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Abstract 

 

Data-Driven Placement of Centroid Connectors in Dynamic Traffic 

Assignment 

 

Rachel Michelle James, M.S.E 

The University of Texas at Austin, 2016 

 

Supervisor:  Stephen D. Boyles 

 

Recent technological advances allows transportation engineering professions to 

collect, share, and handle unprecedented quantities of data, which has the potential to 

transform current transportation planning paradigms. In the immediate future, data can be 

used to improve the precision and capabilities of existing transportation network 

modeling frameworks. Parcel data is a large, readily available data source that represents 

the location of public lands, businesses, and residences and is frequently used by 

government and businesses for land use and zoning decisions. This thesis looks at the 

viability of using parcel data to inform static traffic assignment (STA) and dynamic 

traffic assignment (DTA) connector placement in a medium sized network in the Austin, 

TX region.   

Simulation-based DTA models are particularly sensitive to the topological detail 

of the traffic network, including the location of centroid connectors. Traditional centroid 

connector placement strategies may lead to excessive congestion and unrealistic traffic 

patterns, while manual network refinement is prohibitive in large regional models. In this 



 viii 

thesis, parcel-level data is used to both allocate travel demand between two sub-regions 

in each considered traffic analysis zone and to select appropriate nodes for the centroid 

connector placement. Numerical experiments suggest that the proposed approach better 

approximates both corridor travel times and traffic counts throughout the network, with 

improvements of more than 40 percent in travel time estimation accuracy, and 12 percent 

in traffic count estimation. Additionally, the scenarios that best matched count and travel 

time data were the scenarios that had the highest average parcel density per entry/exit 

node, indicating that parcel data is an acceptable proxy for high demand points in the 

network.  

When applied in STA, the results were not quite as promising. Although this 

methodology was able to improve the utilization of lower capacity links, the results 

ultimately did not better resemble volume count data. However, this does represent a 

simple, transparent, and data-driven approach for centroid connector placement in static 

traffic assignment that performs as well as traditional methods. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

 One critical component of transportation planning is travel demand modeling, 

which, simply put, is a mathematical model of the supply and demand for travel in an 

urban environment. Though the state-of-the-art practice in travel demand modeling is an 

activity based approach, the most common modeling paradigm in practice is the “four 

step” model (McNally, 2007). The four step model is an aggregated trip-based 

methodology that yields the number of trips between each origin-destination pair within a 

study area. Transportation professionals define origins and destinations within planning 

models through a unit of geography known as a traffic analysis zone (TAZ). The urban 

area is partitioned into a number of TAZs that can range in size from a city block to an 

entire neighborhood depending on the scale of the model. Each TAZ is represented by a 

centroid, which is an aggregation of all of the real origins and destinations within a TAZ 

and typically physically located at the geometric center of gravity of the TAZ (Sheffi, 

1985). The centroid is connected to the model network via a number of artificial links, 

called centroid connectors, which represents all of the lower capacity roads within the 

TAZ that are not modeled explicitly on the network.  

Once the TAZ structure and the network representation have been established, the 

four step trip-based modeling approach involves trip generation, trip distribution, modal 

split, and traffic assignment modules (see Figure 1.1). In trip generation, the aggregate 

number of trips produced at and attracted to a TAZ is estimated as a function of land use, 

socio-economic variables, and trip purpose. In trip distribution, origin-destination pairs 

are created by determining the number of inter-zonal trips as a function of impedance, 

typically through a gravity model. The third step, modal split, determines the proportion 
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of trips made by various modes, often determined by a logit model. The last step of the 

four step model is traffic assignment, where the expected route of each trip/vehicle is 

found via the principle of user equilibrium; this step is the primary research focus of this 

thesis.   

 

Figure 1.1: The Four Step Travel Demand Model (McNally, 2007) 

During this last step, all of the trips found to travel between zones by the car 

mode during the prior three steps are assigned to the network to observe resulting travel 

(link and path flows) patterns. The output, the predicted route choice of vehicles, is used 

to develop performance metrics that assist in the evaluation of alternatives and to inform 

transportation planning and policies. There are two primary categories of traffic 

assignment models: static and dynamic. Though dynamic traffic assignment (DTA) is the 

state-of-the-art for traffic assignment—as it more realistically captures congestion 

propagation, queue spillback, and network delay—the mathematical properties of static 

traffic assignment (STA) make it useful for researchers and in practical planning 

scenarios where data inputs are not known with certainty. Thus, though some view 

dynamic traffic assignment as a superior tool to static traffic assignment, they are 

different tools for different problems—depending on model purpose, desired outcomes, 
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and availability of expertise and funding. Regardless of the nature of the modeling 

approach, the organization of TAZs, definition of centroids, and the placement of 

centroid connectors provide the foundation for any model and are pivotal to the success 

of any venture.  

