely on; characterizing the opti-

mal solution and optimality conditions, analyzing solution sensitivities, and

exploiting the remaining network structure.

The first problem is concerned with reliability in minimum cost flow problems.

In many applications, especially logistics, travel time variation often has crit-

ical implications. As a result, it might be more preferable to use a route with

vii



less variation but with a higher mean cost depending on the risk averseness of

the decision-maker. One way to model this is by considering a weighted com-

bination of the mean and standard deviation of the flow costs. Even though

this choice has modeling benefits, the resulting optimization problem has an

objective function that is non-separable by arcs and thus harder to solve than

the separable case. We first prove that the solution for this problem coincides

with the solution for a particular separable problem. We then leverage this

result by using root-finding methods to find that particular separable prob-

lem. Essentially, this approach solves the original non-separable problem by

solving many easier separable problems. We also discuss how the results could

be extended for a more general case of non-separable convex problems. Our

experiments show that the proposed methods provide significant advantages

over solving the non-separable directly by using an off-the-shelf solver.

We then study how to solve for a system optimal assignment for a particular

parking model. Identifying system optimal assignment is crucial as it can be

a guide for the transportation planners for implementing policies/strategies

that can reduce the congestion in the system. The parking model considered,

captures the inherent circling for parking behavior of the users. As a result,

it leads to nonlinearities in the flow conservation equations. To solve for a

system optimal assignment, we first formulate the optimization problem. By

representing decision variables in splitting fractions space, we get linear con-

straints. However, doing so shifts the complexity to the objective, resulting

in a non-convex function. Nevertheless, we propose a descent approach. To

find the required derivative information, we provide sensitivity analysis for

the cyclic network. We showcase the value of identifying a system optimal

assignment on a small toy network, where the planner can adjust the parking

viii



prices to derive the user equilibrium towards the system optimal and therefore

reducing the total system cost.

In the last chapter, we study a repair sequencing problem for road networks

that are impaired due to natural disasters. Our focus here is on long-term re-

covery disaster relief. We investigate how to identify a (sequential) link repair

sequence that minimizes total travel time over the repair horizon, given that

at each repair stage road traffic distributes according to the principle of user

equilibrium. Unlike the problems in the single machine scheduling literature,

the project weights, in this case, are unknown a priori due to the nonlinear

congestion effects coming from traffic equilibrium. We first derive an analogue

of Bellman’s optimality principle, allowing us to solve the problem using meth-

ods of dynamic programming. We then develop a bidirectional search heuristic

with customized pruning and branching strategies that exploit specific prop-

erties of traffic assignment. Our experiments show that our method is scalable

and performs well even on networks involving thousands of links.

ix



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

Chapter 2. Mean-Standard Deviation Model for Minimum Cost
Flow Problem 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Relevance to the MVMCF . . . . . . . . . . . . . . . . . 13

2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Finding an initial λ . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Newton’s algorithm . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Generalization to non-separable parametric convex cost prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Computational Experiments . . . . . . . . . . . . . . . . . . . 29
2.5.1 Benchmark networks . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Comparison of algorithms . . . . . . . . . . . . . . . . . 31
2.5.3 Sensitivity to reliability . . . . . . . . . . . . . . . . . . 37

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3. System Optimal Parking Search 44
3.1 Parking Search Model . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 System optimal formulation . . . . . . . . . . . . . . . . . . . 53
3.3 Sensitivity of parking flows . . . . . . . . . . . . . . . . . . . . 56
3.4 System Optimal Assignment Algorithm . . . . . . . . . . . . . 62
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

x



Chapter 4. Post-Disaster Recovery Sequencing Strategy for Road
Networks 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Overview of solution method . . . . . . . . . . . . . . . . . . . 80
4.4 Bi-directional search . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Heuristic Function . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Bounds on the cost connecting states . . . . . . . . . . . 88
4.5.2 Bounds on the total cost from each state . . . . . . . . . 92

4.6 Other Speedup Techniques . . . . . . . . . . . . . . . . . . . . 93
4.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 Numerical experiments . . . . . . . . . . . . . . . . . . 99
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 5. Conclusion 112

Bibliography 115

xi



List of Tables

2.1 Initialization procedure benefits - on a network with 4096 nodes
and average degree of 64. . . . . . . . . . . . . . . . . . . . . . 20

2.2 Comparison on NETGEN-8 instances. . . . . . . . . . . . . . 34
2.3 Comparison on NETGEN-SR instances. . . . . . . . . . . . . 34
2.4 Comparison on NETGEN-LO-8 instances. . . . . . . . . . . . 35
2.5 Comparison on NETGEN-LO-SR instances. . . . . . . . . . . 36
2.6 Time elapsed to achieve gap levels. . . . . . . . . . . . . . . . 36

4.1 Repair duration sampling parameters. . . . . . . . . . . . . . . 99

xii



List of Figures

2.1 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 NR-BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Comparison of the algorithms on NETGEN-8 families (logarith-

mic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Comparison of the algorithms on NETGEN-SR families (loga-

rithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Comparison of the algorithms on NETGEN-LO-8 families (log-

arithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Comparison of the algorithms on NETGEN-LO-SR families (log-

arithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Convergence behavior. . . . . . . . . . . . . . . . . . . . . . . 35
2.9 NETGEN-8 with n = 210. . . . . . . . . . . . . . . . . . . . . 38
2.10 Criteria trade-off. . . . . . . . . . . . . . . . . . . . . . . . . 39
2.11 Sensivity to λ on NETGEN-8 instances. . . . . . . . . . . . . 40
2.12 Sensivity to λ on NETGEN-SR instances. . . . . . . . . . . . 40
2.13 Sensivity to λ on NETGEN-LO-8 instances. . . . . . . . . . . 41
2.14 Sensivity to λ on NETGEN-LO-SR instances. . . . . . . . . . 41

3.1 Mutual Dependency. . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Transformed Network - Figure taken from [19]. . . . . . . . . 48
3.3 The LoadNetwork algorithm introduced in Boyles et al. [19]. 52
3.4 Network Splitting Proportions. . . . . . . . . . . . . . . . . . 53
3.5 Network Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Small network for demonstration. . . . . . . . . . . . . . . . . 58
3.7 User equilibrium link flows. . . . . . . . . . . . . . . . . . . . 65
3.8 System optimum link flows. . . . . . . . . . . . . . . . . . . . 65

4.1 The shaded area represents the total delay over the repair horizon. 75
4.2 Toy Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Demonstrating separability of the formulation by subsequence;

TSTT3 and the optimal ordering of links c and d is independent
of the order of a and b. . . . . . . . . . . . . . . . . . . . . . 80

4.4 Dividing the cost of a solution into a head (left section; repre-
sented by state s); a middle section (yet to be determined); and
a tail (right section; represented by state s′) . . . . . . . . . . 90

4.5 Comparison on Sioux Falls, flow weighted sampling. . . . . . 100
4.6 Comparison on Anaheim, flow-weighted sampling. . . . . . . 101
4.7 Comparison on Sioux Falls, location based sampling. . . . . . 102

xiii



4.8 Comparison on Anaheim, location based sampling. . . . . . . 103
4.9 Comparison on Sioux Falls with increased demand, flow weighted

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.10 Comparison on Anaheim with increased demand, flow-weighted

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11 Comparison on Sioux Falls with increased demand, location

based sampling. . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.12 Comparison on Anaheim with increased demand, location based

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiv



Chapter 1

Introduction

Network flow problems are widely used to study transportation and other in-

frastructure and organizational systems. Classical network optimization prob-

lems have special structure which allows for efficient solutions even on very

large networks. However, particular applications may modify the objective

function or constraints in ways that disrupt these special structures, or embed

network optimization as a subproblem in a larger optimization problem. In all

of these cases, the classical methods fail. Nevertheless, the underlying network

structure remains, and it is often still possible to design specialized algorithms

which exploit it, even if such methods are more involved or less efficient than

in the classical case.

This dissertation explores three such problems: (1) a minimum cost flow prob-

lem with stochastic link costs, where the objective is to minimize a weighted

sum of the mean and standard deviation of the flow; (2) a minimum cost flow

problem with nonlinear flow conservation constraints; and (3) a sequential re-

pair problem on a network, where the flow attains an equilibrium state at each

repair stage.

The first problem, discussed in Chapter 2, is motivated by the importance

of reliability and risk management in many logistics applications. Link costs

are subject to uncertainty due to weather, traffic congestion, and many other

1



reasons. We propose to represent risk aversion by finding a flow which mini-

mizes a weighted sum of mean cost, and standard deviation of the flow cost.

In contrast to the mean cost, the standard deviation of the flow cost involves

a square root which cannot be separated by link. Classical minimum-cost flow

algorithms rely crucially on this separability assumption.

We will show that this mean-standard deviation problem is closely related to

the mean-variance problem (minimizing a weighted sum of mean and variance),

whose objective function is separable by link. In particular, we show that

optimal solutions to the mean-standard deviation problem are also optimal

to the mean-variance problem, possibly with a different weighting between

mean and variance. This allows us to solve the nonseparable mean-standard

deviation problem by solving a sequence of easier, separable mean-variance

problems.

We provide three algorithms of this type. The first is based on bisection, the

second a Newton search, and the third is a hybrid of the two. The bisection

method is simplest. The Newton method requires fewer iterations to converge,

but requires solving a related sensitivity problem to calculate derivatives. The

hybrid method is essentially the Newton method with a bisection “backstop” in

case of pathological behavior. Our experiments show significant computational

advantages over off-the-shelf solvers. We also explore generalizations of this

approach to other non-separable parametric minimum cost flow problems.

The second problem, discussed in Chapter 3, is motivated by drivers search-

ing for parking on urban road networks. This phenomenon contributes signifi-

cantly to traffic congestion in certain neighborhods, and parking management

is receiving increasing attention in urban planning. Prior research has de-

veloped a “user equilibrium” model of parking search: parking availability is

2



stochastic, drivers search for parking where it is likely to be found, but the like-

lihood of finding parking in any particular location depends on the searching

patterns by everyone else. The resulting game-theoretic model yields equilib-

rium solutions to this mutual dependency. This dissertation focuses on the

“system optimal” problem in this system, identifying the flows which would

minimize total cost. Such flows are of interest to planners in designing park-

ing policies (such as on- and off-street parking prices) that can shift the user

equilibrium towards a lower-cost state.

The main complication in this problem is that the flow conservation constraints

become nonlinear, because they reflect the cycling dynamics which occur at

parking lots or at on-street spaces. As a result, even identifying the flows

given a set of parking strategies is difficult, let alone identifying improving

directions for reducing total cost. We formulate the parking strategies in terms

of “splitting proportions” at each node, then derive the Jacobian of the flows

on each link with respect to these proportions. We then calculate the gradient

of the total cost, a propose a descent algorithm. Due to the nonlinearities in

the constraints, the objective function is not convex in the splitting proportions

(and indeed, even the feasible region may not be a convex set). We therefore

content ourselves with identifying local optima, and in particular show how to

improve upon a given initial solution (perhaps the user equilibrium obtaining

in the field).

The third problem, discussed in Chapter 4, is a network repair problem,

motivated by post-disaster scenarios where links must be reconstructed. We

specifically investigate the scheduling problem of determining a sequence to

rebuild damaged links in a way that minimizes total user cost over the repair

horizon. We assume that repairs must proceed sequentially (and not in paral-

3



lel), and that at each stage the network flows reach a user equilibrium state.

Unlike classical scheduling problems, the benefit of repairing a particular link

depends heavily on where it lies in the sequence, because of dependencies be-

tween network components, as when damaged links are in series or in parallel.

Nevertheless, we derive an analogue of Bellman’s optimality principle, showing

that any subsequence of an optimal repair sequence must be “locally optimal”

in the sense that it minimizes cost no matter how the links in the other parts

of the sequence are permuted.

We develop a bidirectional search heuristic exploiting this subsequence op-

timality condition, reformulating the problem using dynamic programming.

To restrict the number of states which must be explored, we develop a large

number of problem-specific branching and pruning rules. The most signifi-

cant of these rules uses heuristic estimates of the optimal cost for repairing

subsets of links, based on the observation that diminishing marginal returns

are typically seen (repairing a link earlier in the sequence improves network

conditions more than when the network is nearly rebuilt). We show that this

algorithm is scalable (computationally feasible on networks with thousands of

links), and performs favorably compared to simpler heuristics which ignore the

dependencies between network links.

Finally, a brief conclusions chapter summarizes the main contributions and

future directions for each problem.

4



Chapter 2

Mean-Standard Deviation Model for

Minimum Cost Flow Problem

2.1 Introduction

The minimum cost flow (MCF) problem is to find the flow in a network that

minimizes total cost while satisfying node demands and arc capacities. Many

other flow and circulation problems are special cases of MCF, including the

shortest path and maximum flow problems. Decision-making problems in a

variety of industries — transportation, manufacturing, medicine, health care,

energy, and defense, to name a few — can be formulated as MCF problems. In

the traditional MCF formulation, the arc costs are assumed to be deterministic.

This setting is well studied and several families of efficient algorithms have been

developed for it [1].

When the arc costs are stochastic, the decision maker is often concerned with

solution reliability in addition to minimizing the expected cost. Results in

the travel choice literature show that travel time reliability is of comparable

importance as mean travel costs [34, 33, 32, 25], motivating the incorporation

of reliability-based objectives into specific network optimization problems with

transportation applications. There is a rich body of literature on stochastic

shortest path variants using different reliability specifications — minimizing

variance or standard deviation in addition to expected travel times [104, 90,

5



94, 45, 92, 119, 117], maximizing probability of arrival or disutility associated

with a pre-specified arrival time [70, 71, 29, 30, 73, 75, 23, 95, 108], percentiles

[105, 108], risk aversion [76, 103, 111], and so forth. Reliability and risk related

objectives have also been incorporated into traffic assignment models [22, 78,

110, 74, 77, 101, 91, 81].

There has been relatively less research on incorporating reliability objectives

into other traditional minimum cost flow and max flow network problems.

Boyles and Waller [20] study a specific instance of the convex MCF problem,

with independent uncertain arc costs, where the aim is to minimize linear

combination of the mean and the variance of the total flow costs - termed

as the mean-variance minimum cost flow problem (MVMCF). In their model,

the decision maker chooses a weight parameter indicating the relative impor-

tance of the mean and variance. They define arc marginal costs and use them

to modify the generic cycle canceling algorithm. The objective is non-linear,

but separable by arcs. This separability property is critical for their algo-

rithm. The general case of MCF problems with costs that are strictly convex,

differentiable and separable by arc is studied in [72]. They derive optimal-

ity conditions and provide a primal-dual algorithm. One other approach is

to simply transform the problem to the traditional linear MCF problem by

using piecewise linearization of the arc cost functions and use existing linear

MCF solution methods [67, 48]. More recently, Végh [98] describes a strongly

polynomial algorithm. In this chapter, we study the MCF problem with inde-

pendent uncertain arc costs where the objective is to minimize the mean and

the standard deviation of the total flow cost. While the resulting objective

function is still convex, it is not separable by arc. Therefore, the approaches

to the convex separable version of the problem mentioned above are are not

6



applicable. This type of convex nonseparable flow problems can still be solved

in polynomial, although not strongly polynomial – the best running time re-

ported for such problems O(m3L), where L is the total length of the input

coefficients and m is the number of arcs [43]. In this chapter, we have a

different approach. We prove that the solution to the mean-standard devia-

tion minimum cost flow (MSDMCF) problem can be obtained by solving the

MVMCF problem for an appropriate choice of weight parameter. We provide

three root-finding-based algorithms (bisection, Newton-Raphson, and hybrid)

to determine the appropriate weight parameter. A network flow sensitivity

analysis procedure is developed to determine the derivatives for the Newton-

Raphson and hybrid procedures. The MSDMCF problem is a special case

of the more generalized non-separable parametric MCF (GNPMCF) problem

where the objective consists of a linear additive function of flow and a weighted

non-linear, non-separable function of flow. Our algorithms can be extended to

the GNPMCF problem as long as the non-additive component of the objective

function is differentiable, monotonically increasing, and convex function of an

additive and differentiable criterion.

Other researchers have applied robust optimization approaches to account for

uncertainties in network parameters such as demands [3], costs and capacity

[13], and network structure [12]. In the robust optimization paradigm, the un-

certain parameters are assumed to vary in a pre-specified uncertainty set. The

aim is to arrive at the best solution which is feasible for all possible realization

of the uncertain parameters from their pre-specified sets. The shape of the

uncertainty set indicates the decision makers risk preference and affects the

tractability of the model [9]. Birge [14] and Glockner [39] apply a multi-stage

stochastic programming approach to model uncertainties in network parame-

7



ters in a stochastic and dynamic network flow setting.

Stochastic programming approaches require knowledge of the probability dis-

tribution of the uncertain parameters. In contrast, we assume that the decision

maker knows the mean and standard deviation of arc costs and is interested

in minimizing the mean and standard deviation of total network flow costs.

We do not focus on worst-case scenarios which can lead to overly conservative

solutions.

There has been a separate body of work focusing on the impact of node and

arc disruptions on the ability of a network to sustain a specific amount of

flow [58, 59, 61]. Lin et al. [60] study the stochastic maximum flow problem

where the nodes and arcs have uncertain discrete capacities and develop an

algorithm to compute the system reliability defined as the probability that

the maximum flow is greater than the given demand. Lin [62] focuses on

the multi-commodity variant of [60] and defines system reliability objective

as the probability of upper bound of system capacity equals a given pattern

subject to budget constraints on flows. Along similar lines, Lin [63] adopts a

throughput style definition of system reliability as the probability of sending

a pre-specified amount of flow through the network under a cost constraint.

Kuipers [52] formulate two stochastic maximum flow models: (i) maximum

flow in stochastic networks (MFSN) - where the bandwidth or capacity has

a log-concave probability distribution, (ii) maximum delay constrained flow

problem (MDCF) where an additional stochastic delay constraint is imposed

on the flows. A convex formulation and polynomial time algorithm is provided

for the MFSN problem. The MDCF formulation is shown to be NP-hard and

solved using an approximation algorithm. The MSDMCF model presented in

this chapter does not consider disruptions, failures, or uncertainties in capacity.

8



Our model has a cost minimization perspective, whereas the above studies are

concerned with maximizing flows and require full knowledge of the probability

distributions.

The remainder of the chapter is organized as follows. We introduce the prob-

lem formulation of the MSDMCF and show the relevance to the MVMCF

in Section 2.2. Section 2.3 describes the algorithm developed for solving the

MSDMCF. In Section 2.4, we extend the results to a more general class of

GNPMCF problems. We demonstrate the efficiency of our methods on ran-

domly generated networks in Section 2.5, and finally, we conclude and discuss

future directions in Section 4.8.

2.2 Problem Statement
2.2.1 Problem formulation

Let G = (N,A) represent a directed network with N and A denoting the set

of nodes and arcs, respectively with m = |A| and n = |N|. The arc costs,

cij, are stochastic, but independent, with known means, E[cij], and variances,

V ar[cij]. Nodes and arcs are assumed to have deterministic demands dj and

finite capacities uij respectively. Let xij denote the flow on arc (i, j) and x the

vector of all flows. The MSDMCF problem considered in this chapter has the

following form:

min
x

∑
(i,j)∈A

E[cij]xij + λ̄

√ ∑
(i,j)∈A

V ar[cij]x2
ij

s.t.
∑

(j,k)∈A

xjk −
∑

(i,j)∈A

xij = dj ∀j ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

(MSDMCF(λ̄))

or, more compactly,

9



min
x

µTx + λ̄
√

xTVx

s.t. Ax = b
0 ≤ x ≤ u

(MSDMCF(λ̄))

with

µ =

E1
...
Em

 , V = diag(Var) =

V ar1 0 0
. . .

0 0 V arm

 , λ̄ ≥ 0,

and Ax = b representing the flow conversation equations where V is a posi-

tive semi-definite matrix. Moreover, despite the square root, the objective is

convex, as can be seen by writing

√
xTVx =

∥∥∥V 1
2 x
∥∥∥

2

and applying the triangle inequality.

The proposed algorithm exploits the relationship between the MSDMCF and

the MVMCF, with the latter given by:

min
x

∑
(i,j)∈A

E[cij]xij + λ
∑

(i,j)∈A

V ar[cij]x
2
ij

s.t.
∑

(j,k)∈A

xjk −
∑

(i,j)∈A

xij = dj ∀j ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

(MVMCF(λ))

or, compactly,
min
x

µTx + λxTVx

s.t. Ax = b
0 ≤ x ≤ u

(MVMCF(λ))

10



with nonnegative λ. Unlike the MSMCF, the MVMCF problem is separable

by arc. Both of the problems are convex; however, the separability structure

is exploitable by the solver and also other solution algorithms e.g., [20].

2.2.2 Proposed approach

We adopt a parametric search method to solve the MSDMCF problem. Given

λ̄, we show that there exists some λ, for which optimal solutions for the mean-

variance problem with λ are also optimal for the mean-standard deviation

problem with λ̄. In the remainder of the chapter, we will refer to this param-

eter that produces the optimal solution to MSDMCF(λ̄) as λ∗. Our approach

is similar in spirit to methods that have previously been applied for the mean-

standard deviation shortest path problem (MSSPP) [49], [118]. However, since

the MSDMCF is a continuous optimization problem, rather than a combina-

torial optimization problem, existing results on MSSPP do not directly apply

to the problem studied in this chapter.

We first derive the relationship between the two weight parameters of these

problems, which will guide the search. By applying root-finding methods to

the function that defines this relationship, we find λ∗ iteratively. To this

end, we propose three algorithms, one based on bisection (BSC), one based

on the Newton-Raphson (NR) method, and another using a combination of

the two (NR-BSC). In order to obtain derivative information required for the

NR algorithm, we perform sensitivity analysis on the solution of the MVMCF

problem.

All of the results can be extended to a more general class of MCF problems

— the generalized non-separable parametric MCF (GNPMCF), shown below:

11



min{µ(x) + λ̄g(v(x)) : x ∈ X}.

where X represents the MCF problem feasible set, µ and v are separable and

differentiable functions, g is a strictly monotone, increasing and differentiable

function, with the composition g◦v(x) = g(v(x)) convex. In such cases, we can

transform the function g(·) such that the problem becomes additive, therefore

simpler. The same procedure proposed for the mean-standard deviation model

can then be used to solve the GNPMCF problems with the stated assumptions

above. Our main contributions are as follows:

1. We prove that the optimal solution to the MSDMCF problem is also

optimal to the MVMCF problem for a particular chosen weight param-

eter. We also show that the converse of this claim is true, unlike the

mean-standard deviation shortest path problem.

2. By deriving a key equation characterizing the relationship between the

optimal solutions of the two problems, we develop three algorithms for

finding the particular weight parameter λ∗ to the MVMCF problem for

which the optimal solution is also optimal to the MSDMCF problem for

a given λ̄.

3. We further show that all of our results can be extended to a more general

class of MCF problems.

This model differs from the bi-objective MCF literature [55, 83, 89, 41, 86, 27,

28, 69, 87] in two aspects. The bi-objective MCF research mentioned above

primarily focuses on two linear objectives whereas we have a non-separable

non-linear component in our objective function. A key focus of the bi-objective

12



MCF literature is determining the non-dominated solution set. In our model,

the two objectives can be collapsed into a single objective using a weight

parameter, and we do not attempt to find the set of non-dominated solutions.

2.2.3 Relevance to the MVMCF

In this section, we will show that given an instance of the MSDMCF, there

exists λ∗ for which the optimal solution for the MVMCF(λ∗) is also optimal

for the MSDMCF problem. The proof for this claim relies on the Karush-

Kuhn-Tucker (KKT) necessary conditions. Therefore, we first derive these

conditions for both problems below.

Let `(x) = b − Ax and h(x) = x − u. The feasible solution sets for the

two problems are identical since their constraints are the same. Then the

complementary slackness, primal feasibility, and dual feasibility conditions for

both problems are given by:

ηijhij(x) = 0 ∀(i, j) ∈ A

hij(x) ≤ 0 ∀(i, j) ∈ A

`i(x) = 0 ∀i ∈ N

ηij ≥ 0 ∀(i, j) ∈ A

pi free ∀i ∈ N

(2.1)

where ηij and pi are the dual variables for the capacity and flow balance

constraints, respectively. Next, the stationary conditions are:

0 = ∇x

(
µTx + λ̄

√
xTVx +

∑
i∈N

pi`i(x) +
∑

(i,j)∈A

ηijhij(x)

)
, (2.2)

0 = ∇x

(
µTx + λxTVx +

∑
i∈N

pi`i(x) +
∑

(i,j)∈A

ηijhij(x)

)
. (2.3)

13



Equations (2.1) & (2.2) and (2.1) & (2.3) are the necessary conditions for

optimality for MSDMCF(λ̄) and MVMCF(λ), respectively. Since the objective

functions are also convex, these necessary conditions are also sufficient [11].

Our main result now follows.

Proposition 1. Let x(λ) denote an optimal solution vector to the MVMCF(λ)

problem. This vector is also optimal to MSDMCF(λ̄), if λ̄ satisfies

λ̄ = 2λ
√

x(λ)TVx(λ). (2.4)

Proof. The vector x(λ) must satisfy the KKT necessary conditions for MVMCF(λ)

as it is an optimal solution. The constraint system for both problems is the

same, and hence it is immediate that x(λ) will satisfy the conditions (2.1) for

MSDMCF(λ̄).

As x(λ) satisfies the necessary conditions (2.3) for MVMCF(λ), then we must

have

−µ−
∑

(i,j)∈A

ηij(λ)∇xhij(x(λ))−
∑
i∈N

pi(λ)∇xli(x(λ)) = λ2Vx(λ). (2.5)

Similarly x(λ) also satisfies (2.2), then

−µ−
∑

(i,j)∈A

ηij(λ)∇xhij(x(λ))−
∑
i∈N

pi(λ)∇xli(x(λ)) =
λ̄Vx(λ)√

x(λ)TVx(λ)
,

(2.6)

Combining the right hand side of both equation (2.5) and (2.6), we get

14



λ̄ = 2λ
√

x(λ)TVx(λ).

Therefore x(λ) satisfies the KKT necessary conditions for MSMCF(λ̄) with

λ satisfying (2.2.3). Since the MSMCF(λ̄) objective function is convex, the

KKT necessary conditions are also sufficient for optimality.

A similar argument gives the reverse direction;

Remark 1. If a vector x(λ̄) is optimal for MSDMCF(λ̄), then it is also optimal

for MVMCF(λ) with

λ =
λ̄

2
√

x(λ̄)TVx(λ̄)
. (2.7)

Remark 1 distinguishes this setting from the mean-standard deviation short-

est path problem, where the analogous statement fails [49]. Therefore, the

MVMCF and the MSDMCF have a closer relationship than the corresponding

shortest path problems.

2.3 Algorithm

We use equation (2.2.3) to devise algorithms to solve the MSDMCF(λ̄) prob-

lem. If we can identify a weight parameter λ such that

f(λ) = λ−
λ̄

2
√

x(λ)TVx(λ)
= 0, (2.8)

15



solving the MVMCF(λ) will solve the original MSDMCF(λ̄). Therefore, the

MSDMCF(λ̄) problem reduces to the problem of finding a root of f(λ).

2.3.1 Bisection

A straightforward method to find the root is bisection. In order to use this

method, we first need to show that there exists at least one root for f(λ) in

the domain λ ∈ [0,∞). To this end, we show that the function takes values

of opposite signs when evaluated at the endpoints of the domain, and it is

continuous for all λ ∈ [0,∞). It is trivial to see that it takes a nonpositive value

as λ approaches 0, since λ̄ is nonnegative and all feasible solutions are assumed

to have positive variance. Moreover, the variance term in the denominator in

f(λ) is finite for any value of λ. Let V ar` represent the minimum variance of

any feasible flow1. Then the variance term is bounded below by V ar`, which is

positive by assumption. We can thus conclude that f(λ) takes a positive value

as λ approaches∞ since the negative term is finite. A finite upper endpoint of

the interval can simply be found by doubling an initial guess λ until f(λ) ≥ 0.

Further, f(λ) is negative for λ = 0, so we can set the lower endpoint of the

interval to 0.

Finally, since the objective function of MVMCF(λ) is continuous in both x and

λ and strictly convex in x, the minimizer x(λ) is well-defined and continuous

in λ by the Maximum Theorem [4]. Therefore f(λ) is also continuous, at least

one root exists in [0,∞).

Furthermore, this root is unique, as we show in the next two results. In these

results, we use M(λ) ≡ µTx(λ) to refer to the mean cost of the optimal

1The minimum variance flow’s variance cost V ar` can be obtained by solving MCF where
the objective only consists of the variance criterion or effectively setting λ to ∞

16



solution to MVMCF(λ), and V (λ) ≡ x(λ)TVx(λ).

Lemma 1. The mean cost M(λ) of the optimal solution is nondecreasing in

λ, while V (λ) is nonincreasing.

Proof. Let λ1 and λ2 be distinct weighting parameters. Without loss of gen-

erality we can assume 0 ≤ λ1 < λ2. Since x(λ1) minimizes µTx +λ1x
TVx, we

have

M(λ1) + λ1V (λ1) ≤M(λ2) + λ1V (λ2) . (2.9)

Similarly,

M(λ2) + λ2V (λ2) ≤M(λ1) + λ2V (λ1) . (2.10)

Multiplying inequality (2.9) by λ2, inequality (2.10) by λ1, and subtracting

gives

(λ2 − λ1)M(λ1) ≤ (λ2 − λ1)M(λ2) (2.11)

whence it follows that M(λ1) ≤M(λ2), that is, M is nondecreasing.

Furthermore, since M(λ1) ≤ M(λ2), inequality (2.10) can only be satisfied if

V (λ1) ≥ V (λ2), showing that V is nonincreasing and completing the lemma.

Proposition 2. The function defined in equation (2.8) has exactly one root.

Proof. The above discussion establishes the existence of a root; we now show

that this root is unique.

By contradiction, assume that f(λ1) = f(λ2) = 0 for some λ1 6= λ2. Proposi-

tion 1 ensures that x1 ≡ x(λ1) and x2 ≡ x(λ2) are both optimal to MSDNFP(λ̄).

Since this problem is convex, the set of optimal solutions is convex, and

(1− α)x1 + αx2 is optimal as well for any α ∈ [0, 1].

17



Since all these solutions are optimal, they all have equal objective function

values, so

µT ((1− α)x1 + αx2) + λ̄
√

((1− α)x1 + αx2)TV((1− α)x1 + αx2) (2.12)

does not depend on α. The first term in (2.12) is linear in α; since the sum is

constant, this implies that the second term must also be linear, that is,√
((1− α)x1 + αx2)TV((1− α)x1 + αx2) = (1− α)

√
x1

TVx1 + α
√

x2
TVx2

(2.13)

Squaring both sides gives

(1− α)2x1
TVx1 + α2x2

TVx2 + 2α(1− α)x1
TVx2

= (1− α)2x1
TVx1 + α2x2

TVx2 + 2α(1− α)
√

(x1
TVx1)(x2

TVx2) , (2.14)

since V is symmetric or, after simplifying,

x1
TVx2 =

√
(x1

TVx1)(x2
TVx2) , (2.15)

But V is also positive definite, so xTVy forms an inner product space. The

Cauchy-Schwarz inequality therefore asserts that (2.15) holds only if x1 and

x2 are linearly dependent, that is, if x1 = βx2 for some β 6= 0. The only

choice that satisfies the flow conservation constraints for both x1 and x2 is

β = 1; therefore x1 = x2, and the solutions corresponding to λ1 and λ2 are in

fact identical.

As a result, V (λ1) = V (λ2). But f(λ) = λ− λ̄/(2
√
V (λ)), so f(λ1) = f(λ2) =

0 would imply λ1 = λ2, a contradiction.

18



2.3.2 Finding an initial λ

It is possible to reduce the search space for the root-finding algorithms by

finding a smaller initial interval which includes the root. Let V arh repre-

sent an upper bound on the variance of optimal solutions with any λ to the

MVMCF(λ) problem. An efficient way to obtain such a bound is to solve a

linear minimum cost flow problem with the mean costs, essentially setting λ

to 0, and setting V arh to be the variance of such a solution. This is an upper

bound on the variance of the optimal solution. Therefore, any λ with

λ ≤
λ̄

2
√
V arh

,

also satisfies

λ ≤
λ̄

2
√

x(λ)TVx(λ)
,

where x is obtained from solving the MVMCF(λ) at that λ. Hence, we can set

the lower bound for the interval that includes the root to λlow = λ̄/2
√
V arh.

It is also possible to find an upper bound on the interval in a similar fashion.

Doing so would require solving a quadratic MCF. There is an alternative, sim-

pler procedure which provides a looser upper bound: if we set λ to λ̄/2, and

if
√

x(λ)TVx(λ) > 1 then f(λ) > 0. By changing units one can always sat-

isfy the condition
√

x(λ)TVx(λ) > 1, and re-solve the problem after scaling.

Therefore we can set λhigh = λ̄/2.

However, our computational experiments show that the former approach per-

forms better. Specifically, let V ar` represent a lower bound on the variance of

optimal solutions with any λ to the MVMCF(λ) problem. In order to obtain

such a bound, one needs to solve a quadratic minimum cost flow problem with

19



Initialization Time (s) Iteration #
λlow λhigh BSC NR BSC NR

Naive 0 λ̄/2 154.85 19.15 21 2
Custom λ̄/2

√
V arh λ̄/2

√
V ar` 26.77 11.63 1 1

Table 2.1: Initialization procedure benefits - on a network with 4096 nodes
and average degree of 64.

the variance term alone. V ar` will lead to the maximum possible value for the

negative term in f(λ). Then, any λ with

λ ≥
λ̄

2
√
V ar`

,

also satisfies

λ ≥
λ̄

2
√

x(λ)TVx(λ)
,

where the x is obtained from solving the MVMCF(λ) at that λ. Hence, we can

set the upper bound for the interval that includes the root to λhigh = λ̄/2
√
V ar`

Table 2.1 illustrates the benefits of using custom bounds found with the pro-

cedure described in Subsection 2.3.2. It compares iteration numbers and the

running time of the algorithms for both naive and custom bounds, on a dense

network with 4096 nodes and degree 64. The custom initialization helps the al-

gorithms to start very close to λ?, and therefore iteration numbers and running

times are much lower.

2.3.3 Newton’s algorithm

Although the bisection method is guaranteed to converge, it only has a linear

convergence rate and may need many iterations to converge, each of which

requires solving a mean-variance problem. An alternative is to seek a root for

20



Figure 2.1: Pseudocode for BSC (λ̄, TOL)

x̃h ←MVMCF (λ = 0), x̃l ←MVMCF (λ =∞);
V arh ← x̃hVx̃h, V ar` ← x̃lVx̃l;

λlow ← λ̄/2
√
V arh, λhigh ← λ̄/2

√
V ar`;

Found← False;
while not Found do

λ← (λhigh + λlow)/2;
x(λ)← arg min (MVMCF(λ)) ;

f(λ) = λ−
λ̄

2
√

x(λ)TVx(λ)
;

if |f(λ)| ≤ TOL then
Found← True;

else
if f(λ) > 0 then

λhigh ← λ;
else

λlow ← λ;

21



f(λ) with the Newton-Raphson method. This method is simple to implement,

and under certain conditions has quadratic convergence [11]. However, this

method requires calculating the derivative of f(λ), which involves solving an

auxiliary optimization problem. The Newton update for f(λ) is given by:

λn+1 =

[
λn −

f(λn)

f ′(λn)

]+

, (2.16)

where the [·]+ operator outputs 0 when the input is negative and otherwise

does not modify the input. Let ξ represent the vector of derivatives of the

optimal solution x with respect to λ, ξ = dx/dλ. We can then write f ′(λ) as

f ′(λ) = 1 +
λ̄x(λ)TVξ

2(x(λ)TVx(λ))3/2
. (2.17)

In this section, we identify the derivatives ξ using sensitivity analysis, using

similar techniques as in Boyles [16] and Jafari & Boyles [46]. The derivative

of the optimal solution vector with respect to the weight parameter λ can be

interpreted as the sensitivity of the solution to changes in λ.

Let Cij(xij) = E[cij]xij + λV ar[cij]x
2
ij represent the cost of arc ij, and C ′ij =

E[cij]+2λV ar[cij] its derivative.. Then, using p to represent the dual variables

for the flow conservation constraints, the Karush-Kuhn-Tucker conditions for

22



MVMCF(λ) require

C ′ij(xij) + pi − pj ≥ 0 ∀(i, j) : xij = 0 (2.18a)

C ′ij(xij) + pi − pj = 0 ∀(i, j) : 0 < xij < uij (2.18b)

C ′ij(xij) + pi − pj ≤ 0 ∀(i, j) : xij = uij (2.18c)∑
(j,k)∈A

xjk −
∑

(i,j)∈A

xij = dj ∀j ∈ N (2.18d)

0 ≤ xij ≤ uij ∀(i, j) ∈ A (2.18e)

that hold at optimality. Let J∗ represent the set of arcs with C ′ij(xij)+pi−pj =

0, and further partition J∗ into sets J∗+, J∗0, and J∗− according to whether

xij = 0, 0 < xij < uij, or xij = uij at optimality, respectively. (The sets J∗+

and J∗− are empty unless the optimal solution is degenerate.)

Let ϕ represent the marginal change in p, when the weight parameter λ is

perturbed, ϕ = dp/dλ. Differentiating the KKT conditions with respect to λ,

we have

2V ar[cij](xij + λξij) + ϕi − ϕj = 0 ∀(i, j) ∈ J∗ (2.19a)∑
(j,k)∈J∗

ξjk −
∑

(i,j)∈J∗
ξij = 0 ∀j ∈ N (2.19b)

ξij ≥ 0 ∀(i, j) ∈ J∗+ (2.19c)

ξij free ∀(i, j) ∈ J∗0 (2.19d)

ξij ≤ 0 ∀(i, j) ∈ J∗− (2.19e)

ξij = 0 ∀(i, j) ∈ A\J∗ (2.19f)

which show how the optimal x and p change with λ.

A solution ξ to this problem could be obtained by solving this set of linear

equations and inequalities; indeed, in the typical case where the optimal so-

lution is nondegenerate it is simply a linear system of equations that can be

23



solved using standard techniques. Regardless of degeneracy, we can recognize

this system as the optimality conditions of the following quadratic program:

min
ξ

2
∑

(i,j)∈J∗
V ar[cij]xijξij + λ

∑
(i,j)∈J∗

V ar[cij]ξ
2
ij

s.t.
∑

(j,k)∈J∗
ξjk −

∑
(i,j)∈J∗

ξij = 0 ∀j ∈ N

ξij ≥ 0 ∀(i, j) ∈ J∗+
ξij free ∀(i, j) ∈ J∗0
ξij ≤ 0 ∀(i, j) ∈ J∗−
ξij = 0 ∀(i, j) ∈ A\J∗

(∆(λ,x))

Note that x is a parameter in this formulation, the optimal solution of the

MVMCF(λ), and that ξ is the only decision variable. Furthermore, this op-

timization problem is very nearly an instance of MVMCF, restricted to the

links in the set J∗, without capacities, with different sign constraints, and with

mean link costs replaced with 2V ar[cij]xij.