This thesis focuses on the placement of centroid connectors and their impact on 

the results of traffic assignment. It has been observed that one unintended consequence of 

the network abstraction and the user equilibrium behavior assumption in traffic 

assignment is that simulated vehicles can utilize centroid connectors in a manner that is 

behaviorally inconsistent with reality (e.g. utilize the connector as a “free ride” to skip 

over lower capacity roadways within a TAZ, systematically overloading higher 

capacity/higher speed links). As stated by Sheffi, “The issue of network representation is 

as much an art as a science; practice and experience are required to carry it out 

successfully” (Sheffi, 1985, pp. 16). This thesis seeks to make the centroid connector 

placement task in network representation determination more systematic by leveraging 

readily available parcel data to streamline the calibration of static and dynamic traffic 

assignment models.    

 

1.2 MOTIVATION 

The use of advanced transportation planning models allows decision makers to 

better understand the spatial and temporal aspects of transportation systems’ 

performance. Among these, dynamic traffic assignment models, have been increasingly 

used in practice due to their ability to capture the propagation of congestion and the 

impact of a variety of traffic control and management strategies (Chiu, Bottom, Mahut, 
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Pax, Balakrishna, Waller, & Hick, 2011; Sloboden, Lewis, Alexiadis, Chiu, & Nava, 

2012).  

Advanced models often require more detailed inputs, including a more accurate 

representation of the transportation network. However, previous research suggests that 

improving the network representation without considering how travel demand is loaded 

onto the network may not yield the desired benefits (Jafari, Gemar, Ruiz Juri, & Duthie, 

2015). Additionally, it’s been shown numerically that the placement of centroid 

connectors plays a significant role in the results of both static and dynamic traffic 

assignment models (Jafari et al., 2015; Qian & Zhang, 2012). While traditional centroid 

placement techniques may not suffice towards this end, manual refinement of centroid 

connectors may be prohibitive in large regional models.  

Additionally, the simulation nature of DTA places increased importance on the 

validation and calibration of a model. Calibration is defined as a resource intensive 

process by which the base year of the model is adjusted to ensure that the model output 

performance metrics are realistic and statistically representative of real-world data 

(Sloboden et al., 2012). Furthermore, DTA model validation and calibration requires 

access to a rich data set of traffic counts, travel times, and queue accumulation in order to 

be able to judge the model’s ability to approximate real world conditions (Chiu et al., 

2011). 

According to Dynamic Traffic Assignment: A Primer (Chiu et al., 2011), 

calibration of DTA models is a major hurdle to large scale deployment of DTA because it 

is a time consuming process and requires extra attention to detail. Moreover, a recent 

survey of the 20 largest metropolitan planning organizations (MPO) in the United States, 

conducted by Cambridge Systematics, found that concerns about obtaining robust input 
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data and issues surrounding the calibration of models are two of the largest barriers to 

widespread adoption of DTA (Cambridge Systematics, 2015).   

New technology allows us to collect, share, and utilize unprecedented quantities 

of data.  This is observed in practice primarily in the transportation operations sector, 

where real-time data is utilized in congestion pricing, variable speed limits, and active 

traffic management strategies.  Though not as strongly supported in the literature, the 

availability of such data also has the potential to transform transportation planning 

paradigms.  In the short term, data can be used to improve the precision and capabilities 

of existing modeling frameworks. This work exemplifies the use of readily-available built 

environment data to enhance practical implementations of DTA and STA models.   

 

1.3 CONTRIBUTION 

This thesis makes two primary contributions to the research areas of static and 

dynamic traffic assignment. First, this thesis utilizes parcel-level data to inform an 

automated centroid connector placement methodology with the goal of producing more 

realistic network loading patterns based on the built environment surrounding existing 

network model nodes. Additionally, the location of parcel density in each TAZs is 

utilized to extend work by Jafari et al. (2015) found to improve the usage pattern of local 

streets in DTA models by dividing the TAZ demand between two artificial sub-regions 

comprising a TAZ; this effort utilizes parcel data to inform the division.    