There are advantages to obtaining ξ by solving this MVMCF variant, rather

than solving the linear system directly. Using existing algorithms for MVMCF

exploits problem structure, and our experiments showed that they were faster

and more numerically stable, and furthermore provide a natural framework for

identifying solutions at a customizable level of precision (at early iterations,

high-precision solutions to these derivatives are likely not necessary).

The pseudocode in Figure 2.2 outlines the Newton-Raphson-based search pro-

cedure which uses the flow sensitivity procedure to determine the derivatives.

Since evaluating f(λ) requires solving an optimization problem, it is unclear

what conditions guarantee convergence of the algorithm. In the next subsec-

tion, we provide a fail-safe to alleviate the lack of convergence guarantee for

24



Figure 2.2: Pseudocode for NR (λ̄, TOL)

x̃h ←MVMCF (λ = 0);
V arh ← x̃hVx̃h;

λ← λ̄/2
√
V arh;

while not Found do
x(λ)← arg min (MVMCF(λ));

f(λ) = λ−
λ̄

2
√

x(λ)TVx(λ)
;

if |f(λ)| ≤ TOL then
Found← True;

else
ξ ← arg min ∆(λ,x);

f ′(λ) = 1 +
λ̄x(λ)TVξ

2(x(λ)TVx(λ))3/2
;

λ =

[
λ−

f(λ)

f ′(λ)

]+

;

the pure Newton algorithm. We note that the method converged for all the

test instances in our experiments, despite the lack of convergence proof.

2.3.4 Hybrid algorithm

The third algorithm (NR-BSC) is a hybrid of the first two, primarily using

a Newton step size with bisection as a fallback to ensure convergence, as in

Press et al. [82]. Specifically, we switch to a bisection step whenever the

current Newton-Raphson step suggests a solution that is out of the bracket,

or whenever the bracket size is not reducing rapidly enough. The resulting

procedure has a best-case quadratic convergence rate and worst-case linear

convergence rate.

It is easy to check for the first condition to see if the step would take the

25



solution out of bounds. However, to check the second condition, a definition for

‘rapidly enough’ is needed. In our implementation, we use a simple condition,

and check if |f(λ)| is smaller than the |f(λ)| in the previous iteration. This

approach prevents possible divergent behaviors in the pure NR algorithm. The

pseudocode of the algorithm is provided in Figure 2.3.

2.4 Generalization to non-separable parametric convex
cost problems

In this section, we discuss the applicability of the proposed methods to certain

generalizations. First, we note that the (BSC) method is applicable more

generally, to not only for the MCF problems but for general case of non-

separable convex cost problem;

min
x∈X

µ(x) + λ̄g (v(x)) (2.20)

with bounded linear constraint system X, where µ and v are a separable and

differentiable function of x, g is a strictly monotone, increasing and differen-

tiable function, and lastly the composition g ◦ v is convex. Such a function

is necessarily invertible, and applying g−1 as a transformation will yield the

convex separable problem:

min
x∈X

µ(x) + λ̄v(x) (2.21)

By following the same procedure as in the proof of Proposition 1, we can find

a relation between the two problems.

26



Figure 2.3: Pseudocode for NR-BSC (λ̄, TOL)

x̃h ←MVMCF (λ = 0);
V arh ← x̃hVx̃h;

λlow ← λ̄/2
√
V arh;

while not Found do
x(λ)← arg min (MVMCF(λ));

f(λ) = λ−
λ̄

2
√

x(λ)TVx(λ)
;

if |f(λ)| ≤ TOL then
Found← True

else
if |f(λ)| ≤ |f(λprev)| then
ξ ← arg min ∆(λ,x);

f ′(λ) = 1 +
λ̄x(λ)TVξ

2(x(λ)TVx(λ))3/2
;

f(λprev)← f(λ);
λprev ← λ;

λ← λ−
f(λ)

f ′(λ)
;

if λlow < λ < λhigh then
if f(λ) > 0 then

λhigh ← λ;
else

λlow ← λ

else
Update the bounds using λprev and perform
Bisection step

else
Update the bounds using λprev and perform
Bisection step

27



λ = λ̄
∂g (v(x))

∂v(x)
. (2.22)

In the above equations, the vector x is the solution vector obtained by solving

(2.21) at λ — in order to not the clutter the notation, instead of x(λ) we

referred to it as x. Note that differentiability of both g and v are necessary for

Proposition 1 to follow. Moreover, as g ◦ v is convex by assumption, the KKT

necessary conditions are also sufficient for optimality of (2.20) and therefore

the optimal solution for (2.21) with λ satisfying (2.22) is also optimal for

(2.20). By similar arguments made earlier, one can show that the function

f(λ) is continuous. Moreover, it takes values of opposite signs when evaluated

at the endpoints of the domain. By assumption, g is monotonically increasing,

and therefore the derivative is positive for any λ in the domain. Then, f(λ)

takes a nonpositive value as λ approaches 0. The criterion v term in f(λ) is

finite for any value of λ, so f(λ) takes a positive value as λ approaches ∞,

as the negative term will be finite with this assumption. If in addition, the

function g is twice differentiable and we have an MCF problem, one can carry

on the sensitivity analysis and also use the Newton-Raphson.

In practice, optimization problems of this form might arise when capturing

the utilities with an exponential function. Other functions such as quadratic,

Ackley, Brent, and Brown fall into the class of functions for g that satisfies

the required conditions to use in this framework. We refer the reader to an

extensive survey of benchmark functions [47] for more applicable functions

that fall into this class.

It is also possible to arrive at this form starting from other optimization prob-

lems. For instance, the single criterion MCF problem — such as minimizing

28



only the expected value — with nonlinearly evaluated budget constraints

min
x

µ(x)

s.t. Ax = b
0 ≤ x ≤ u
g (v(x)) ≤ B,

(2.23)

can be cast into the form

min
x

max
λ̄≥0

µ(x) + λ̄ (g (v(x)))− λ̄B

s.t. Ax = b
0 ≤ x ≤ u

(2.24)

by Langrangianizing the budget constraints. For a given λ̄, we then have an

outer minimization problem which is of the form we consider in this section.

Note that Langrangianizing the budget constraints will lead to a max min

problem. Strong duality holds if there exists a feasible solution x for which

g(v(x)) < B, as such point would be an interior point and so the Slater’s

condition will then hold. In this case, one can swap the max min problem into

min max problem and end up with the optimization problem in (2.24).

2.5 Computational Experiments

In this section, we assess the performance of the proposed algorithms and

compare them to the performance of the CPLEX solver. We compare the

methods using the same benchmark suite, and thus provide intuition into

their performance on networks with different characteristics, including, how

dense the network is, how restricting are the capacities on the arcs. All of the

computational experiments are performed on a quad-core 2.8 GHz computer

29



with 16 GB RAM. The code used for the computational experiments and

analysis is provided at https://github.com/cangokalp/mean-std.

2.5.1 Benchmark networks

The performance of the methods are evaluated on the networks generated with

the well-known random generator NETGEN [51]. We use the benchmark suite

created in [50], which was designed to compare linear MCF solution methods.

In the NETGEN problem families, the arc costs and capacities are uniformly

drawn from [1, 10,000] and [1, 1,000], respectively. There are approximately
√
n supply and demand nodes, and the average supply per supply node is set

to 1000.

There are four problem families created with above characteristics:

• NETGEN-8. Sparse networks, with average node outdegree of 8 (m =

8n).

• NETGEN-SR. Dense networks, with average node outdegree of
√
n

(m ≈ n
√
n).

• NETGEN-LO-8. Same as NETGEN-8, except the average supply per

supply node is 10.

• NETGEN-LO-SR. Same as NETGEN-SR, except the average supply

per supply node is 10.

Arc capacities in NETGEN-LO-8 and NETGEN-LO-SR impose only loose

bounds for feasible flows, as the average supply per supply node is small.

We use the arc costs in the instances as the mean arc costs E[cij]. We sample

a coefficient of variation COVij for each link, drawn uniformly from [0.15, 0.3],

30



and thus set the standard deviation as σij = COVijE[cij]. This interval for

COVij represents typical variation in transportation networks [7].

2.5.2 Comparison of algorithms

The reported running times for the algorithms NR and BSC include the time

elapsed for finding the interval for λ. We do not report the hybrid algorithm

in the tables and figures below as its performance is almost identical to the

NR method since the “failsafe” bisection steps were rarely used. Both of the

line search methods used convergence criterion of TOL = 10−8. The MVMCF

subproblems are solved using CPLEX solver. All comparisons were done using

λ̄ = 10. We also address how the performance changes for different values of

λ̄ later in this section.

For each graph family, each method’s performance was measured by seconds

needed to achieve 0.01% “optimality gap” – the percentage gap between the

method’s objective and the best objective found by all three algorithms. The

reported running times are averaged over 5 instances for each problem.

Tables 2–5 provide the absolute running times in seconds, and the best running

times are bolded. Figures 4–7 provide corresponding plots, using logarithmic

scales so the relative difference between methods is clearly apparent across all

problem sizes tested.

In the tables, the size of the network is indicated by the number of nodes and

the average degree per node in each row. NR method outperforms the other

methods on every experiment. While the BSC method outperforms CPLEX

on dense networks for smaller problem sizes, it has a worse trend than CPLEX

in all cases. All of the methods’ solution times increase by about an order of

magnitude when the number of nodes is held fixed and the density of the

31



Figure 2.4: Comparison of the algorithms on NETGEN-8 families (logarithmic
scale).

network increased.

Additionally, Tables 2–5 also provide the average number of iterations for the

proposed algorithms to achieve the gap level. The NR method requires fewer

iterations for all families except NETGEN-LO-SR. The solution time of the

NR method is better than the BSC method, despite requiring more iterations

for this family. This is due to each method requiring a different amount of time

to find the initial λ. The time for each method to achieve its first objective

includes only the time elapsed for finding initial λ. For the NR method, initial

λ is set to λlow, and to find this lower bound, a linear MCF problem needs

to be solved. On the other hand, for the BSC method, initial λ is set to

(λlow + λhigh)/2 which requires finding both the lower bound and the upper

bound. The latter requires solving a quadratic MCF problem and thus is more

costly.

Figure 2.8 presents the convergence behavior of the algorithms on the NETGEN-

32



Figure 2.5: Comparison of the algorithms on NETGEN-SR families (logarith-
mic scale).

Figure 2.6: Comparison of the algorithms on NETGEN-LO-8 families (loga-
rithmic scale).

33



Figure 2.7: Comparison of the algorithms on NETGEN-LO-SR families (log-
arithmic scale).

Size Time (s) Avg. Iteration #
n deg CPLEX BSC NR NR BSC

212 8 8.70 6.40 3.89 2.0 2.2
213 8 36.90 38.74 24.06 2.0 2.0
214 8 140.64 168.51 93.55 1.2 1.2
215 8 893.78 1220.60 467.02 1.0 1.0

Table 2.2: Comparison on NETGEN-8 instances.

Size Time (s) Avg. Iteration #
n deg CPLEX BSC NR BSC NR

212 64 60.96 25.40 10.60 1.2 1.0
213 90 247.85 162.85 66.53 1.2 1.0
214 128 984.32 1019.80 616.12 1.2 1.2
215 181 6441.52 8265.37 3804.74 1.0 1.2

Table 2.3: Comparison on NETGEN-SR instances.

34



Size Time (s) Avg. Iteration #
n deg CPLEX BSC NR BSC NR

212 8 8.08 7.08 3.34 2.0 2.0
213 8 35.38 38.11 17.99 2.0 1.8
214 8 147.63 187.12 112.51 2.0 1.6
215 8 1005.59 1604.47 408.43 2.0 1.0

Table 2.4: Comparison on NETGEN-LO-8 instances.

Figure 2.8: Convergence behavior.

35



Size Time (s) Avg. Iteration #
n deg CPLEX BSC NR BSC NR

212 64 65.94 20.34 16.91 1.2 2.0
213 90 274.49 117.14 108.20 1.2 2.0
214 128 1044.87 796.01 614.13 2.0 1.8
215 181 7727.51 4789.31 3397.46 1.4 1.4

Table 2.5: Comparison on NETGEN-LO-SR instances.

NETGEN-8 NETGEN-SR NETGEN-LO-8 NETGEN-LO-SR
Gap Method 212 213 214 215 212 213 214 215 212 213 214 215 212 213 214 215

10−1

CPLEX 8.70 36.90 138.02 872.25 59.47 242.40 961.95 6266.61 7.97 34.54 144.63 981.43 63.01 265.72 1031.35 7528.59
BSC 6.40 38.74 168.51 1220.60 24.12 153.43 953.44 8265.37 5.92 28.62 139.49 1218.74 19.40 110.43 552.81 3920.18
NR 3.89 24.06 93.55 467.02 10.60 66.53 513.04 3184.48 1.52 8.94 65.73 408.43 10.42 56.61 340.59 2922.85

10−2

CPLEX 8.70 36.90 140.64 893.78 60.96 247.85 984.32 6441.52 8.08 35.38 147.63 1005.59 65.94 274.49 1044.87 7727.51
BSC 6.40 38.74 168.51 1220.60 25.40 162.85 1019.80 3804.74 7.08 38.11 187.12 1604.47 20.34 117.14 796.015 4789.31
NR 3.89 24.06 93.55 467.02 10.60 66.53 616.12 8265.37 3.34 17.99 112.51 408.43 16.91 108.20 614.13 3397.46

10−3

CPLEX 8.70 36.90 143.45 920.82 63.49 261.11 1022.64 6746.57 27.74 109.89 464.80 1043.12 68.58 289.56 1077.93 8015.43
BSC 6.40 38.74 168.51 1220.60 29.65 162.85 1155.14 8854.55 7.08 39.77 226.26 1988.61 28.07 124.54 936.20 5672.07
NR 3.89 24.06 93.55 467.02 20.99 121.62 1002.74 5845.18 3.34 20.27 143.81 882.13 18.46 118.63 687.83 5329.62

Table 2.6: Time elapsed to achieve gap levels.

LO-SR family on a representative problem instance with 214 nodes. The BS

and NR methods we propose start very close to the optimal solution, thanks

to the tight interval found for the parameter using the procedure described in

Subsection 2.3.2. Both of the methods achieve a percentage gap of 0.1% in

their first iteration. Similar behavior is observed in other graph families and

instances. The time needed to achieve various gap levels is shown in Table 2.6.

For dense networks, for the early iterations CPLEX has a much higher gap

value than the methods we propose. Moreover, the performance from NR and

BSC methods can be further optimized by tuning the precision to which the

subproblems are solved, since high-precision subproblem solutions are likely

more useful in later iterations than in earlier ones (in these experiments, no

such optimization was done).

36



2.5.3 Sensitivity to reliability

In this subsection, we emphasize the need for a reliable model by showing

the difference in solutions between a reliable model versus a deterministic

model where arc costs are stochastic. Additionally, we also investigate how

the performance of the algorithms changes with respect to the changes in the

reliability parameter λ̄. In our experiments, standard deviation was generated

uniformly from [0.15E[cij], 0.3E[cij]] as that represents typical variation in

transportation networks [7], however in other types of networks this problem

parameter might be very different. To capture the possible effects of higher or

lower variation for the arc costs, in the set of experiments we perform in this

subsection we allow λ̄ to range from 0.1 to 1000 and investigate the sensitivity

of some of the problem metrics.

In terms of modeling, Figure 2.9 plots the percentage relative gap between

the objective value of a deterministic model, that only considers the mean

cost, and the objective value of the mean-standard deviation model versus the

reliability parameter λ̄ on a small network with 1024 nodes and 8192 arcs.

As the reliability becomes more and more important to the decision maker,

performance of the deterministic model deteriorates. In such situations, where

reliability is important, using a mean-standard deviation model may outweigh

the additional computation costs over optimizing expected performance only.

Moreover, Figure 2.10 demonstrates that a significant decrease in the standard

deviation cost can be traded off with a relatively small increase in the mean

cost, especially when λ̄ is small. It is thus possible to substantially improve

reliability with a small impact to mean cost.

Figures 11–14 plot performance of the algorithms with respect to different

reliability parameters for each of the graph family in the benchmark suite.

37



Figure 2.9: NETGEN-8 with n = 210.

38



Figure 2.10: Criteria trade-off.

39



Figure 2.11: Sensivity to λ on NETGEN-8 instances.

Figure 2.12: Sensivity to λ on NETGEN-SR instances.

40



Figure 2.13: Sensivity to λ on NETGEN-LO-8 instances.

Figure 2.14: Sensivity to λ on NETGEN-LO-SR instances.

41



Amongst all the methods, performance of the BSC method is the most robust

against the variation in the λ parameter. On the other hand, the performance

of the NR method and CPLEX seems to be affected when the λ varies. While

this is observable in all families, the change in runtime is especially notable on

NETGEN-LO-SR family.

2.6 Conclusion

This chapter described three solution algorithms for the MSDMCF. The pro-

posed methods solve the MSDMCF problem by repeatedly solving easier MVMCF

problems. The effectiveness of the algorithms relies on the number of easier

MVMCF problems required to be solved until the particular weight param-

eter λ is found. The algorithms differ in the root-finding method that they

use. We also provide a procedure to find tighter upper and lower bounds for

the root-finding methods, which is shown to improve the performance signifi-

cantly. Amongst all, the BSC method is the simplest to implement. However,

it needs more iterations to converge compared to the NR method. In contrast,

the NR method requires solution derivatives, which can be obtained through

sensitivity analysis. In each iteration of the NR method, we thus solve two

problems, one subproblem and one auxiliary problem for finding the deriva-

tives. The starting λ for the NR method is crucial, as starting far from the

root may cause divergent behavior. In order to alleviate this potentially diver-

gent behavior of the pure Newton method, we also provide a “failsafe” Hybrid

method. These algorithms can also be applied to more general GNPMCF

problems.

In our experiments, we compare running times of the algorithms to achieve

a gap level of 0.01%. The NR method outperforms CPLEX and BSC on

42



every problem instance. In contrast, BSC method outperforms CPLEX for

small instances of dense network families, while performing competitively or

worse for larger instances. Another advantage of the NR and BSC methods

is achieving very good solution, very fast. This can even be improved by

changing the strategy to find the initial λ. Spending less effort for finding an

initial parameter for the algorithms to start with, will result in time savings

while trading off with solution quality.

The runtime of the proposed algorithms provided in this chapter can be fur-

ther improved in several ways. We used CPLEX solver to solve the MVMCF

subproblems. However, faster solution methods [72, 20, 67, 48] specialized for

separable convex MCF problems could reduce runtime significantly. Another

approach could be finding ways to improve the root-finding procedure, possi-

bly exploring or modifying the methods to descend even faster than the ones

provided. One can also do analysis on early stopping for early iterations in

the proposed methods. The framework can be used for any problem with lin-

ear constraints and continuous variables, where the objective function meets

the requirements. Other potential directions for future research is to inves-

tigate the case where the second criterion is concave and differentiable, and

considering dependent arc costs.

43



Chapter 3

System Optimal Parking Search

This chapter describes a network flow problem where the nonlinearity lies in

the constraints, rather than the objective function. The primary motivation

is to study parking behavior in urban environments, representing competition

among drivers for limited parking availability, and uncertainty in whether an

available space exists at any given location and point in time.

Indeed, in certain neighborhoods drivers searching for parking form a signif-

icant proportion of overall traffic volume. Shoup [93] claims that in urban

areas approximately 34% of congestion are due to cruising for parking. Simi-

lar findings were reported in a study in Franfurt, Germany for trips to the city

center during the peak period [5].

Nevertheless, most urban traffic models, including microsimulation and traffic

assignment, tend to ignore the need to search for parking at trip destinations.