Though the detail oriented approach of connector placement via parcel data lends 

itself better to DTA mesoscopic analysis, this work presents a transparent methodology 

for centroid connector placement as a potential alternative strategy to traditional methods 

in static assignment. Perhaps, the larger contribution to STA literature is the use of real-
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world data to evaluate both the performance of the new methodology as well as the 

performance metrics found in the literature to compare and contrast the performance of 

centroid connector placement algorithms.  

Numerical experiments, conducted on a medium-size network in the Austin, TX 

region, suggest that the proposed approach better approximates both corridor travel times 

and traffic counts for the dynamic traffic assignment model. Additionally, this application 

used in conjunction with static assignment was found to result in a significant increase in 

flow on lower capacity links and a marginal decrease in the flow on higher capacity 

functionally classified links. However, when field data were used as a validation metric, 

this methodology was not found to perform significantly better or worse than the original 

technique employed by the Capital Area Metropolitan Planning Organization (CAMPO) 

when creating the initial network structure. This suggests that looking for more 

reasonable flow patterns when analyzing the performance of static assignment centroid 

connector placement may not be a sufficient evaluation criterion. 

 

1.4 ORGANIZATION 

The remainder of this thesis is organized as follows.  Section 2 summarizes use of 

parcel data in planning and reviews literature discussing centroid connector placement in 

both static and dynamic traffic assignment. Section 3 briefly details algorithms and 

pseudocodes for dynamic and static traffic assignment before presenting the proposed 

methodology for the data-driven placement of centroid connectors. Section 4 provides 

detail on the experimental design and the scenarios modeled. Section 5 presents the 

numerical analyses, while Section 6 provides discussion of the results. Lastly, Section 7 

offers concluding remarks and outlines possible future research directions. 
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Chapter 2: Literature Review 

2.1 INTRODUCTION 

The literature review begins with a brief refresher on static and dynamic traffic 

assignment and details VISTA (Visual Interactive System for Transport Algorithms), the 

DTA software utilized for this work. Next, the literature review briefly details the 

contrasting aspects of the traffic assignment methodologies relevant to this thesis—link 

performance functions versus link models based in fundamental traffic flow theory and 

their impact on the ability of the model to capture congestion propagation and the 

network fidelity and associated data requirements—and exhaustively details the literature 

on centroid connector placement. The literature review concludes with a synopsis of 

efforts to leverage big data in transportation, followed by a discussion on the current 

availability and utilization of parcel data. 

 

2.2 STATIC TRAFFIC ASSIGNMENT 

The goal of static traffic assignment (STA) is to find the flows on each link, 𝑥𝑖𝑗, 

and the resulting travel time, 𝑡𝑖𝑗(𝑥𝑖𝑗), at equilibrium conditions given specific network 

data (e.g. nodes, arcs, free flow speed, practical capacity, etc.). Static assignment uses 

link performance functions (LPF) to define a relationship between link flows and link 

travel times. One common link performance function is the Bureau of Public Roads 

(BPR) function (TRB, 1985) as shown below 

𝑡𝑖𝑗(𝑥𝑖𝑗) = 𝑡𝑖𝑗
𝑜 ((1 + 𝛼 (

𝑥𝑖𝑗

𝑐𝑖𝑗
)

𝛽

) 
(1) 

where 𝑡𝑖𝑗
𝑜  is the free flow travel time, 𝑥𝑖𝑗 is the flow on link ij, 𝑐𝑖𝑗 is the practical 

capacity of the link, and 𝛼 and 𝛽 are calibration factors (Equation 1). 
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In static traffic assignment, the fundamental behavioral assumption of route 

assignment is the principle of user equilibrium and follows Wardrop’s first principle: for 

all origin-destination pairs, all used paths will have equal and minimal travel times 

(Wardrop, 1952). Static assignment can be formulated as an optimization model seeking 

to minimize the Beckmann function, as detailed in Chapter 3 (Beckmann, McGuire, & 

Winsten, 1956) and solved nearly exactly. 

Static traffic assignment is extremely valuable to the transportation network 

analysis community because it is computational tractable and possesses robust 

mathematical properties. By Brouwer’s theorem and variational inequalities, we know 

that user equilibrium exists. Furthermore, because the Beckmann function is strictly 

convex in link flows, the user equilibrium solution is unique in link flows.  