Researchers have addressed this deficiency in several ways. One approach is to

transform the network with additional links to represent parking options and

the link costs are assigned to represent the delay associated with the parking

search [21, 54, 57, 53]. However, these models fail to capture the additional

congestion caused by people searching for parking by assuming a deterministic

cost for the additional parking links. Another approach is agent-based simula-

tion [97, 10, 36, 26, 56], which has the advantage of incorporating fine-grained

44



details of driver behavior and parking dynamics. However, these advantages

also present challenges in calibration and validation, and generally require es-

timating a relatively large number of parameters. A third approach, largely

favored by economists, develops analytical results in stylized environments

(e.g., the network is a homogeneous circle, or has only a single bottleneck)

[2, 115, 116, 85, 107, 84]. While elegant results can be derived in such cases,

it is unclear whether the topology of actual urban environments maps well to

such environments, and to what extent policies derived there have practical

insight.

An alternative model, developed by Boyles et al. [19], relies on a network

transformation and changes to the flow conservation constraints. The result-

ing model is explicitly stochastic (and therefore models drivers searching for

parking), is parsimonious in its assumptions (the only behavior assumed is

that drivers take the action minimizing expected travel cost1), and scalable to

large network systems. We build on this model and describe it below.

The Boyles et al. [19] model identifies a user equilibrium, in which drivers

behave independently and aim to minimize their private travel cost. Trans-

portation systems exhibit externalities, where one agent’s choices impact the

utility of others — for instance, as more drivers search for parking in the same

location, they decrease the probability that any one of them will actually find

such a space. Such externalities are seen in many systems involving competi-

tion for scarce resources (e.g., the celebrated tragedy of the commons).

In these settings it is valuable to identify a system optimum, which minimizes

1This is a generalized cost which can include travel time, walking time, parking cost, and
so forth, with appropriate weights.

45



total cost across all agents. When externalities exist, the system optimum

is generally different from the user equilibrium. System optimum solutions

are useful to identify how much room there is to improve a given situation

(a performance bound on any policy or intervention), and to suggest policies

which can reduce total cost. In terms of parking, one example of a policy is to

adjust the price of parking. Intuition suggests that the price of parking should

be higher where demand exceeds supply; the value of a system optimum model

could be to identify precisely how much higher this price should be.

The contribution of this chapter is to formulate the system optimum problem

using the parking model of [19], and present a descent algorithm to find such a

local optimum. Because the constraints of the problem are nonlinear, the re-

sulting optimization problem is nonconvex and such methods cannot guarantee

a global optimum. At a high level, we derive the marginal impact of additional

flow on any link on total cost, and shift flows in a way that decreases total cost.

We provide a sensitivity analysis to obtain the solution derivatives which are

then used in marginal cost definitions. Despite the nonlinear flow conservation

constraints, we can identify the necessary marginal costs by solving a linear

system.

The approaches in Gallager [35] and Bar-Gera [6] are similar in spirit to our

approach and derivations. However, both researchers considered the problem

in an acyclic network (possibly a subset of the full network, as only an acyclic

subgraph is used at equilibrium). In our setting we cannot make such an

assumption — indeed, the effects of drivers “circling” for parking is a central

feature, and requires cycles in the network. We therefore cannot use their

results directly, and must consider the problem in networks with arbitrary

topology.

46



Probability of
finding parking

Parking
search process

Figure 3.1: Mutual Dependency.

The remainder of this chapter is organized as follows. We first introduce the

definitions and notations for the parking search model in [19] in Section 3.1.

In Section 3.2 we provide the sensitivity analysis for given flow vector. Lastly,

Section 3.4 describes the algorithm we propose.

3.1 Parking Search Model

This section describes the parking model of Boyles et al. [19], which we will

build on to develop a system optimum algorithm. The central idea is to capture

the mutual dependency between the probability of finding parking at any

location, and the strategies drivers use as they search for parking. That is,

the probability of finding parking space on a given link depends on how many

drivers are searching for parking on that link, but drivers base their searching

strategies based on the likelihood of finding parking. (Figure 3.1.)

The basis of this model is a network transformation, shown in Figure 3.2.

The sets N and A of nodes and links in the network G are partitioned into

several types. The physical transportation network (roads and intersections)

are modeled with regular nodes and links, respectively denoted by the sets NR

and AR.

47



Figure 3.2: Transformed Network - Figure taken from [19].

For every location where parking is available (either on-street or in a lot or

garage), a parking node is created; NP is the set of all such nodes. Each

parking node is associated with one searching link, one parking link, and one

no-parking link. The searching link enters the parking node, and represents

drivers who wish to park there, and will do so if they can find an available

space. The parking and no-parking links leave the parking node. The former

represents the searching drivers who are successful in finding a space, and

the latter those who fail to find a space. The sets of searching, parking, and

no-parking links are respectively denoted AS, AP , and ANP .

Each parking link terminates at a transfer node (forming the set NT ). Finally,

the set of destination nodes is denoted ND. Each transfer node is connected

to each destination node with a transfer link, from the set AT . Critically, and

48



unlike many transportation network models, the destination nodes are distinct

from the physical nodes travelers pass through en route to their trip ends.

We assume that there is exactly one parking node for each regular link (that

is, there is a bijection between AR and NP ). No generality is lost with this

assumption, since we can add artificial links or nodes with suitable costs or

parking functions (defined below) to satisfy it. As a result, we can use the

convenient notation (i, j) to refer to a regular link, and (i, j)S, (i, j)P , and

(i, j)NP to the searching, parking, and no-parking link corresponding to the

parking node associated with (i, j).

Every link has a generalized cost tij representing the total disutility of travel

on the link. Depending on the type of link, this may represent in-vehicle travel

time, a monetary fee for parking, time spent walking from a parking space to

the destination, the mental burden of having to search for a parking space,

and so on. For simplicity we assume these are constants and do not depend on

flow — the model can be generalized to make these flow-dependent, without

major changes to the results that follow. We will use xij to denote the total

flow on a link.

For each parking node the probability of finding a parking space is assumed to

be a function of the flow on its corresponding searching link. That is, if (i, j)

is the regular link corresponding to this parking node, the probability that

any searching driver finds parking is pij(x
S
ij). The number of drivers which

can actually park is therefore fij(x
S
ij) ≡ xSijpij(x

S
ij), and the number of drivers

which fail to park is xSij−fij(xSij). It is reasonable to assume fij is nondecreasing

and differentiable with 0 ≤ f ′ij ≤ 1, and we make this assumption throughout.

The parking capacity of link (i, j)P is defined as Cij,P = supx≥0{fij(x)}, and

the parking capacity of the entire network is C =
∑

(i,j)P∈AP Cij,P .

49



Driver behavior is represented by the fraction of drivers at each regular node

which choose to leave on a particular link. As the links leaving a regular

node are either regular links or searching links, these fractions describe both

routing and parking search behavior. Specifically, let αdij be the fraction of

drivers passing through node i with a final destination of d that exit this node

on link (i, j) ∈ AR∪AS. These must be nonnegative, and all αij values leaving

node i must sum to one. Drivers do not have any choice at other nodes: at a

parking node, whether they successfully park or not depends on the physical

availability of a space, represented by fij; at a transfer node they always choose

the link connected to their destination node. Finally, the number of drivers

starting at node i ∈ NR and destined for node d ∈ ND is qid, and the total

network demand is D =
∑

i∈NR

∑
d∈ND qid.

Collecting these definitions, the flow conservation equations are:

xdij = αdij

qid +
∑

(h,i)∈A

xdhi

 ∀i ∈ NR, (i, j) ∈ AR ∪ AS, d ∈ ND (3.1)

xPij = fij(x
S
ij) = xSijpij(x

S
ij) ∀(i, j)P ∈ AP (3.2)

xNPij = xSij − xPij ∀(i, j)NP ∈ ANP (3.3)

xdij,T,d = xdij,P ∀(i, j) ∈ AT , d ∈ ND (3.4)∑
(i,j)T∈AT

xdij,T,d =
∑
i∈NR

qid ∀d ∈ ND (3.5)

Network loading refers to the process of determining x values from this system

of equations, given values of the splitting fractions α. For an example, given

the α values and network in Figure 3.4, the flows resulting from network

loading are shown in Figure 3.5.

50



Since the functions fij are nonlinear, the existence or uniqueness of such a

solution are not trivial. A vector of splitting fractions α are weakly feasible if

they are nonnegative and sum to one for each node; the weakly feasible set is

denoted

Ω =

{
α ∈ R|ND|(|AR|+|AS |)+ :

∑
ij∈A

αdij = 1 ∀i ∈ NR, d ∈ ND

}
. (3.6)

Such a vector is strongly feasible if it is weakly feasible, and if the flow con-

servation equations have a finite solution in x. The strongly feasible set is

denoted ΩS.

The following results were shown in Boyles et al. [19]:

• (Necessary condition for strong feasibility.) Unless D ≤ C, no strongly

feasible solution exists.

• (Sufficient condition for strong feasibility.) If D < C, all fij are strictly

increasing, and the network is strongly connected, then at least one

strongly feasible solution exists.

• If D = C, a strongly feasible solution may or may not exist.

• (Uniqueness.) If α is strongly feasible and all fij are strictly increasing,

there is exactly one solution x to the flow conservation equations.

• (Computability.) Given a strongly feasible α, the algorithm LoadNet-

work described in the paper converges linearly to the unique solution

x. For completeness, we reproduce this algorithm in Figure 3.3.

• The strongly feasible set ΩS is open relative to Ω.

• The strongly feasible set ΩS may not be convex.

51



Figure 3.3: The LoadNetwork algorithm introduced in Boyles et al. [19].

52



The latter two properties are unpleasant, since optimizing over open or non-

convex sets is difficult. Boyles et al. [19] describe a procedure to amend this

difficulty, assuming that trips terminate at each node with a small probability

εS (drivers that “give up” searching). With this modification, all α values are

strongly feasible, and furthermore any strongly feasible solution in the original

problem can be approached asymptotically as εS → 0.

i j k `

d

qid = 100

αji = 1

αij = 0

α
ij,S

=
2/3

p
(x

)
=

1
/
2

1
−
p(
x
)
=
1/
2

αik = 1/3

αkl = 0

α
k
l,S

=
1

1

αlk = 1

Figure 3.4: Network Splitting Proportions.

3.2 System optimal formulation

This section introduces the system optimal model based on the network loading

procedure described in the previous section. Recall that tij is the generalized

cost/disutility on link ij, reflecting travel time, monetary cost, walking time,

mental stress, and so on.

For simplicity, and to focus our discussion on parking congestion (the main

object of our interest), we make the following simplifying assumptions:

• There is a single destination shared by all drivers. This simplifies the

53



i j k `

d

qid = 100

50

100

50

50

50

50

50

50

50

Figure 3.5: Network Flows.

notation (allowing us to omit d indices) and our methods naturally gen-

eralize to the case of multiple destinations without difficulty.

• The link costs tij are constants which do not depend on flow. The source

of congestion in our model comes only from competition for scarce park-

ing spaces. The derivations that follow can be extended in a straightfor-

ward (but tedious) way to handle traffic congestion on links as well.

• All weakly feasible solutions are strongly feasible (ΩS = Ω). As discussed

in the previous section, this can be done by introducing a suitably small

εS value and assuming that drivers “give up” searching with this proba-

bility at each node; any strongly feasible solution can be approximated to

arbitrary precision as εS → 0, and link flows increase without bound for

any non-strongly feasible solution (and thus are irrelevant to the system

optimal problem, which aims to minimize total cost).

For the examples shown in the chapter, the network is constructed in a

54



way that this is almost everywhere true (in the measure-theoretic sense),

so we do not have to introduce an explicit εS value.

Algorithm LoadNetwork (Figure 3.3) shows how the link flows x can be

computed in terms of the splitting fractions α which represent driver behavior.

The total cost experienced by all drivers in the system can therefore be written

as

T (α) =
∑
ij∈A

xij(α)tij . (3.7)

A system optimum solution is a feasible vector of splitting fractions α which

minimizes equation (3.7). With our assumptions, the optimization problem

can be written as

min
α

T (α)

s.t.
∑
ij

αij = 1∀i ∈ N

αij ≥ 0 ∀ij ∈ A

(3.8)

If we Langranganize the constraints with the dual variables πi and θij, we

obtain the Lagrangian function

L(α,θ, ζ) =
∑
ij

xij(α)tij −
∑
i∈N

πi
∑
ij

αij +
∑
i

πi +
∑
ij

θijαij , (3.9)

The necessary optimality conditions then include

∂
∑

kl xkltkl
∂αij

≥ πi if αij = 0 ∀ij ∈ A (3.10)

and
∂
∑

kl xkltkl
∂αij

= πi if αij > 0 ∀ij ∈ A . (3.11)

55



These conditions dictate that all links (i, j) emanating from the same node

with αij > 0 have equal and minimal marginal cost Γij ≡
∂
∑

kl xkltkl
∂αij

.

However, the mapping x(α) is nonlinear and nonconvex, so these conditions

are not sufficient for global optimality. As a result, the method we develop

can only find a local minimum.

3.3 Sensitivity of parking flows

The optimality conditions in the previous section involve the partial derivatives

of total system cost T (α) with respect to the splitting fractions α:

∂T (α)

∂α
=
∑
ij∈A

∂xij(α)

∂α
tij . (3.12)

To develop an algorithm based on these conditions, we therefore need to cal-

culate the sensitivity of the flows to the changes in the proportions
∂xij(α)

∂α
. It

is not immediately obvious how to do so, because networks with cycles create

dependencies among these sensitivities.

To illustrate this, consider the network in Figure 3.6. There is only one des-

tination, so the d superscripts are suppressed for brevity. Intuitively, drivers

enter at node 1 (q1 = 50) and must choose whether to park at a “good” lot

which is close to the destination but has limited capacity, or a “bad” lot which

is far from the destination but has unlimited capacity. Drivers who cannot

find a space in the “good” lot can cycle back around and try again. In keeping

with the notational convention that every link is associated with a parking

node, and that every node has a no-parking link, you can imagine that the

bad lot is associated with the link (2, 1) in the network, with the no-parking

link suppressed since all drivers attempting to park in the bad lot will succeed;

the figure draws them separately for clarity.

56



Additional features of the problem and specific parameter values:

• Because parking is guaranteed in the bad lot, the flow on its parking link

will be the same as the flow on link 6, so we don’t have to consider it in

the following analysis.

• The link costs are c1 = 1, c5 = 2, and c6 = 4; all other costs are zero.

That is, a small amount of effort must be expended to search for parking

in the “good” lot, whether or not you find a space; circling around to try

again has a slightly larger cost; and parking in the bad lot has an even

higher cost.

• The parking flow on link 3 (the good lot) is given by x3 = 10(1−e−x1/10).

• The only places where drivers make choices in this network is at nodes

1 and 2; these are reflected by α1, α2, α5, and α6. When we add the

feasibility constraints, there will only be two independent variables, since

α1 +α2 = 1 and α5 +α6 = 1. But for the purposes of writing derivatives,

we can first consider all four as independent, and then introduce the

constraint later.

• Any solution with α5 < 1 is strongly feasible.

The (nonlinear) system of equations defining flow conservation in this network

57



1 2

Good

Link 1

Link 2

Lin
k 4

Link 6

Bad

Link 3

Link 5 Demand = 50 at node 1

Link 1 has cost 1
Link 5 has cost 2
Link 6 has cost 4
All others links have 0 cost

Parking flow for link 3 is
10(1 - exp(-x1/20))

All flow for link 6 will
successfully park

Figure 3.6: Small network for demonstration.

are as follows:

x1 = α1(q1 + x5) (3.13)

x2 = α2(q1 + x5) (3.14)

x3 = f3(x1) ≡ 10(1− e−x1/10) (3.15)

x4 = x1 − x3 (3.16)

x5 = α5(x2 + x4) (3.17)

x6 = α6(x2 + x4) (3.18)

For instance, according to the flow conservation equations for this network, a

marginal change in α1 would change the flows on the x1 and x2. Change in x2

changes the flow on x5, which in return changes the flow on x1. Therefore, we

need to differentiate each equation and solve the resulting system of equations

to find the partial derivatives of link flows with respect to a link proportion.

58



Differentiating each equation with respect to α1 gives the linear system

∂x1

∂α1

= q1 + x5 + α1
∂x5

∂α1

(3.19)

∂x2

∂α1

= α2
∂x5

∂α1

(3.20)

∂x3

∂α1

= f ′3(x1)
∂x1

∂α1

(3.21)

∂x4

∂α1

=
∂x1

∂α1

− ∂x3

∂α1

(3.22)

∂x5

∂α1

= α5

(
∂x2

∂α1

+
∂x4

∂α1

)
(3.23)

∂x6

∂α1

= α6

(
∂x2

∂α1

+
∂x4

∂α1

)
(3.24)

which can be written in matrix form as
1 0 0 0 −α1 0
0 1 0 0 −α2 0

−f ′3(x1) 0 1 0 0 0
−1 0 1 1 0 0
0 −α5 0 −α5 1 0
0 −α6 0 −α6 0 1





∂x1
∂α1
∂x2
∂α1
∂x3
∂α1
∂x4
∂α1
∂x5
∂α1
∂x6
∂α1


=


q1 + x5

0
0
0
0
0

 (3.25)

If you repeat the process with the derivatives with respect to α2, α5, or α6 you

will see that the matrix on the left-hand side is identical; only the right-hand

side vector changes. This is good news, since we only have to invert the matrix

once, and then reuse it to find the derivatives of all xi with respect to all αj.

As a specific example, assume that initially α1 = α2 = α5 = α6 = 1/2. (This

produces the solution x1 = x2 = 45.1, x3 = 9.9, x4 = 35.2, x5 = x6 = 40.1.)

Substituting these specific numbers into the systems of equations above, we

find that the Jacobian of x with respect to α is

59



Jx(α) =

[
∂xi
∂αj

]
=

α1 α2 α5 α6


x1 134.4 44.8 79.8 0
x2 44.3 134.9 79.8 0
x3 1.5 0.5 0.9 0
x4 132.9 44.3 78.9 0
x5 88.6 89.6 160 0
x6 88.6 89.6 79.3 80.2

(3.26)

We have not yet taken into account the constraints α1+α2 = 1 and α5+α6 = 1

representing weak feasibility. In fact, a solution can be determined by two

independent variables, the “searching fraction” β1 and “cycling fraction” β5.

Given values of these “nonbasic” variables, we have α1 = β1, α2 = 1 − β1,

α5 = β5, and α6 = 1− β6 as the values of all splitting fractions. The Jacobian

of x with respect to β1 and β5 is easily computed from the chain rule:

∂x1

∂β1

=
∂x1

∂α1

∂α1

∂β1

+
∂x1

∂α2

∂α2

∂β1

=
∂x1

∂α1

− ∂x1

∂α2

, (3.27)

and so forth. So the change in x values with respect to β1 is simply the first

column of (3.26) minus the second:[
∂xi
∂β1

]
=
[
89.6 −90.6 0.99 88.6 −0.99 −0.99

]T
. (3.28)

Likewise, the change in x values with respect to β2 is simply the difference

between the third and fourth columns of (3.26):[
∂xi
∂β2

]
=
[
79.8 79.8 0.88 78.9 159 −0.88

]T
. (3.29)

We now move beyond this specific example. In general, the Jacobian of x with

respect to α solves the matrix equation

AJx = B , (3.30)

60



where the |A| × |A| matrix A can be written in block form, partitioned based

on the type of link. Without loss of generality, we can assume that the links

in AS, AP , and ANP appear in the same order based on their common parking

node. The matrix then takes the form

A =

AR AS AP ANP AT


AR I + A1 0 0 A2 0
AS A3 I 0 A4 0
AP 0 A5 I 0 0
ANP 0 −I I I 0
AT 0 0 −I 0 I

, (3.31)

incorporating the following submatrices:

• Row i and column j of matrix A1 is −αi if the regular link j is immedi-

ately upstream of regular link i, and 0 otherwise.