Several variations of this problem are currently active areas of research. Some of 

these variations include elastic demand, destination choice, link interactions, perception 

error, and stochastic costs. In elastic demand and destination choice, the assumption that 

the origin-destination matrix is deterministic and a model input is relaxed and allowed to 

vary with congestion. To study link interactions, the assumption that the link travel time 

only depends on flows on its own link is relaxed. Lastly, for perception error and 

stochastic cost variations, the assumption that everyone is taking their known shortest 

path is relaxed.  

Another active research topic in static assignment is the solution algorithm used to 

determine equilibrium conditions. Link-based algorithms, like the Method of Successive 

Averages (MSA) and Frank-Wolfe algorithm, were initially developed because they’re 

economical with respect to computer memory; this is because they keep track of the link 

flows, a finite value, instead of the path flows. However, link-based algorithms are 
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notoriously slow to converge, despite large steps toward equilibrium in the first few 

iterations of the algorithm. Conversely, path-based algorithms keep track of the path 

flows in each iteration. Though this greatly increases the memory required, it retains 

valuable information that can be utilized to converge to equilibrium more quickly than 

link-based algorithms. An example of a path-based algorithm is gradient projection. 

Bush-based algorithms, like Algorithm B, are the latest advances in assignment solution 

algorithms and offer the quick convergence to equilibrium, while requiring significantly 

less computational effort and memory than path-based algorithms. 

Despite the quick convergence and robust mathematical properties, static 

assignment is unable to realistically model traffic flow and congestion. Some of the 

fundamental flaws with static assignment include its inability to model the time-

dependent nature of traffic flow and the seemingly ‘arbitrary’ link performance functions 

used to model travel time as a function of flow. These two issues result in STA models 

that systematically underestimate the total system travel time, underestimate travel times 

on high capacity corridors, overestimate the number of travelers choosing high capacity 

routes as their shortest path, and underestimate the utilization of lower capacity links. 

These constraints motivated the study of DTA beginning in the 1970s (Chiu et al., 2011). 

 

2.3 DYNAMIC TRAFFIC ASSIGNMENT 

Static and dynamic traffic assignment have some very important parallels; 

however, where they differ, they do so intentionally. Though the field of DTA has not 

reached consensus on a single best practice methodology (Chiu et al., 2011), there are 

three primary elements that are required for a decision support tool to be classified as 

DTA. The first element is that there is some sort of model that accounts for how the 
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fundamental variables of traffic flow (i.e. flow, density, speed, and vehicle number) 

change over time. This will ensure that congestion propagation through a network over 

time is explicitly modeled. Secondly, there must be some sort of concept of equilibrium 

with equilibrium route choice as an output. Finally, the equilibration must be based on 

experienced travel times, not instantaneous.   

Dynamic traffic assignment was initially proposed as a tool for modeling traffic in 

the late 1970s by Merchant and Nemhauser (1978a, 1978b), when they proposed a non-

linear non-convex mathematical program involving DTA with a single destination. DTA 

has matured significantly over the last 40 years. There are now two broad methodological 

categorizations of DTA approaches: analytical and simulation-based models. The three 

common analytical models seen through the literature are mathematical programming 

(Merchant & Nemhauser, 1978a; Carey, 1992; Ziliaskopoulos, 2000; Carey & 

Subrahmanian, 2000), optimal control (Friesz et al., 1989; Ran & Shimazaki, 1989a; 

Boyce et al., 1995; Ran et al., 1993), and variational inequality (Nagurney, 1998; Friesz 

et al., 1993; Chen & Hsueh, 1998) approaches. For more details on what each analytical 

approach entails, see Peeta and Ziliaskopoulos (2001). While analytical models have 

placed emphasis on maintaining the ability to derive theoretical insights, as with static 

traffic assignment, simulation-based models have focused on creating realistic models for 

practical deployment, regardless of the computational tractability.   

Despite numerous research efforts to discover a closed form solution to dynamic 

user equilibrium (DUE), Carey (1992) proved the non-convex nature of constraints 

required in DTA and motivated a shift toward simulation-based solutions. The nature of 

this methodology places increased importance on the refinement of the network structure, 

to ensure it offers a real-world representation of the scenario, and the validation and 

calibration of the network, so that the results are consistent with travel patterns observed 
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in reality (Sloboden et al., 2012). As mentioned above, with simulation-based DTA, the 

analytical properties of the problem formulation are lost in favor of the ability to more 

realistically model ill-behaved traffic flow in a practical manner. This is because a traffic 

simulator (be it microscopic, mesoscopic, or macroscopic) is used to model traffic flow 

and congestion propagation through the network (Mahmassani & Peeta, 1995; 

Jayakrishnan et al., 1994; Ben-Akiva et al., 1997).  

 

2.4 VISUAL INTERACTIVE SYSTEM FOR TRANSPORT ALGORITHMS (VISTA) 

This research effort uses VISTA as its DTA platform (Ziliaskopoulos & Waller, 

2000). VISTA is a simulation-based approach to DTA. The VISTA framework iterates 

between two modules until convergence. In the “path generation” module, the time-

dependent shortest path is found between each origin-destination pair at each departure 

time, a fixed percentage of vehicles are assigned to their identified shortest path, and the 

vehicles are simulated through the network, via the cell transmission model (Daganzo, 

1994; Daganzo, 1995) to update travel costs. An iteration of “dynamic user equilibrium” 

determines the optimal percentage of vehicles to be shifted from their current path to the 

newly identified shortest path. These vehicles’ trajectories are simulated through the 

network and the new path costs (and newest shortest paths) are identified. Convergence is 

evaluated after both modules are complete and the software terminates when travel times 

are found to be “sufficiently close” to equilibrium. 

 

2.5 COMPARISON OF DYNAMIC AND STATIC TRAFFIC ASSIGNMENT 

Static traffic assignment has a lot of redeeming qualities. The exact mathematical 

formulations are efficient and the provably correct solution methods of these models 
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result in a fast, stable, and transparent methodology with unique equilibrium solutions. 

Additionally, STA is extremely valuable in practice when resources are limited, as it has 

much smaller input data requirements compared to DTA, or when input data are not 

known with a high degree of certainty, as STA is highly robust to input errors. However, 

this all comes at a high cost with respect to realism of results.  

2.5.1 Propagation of Congestion and Route Choice Decisions 

In addition to the obvious lack of temporal variation, one of the largest 

fundamental problems with static traffic assignment is with its use of link performance 

functions. By definition, capacity is the maximum flow rate that can be attained on a 

given segment of roadway (Figure 2.1); it occurs at the critical speed and critical density. 

It is a link’s “tipping point”, as any additional vehicle will cause congestion to set in and 

conditions will deteriorate with a reduction in speed and flow (Transportation Research 

Board, 2011). This definition and relationship is respected in DTA, as the network 

loading problem uses fundamental diagrams as inputs into the link models to determine 

the sending and receiving flows; realistically, the travel time found with link models 

increases slowly until the flow reaches capacity, at which point the travel time increases 

substantially, despite decreasing flow rates under congested conditions (Figure 2.2).  
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Figure 2.1: The relationship between speed, density and flow as defined by Greenshield 

 

Figure 2.2: Travel times vs. flow in DTA (Duthie et al., 2013) 

However, link performance functions do not enforce this relationship in STA. As 

shown in Figure 2.3, although travel times begin to increase once capacity is met, it does 

not increase in such a way that it influences people to find alternative routes when 
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identifying their shortest path. In the literature, the relationship between travel time and 

flow via link performance functions has been found to cause a systematic overestimation 

of users on high-capacity route segments in static traffic assignment (Duthie et al., 2013; 

Boyles, Ukkusuri, Waller, & Kockelman, 2006). Two proposed solutions to this problem 

exist in the literature. One proposed solution to this problem involves using the 

“practical” capacity of a link, consistent with capacity at level-of-service (LOS) C or 

LOS D (Patriksson, 2015). Other researches have explored the importance of centroid 

connectors for achieving reasonable results in STA (see Section 2.6) (Friedrich & 

Galster, 2009; Qian & Zhang, 2012).  

 

Figure 2.3: Travel times vs. flow in STA (Duthie et al., 2013) 

2.5.2 Data Requirements and Necessary Level of Detail 

As alluded to above, the simulation nature of DTA models is not as robust to 

input errors, placing increased significance on the importance of input data (Chiu et al., 

2011). Thus, it is critical that the transportation network is portrayed accurately. In STA, 

required network data includes connectivity and data necessary for input into the link 



 15 

performance functions (e.g. free flow travel time, capacity, etc). In DTA, roadway 

geometrics become much more critical; information such as basic alignment and 

curvature, number of lanes, turning lane configuration, number of lanes, turning bay 

locations, intersection control devices, lengths of on- and off- ramps, operating speeds, 

etc. must be provided accurate to field conditions (Sloboden et al., 2012). 