• Row i and column j of matrix A2 is −αi if the no-parking link j is

immediately upstream of regular link i, and 0 otherwise.

• Row i and column j of matrix A3 is −αi if the regular link j is immedi-

ately upstream of searching link i, and 0 otherwise.

• Row i and column j of matrix A4 is −αi if the no-parking link j is

immediately upstream of searching link i, and 0 otherwise.

• Matrix A5 is diagonal, with the i-th diagonal element equal to −f ′i eval-

uated at the current value of its corresponding searching link.

This matrix is irreducibly diagonally dominant for any weakly feasible α (since

f ′ ≤ 1 by assumption) and therefore the Levy-Desplanques theorem ensures

it is nonsingular, so a unique solution exists.

61



The |A| × |AR ∪ AS| matrix B takes the form

B =

AR ∪ AS


AR ∪ AS B1

AP 0
ANP 0
AT 0

, (3.32)

where B1 is a diagonal matrix. Its i-th element is given by qh(i)+
∑

g∈RS(h(i)) xg,

where h(i) is the (regular) tail node of link i, and RS(h(i)) is its reverse star.

Equation (3.30) gives the derivatives of the link flows, treating each αi value

as independent from the others. To reflect the weak feasibility constraint, for

each regular node we can choose all but one of the outgoing links as “nonbasic;”

the remaining “basic” link’s flow can be determined based on the others. The

Jacobian of x with respect to the nonbasic α values is obtained by subtracting

each regular node’s basic column from its associated nonbasic columns, then

deleting the basic columns. The derivations were given for the case where

there is only one destination, in general same procedure can be applied for the

multiple destination case and the sensitivities ∂x
∂αdij

can be found.

With the Jacobian of x with respect to α in hand, it is straightforward to

calculate the marginal costs Γij = ∂T/∂αij, which form the gradient of T .

3.4 System Optimal Assignment Algorithm

For a node i, consider two outgoing links (i, j) and (i, k), their associated

splitting fractions αij and αik, and their marginal costs Γij and Γik. If Γij > Γik

and αij > 0, the necessary optimality conditions 3.10 & 3.11 imply that this

α is not optimal. A step towards equalizing the marginal costs, that is, a

small decrease in αij and increase in αik, will drive α closer to the necessary

62



condition and result in a reduction in total system cost T (α).

For a particular node i, let the nonbasic link nbij and basic link bij be the

highest marginal cost link and lowest marginal cost link respectively;

nbij ∈ arg max
ij∈FS(i)

Γij (3.33)

bij ∈ arg min
ij∈FS(i)

Γij (3.34)

where FS(i) is link i’s forward star. The algorithm we propose iterates through

two procedures until a convergence criterion is met. First, given the network

flows x(α), we will consider every node i, and shift proportions from nbij to

bij, reducing T (α) at each step, we will call this the update procedure. Once

the proportions are shifted and new α obtained after performing the update

procedure, the corresponding x(α) is then found using the flow push procedure

LoadNetwork(G,α, ε). These steps iterate until the necessary conditions

3.10 & 3.11 are approximately satisfied.

In the update procedure, first, we need to determine how much proportion

should be shifted from the nonbasic link to the basic one. Let ∆ij denote the

difference in marginal cost between the nonbasic and basic link:

∆i = Γnbij − Γbij , (3.35)

We choose a shift proportional to ∆, so that larger marginal cost differences

result in larger shifts:

δi = η∆i (3.36)

where η is the step size.

63



Finding an appropriate step size is crucial to allow the objective function to

descend at each iteration. For this purpose, an exact line search to minimize T

would be too costly at each iteration, while a fixed step size would require too

many iterations (since a small η is needed to ensure convergence). As a middle

ground, we use an inexact backtracking line search with an Armijo stopping

rule.

Once a desired shift amount η is decided, we then project this shift onto the

feasible set with the following procedure:

η ← min{η, αnbij/∆ij} (3.37)

αnbij ← αnbij − η∆ij (3.38)

αbij ← αbij + η∆ij . (3.39)

The pseudocode is given in Algorithm 1. We test the algorithm on the toy

network represented in Figure 3.6 with only two variables. A user equilibrium2,

shown in Figure 3.7, occurs when α1 = 0.776, α2 = 0.224, α5 = 0, and α6 = 1;

this solution has a total cost of 200. A system optimum solution is shown in

Figure 3.8. In this solution, α1 = 0.277, α2 = 0.723, α5 = 0, α6 = 1, and the

total cost is 184.

3.5 Conclusion

We presented an algorithm to identify a (locally) system optimal assignment

for the model described in [19]. To do this, the main contribution was the

2Not “the” because the nonlinearity of the problem means there may be multiple equi-
libria.

64



1 2

Good Bad

User equilibrium:

Searching fraction = 0.776
Cycling fraction = 0

Cost = 200
38.8

11.2

9.8

29.0

0

40.2

40.2

Figure 3.7: User equilibrium link flows.

1 2

Good Bad

System optimum:

Searching fraction = 0.277
Cycling fraction = 0

Cost = 184
13.8

36.2

7.5

6.3

0

42.5

42.5

Figure 3.8: System optimum link flows.

65



Algorithm 1: SO Algorithm(G,ξ, ε)

Initialization (can also initialize with user equilibrium or other
feasible solution);

foreach d ∈ ND do
foreach i ∈ NR do

foreach ij ∈ FS(i) do
αdij ← 1/|FS(i)|;

cost history ← [];
converged ← False;
while not converged do

i← 1;
foreach d ∈ ND do

Flow push procedure;
x ← NetworkLoading(G, α, ε);
Update procedure;
cost←

∑
ij xijtij;

Push cost onto cost history;
Jx ← A−1B;
foreach i ∈ NR do

Γij ← ∂
∑
kl xkltkl
∂αdij

;

nbij ← arg maxij∈FS(i) Γij , bij = arg minij∈FS(i) Γij;

∆i ← Γnbij − Γbij ;
Select desired η using Armijo rule ;
η ← min{η, αnbij/∆ij} ;
αnbij ← αnbij − η∆ij ;
αbij ← αbij + η∆ij ;

Check for convergence;
if i > 10 then

if cost - cost history[-10] < ξ then
converged = True

66



derivation of the solution sensitivities in the case of cyclic flows, generalizing

similar work in acyclic networks (which relied critically on the existence of a

topological order that does not exist with cycles).

Future work should address the computational properties of the algorithm

we develop on larger networks, and explore options for escaping local optima.

The properties of the system optimal solution should also be studied to identify

guidance for urban parking policies. For instance, if the system-optimal state

can be related to the user-equilibrium state, it may be possible to determine

parking prices which can shift the user equilibrium to a system optimum.

67



Chapter 4

Post-Disaster Recovery Sequencing Strategy

for Road Networks

4.1 Introduction

Natural disasters and extreme hazards such as seismic events, floods, terrorist

attacks or hurricanes can substantially damage transportation systems along

with other infrastructure systems such as power, water, and gas. The 1989

Loma Prieta earthquake resulted in the collapse of multiple bridges and re-

quired retrofitting for all Bay area bridges, 1994 Northridge earthquake had

286 collapsed highway bridges [44], 2008 earthquake in Wenchuan, China af-

fected 1,657 bridges [122], and Hurricane Irene damaged over 300 bridges and

2,000 miles of highways in Vermont [65]. Planning resilient transportation

networks is necessary to minimize the effects of such disasters on system per-

formance. Zhang et al. [114] classify resilience in terms of mitigation strategies

put in place before a disaster to increase robustness of the system; emergency

response actions taken immediately after the event; and long-term recovery,

as the system is gradually reinstated through reconstructions of the impaired

network.

This chapter focuses on long-term recovery phase for road networks. Specifi-

cally, we assume that a subset of links is initially unusable due to damage or

destruction, and must be repaired. Given the time needed to repair each link,

68



we investigate the ordering for rebuilding these links which minimizes the to-

tal system travel time (TSTT) experienced over the repair horizon, assuming

that these links must be repaired sequentially, and that the traffic state reaches

user equilibrium at each stage of repairs. This problem is difficult both due

to its combinatorial nature (the number of repair sequences is the factorial of

the number of damaged links), and because the user equilibrium assumption

means that many instances of the traffic assignment problem (TAP) must be

solved as subproblems.

Most past investigations into these type of problems either focus on small in-

stances (where all sequences can be enumerated) or use general-purpose meta-

heuristics such as genetic algorithms or tabu search. The problem can also

be cast in the form of an optimal scheduling problem, and techniques from

that domain can be applied. However, as we show below, methods that do not

account for the interdependency between damaged facilities can provide poor

solutions.

This article describes a specialized heuristic, tailored to the traffic assignment

problem, which produces high-quality solutions in a reasonable amount of time,

even on large network instances. In particular:

• We show that the complexity of the problem can be reduced from fac-

torial to exponential by deriving an analogue of Bellman’s optimality

principle from dynamic programming.

• We build on this principle by designing a customized bidirectional search

heuristic, using lower and upper bounds based on traffic assignment prop-

erties.

69



• We use these bounds to create specialized branching and pruning rules

within the heuristic.

• A beam search is further used to reduce the number of solutions which

are explored.

• Our numerical results show that this customized heuristic produces higher-

quality solutions than alternative heuristics.

The remainder of the chapter is organized as follows. We review past literature

on the problem, then introduce our specific problem formulation and associated

notation. We follow this with a high-level overview of the bidirectional search

heuristic, and then its specific components: lower and upper bounds used to

guide the search direction, and other speed-up techniques. The computational

experiments come next, and the chapter is concluded by a summary of the key

contributions and discussion of future research directions.

4.1.1 Literature review

This section focuses on reconstruction sequencing problems in transportation

networks. For comprehensive reviews on resilience, we refer the reader to stud-

ies by Faturechi & Miller-Hooks [31] and Zhou et al. [120] in transportation

systems; Xu et al. [106] in electricity systems; Wang et al. [100] in communica-

tion systems; and Luna et al. [64] study water distribution network recovery.

The rest of this section focuses on studies in the field of transportation net-

works.

For post-disaster reconstruction in transportation networks, Faturechi & Miller-

Hooks [31] categorize performance metrics into three measures: functional,

topological, and economical. Merschman et al. [66] seek to find the repair

70



sequence minimizing a combination of these measures. The case study focuses

on a sample of four bridges, and they enumerate every sequence for evaluation.

Chen & Miller-Hooks [24] study the recovery of intermodal freight transport

network by proposing a stochastic mixed-integer program to identify recovery

actions to maximize demand met. Miller-Hooks et al. [68] aim to improve pre-

disaster mitigation and post-disaster scheduling in order to maximize expected

traffic demand accommodated. Moreover, Zhang et al. [113] use the average

number of reliable independent pathways as a performance metric. Direct

and indirect costs combined with a topological metric quantify performance

in Zhang & Ali [112].

In this chapter, we use TSTT as a functional measure to capture the level of

service of a network, not just raw connectivity. Other studies [15, 99, 109] use

a similar performance measure, as part of a multi-stage framework in order to

obtain the reconstruction sequence.

These studies differ in the assumptions they make, the way they model the

repairs, and the cost functions. Bocchini & Frangopol [15] use TSTT and total

travel distance as performance measures. They propose a multi-objective bi-

level optimization model to find a restoration sequence to minimize weighted

combination of cost and time till target functionality level. Capacity restora-

tion is modeled as a continuous process, with no constraints on simultaneous

repairs. A genetic algorithm approach is then used to solve a problem on a

small instance with 38 links.

Vugrin et al. [99] propose a bi-level model with a multi-criteria objective func-

tion, a weighted combination of system impact (measured by TSTT) and the

cost of recovery operations. Their model considers repair tasks requiring re-

sources of one or more types. Each repair task return partial capacity on the

71



link. Their model also allows simultaneous repair actions as long as demand

does not exceed total resource availability. They do not mention a solution

method, directly presenting results for computational experiments on a small

9 node and 15 link network with four damaged links.

Ye & Ukkusuri[109] consider the sum of system performance during recon-

struction as their cost function. They incorporate day-to-day traffic assign-

ment problems to model the evolution of flow during recovery, which is used

as the lower level problem. However, this requires usage of a path-based so-

lution method. These methods are very memory intensive and require further

assumptions about path flows due to lack of uniqueness at optimality. Tabu

search is used to obtain solutions. They allow simultaneous recovery opera-

tions while budget constraints are met. Their largest numerical experiment

considers Sioux Falls network (24 nodes and 76 links) with 6 damaged links.

Gehlot et al. [38] consider the problem of finding optimal control sequence for

infrastructure repair, where components continue to degrade while not being

repaired. Such deterioration often not modeled in other studies considering

optimal sequencing problem. Their variation of the problem aims to find a

sequence that bring maximum number of components to the desired recovery

threshold without letting them to degrade to an undesirable threshold level.

In an extension [37], they then consider a case where they model precedence

constraints among the components into the problem.

Rey and Bar-gera[88] study a similar problem to the one we consider in this

chapter, aiming to finding a reconstruction policy minimizing total system

travel time. They provide a mixed-integer linear program (MILP) in order

to produce exact solutions to the resulting bi-level program. They then use

72



the exact solutions generated by MILP to compare three greedy heuristic ap-

proaches on small instances where there are 9-10 repair projects. Our problem

is in fact a special case of theirs, where repairs must be conducted sequentially

(and not simultaneously). However, the heuristic we develop for this special

case outperforms the more general heuristics they developed, both in terms of

solution quality and the size of problem instances it can handle, by exploiting

the sequentiality property. Our numerical experiments provide more details

on this comparison, using greedy heuristic approaches similar to theirs as a

benchmark.

A key difficulty in solving these problems is the large, combinatorial set of fea-

sible solutions. For |B| damaged links, there are |B|! possible repair sequences,

each requiring |B| solutions of the traffic assignment problem to evaluate total

cost. This is reflected in the computational results of these studies, with rel-

atively small networks being used as case studies. Additionally, these studies

do not utilize any properties or underlying structure of TAP, treating it as a

black box sub-problem. In this chapter, we seek a more scalable approach for

large-scale networks by exploiting such properties.

4.2 Problem Statement

The basis of our model is the static traffic assignment problem (TAP), orig-

inally formulated by Beckmann [8] and described at length in the books by

Patriksson [80] and Boyles et al. [18]. Consider a network with a set of nodes

N, links A, and zones Z. Each link has a travel time Ta which is a nonde-

creasing function of the flow on that link alone. The travel demand between

zones r and s is drs, which we assume to be fixed, an assumption common to

most of the other literature on this problem [15, 99]. Let Πrs denote the set

73



of simple paths connecting zones r and s, and Π = ∪(r,s)∈Z2Πrs the set of all

such paths.

Let B ⊂ A denote the set of damaged links which must be repaired; let

N = |B|. The time needed to repair each damaged link b ∈ B is Db. We

assume that the network remains strongly connected even without these links

(this assumption can be relaxed by introducing artificial links between each

origin and destination, with a large fixed travel time expressing the social cost

of failing to serve a trip.) We further assume that repairs proceed sequentially,

so there are N network states as each damaged link is restored, each lasting

for the duration of repair for that link, plus a terminal state after all links are

restored. The non-terminal states will be indexed by t ∈ {1, . . . , N}; for the

most part we will be unconcerned about the terminal state, since the delay in

the final state does not depend on the order of repairs, and the scope of the

optimization problem ends after all repairs are done. The sequence of repairs

is represented by the binary decision variables ytb, which equal 1 iff link b is the

one being repaired during stage t, and ztb, which equal 1 iff link b was repaired

prior to stage t (and is thus usable by travelers in stage t).

Within each stage t, we assume that the network flows are consistent with

Wardrop’s principle [102] and are at user equilibrium, in that every used path

between each origin and destination has equal and minimal travel time. This

assumption is also common [15, 99]. Effectively, we assume that the time to

rebuild each link is long enough for a new equilibrium to arise; empirically,

this has been observed to be several weeks [121]. For the case of major infras-

tructure likely to be damaged by disaster, such as bridges, we believe this to

be reasonable. (See the Conclusions section for some discussion on relaxing

this assumption.) We will denote by xta the equilibrium flow on link a during

74



Figure 4.1: The shaded area represents the total delay over the repair horizon.

stage t, and by htπ an equilibrium flow on path π in this stage.

The total system travel time (TSTT) during each day in stage t is given by∑
a x

t
aTa(x

t
a), and this state persists for Db days, where b is the link repaired in

stage t. In what follows, it will be convenient to use TSTTt to denote the total

system travel time during stage t. Since links are repaired at the end of each

stage, TSTT1 represents the total system travel time with no links repaired,

TSTT2 the total system travel time with only one link repaired, and so on.

Define TSTTt+1 to be the total system travel time at the equilibrium solution

after all links are restored. (We do not actually have to calculate this solution

explicitly, since we stop counting delay once the last link is restored.) The

total delay is then the area under the graph of TSTT over the repair horizon

(Figure 4.1).

This is expressed by the following bilevel optimization problem, in which M

75



is a sufficiently large constant:

min
y,z

N∑
t=1

∑
a∈A

xtaTa(x
t
a)
∑
b∈B

ytbDb

s.t.
t−1∑
t′=1

yt
′

b = ztb ∀b ∈ B, t ∈ {1, . . . , N}∑
b∈B

ytb = 1 ∀t ∈ {1, . . . , N}

N∑
t=1

ytb = 1 ∀b ∈ B

ytb ∈ {0, 1} ∀b ∈ B, t ∈ {1, . . . , N}
ztb ∈ {0, 1} ∀b ∈ B, t ∈ {1, . . . , N}

(4.1)

where each xt is optimal to:

min
xt,ht

∑
a∈A

∫ xta

0

Ta(x) dx

s.t.
∑
π3a

htπ = xta ∀a ∈ A∑
π∈Πrs

htπ = drs ∀(r, s) ∈ Z2

htπ ≥ 0 ∀π ∈ Π
xtb ≤Mztb ∀b ∈ B

(4.2)

The problem is evidently a scheduling problem. A standard technique for such

problems would be to calculate the ratio of repair benefits to repair duration

for each link, and repair links in descending order of this ratio. However, in

our problem the benefit of repairing a link depends on which other links have

already been repaired, and which remain unusable — the “actual” repair ben-

efits in the optimal sequence are unknowable a priori. One can nevertheless

76



Figure 4.2: Toy Network

estimate these benefits; one example is a “greedy” heuristic based on iden-

tifying the unrepaired link maximizing the benefit-duration ratio given the

current state of the network; repairing this link; recalculating these ratios for

the remaining unrepaired links; and so forth.

This heuristic performs poorly in networks with strong dependencies between

damaged links. Consider the network in Figure 4.2. Intact links are shown as

solid and disrupted links are shown as dashed. The labels on the links show

the cost functions Ta(xa). The repair durations for the links are DI1−S1 =

DI1−I2 = 20 and DI2−I3 = 10.

The greedy heuristic would reconstruct links in the order I1− S1, I1− I2, and

77



I2−I3 based on the immediate ratio of benefit to duration. However, repairing

link I2 − I3 would provide a large benefit (66%) if repaired after link I1 − I2,

and before link I1−S1. Greedy methods encounter similar problems with links

in series.

Therefore, a more intelligent method is needed, that reflects the dependencies

between damaged links. In particular, the benefit of repairing a link can

depend strongly on where it lies in the repair sequence. (Later in the chapter,

we explore whether pathological behavior like the above is common in more

realistic networks. In particular, we will compare our solution method to this

“greedy” heuristic as a benchmark.)

At first glance, this is not encouraging, and one might think that sequence-

dependent repair benefits would require us to enumerate all possible sequences.

As formulated, the problem has |B|! feasible solutions, one for each permuta-

tion of damaged links; there is clearly a bijection between each such permuta-

tion and feasible values of y and z.