According to the DTA guidebook, the recommendations for level of detail and 

centroid connectors is as follows: 

“The model network needs to faithfully resemble the physical roadway network. 

It is critical that all the important intersection and roadway links of the study area 

are imported to the model. If links and intersections are omitted, they should 

generally belong to a roadway class that is at least one level down from the 

roadway class of the links on which the measures of effectiveness are collected. 

Local streets that provide access to adjacent properties and do not carry through 

traffic can be omitted and substituted with zone connectors.” (Sloboden et al., 

2012, p. 6-2).  

Although there seems to be consensus in the literature about the proper level of 

abstraction in DTA models, not a lot of guidance is provided in the literature on where 

the abstracted local streets, or connectors, should be attached to the network (Jafari et al., 

2015).  

 

2.6 CENTROID CONNECTORS IN STATIC AND DYNAMIC TRAFFIC ASSIGNMENT  

The consensus in the literature is that very little attention has been paid to the 

importance of centroid connector placement in network assignment models (Friedrich & 

Glaster, 2009; Qian & Zhang, 2012; Benezech & Leurent, 2013). In both Dynamic 
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Traffic Assignment: A Primer (Chiu et al., 2011) and the Federal Highway 

Administration Guidebook on Dynamic Traffic Assignment Utilization (Sloboden et al., 

2012), the only guidance on centroid connector placement is that they should be placed at 

mid-block locations, not at signalized intersections, as the additional traffic movement 

may cause artificial congestion. In both Friedrich and Glaster (2009) and Qian and Zhang 

(2012), it was found that centroid connector placement is mostly proprietary information 

and left to the discretion of the software vendors. In the cases where information was 

available, they found that the connector nodes are typically the 𝑛 closest nodes to the 

centroid (Benezech & Leurent, 2013), but they have also identified instances in the 

literature where connector nodes are assigned at random. Additionally, Qian and Zhang 

found recommendations that connector nodes should be selected along corridors with 

“intensive trip attractors/generators”, but no guidance on how to identify those ideal 

nodes was provided (2012). Likewise, Friedrich and Glaster cite literature recommending 

that centroid connector nodes should be as close to natural access/egress nodes in the 

physical network, with no methodology for how that determination should be made for 

areas that have been deemed acceptable to be abstracted (2009).  

Despite the gap in the literature, several authors have found that static and 

dynamic traffic assignment results are sensitive to how the networks are loaded. In the 

static world, Friedrich and Galster first brought this issue to light by stating that there is a 

discrepancy between the precision and accuracy of modeling the road network and the 

way demand is connected to the network in state-of-the-art planning models (2009). 

Through experimentation, they concluded that the lack of rules for how to establish 

connector nodes relies too much on the experience of the modeler, and thus negatively 

impacts the consistency and reliability of model outputs. They explored three 
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methodologies for the selection of centroid connector access/egress points and concluded 

that there was no one optimal methodology (Friedrich & Galster, 2009).  

Qian and Zhang expanded on this predecessor work and explored the behavior of 

results of static assignment on three network types: a synthetic grid network, a real world 

corridor, and the Sacramento area network (2012). Through sensitivity analysis, they 

found that traffic flow patterns have significant variations when centroid connector 

configurations are changed. Additionally, they found that adding additional connectors 

does not make the results more stable; instead, it often makes the results less realistic. 

However, too few connectors were found to result in artificial congestion on links where 

connectors are placed, thus indicating that more guidance on centroid connectors is 

necessary. These results indicate that static traffic assignment, which is often utilized for 

its robustness and stability of results, is unstable with respect to connector configuration 

and this often results in the underestimation of total corridor travel times (on higher 

capacity corridors) and average link flow. They proposed an optimization algorithm that 

seeks to minimize the maximum volume-to-capacity ratio of “characteristic links” (Qian 

and Zhang, 2012).  