However, there is a subsequence optimality condition that can be applied to

greatly reduce the number of solutions to examine. Any repair sequence can

be divided into two subsequences, [b1, . . . , bi] and [bi+1, . . . , bN ], and we can

consider “restricted” versions of the problem where the sets of links in the two

subsequences are fixed, but the order within one or both subsequences can

vary.

Theorem 1. Let [b1, b2, . . . , bN ] be a repair sequence corresponding to an op-

timal solution of (4.1) and (4.2), and let [b1, . . . , bi], [bi+1, . . . , bN ] be any divi-

sion into subsequences. For every restricted problem formed by fixing the links

in the “head” in some permutation of {b1, . . . , bi}, the optimal repair order

78



in the “tail” is [bi+1, . . . , bN ]. Likewise, for every restricted problem fixing the

links in the tail in a specific order, the optimal repair order in the “head” is

[b1, . . . , bi].

Proof. We prove the first part of the claim; the second follows by the same

argument.

The key observation is that TSTTt only depends on the set of links repaired

before stage t, and not on the order in which they are repaired: the lower-level

problem (4.2) only depends on the upper-level through the variables ztb, which

are defined in the upper-level problem by a sum of yb variables, which does

not depend on order. Likewise, the total duration of any repair sequence (or

subsequence) only depends on the Db values of its links, and not the order in

which they are repaired.

It follows that in any restricted problem of the form in the theorem, TSTTi

is the same no matter what the ordering is in the head and tail subsequences.

Likewise, the durations of the head and tail are the same for any permutation

of the s within their subsequences. Nevertheless, the specific value of the

objective function may depend on the order within these sequences. This

means that the objective function can be decomposed into the sum of two

independent areas, one corresponding to the head subsequence and the other

to the tail (See Figure 4.3).

Therefore, the “restricted” problems for every possible permutation of {b1, . . . , bi}

as head differ only by a constant term added to the objective, representing the

different areas under the head subsequence. By assumption, [bi+1, . . . , bN ] is

the optimal tail when the head is [b1, . . . , bi], so it must be optimal for every

other ordering too.

79



Figure 4.3: Demonstrating separability of the formulation by subsequence;
TSTT3 and the optimal ordering of links c and d is independent of the order
of a and b.

The theorem extends trivially to division into more than two subsequences;

once a partitioning into subsequences is fixed, the optimal ordering within each

partition can be determined independently. The upshot is that we can formu-

late this sequencing problem using dynamic programming, since Theorem 1

shows that Bellman’s optimality principle holds. This is the foundation of the

heuristic we describe in the following sections.

4.3 Overview of solution method

This section provides a high-level description of our solution approach; more

specifics and pseudocode are found in the following sections.

Using Theorem 1, we can reformulate our problem as the following dynamic

program: define a state for each subset of B (representing a condition where a

80



particular subset of links has been repaired), create transitions between states

differing by the addition of only one link (representing repair of that link), and

equip each transition with a cost equal to the appropriate TSTT multiplied by

the repair duration. Solving a shortest path problem on the resulting graph

would produce the optimal solution. In practice, there are still too many states

to build the entire graph — even though there are just 2|B| states, far fewer

than the |B|! feasible sequences, this approach is intractable even with only

10–20 damaged links.

We therefore construct this graph incrementally, using heuristic procedures to

only generate transitions and states which are likely to lead to good solutions.

Our framework is a bidirectional search which grows this graph starting both

at the initial state (no repairs) and at the terminal state (all links repaired).

This graph has two search fronts, a forward front rooted at the initial state,

and a backward front rooted at the terminal state.

At each iteration of the search, a state is chosen from either the forward search

front or the backward search front. This state is used to construct successor (or

predecessor) states. States on the forward front have a cost label representing

the portion of the objective function accrued from the initial state up through

that state. States on the backward front have a cost label representing the

portion of the objective function accrued from that state until the terminal

state. These cost labels are calculated exactly.

We also calculate heuristic upper and lower bounds on the cost of the opti-

mal subsequence connecting states on opposite fronts; by Theorem 1 we can

restrict our attention to the remaining links that lie between the states on

the two fronts. These heuristics are based on the intuitive observation that

the marginal benefit of repairing a link diminishes as more links are repaired,

81



which we can translate into bounds on sequences of repairs. (See the follow-

ing sections and the numerical results for more investigation of this intuition.)

These bounds are also used for early pruning, and to control which branches

are created.

We finally adopt a beam search-like strategy for further restricting the number

of states which are generated.

4.4 Bi-directional search

We propose a bi-directional, best-first search approach. Following conventions

in this literature, we will use the subscripts f and b to indicate the forward

and backward search directions, respectively. A collection of states that have

been created, but not yet expanded into successor states, is maintained in a set

Open. After expansion, states are removed from the Open set. As in the A∗

algorithm, the search progresses by selecting a state from Open with minimum

estimated cost (actual cost accrued thus far plus a heuristic estimate of the

remaining cost), and expanding it by creating successor states. On the forward

front, successors represent an additional link being repaired. On the backward

front, a successor represents one fewer link being repaired (the search proceeds

“backwards” from the state of full repair).

The root states for the two fronts are denoted by α for the forward front

(nothing repaired), and ω for the backward front (everything repaired). At

a particular state s on the forward front, let Yf (s) denote the set of repaired

links. If s is on the backward front, Yb(s) denotes the set of links which

remain unrepaired. With this convention, Yf (α) and Yb(ω) are both empty,

and successors on both fronts are formed by adding one link. We also maintain

labels gf (s) and gb(s), representing the cost of the best-known partial sequence

82



from the initial state to s on the forward front, and from s to the final state

on the backward front, and predecessors pf (s) and pb(s) which will be used to

trace the optimal path.

The search is aided by a heuristic function h(s), which estimates the cost of

the partial sequence connecting state s to another state. The heuristic uses

front-to-front evaluations, i.e., the cost f(s) is estimated from state s on one

front to eligible states on the other front. We will use ub(s, s′) and h(s, s′),

respectively, to represent the heuristic upper and lower bounds on the cost

between states s and s′. The details for calculating h(s) are provided in the

next section.

The bidirectional search heuristic is stated in Procedure 2. Our procedure

will require repeated solution of the traffic assignment problem, with the same

OD matrix d, but a different link set. We will use the notation TAP (A) as a

shorthand for “solve TAP with arc set A, and return the total system travel

time at equilibrium,” and TSTT (s) to mean TAP (A) with the network repairs

corresponding to state s.

4.5 Heuristic Function

This section first derives heuristic lower and upper bounds h(s, s′) and ub(s, s′)

of the cost of connecting states s and s′ on opposite search fronts through an

optimal repair subsequence, then uses these to construct a heuristic f(s) of

the total cost from state s to the target (if s is on the forward front) or initial

state (if s is on the backward front). If this heuristic is a lower bound on

the actual repair cost, it is called admissible and the BidirectionalSearch

will be exact, terminating with an optimal repair sequence. [42]. However,

the larger the values of f(s), the fewer states will be generated, so there is a

83



Algorithm 2: BidirectionalSearch
Input:B, D, r Output:incumbent
Initialize Openf ← ∅, Openb ← ∅, UB ←∞ incumbent = ∅;
Initialize gf (α)← 0, gb(ω)← 0, pf (α)← ∅, pb(ω)← ∅, Yf (α)← ∅,
Yb(ω)← ∅;

Set counter ← 0;
Calculate TSTT (α)← TAP (A \B) and TSTT (ω)← TAP (A);
bb,wb← Preprocessing(B,D) (see Procedure 6) ;
while Openf 6= ∅ and Openb 6= ∅ and
max(mins∈Openf f(s),mins∈Openb f(s)) < UB do

if |Openf | < |Openb| then
Openf , Openb, UB, S

incumbent ←
ExpandF(Openf , Openb, UB, incumbent) (see Procedure 3)

else
Openf , Openb, UB, S

incumbent ←
ExpandB(Openf , Openb, UB, incumbent) (see Procedure 4)

if counter ≡ 0 (mod r) then
foreach s′ ∈ Openb do

UB, incumbent←
FindBounds(s′, Openb, backward, UB, incumbent) ;

foreach s′ ∈ Openf do
UB, incumbent←
FindBounds(s′, Openf , forward, UB, incumbent) ;

Openf , Openb ← BeamSearch(Openf , Openb) (see
Procedure 11);

counter ← counter + 1;

84



Algorithm 3: ExpandF

Input:Openf , Openb, UB, incumbent
Output:Openf , Openb, UB, incumbent

Choose s ∈ arg mins∈Openf f(s) ;
Remove state s from Openf ;
foreach s′ ∈ Openb do

NV = B \ {Yf (s) ∪ Yb(s′)};
UB, incumbent← CheckSoln(s, s′, NV, UB, incumbent) (see
Procedure 5) ;

if f(s) > UB then
Non-optimality proven, no need to expand, return with the
current values;

Let EXT ← B \ Yf (s) represent potential expansions of s;
Initialize children← ∅;
foreach b ∈ EXT do

create← Branching(s, `, forward) (see Procedure 10);
if create then

Let Ytemp ← Yf (s) ∪ {b};
Calculate TSTTtemp ← TAP ((A \B) ∪ Ytemp);
Let gtemp ← g(s) +DbTSTTtemp;
Let s′′ be the state for which Yf (s

′′) = Ytemp (if any);
if s′′ does not exist or gtemp < gf (s

′′) then
Create s′′ if it does not exist;
Update gf (s)← gtemp;
Update pf (s)← s;

Add s′′ to children;

foreach s′′ ∈ children do
UB, incumbent←
FindBounds(s′′, Openb, forward, UB, incumbent) (see
Procedure 7) ;
Openf , Closedf , incumbent←
Pruning(Openf , s

′′, incumbent, UB) (see Procedure 9) ;

85



Algorithm 4: ExpandB

ExpandB function:
Input:Openf , Openb, UB, incumbent
Output:Openf , Openb, UB, incumbent

Choose s ∈ arg mins∈Openb f(s) ;
Remove state s from Openb;
foreach s′ ∈ Openf do

NV = B \ {Yf (s) ∪ Yb(s′)};
UB, incumbent← CheckSoln(s′, s, NV, UB, incumbent) (see
Procedure 5) ;

if f(s) > UB then
Non-optimality proven, no need to expand, return with the
current values;

Let EXT ← B \ Yf (s) represent potential expansions of s;
Initialize children← ∅;
foreach b ∈ EXT do

create← Branching(s, `, backward) (see Procedure 10);
if create then

Let Ytemp ← Yb(s) ∪ {b};
Calculate TSTTtemp ← TAP (A \ Ytemp);
Let gtemp ← g(s) +DbTSTTtemp;
Let s′′ be the state for which Yf (s

′′) = Ytemp (if any);
if s′′ does not exist or gtemp < gb(s

′′) then
Create s′′ if it does not exist;
Update gb(s)← gtemp;
Update pb(s)← s;

Add s′′ to children;

foreach s′′ ∈ children do
UB, incumbent←
FindBounds(s′′, Openf , backward, UB, incumbent) (see
Procedure 7) ;
Openb, Closedb, incumbent←
Pruning(Openb, s

′′, incumbent, UB) (see Procedure 9) ;

86



Algorithm 5: CheckSoln

Input:s, s′, NV , UB, incumbent Output:UB, incumbent
if NV = ∅ then

g ← g(s) + g(s′) if g < g(incumbent) then
g(incumbent)← g;
g ← (s, s′);

if |NV | = 1 then
Identify b ∈ NV ;
g ← g(s) +DbTSTT (s) + g(s′);
if g < g(incumbent) then

g(incumbent)← g;
g ← (s, s′);

UB ← min{UB, g(incumbent)} ;

tension between guaranteeing optimality (low f values) and tractability.

We propose a custom heuristic, based on the intuition that the marginal impact

of repairing a link is likely higher when most other links are unrepaired and

there are fewer alternate routes, and lower once the network is nearly restored

to full functionality. It is not hard to construct counterexamples where this

principle does not hold. Still, in our numerical experiments, this procedure

performs well, suggesting that such counterexamples are rare in practice. Our

procedure for calculating f also contains a weaker, “backstop” bound which

is applied if this principle is clearly violated.

As a preprocessing step, for each damaged link b we calculate heuristic upper

and lower bounds on the benefit of rebuilding this link, calculated as the re-

duction in TSTT when link b is reconstructed. Clearly this benefit depends on

where in the repair sequence b lies; we will use rbb(y) to denote this realized

benefit of repairing b if the full sequence is given by y.

87



The heuristic upper and lower bounds on the realized benefit are denoted

by bbb and wbb (the mnemonic is “best benefit” and “worst benefit”). We

calculate bbb as the reduction in TSTT if b is repaired first: bbb = TSTT (A \

B) − TSTT ((A \ B) ∪ {b}). Likewise, wbb is the reduction in TSTT if b is

repaired last: wbb = TSTT (A \ {b}) − TSTT (A). Our heuristic is derived

under the assumption that wbb ≤ rbb(y) ≤ bbb for every damaged link b and

every feasible y. This preprocessing step requires solving 2|B|+ 2 instances of

TAP, and the pseudocode is given in Procedure 6. The bbb and wbb estimates

are then updated, if necessary, every time a TAP instance is solved during the

bidirectional search process.

Algorithm 6: Preprocessing

Input:B,D, TSTT (α), TSTT (ω) Output:bb,wb
foreach b ∈ B do

TSTT ← TAP ((A \B) ∪ {b}) ;
bbb ← TSTT (α)− TSTT ;
TSTT ← TAP (A \ {b}) ;
wbi ← TSTT − TSTT (ω)

4.5.1 Bounds on the cost connecting states

Here we describe how to calculate upper and lower bounds on the optimal cost

of connecting two states on opposite search fronts, using the upper and lower

bounds on the benefits of repairing individual links. For concreteness, let s

and s′ be on the forward and backward search fronts, respectively. These two

states are compatible if Yf (s)∩Yb(s′) = ∅, representing that a feasible solution

can be formed by connecting them by a suitable subsequence of intermediate

links NV = B \ (Yf (s) ∩ Yb(s′)). Let n = |NV |, and assume s and s′ are

compatible (else we can ignore the possibility of connecting them).

88



If n = 0 or 1, then s and s′ together form a feasible solution, whose head is

given by the predecessors leading from α to s, and whose tail is given by the

predecessors leading from s′ to ω. In such a case, we calculate the total cost

of this solution, and update our global upper bound UB on the optimal cost

if possible. (Procedure 5) The remainder of this subsection assumes n > 1,

so there are at least two additional links that must be sequenced for repair to

connect the fronts.

By Theorem 1, we can decompose the cost of any solution passing through

states s and s′ into three parts: the cost incurred between α and s (where

the optimal order is assumed already known and represented by the labels

at s); the cost incurred between s and s′ (which is unknown), and the cost

incurred between s′ and ω (the optimal value of which is again assumed already

known). This unknown cost in the connecting segment is represented by the

gray shaded area of the middle region in Figure 4.4.

We start by calculating a lower bound on this cost, assuming that wbb ≤ rbb in

any sequence we consider. Without loss of generality we assume that the links

in NV are links {1, . . . , n}, and that they are indexed in order of decreasing

worst benefit-to-repair duration ratio:

wb1

D1

≥ wb2

D2

≥ · · · ≥ wbn
Dn

.

Theorem 2. If wbb ≤ rbb(y) in any feasible sequence y, then the cost of any

segment connecting s and s′ is at least TSTT (s′)
n∑
i=1

Di +
∑

1≤i≤j≤n

Diwbj.

Proof. The total system travel time at any stage between s and s′ is the sum of

TSTT (s′) and the realized benefit of all links yet to be repaired (for example,

89



Figure 4.4: Dividing the cost of a solution into a head (left section; represented
by state s); a middle section (yet to be determined); and a tail (right section;
represented by state s′)

90



in Figure 4.4 , TSTT decreases stepwise from TSTT (s′) + rb1 + rb2 + rb3 as

each link is repaired.), and the total cost accrued during this stage is found

by multiplying by its duration. Consider any permutation of the links in NV ,

and let b(i) denote the link repaired in the i-th position in this permutation.

We now prove the following inequality, where the left-hand side represents

the cost of the permutation; adding TSTT (s′)
∑n

i=1Di to both sides will then

establish the theorem. ∑
1≤i≤j≤n

Db(i)rbb(j) ≥
∑

1≤i≤j≤n

Diwbj .

The sum on the right-hand side contains a term for every possible value of i and

j satisfying 1 ≤ i ≤ j ≤ n. We now show that no matter what permutation

is considered, for all 1 ≤ i ≤ j ≤ n the left-hand side either contains a term

of the form Diwbj or Djwbi, but not both. Indeed, if i is repaired before j

in the permutation, then there is no term Djwbi, and if j is repaired before i

there is no term Diwbj. So, taken as an unordered set, the indices {b(i), b(j)}

in the left-hand sum are all distinct. There are n(n + 1)/2 sets of the form

{i, j} with i, j ∈ {1, . . . , n}, exactly the number of terms in the left-hand sum,

so this sum must therefore range over all possibilities of {i, j}, either in the

order Diwbj or Djwbi.

Therefore, for each set {i, j} with i, j ∈ {1, . . . , n}, we can pair a term in the

left-hand side with a corresponding term on the right-hand side, and this will

exhaust all terms in both sums. If the inequality holds for each corresponding

pair of terms, we are done. These n(n + 1)/2 inequalities will either take the

form Dirbj ≥ Diwbj or Djwbi ≥ Diwbj. In the first case the inequality is clear,

since rbj ≥ wbj by assumption. In the second case, the term on the right-hand

side must satisfy i ≤ j. Dividing by both durations and applying rbj ≥ wbj, it

91



is sufficient to show wbi/Di ≥ wbj/Dj, which is true by the assumed indexing

of the links in NV .

A corresponding upper bound TSTT (s′)
∑n

i=1Di +
∑

1≤i≤j≤n

n∑
j=i

bbjDi on the

connecting cost can be derived by the same argument, mutatis mutandis, or-

dering the links by ascending bbb/Db. As an easy corollary of Theorem 2, if

the failed links are independent in the sense that rbb does not depend on y,

the optimal strategy is to repair them in decreasing order of rbb/Db.

Now, there are cases where the assumption wbb ≤ rbb(y) is clearly false; in

particular, if
∑

b∈NV wbb > TSTT (s) − TSTT (s′), then rbb < wbb for at

least one link. In such a case we use the weaker, trivial bound (TSTT (s) −

TSTT (s′)) minb∈NV {Db}. Likewise, in calculating the upper bound, if
∑

b∈NV bbb <

TSTT (s) − TSTT (s′), then the assumption rbb(y) ≤ bbb is clearly false, and

we use the weaker bound (TSTT (s)− TSTT (s′))
∑

b∈NV Db.

In our numerical experiments, we observe that this weaker “backstop” is rarely

used (less than 3% of calculations).

4.5.2 Bounds on the total cost from each state

The bidirectional search algorithm requires an estimate of the total cost from

s (on the forward front) to the target state ω, or of the total cost from α to s′

(on the backward front). This section shows how we can translate the lower

and upper bounds h(s, s′) and ub(s, s′) for a specific pair of states s and s′ to

bounds on the cost of connecting the particular state s to ω via any compatible

state on the backward front (or connecting α to s′ via any compatible state

on the forward front). We will use f(s) and ub(s) to denote these calculated

bounds. For specificity, we will assume s is on the forward front; the procedure

92



is essentially the same on the backward front.

To find the lower bound f(s) on the optimal cost, we find the weakest of

the lower bounds connecting s to s′, since any of these might be used in the

optimal solution:

f(n) = min
s′∈Openb

{gf (s) + h(s, s′) + gb(s
′)} .

This lower bound is used to prioritize states to explore in the bidirectional

search.