Given dynamic traffic assignment’s increased sensitivity to network topology, it’s 

not unreasonable to question if realistic centroid connector placement is even more 

critical. Yet, very little literature exists exploring this topic. Jafari et al. explored two 

strategies for centroid connector placement in DTA and their impact on the resulting 

traffic flow (2015). The first methodology radially distributed access/egress points to the 

nodes nearest to the zonal centroid. This experiment brought to light some of the 

limitations to the methodology so commonly recommended in practice. The second 

methodology explored the use of “bi-level” assignment, which divided each TAZ into 

two concentric subzones and distributed the total TAZ demand between the two subzones 
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according to an “inner-to-outer demand ratio”, to better distribute demand throughout the 

TAZ. They found that this placement strategy produced results more consistent with real-

world behavioral patterns (Jafari et al., 2015).   

Two key aspects are evident from the review of available literature.  Firstly, there 

has been limited investigation into centroid connector placement within STA and DTA 

models. Secondly, the studies which have been conducted indicate that centroid 

connector placement affects model outputs. Both these factors highlight the importance 

of the research presented in the thesis to provide an improved understanding of the 

impacts of centroid connector placement. 

 

2.7 APPLICATION OF INNOVATIVE DATA SOURCES IN TRANSPORTATION  

The International Transport Forum lists transportation operations, planning, and 

safety as three areas where big data has the potential to provide data-driven insights and 

transform transportation policy (Organisation for Economic Co-operation and 

Development, 2015). However, a brief review of literature indicates that most of the 

efforts, to date, have focused on big data applications for transportation operations. A 

report by the United States Department of Transportation Intelligent Transportation 

Systems Joint Program Office (USDOT ITS JPO) dedicated an entire chapter to how big 

data is currently being leveraged in transportations operations by both the private sector 

(e.g. Waze, MyRideBuddy, and AirSage) and the public sector (e.g. San Diego and 

Dallas Integrated Corridor Management programs and Michigan Department of 

Transportation’s Data Use Analysis and Processing, Integrated Mobile Observations, and 

Weather Response Traffic Information programs) (Burt, Cuddy, & Razo, 2014). 

Additionally, in the summary of session highlights for the 2014 Transport for a Changing 
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World International Transport Forum Annual Summit, only applications of big data in 

transportation operations were highlighted. Lastly, recent research is mostly exploring the 

viability of leveraging big data to optimize active traffic management applications (Shi 

and Abdel-Aty, 2015; Yu, Park, Kim, & Ko, 2014).  

Buckley and Lightman (2015) hypothesize that big data can be leveraged by 

transportation agencies in the transportation planning framework to develop more timely 

origin-destination matrices, better analyze route and mode choices, and create more 

robust network models. However, little research has been performed exploring the 

possibilities. Dong, Wu, Ding, Chu, Jia, and Qin (2015) explored the viability of using 

call detail records as a data-driven approach for traffic analysis zone division, trip 

generation, and trip distribution. Their approach offers unprecedented flexibility to select 

and divide the desired number of TAZs with reasonable accuracy and can be used by 

MPOs for the development of new travel demand forecasting models or improving 

existing models. Additionally, Toole, Colak, Strut, Alexander, Evsukoff, and Congalez 

(2015) used call detail records to generate origin-destination matrices and trip tables and 

found the generated trip tables were in close agreement to those generated by the 2011 

Massachusetts Household Travel Survey in Boston and the 2000 Bay Area Travel Survey 

in San Francisco. 

 

2.8 PARCEL DATA 

Another important aspect of this project is the use of parcel data as a proxy for 

demand generation locations. Land parcel databases represent the physical location of 

residences, businesses, and public lands and form the basis for all land use and zoning 

decisions (National Research Council, 2007). Parcel data, or cadastral data, represent the 
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most appropriate level of geographic detail for decisions related to the development of 

land, business activities, and emergency response (see Figure 2.4). Parcel data are also 

critical to urban planning and the analysis of transportation needs, environmental issues, 

and natural hazard risk (National Research Council, 2007). 

 

Figure 1.4: The importance of parcel data (National Research Council, 2007) 

In 1980, a National Research Council (NRC) study, Need for a Multipurpose 

Cadastre, declared that parcel data should be the fundamental building block for a 

nationally integrated system of land information. However, such a system has not been 

created to date. As of 2007, 70% of tax parcels in the US are digitized; the remaining 

30% are in the most rural counties (National Research Council, 2007). Almost 20 states 

have converted more than 80% of their parcel data to a digital format; West Virginia, 

South Carolina, and New Hampshire have the least with only approximately 10% of their 

data digitized. The challenge at hand is that the lack of a nationally integrated land parcel 
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data framework, despite recommendations by the NRC, has led to duplicative efforts. 