For the upper bound ub(s), we use the strongest of the upper bounds connect-

ing s to s′. This is justified since the cost of the optimal solution is no greater

than the cost of the upper bound on the (s, s′) pair it uses, and this cost is no

greater than its upper bound. Therefore

ub(n) = min
s′∈Openb

{gf (s) + ub(s, s′) + gb(s
′)}

even though the states s′ used in the minimizations defining f and ub may be

different. In our procedure, these bounds are updated every r iterations, and

progressively get tighter as the accuracy of the wb and bb estimates improves.

This upper bound is used for pruning of other states.

The pseudocodes for the heuristic calculation are in Procedures 7 and 8.

4.6 Other Speedup Techniques

We further enhance the bidirectional search in several ways. First, we use the

upper bounds to prune search branches by comparing the lower bound on its

cost f(s) to UB, the best-known global upper bound on the optimal cost. If

f(s) > UB, then the state can be pruned, and we do not need to examine

93



Algorithm 7: FindBounds

Input:s, Open, sd, UB, incumbent Output:UB, incumbent E ← ∅ ;
foreach s′ ∈ Open do

if Y (s) ∩ Y (s′) = ∅ then
E ← E ∪ {s′};

f ←∞, ub←∞;
foreach s′ ∈ E do

f(s′)← g(s) + g(s′), ub(s′)← g(s) + g(s′);
NV ← B \ {Y (s) ∪ Y (sn)};
if sd = f then

TSTTfw = TSTT (s), TSTTbw = TSTT (s′);

else
TSTTbw = TSTT (s′), TSTTbw = TSTT (s);

UB, incumbent, h(s, s′), ub(s, s′)←
BoundsForPair(s, s′, sd, TSTTfw, TSTTbw, NV, UB, incumbent)
(see Procedure 8) ;
f ← min{f(s′) + h(s, s′), f}, ub← min{ub(s′) + ub(s, s′), ub}

f(s)← f , ub(s)← ub;

94



Algorithm 8: BoundsForPair

Input:s, s′, sd, TSTTfw, TSTTbw, NV , UB, incumbent Output:UB,
incumbent, h(s, s′), ub(s, s′)

If sd = b, swap s, s′ ;
UB, incumbent← CheckSoln(s,s’,NV,UB,incumbent);
Sort links in NV in descending order of wbb/Db. if∑

iwbi < TSTTfw − TSTTbw then
f(s, s′)← 0;
sum←

∑
iwbi; foreach b ∈ NV do

f(s, s′)← f(s, s′) +Disum;
sum← sum− wi;

else
f(s, s′)← (TSTTfw − TSTTbw)(minb{Db});

Sort links in NV in descending order of bbb/Db. if∑
i bbi > TSTTfw − TSTTbw then
ub(s, s′)← 0;
sum←

∑
i bi;

foreach b ∈ NV do
ub(s, s′)← ub(s, s′) +Disum;
sum← sum− bi;

else
ub(s, s′)← (TSTTfw − TSTTbw)

∑
bDb;

any states leading from it. Procedure 9 provides the formal statement for

the pruning procedure. Furthermore, we obtain a feasible solution every r

iterations by expanding the least heuristic cost node to completion using a

greedy approach. If necessary, the upper bound is then updated.

Second, we cache TAP solutions, to obviate unnecessary computations of

TSTT for the same set of links in different order.

Third, we limit branching by avoiding sequences that are likely to have locally

suboptimal subsequences. This is heuristically done by identifying the last

95



link repaired in s (obtained from the predecessor label), and computing the

ratio of its estimated benefit and repair duration to that of the candidate link

in the new branch. We expect that links with a higher benefit-duration ratio

should be repaired first, and avoid creating branches that violate this ordering.

Procedure 10 describes this process formally.

Fourth, our procedure requires repeated solution of TAP as a subproblem.

As a convex nonlinear optimization problem, TAP can only be solved ap-

proximately, and the stopping criterion should be chosen to balance accuracy

without wasting time on unnecessary precision. Based on the guidance from

Patil et al. [79], the value of TSTT is almost always within 1% of its equilib-

rium value when the relative gap (a common convergence criterion) is below

10−4. A tighter gap of 10−5 or 10−6 is sometimes used to ensure stability of

individual link flows. In our experiments we test both 10−4 and 10−6.

Finally, to reduce the number of states stored in memory for large instances

and to further speed up the search process, we incorporate a beam search

strategy. We define the level of a state to be the number of links in its set

Y . After every r iterations, we prune states with costs over (100 + k)% of the

lowest heuristic cost at that level. Increasing k improves the solution quality at

the expense of increasing state space size and overall computation time. The

parameters k and r can be tuned as required. We use an adaptive strategy

where k is decreased for later iterations as the wb and bb estimates improves

every iteration as well as the heuristic cost estimate approaches the unknown

optimal cost. Procedure 11 describes this formally. The beam search strategy

can be modified to only apply to particular levels or after a certain number of

states have been generated.

96



Algorithm 9: Pruning
Input:Open, s, incumbent, UB Output:Open, Closed, UB
if f(s) ≤ UB then

Open← Open ∪ {s};

Algorithm 10: Branching

Input:s, b, sd Output:create
create← False;
Let b′ ← Y (s) \ Y (p(s)) be the last link changed in s;
if sd = f and wbb/Db < bbb′/Db′ then

create← True;

if sd = b and wbb′/Db′ < bbb/Db then
create← True;

Algorithm 11: BeamSearch
BeamSearch:
Input:Open, Closed, k Output:Open, Closed
foreach i ∈ {1, . . . , N} do

Let Openif ← {s ∈ Openf : |Yf (s)| = i};
Let Bestif be a subset of Openif of size k, with the largest f(s)

values;
Let Openib ← {s ∈ Openb : |Yb(s)| = i};
Let Bestib be a subset of Openib of size k, with the largest f(s)
values;

Openf ← ∪Ni=1Best
i
f ;

Openb ← ∪Ni=1Best
i
b;

97



4.7 Numerical experiments

This section describes our tests of the procedures described above. All code is

available on Github [40]; for solving the traffic assignment subproblems we use

our implementation of Algorithm B [17]. For testing, we used the Sioux Falls

and Anaheim networks from the Transportation Test Networks repository [96].

Sioux Falls has 24 nodes and 76 links; Anaheim has 416 nodes and 914 links.

We compare our method with three other heuristics, which are simpler in form.

The greedy method (GM) involves constructing a sequence myopically, at each

stage choosing a link to repair that leads to the greatest immediate benefit.

Specifically, assume that we have already repaired a set of links Y . The next

bridge chosen by GM maximizes

(TSTT (Y )− TSTT (Y ∪ {i})
Di

over all unrepaired links i ∈ B \ Y . This approach requires solving O(|B|2)

instances of TAP.

The “lazy greedy method” (LGM) is even simpler, repairing bridges in order

of their best benefit-to-repair time ratios bbi/Di. This method requires solving

O(|B|) TAP instances, and represents the intuitive idea that links with higher

benefits and shorter repair times should be repaired first. (Recall that Theo-

rem 2 implies that this is in fact the optimal repair order if the damaged links

are independent and do not affect each other.)

The simplest method, IF (importance factor), is to simply repair links in de-

creasing order of their pre-disruption flow; this represents the intuitive solution

of repairing the most heavily-used links first. This method is näıve, but re-

quires solving only a single TAP instance.

98



4.7.1 Numerical experiments

Three damage levels (|B| = {8, 16, 32}) are considered for each network to

generate problem instances. Two different sampling methods are used to gen-

erate set B. For the first method, B is obtained by weighted sampling of links

using pre-disaster flows as weights. This is intended to choose impactful and

potentially disruptive links. For the second method, B is obtained by location

based sampling of the links. A node is randomly chosen and assigned as the

disaster center, followed by a set of affected nodes based on distance from the

disaster center. B is then chosen from links adjacent to this nodeset using

pre-disaster flow weighted sampling.

Each damaged link i is assigned a repair duration Di based on its capacity

Ci and length ζi, reflecting that higher-capacity and longer links generally

have more lanes and require more labor to reconstruct. The repair length

for the links with higher Ciζi are sampled from a gamma distribution with

higher mean and variance, whereas the repair length for the links with a lower

product are sampled from a gamma distribution with lower mean and variance.

Specifically, the mean and variance parameters for the gamma distribution

with respect to the percentiles of Ciζi are given in Table 4.1.

Percentile of Ciζi Mean (in weeks) Variance (in days)
0th − 25th 6 17
25th − 50th 10 22
50th − 75th 12 24
75th − 95th 14 32
95th − 100th 16 39

Table 4.1: Repair duration sampling parameters.

The beam search is used on a search front once the iteration number exceeds

99



250 (this is another hyperparameter chosen empirically). This avoids early

pruning of states and allows complex interactions to be captured.

In the results below, M refers to the bidirectional search heuristic, where the

traffic assignment subproblems are solved to a relative gap of 10−6. RM (re-

laxed method) uses a slightly weaker convergence threshold of 10−4 for the

TAP subproblems. Both M and RM produced optimal solutions when there

are 6 bridges and enumeration is possible.

Figure 4.5: Comparison on Sioux Falls, flow weighted sampling.

100



Figure 4.6: Comparison on Anaheim, flow-weighted sampling.

101



Figure 4.7: Comparison on Sioux Falls, location based sampling.

102



Figure 4.8: Comparison on Anaheim, location based sampling.

103



Figure 4.9: Comparison on Sioux Falls with increased demand, flow weighted
sampling.

104



Figure 4.10: Comparison on Anaheim with increased demand, flow-weighted
sampling.

105



Figure 4.11: Comparison on Sioux Falls with increased demand, location based
sampling.

106



Figure 4.12: Comparison on Anaheim with increased demand, location based
sampling.

107



Figures 4.5–4.12 compare the performance of five methods (M, RM, GM, LGM,

and IF). These figures show the solution quality and computational require-

ments, as expressed by (1) the percentage gap between the objective function

value and the best-known objective function value1; (2) the number of TAP

subproblems which were solved; and (3) the computation time. The results

were averaged over ten random instances. Since these three quantities are in

different units, the height of the bars in these figures is normalized, with 1

indicating the highest average value across the methods. Lastly, the error bars

represent the range of values – as the quantities are normalized, the range

represented here is in terms of multiple of the highest average.

Figures 4.5–4.8 consider the networks with standard parameters and compares

the performances differences of the methods across different impact levels and

sampling methods. Figures 4.9–4.12 report similar comparisons, but on more

challenging instances created by multiplying all demand values by 4, repre-

senting higher congestion.

The performance differences between the bidirectional search and greedy heuris-

tics is fairly small, but increases with the size of the problem scale — for

instance, with flow-weighted sampling, when there are 32 damaged links, a

significant difference in solution quality is seen. With location-based sam-

pling, the advantage of bidirectional search over the greedy methods is larger

even with fewer damaged links. Location-based sampling apparently gener-

ates more challenging problem instances for simpler heuristics. This is likely

because the damaged links are closer to each other geographically and thus

interact more heavily, recalling the example in Figure 4.2.

1For small instances this can be found by enumeration; for large instances we take the
minimum value over all the methods.

108



For the cases with increased demand, the performance differential between

our methods (M and RM) and the other heuristics is still relatively small

for the Sioux Falls experiment. As a small network, there are few potential

paths between most OD pairs. A larger performance gap exists for the larger

networks, where there are more link dependencies. The objective gap between

the greedy method (GM) and our proposed method (M) for 8 damaged links

is about 50% for flow-weighted sampling and 86% for location-based sampling.

For the same network, increasing the number of damaged links to 16 provides

objective gap of 77% and 74%.

Solving the TAP instances to a relaxed gap of 10−4 also did not affect per-

formance in any noticeable way. In the Anaheim network this reduced com-

putation time significantly without compromising performance. There was a

slight difference in the number of TAP instances solved; we hypothesize this

is due to the slight error in the TAP objective function introduced by looser

convergence criteria leading to pruning different branches of the search tree.

Based on this observation, we use only RM for larger problem instances, since

it saves computation time without affecting solution quality. The objective

gap rises above 110% for 32 damaged link instances2. The computation time

needed for the bidirectional search on the 32 link instances is significantly

higher than the instances with fewer damaged links. However, this concern can

be remedied by changing some of the settings in the beam search procedure,

trading computation time and solution accuracy. Additionally, for several

location-based sampling instances, IF is seen to outperform GM, especially

when situations like Figure 4.2 arise.

2The results for the experiments with 32 damaged links are averaged over 5 instances as
they take significantly longer

109



Our proposed method produces substantially higher-quality solutions than all

three of the simpler heuristics (GM, LGM, and IF). Although they require less

time, the computation times we report are very reasonable given the time scales

involved in planning for disaster recovery. We also note the large variance in

performance of these alternative methods, as shown by the error bars in the

plots, suggesting that the simpler heuristics do not provide reliable solution

quality.

4.8 Conclusion

In this chapter, we provide a bi-directional search approach for the link recon-

struction sequencing problem in a post-disaster transportation network prob-

lem. We exploit properties of the traffic assignment problem to develop spe-

cialized branching and pruning procedures based on upper and lower estimates

of solution cost, and embed the resulting procedure in a beam search. The re-

sulting heuristic is then able to solve larger problem instances than the heuris-

tic approaches studied in the literature for this problem. Our experiments

indicates substantial improvements in performance over simpler heuristics.

Future research should explore relaxing assumptions made in this model. Per-

haps the two most significant assumptions are (1) that traffic reaches equilib-

rium at each stage and (2) that repairs can only proceed sequentially and not

concurrently.

Regarding the former, adopting a day-to-day flow evolution would invalidate

Theorem 1, since the sequence of repairs would become significant in deter-

mining the future strategy, and not just the set of repaired bridges. Unless

another concise state definition is possible, or unless alternative dominance cri-

teria could be established, it would seem that many more potential sequences

110



would need to be evaluated.

Regarding the latter, allowing concurrent repairs would also greatly increase

the number of feasible solutions, but perhaps insight from job-shop scheduling

or other domains would be helpful. Research into either of these topics would

be valuable.

111



Chapter 5

Conclusion

This dissertation considered three network problems which violate assumptions

in their classical formulations, making them more difficult to solve, but perhaps

more relevant to specific applications:

• A minimum-cost flow problem where the objective is to minimize a

weighted sum of the mean flow cost and its standard deviation. As

the standard deviation is nonlinear and nonseparable by link, the objec-

tive function is more challenging to optimize than in the conventional

minimum-cost flow problem. Nevertheless, we derived a relationship be-

tween this problem and the (separable) problem of minimizing a weighted

sum of cost mean and variance, showing that optimal solutions to the

former are also optimal to the latter, for a suitable choice of weighting pa-

rameter. We showed that this weighting parameter can be found through

a line search, and developed three algorithms: a bisection method, a

Newton method, and a hybrid method that offers the superior typical-

case convergence rate of the Newton method while retaining the superior

worst-case performance of bisection.

• A network flow problem with nonlinear flow conservation constraints,

motivated by parking management in urban areas. By formulating the

problem in the space of splitting fractions, rather than link flows, we

112



are able to maintain a mathematically-convenient representation of the

feasible space, at the cost of having a nonlinear (indeed, nonconvex)

objective function. We obtain a descent algorithm for finding a local

minimum of total cost, showing how the gradient of the cost function can

be obtained through the Jacobian of link flows with respect to splitting

fractions.

• A network repair sequencing problem, where at each stage the flow

reaches a user equilibrium. The complication in this problem, relative to

classical scheduling problems, is the spatial dependencies between net-

work links: the benefit of repairing a damaged link can depend heavily on

which other links have already been repaired. Despite this dependency,

we show that the problem can be solved by dynamic programming. The

state space is extremely large, so we develop a bidirectional search heuris-

tic that obtains high-quality solutions while exploring a relatively small

number of states. This heuristic uses custom branching and pruning

rules tailored to this specific problem, using heuristic bounds we derive

on the benefit of repairing particular subsets of links. We show that this

method produces solutions on networks an orders of magnitude larger

than those reported in past literature.

Our hope is that the techniques designed for these specific problems have value

in other applications. In the first case, similar techniques may be applicable for

other optimization problems that can be related to simpler objective functions;

in the second, that our definition of marginal cost can be related to the user

equilibrium problem in a way that identifies optimal parking prices to assist in

urban planning; and in the third, that the bounds we develop may have value

in other bilevel network optimization problems, such as network design or toll

113



optimization.

114



Bibliography

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network

Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc., Engle-

wood Cliffs, NJ, 1993.

[2] Richard Arnott and John Rowse. Modeling parking. Journal of Urban

Economics, 45:97–124, 1999.

[3] Alper Atamtürk and Muhong Zhang. Two-stage robust network flow and

design under demand uncertainty. Operations Research, 55(4):662–673,

2007.

[4] Lawrence M Ausubel and Raymond J Deneckere. A generalized theorem

of the maximum. Economic Theory, 3(1), 1993.

[5] Kay Axhausen, John Polak, and Manfred Boltze. Effectiveness of parking

guidance and information systems: Recent evidence from Nottingham

and Frankfurt am Main. 01 1993.

[6] Hillel Bar-Gera. Origin-based algorithm for the traffic assignment prob-

lem. Transportation Science, 36:398–417, 2002.

[7] John Bates. Challenges and accomplishments of modeling impacts of

policy initiatives. In Association for European Transport and Contribu-

tors, 2008.

[8] Martin Beckmann, Charles B McGuire, and Christopher B Winsten.

115



Studies in the economics of transportation. Technical Report RM-1488-

PR, RAND corporation, 1956.

[9] Aharon Ben-Tal, Laurent E Ghaoui, and Arkadi Nemirovski. Robust

Optimization, volume 28. Princeton University Press, 2009.

[10] Itzhak Benenson, Karel Martens, and Slava Birfir. Parkagent: An agent-

based model of parking in the city. Computers, Environment and Urban

Systems, 32(6):431–439, 2008. GeoComputation: Modeling with spatial

agents.

[11] Dimitri P Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[12] Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian Stiller. Ro-

bust and adaptive network flows. Operations Research, 61(5):1218–1242,

2013.

[13] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and

network flows. Mathematical programming, 98(1–3):49–71, 2003.

[14] John R Birge and James K Ho. Optimal flows in stochastic dynamic

networks with congestion. Operations Research, 41(1):203–216, 1993.

[15] Paolo Bocchini and Dan Frangopol. Restoration of bridge networks af-

ter an earthquake: Multicriteria intervention optimization. Earthquake

Spectra, 28(2):427–455, 2012.

[16] Stephen D Boyles. Bush-based sensitivity analysis for approximating

subnetwork diversion. Transportation Research Part B, 46:139–155,

2012.

116



[17] Stephen D Boyles. Tap-b implementation.

https://github.com/spartalab/tap-b, 2020. Accessed: 2020-05-20.

[18] Stephen D Boyles, Nicholas E Lownes, and Avinash Unnikrishnan.

Transportation Network Analysis, volume 1. 0.85 edition, 2020.

[19] Stephen D Boyles, Shoupeng Tang, and Avinash Unnikrishnan. Park-

ing search equilibrium on a network. Transportation Research Part B:

Methodological, 81:390–409, 2015. Optimization of Urban Transporta-

tion Service Networks.

[20] Stephen D Boyles and S Travis Waller. A mean-variance model for

the minimum cost flow problem with stochastic arc costs. Networks,

56(3):215–227, 2010.

[21] Nourht C C, El-Reedy T Y, and Ismail H K. A combined parking and

traffic assignment model. Traffic Engineering and Control, 22:524–530,

1981.

[22] Anthony Chen and Zhong Zhou. The α-reliable mean-excess traffic equi-

librium model with stochastic travel times. Transportation Research Part

B: Methodological, 44(4):493–513, 2010.

[23] Bi Y Chen, William H K Lam, Agachai Sumalee, Qingquan Li, and Mei L

Tam. Reliable shortest path problems in stochastic time-dependent net-

works. Journal of Intelligent Transportation Systems, 18(2):177–189,

2014.

[24] Lichun Chen and Elise Miller-Hooks. Resilience: An indicator of recov-

ery capability in intermodal freight transport. Transportation Science,

46(1):109–123, 2012.

117



[25] Peng Chen and Yu M Nie. Bicriterion shortest path problem with a gen-

eral nonadditive cost. Transportation Research Part B: Methodological,

57:419–435, 2013.

[26] Karel Dieussaert, Koen Aerts, Steenberghen Thérèse, Sven Maerivoet,

and Karel Spitaels. Sustapark: An agent-based model for simulating

parking search, 01 2009. Presented at the 12th AGILE International

Conference on Geographic Information Science, Hannover, Germany.

[27] Augusto Eusébio and José R Figueira. Finding non-dominated solutions

in bi-objective integer network flow problems. Computers & Operations

Research, 36(9):2554–2564, 2009.

[28] Augusto Eusébio, José R Figueira, and Matthias Ehrgott. On find-

ing representative non-dominated points for bi-objective integer network

flow problems. Computers & Operations Research, 48:1–10, 2014.

[29] Yueyue Fan, Robert E Kalaba, and James E Moore. Arriving on time.

Journal of Optimization Theory and Applications, 127(3):497–513, 2005.

[30] Yueyue Fan and Yu M Nie. Optimal routing for maximizing the travel

time reliability. Networks and Spatial Economics, 6(3-4):333–344, 2006.

[31] Reza Faturechi and Elise Miller-Hooks. Measuring the performance of

transportation infrastructure systems in disasters: A comprehensive re-

view. Journal of Infrastructure Systems, 21(1), 2014.

[32] Mogens Fosgerau and Leonid Engelson. The value of travel time variance.

Transportation Research Part B: Methodological, 45(1):1–8, 2011.

[33] Mogens Fosgerau and Anders Karlström. The value of reliability. Trans-

portation Research Part B: Methodological, 44(1):38–49, 2010.

118



[34] Steven A Gabriel and David Bernstein. The traffic equilibrium prob-

lem with nonadditive path costs. Transportation Science, 31(4):337–348,

1997.

[35] Robert Gallager. A minimum delay routing algorithm using distributed

computation. IEEE Transactions on Communications, 25(1):73–85, Jan-

uary 1977.

[36] Mariano Gallo, Luca D’Acierno, and Bruno Montella. A multilayer

model to simulate cruising for parking in urban areas. Transport Policy,

18:735–744, 09 2011.

[37] Hemant Gehlot, Shreyas Sundaram, and Satish V Ukkusuri. Approxi-

mation algorithms for the recovery of infrastructure after disasters under

precedence constraints. IFAC-PapersOnLine, 52(20):175–180, 2019.

[38] Hemant Gehlot, Shreyas Sundaram, and Satish V Ukkusuri. Optimal

sequencing policies for recovery of physical infrastructure after disasters.

In 2019 American Control Conference (ACC), pages 3605–3610, 2019.

[39] Gregory D Glockner and George L Nemhauser. A dynamic network

flow problem with uncertain arc capacities: formulation and problem

structure. Operations Research, 48(2):233–242, 2000.

[40] Can Gokalp. Bridge repair repository. https://github.com/cangokalp,

2020. Accessed: 2020-05-25.

[41] Horst W Hamacher, Christian Roed Pedersen, and Stefan Ruzika. Multi-

ple objective minimum cost flow problems: A review. European Journal

of Operational Research, 176(3):1404–1422, 2007.

119



[42] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for

the heuristic determination of minimum cost paths. IEEE Transactions

on Systems Science and Cybernetics, 4(2):100–107, 1968.

[43] Dorit Hochbaum. Complexity and algorithms for nonlinear optimization

problems. Annals of Operations Research, 153(1):257–296, September

2007.

[44] George W Housner and Jr. Thiel, Charles C. The continuing challenge:

Report on the performance of state bridges in the northridge earthquake.

Earthquake Spectra, 11(4):607–636, 1995.

[45] Kevin R Hutson and Douglas R Shier. Extended dominance and a

stochastic shortest path problem. Computers & Operations Research,

36(2):584–596, 2009.

[46] Ehsan Jafari and Stephen D Boyles. Improved bush-based methods for

network contraction. Transportation Research Part B, 83:298–313, 2016.

[47] Momin Jamil and Xin-She Yang. A literature survey of benchmark func-

tions for global optimization problems. International Journal of Mathe-

matical Modelling and Numerical Optimisation, 4(2):150–194, 08 2013.

[48] P V Kamesam and R R Meyer. Multipoint methods for separable non-

linear networks, pages 185–205. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 1984.

[49] Alireza Khani and Stephen D Boyles. An exact algorithm for the mean-

standard deviation shortest path problem. Transportation Research Part

B: Methodological, 81:252–266, 2014.

120



[50] Zoltán Király and Péter Kovács. Efficient implementations of minimum-

cost flow algorithms. Acta Universitatis Sapientiae, Informatica, 4, 2012.

[51] D Klingman, A Napier, and J Stutz. Netgen: A program for generating

large scale capacitated assignment, transportation, and minimum cost

flow network problems. Management Science, 20(5):814–821, 1974.

[52] Fernando A Kuipers, Song Yang, Stojan Trajanovski, and Ariel Orda.

Constrained maximum flow in stochastic networks. In 2014 IEEE 22nd

International Conference on Network Protocols, pages 397–408. IEEE,

2014.

[53] William H K Lam, Zhi-Chun Li, Hai-Jun Huang, and Shuai C Wang.

Modeling time-dependent travel choice problems in road networks with

multiple user classes and multiple parking facilities. Transportation Re-

search Part B: Methodological, 40(5):368–395, 06 2006.

[54] William H K Lam, M L Tam, and M G H Bell. Optimal road tolls and

parking charges for balancing the demand and supply of road transport

facilities. In M. A. P. Taylor, editor, Proceedings of the 15th International

Symposium on Transportation and Traffic Theory, pages 561–582, 2002.

[55] Haijune Lee and P Simin Pulat. Bicriteria network flow problems: Con-

tinuous case. European Journal of Operational Research, 51(1):119–126,

1991.

[56] Fabien Leurent and Houda Boujnah. Traffic equilibrium in a network

model of parking and route choice, with search circuits and cruising

flows. In Proceedings of EWGT2012, Paris, 2012. EURO Working Group

on Transportation.

121



[57] Shenzhi Li, Christopher D Janneck, Aditya P Belapurkar, Murat Ga-

niz, Xiaoning Yang, Mark Dilsizian, Tianhao Wu, John M Bright, and

William M Pottenger. Mining higher-order association rules from dis-

tributed named entity databases. In 2007 IEEE Intelligence and Security

Informatics, pages 236–243, 2007.

[58] J Shung Lin, Chin C Jane, and John Yuan. On reliability evaluation

of a capacitated-flow network in terms of minimal pathsets. Networks,

25(3):131–138, 1995.

[59] Jsen S Lin. Reliability evaluation of capacitated-flow networks with

budget constraints. IIE Transactions, 30(12):1175–1180, 1998.

[60] Yi K Lin. A simple algorithm for reliability evaluation of a stochastic-

flow network with node failure. Computers & Operations Research,

28(13):1277–1285, 2001.

[61] Yi K Lin. Using minimal cuts to evaluate the system reliability of a

stochastic-flow network with failures at nodes and arcs. Reliability En-

gineering & System Safety, 75(1):41–46, 2002.

[62] Yi K Lin. On a multicommodity stochastic-flow network with unreliable

nodes subject to budget constraint. European Journal of Operational

Research, 176(1):347–360, 2007.

[63] Yi K Lin. Reliability evaluation for an information network with node

failure under cost constraint. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 37(2):180–188, 2007.

[64] Ronaldo Luna, Nandini Balakrishnan, and Cihan H Dagli.

Postearthquake recovery of a water distribution system: Discrete

122



event simulation using colored petri nets. Journal of Infrasturcture

Systems, 17(1):25–34, 2011.

[65] Neale F Lunderville. Irene recovery report: A stronger future. A repre-

sentative to the Governor of Vermont, State of Vermont, 2011.

[66] Eric Merschman, Mehrnaz Doustmohammadi, Abdullahi M Salman, and

Michael Anderson. Postdisaster decision framework for bridge repair pri-

oritization to improve road network resilience. Transportation Research

Record, 2674(3):81–92, 2020.

[67] R R Meyer. Two-segment separable programming. Management Science,

25(4):385–395, 1979.

[68] Elise Miller-Hooks, Xiaodong Zhang, and Reza Faturechi. Measuring and

maximizing resilience of freight transportation networks. Computers and

Operations Research, 39(7):1633–1643, 2012.

[69] Siamak Moradi, Andrea Raith, and Matthias Ehrgott. A bi-objective

column generation algorithm for the multi-commodity minimum cost

flow problem. European Journal of Operational Research, 244(2):369–

378, 2015.

[70] Ishwar Murthy and Sumit Sarkar. A relaxation-based pruning technique

for a class of stochastic shortest path problems. Transportation Science,

30(3):220–236, 1996.

[71] Ishwar Murthy and Sumit Sarkar. Exact algorithms for the stochastic

shortest path problem with a decreasing deadline utility function. Eu-

ropean Journal of Operational Research, 103(1):209–229, 1997.

123



[72] V A Nguyen and Y.-P Tan. Minimum convex cost flow problem. In

Fourth International Conference on Information, Communications and

Signal Processing, 2003 and the Fourth Pacific Rim Conference on Mul-

timedia. Proceedings of the 2003 Joint, volume 2, pages 1248–1252, 2003.

[73] Yu Nie and Yueyue Fan. Arriving-on-time problem: discrete algorithm

that ensures convergence. Transportation Research Record: Journal of

the Transportation Research Board, (1964):193–200, 2006.

[74] Yu M Nie. Multi-class percentile user equilibrium with flow-

dependent stochasticity. Transportation Research Part B: Methodologi-

cal, 45(10):1641–1659, 2011.

[75] Yu M Nie and Xing Wu. Shortest path problem considering on-time

arrival probability. Transportation Research Part B: Methodological,

43(6):597–613, 2009.

[76] Yu M Nie, Xing Wu, and Tito Homem-de Mello. Optimal path prob-

lems with second-order stochastic dominance constraints. Networks and

Spatial Economics, 12(4):561–587, 2012.

[77] Evdokia Nikolova and Nicolás E Stier-Moses. A mean-risk model for

the traffic assignment problem with stochastic travel times. Operations

Research, 62(2):366–382, 2014.

[78] Fernando Ordóñez and Nicolás E Stier-Moses. Wardrop equilibria with

risk-averse users. Transportation Science, 44(1):63–86, 2010.

[79] Priyadarshan N Patil, Katherine C Ross, and Stephen D Boyles. Con-

vergence behavior for traffic assignment characterization metrics. Trans-

portmetrica A: Transport Science, pages 1–35, 2020.

124



[80] Michael Patriksson. The traffic assignment problem: models and meth-

ods. VSP, 1994.

[81] A Arun Prakash, Ravi Seshadri, and Karthik K Srinivasan. A consistent

reliability-based user-equilibrium problem with risk-averse users and en-

dogenous travel time correlations: formulation and solution algorithm.

Transportation Research Part B: Methodological, 114:171–198, 2018.

[82] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P

Flannery. Numerical Recipes in C: The Art of Scientific Computing (2nd

ed.). Cambridge University Press., 1992.

[83] P Simin Pulat, Fenghueih Huarng, and Haijune Lee. Efficient solutions

for the bicriteria network flow problem. Computers & Operations Re-

search, 19(7):649–655, 1992.

[84] Zhen (Sean) Qian and Ram Rajagopal. Optimal occupancy-driven park-

ing pricing under demand uncertainties and traveler heterogeneity: a

stochastic control approach. Transportation Research Part B, 67:144–

165, 2014.

[85] Zhen (Sean) Qian, Feng (Evan) Xiao, and H M Zhang. Managing

morning commute traffic with parking. Transportation Research Part

B, 46(7):894–916, 2012.

[86] Andrea Raith and Matthias Ehrgott. A two-phase algorithm for the

biobjective integer minimum cost flow problem. Computers & Operations

Research, 36(6):1945–1954, 2009.

[87] Andrea Raith and Antonio Sedeño-Noda. Finding extreme supported

solutions of biobjective network flow problems: An enhanced parametric

125



programming approach. Computers & Operations Research, 82:153–166,

2017.

[88] David Rey and Hillel Bar-Gera. Long-term scheduling for road net-

work disaster recovery. International Journal of Disaster Risk Reduction,

42:101353, 2020.

[89] Antonio Sedeño-Noda and C González-Martın. The biobjective min-

imum cost flow problem. European Journal of Operational Research,

124(3):591–600, 2000.

[90] Suvrajeet Sen, Rekha Pillai, Shirish Joshi, and Ajay K Rathi. A mean-

variance model for route guidance in advanced traveler information sys-

tems. Transportation Science, 35(1):37–49, 2001.

[91] Ravi Seshadri and Karthik K Srinivasan. Robust traffic assignment

model: formulation, solution algorithms and empirical application. Jour-

nal of Intelligent Transportation Systems, 21(6):507–524, 2017.

[92] Mehrdad Shahabi, Avinash Unnikrishnan, and Stephen D Boyles. An

outer approximation algorithm for the robust shortest path problem.

Transportation Research Part E: Logistics and Transportation Review,

58:52–66, 2013.

[93] Donald C Shoup. Cruising for parking. Transport Policy, 13(6):479–486,

2006. Parking.

[94] Raj A Sivakumar and Rajan Batta. The variance-constrained shortest

path problem. Transportation Science, 28(4):309–316, 1994.

[95] Karthik K Srinivasan, AA Prakash, and Ravi Seshadri. Finding most

reliable paths on networks with correlated and shifted log-normal travel

126



times. Transportation Research Part B: Methodological, 66:110–128,

2014.

[96] Ben Stabler. Transportation networks.

https://github.com/bstabler/TransportationNetworks, 2020. Accessed:

2020-05-20.

[97] Russell G Thompson and Anthony J Richardson. A parking search

model. Transportation Research Part A: Policy and Practice, 32(3):159–

170, 1998.

[98] László A Végh. A strongly polynomial algorithm for a class of minimum-

cost flow problems with separable convex objectives. SIAM Journal on

Computing, 45(5):1729–1761, 2016.

[99] Eric D Vugrin, Mark A Turnquist, and Nathanael J K Brown. Opti-

mal recovery sequencing for enhanced resilience and service restoration

in transportation networks. International Journal of Critical Infrastruc-

tures, 10(3/4):218–246, 2014.

[100] Jianping Wang, Chunming Qiao, and Hongfang Yu. On progressive net-

work recovery after a major disruption. Proceedings of IEEE INFOCOM,

2011.

[101] Judith YT Wang, Matthias Ehrgott, and Anthony Chen. A bi-objective

user equilibrium model of travel time reliability in a road network. Trans-

portation Research Part B: Methodological, 66:4–15, 2014.

[102] John G Wardrop and James I Whitehead. Correspondence. some theo-

retical aspects of road traffic research. Proceedings of the Institution of

Civil Engineers, 1(5):767–768, 1952.

127



[103] Xing Wu. Study on mean-standard deviation shortest path problem in

stochastic and time-dependent networks: A stochastic dominance based

approach. Transportation Research Part B: Methodological, 80:275–290,

2015.

[104] Tao Xing and Xuesong Zhou. Finding the most reliable path with and

without link travel time correlation: A lagrangian substitution based

approach. Transportation Research Part B: Methodological, 45(10):1660–

1679, 2011.

[105] Tao Xing and Xuesong Zhou. Reformulation and solution algorithms for

absolute and percentile robust shortest path problems. IEEE Transac-

tions on Intelligent Transportation Systems, 14(2):943–954, 2013.

[106] Ningxiong Xu, Seth D Guikema, Rachel A Davidson, Linda K Nozick,

and Zehra Ça gnan. Optimizing scheduling of post-earthquake electric

power restoration tasks. Earthquake Engineering & Structural Dynamics,

36:265–284, 01 2006.

[107] Hai Yang, Wei Liu, Xiaolei Wang, and Xiaoning Zhang. On the morning

commute problem with bottleneck congestion and parking space con-

straints. Transportation Research Part B, 58:106–118, 2013.

[108] Lixing Yang and Xuesong Zhou. Optimizing on-time arrival probability

and percentile travel time for elementary path finding in time-dependent

transportation networks: Linear mixed integer programming reformula-

tions. Transportation Research Part B: Methodological, 96:68–91, 2017.

[109] Qing Ye and Satish V Ukkusuri. Resilience as an objective in the op-

128



timal reconstruction sequence for transportation networks. Journal of

Transportation Safety & Security, 7(1):91–105, 2015.

[110] Chao Zhang, Xiaojun Chen, and Agachai Sumalee. Robust wardrop’s

user equilibrium assignment under stochastic demand and supply: ex-

pected residual minimization approach. Transportation Research Part

B: Methodological, 45(3):534–552, 2011.

[111] Leilei Zhang and Tito Homem-de Mello. An optimal path model for the

risk-averse traveler. Transportation Science, 51(2):518–535, 2016.

[112] Ning Zhang, Alice Alipour, and Laura Coronel. Application of novel

recovery techniques to enhance the resilience of transportation networks.

Transportation Research Record: Journal of the Transportation Research

Board, pages 138–147, 2018.

[113] Weili Zhang, Naiyu Wang, and Charles Nicholson. Resilience-based post-

disaster recovery strategies for road-bridge networks. Structure and In-

frastructure Engineering, 13(11):1404–1413, 2017.

[114] Weili Zhang, Naiyu Wang, Charles Nicholsonc, and Mohammad H

Tehrani. A stage-wise decision framework for transportation network

resilience planning. arXiv preprint arXiv:1808.03850, 2018.

[115] Xiaoning Zhang, Hai-Jun Huang, and H M Zhang. Integrated daily

commuting patterns and optimal road tolls and parking fees in a linear

city. Transportation Research Part B, 42(1):38–56, 2008.

[116] Xiaoning Zhang, Hai Yang, and Hai-Jun Huang. Improving travel ef-

ficiency by parking permits distribution and trading. Transportation

Research Part B, 45(7):1018–1034, 2011.

129



[117] Yufeng Zhang and Alireza Khani. An algorithm for reliable shortest path

problem with travel time correlations. Transportation Research Part B:

Methodological, 121:92–113, 2019.

[118] Yuli Zhang, Zuo J Max Shen, and Shiji Song. Parametric search for the

bi-attribute concave shortest path problem. Transportation Research

Part B: Methodological, 94:150–168, 2016.

[119] Yuli Zhang, Zuo J Max Shen, and Shiji Song. Lagrangian relaxation

for the reliable shortest path problem with correlated link travel times.

Transportation Research Part B: Methodological, 104:501–521, 2017.

[120] Yaoming Zhou, Junwei Wang, and Hai Yang. Resilience of transportation

systems: Concepts and comprehensive review. IEEE Transactions on

Intelligent Transportation Systems, 20(12):4262–4276, 2019.

[121] Shanjiang Zhu, David Levinson, Henry X Liu, and Kathleen Harder.

The traffic and behavioral effects of the I-35W Mississippi River Bridge

collapse. Transportation Research Part A, 44:771–784, 2010.

[122] Weilin Zhuang, Zhenyu Liu, and Jinsong Jiang. Earthquake-induced

damage analysis of highway bridges in wenchuan earthquake and coun-

termeasures. Chinese Journal of Rock Mechanics and Engineering,

28:1377–1387, 2009.

130