Additionally, the fragmentation of land information has led to inconsistent quality and 

availability of land parcel information across US. The National Integrated Land System is 

the closest structure in place that resembles a coordinated effort for a national database, 

but, in its current condition, it is more of a set of technologies than a source of parcel data 

(National Research Council, 2007).  

 

Figure 2.5: Flowchart of proposed national casdastre system (National Research Council, 

2007) 

The vision for a national cadastre system, recommended by the Committee on 

Land Parcel Databases is depicted in Figure 2.5. Local government would be the 

creator/maintainer of parcel data within a county or city. The state government would be 

responsible for the assembly of a comprehensive set of parcel data on an annual basis; it 

would also produce/maintain parcel data for counties who are not financially or 

technically able. Lastly, the federal government ties the system together by ensuring that 

federally managed land’s parcel data is integrated into the system and that all other parcel 

data sources are integrated into the system properly (e.g. ensure state boundaries line up) 
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(National Research Council, 2007). If such a system comes to fruition, this would mean 

that the data necessary to employ this centroid connector placement methodology would 

be ubiquitously available for any major US city (see recommendations for data attributes 

in Figure 2.6). 

 

 

Figure 2.6: Recommended attributes for national parcel data database (National Research 

Council, 2007) 

In the literature, parcel data has been utilized as a way to approximate demand in 

several fields including water resources (Morales, 2010) and in earlier steps of the four 

step travel demand modeling process. Activity based models are beginning to explore the 

use of parcel-level data for demand modeling efforts. The Sacramento Area Council of 

Governments (SACOG) was the first major MPO to utilize parcel-level data in travel 

demand modeling efforts when they incorporated land-use policy and planning through 
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its Preferred Blueprint Scenario in December 2004 (Griesenbeck, 2006). The SACOG 

activity based model (SACSIM) uses parcel-level data, instead of TAZs, in order to be 

able to answer questions about development patterns, street patterns, and proximity to 

transit services.   

 

2.9 CONCLUSIONS 

Though static traffic assignment is the predecessor decision support tool in 

transportation network analysis, it remains a tool that is very useful in certain situations, 

notably in academia and in practice where resources are limited or data are not known 

with high certainty. STA is highly robust to input data errors and provides a fast, 

transparent, stable, and provably correct equilibrium solution. However, due to 

limitations with the problem formulation, notably the steady state link performance 

functions, the resulting equilibrium flows are systematically overestimated on higher 

capacity corridors—with travel times on these corridors grossly underestimated due to 

link performance functions—and flow on lower capacity arterials and collectors is 

underestimated. Additionally, previous work has found that equilibrium solutions are not 

stable with respect to arbitrary centroid connector placement. One study in the literature 

produced more stable equilibrium flows by allocating centroid connectors according to an 

optimization algorithm that sought to minimize the volume-to-capacity ratio on 

characteristic links; however, achieving more realistic volume-to-capacity ratios does not 

necessarily make the results more representative of real world conditions.  

Dynamic traffic assignment, another traffic assignment decision support tool that 

is capable of accurately capturing congestion propagation and queue spillback, is not 

presently being implemented on a widespread basis by metropolitan planning 
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organizations. A survey by Cambridge Systematics of the 20 largest MPOs in the US 

(plus three MPOs known for their innovation) indicated that only two MPOs have DTA 

models for their entire metropolitan planning area (Cambridge Systematics, 2015). Seven 

others indicate that they have models under development, which are expected to be 

completed within the next five years. Two of the biggest barriers to wide-scale DTA 

deployment in MPOs are concerns related to acquiring the necessary input data and the 

time and effort required in calibrating and validating the model.  

 This thesis explores the use of readily available parcel data for a more data-

driven approach to the allocation of centroid connectors and dispersion of TAZ demand 

in both static and dynamic traffic assignment. The goal is to advance prior work by 

developing more systematic guidance on how to accurately place centroid connectors. 

This work has two primary goals: reduce both the presently required visual inspection of 

connector locations and the necessary model calibration efforts. The requirement of 

manual visual inspection is minimized by creating a methodology that selects entry/exit 

locations consistent with reality and in locations that will not create artificial bottlenecks. 

Additionally, this methodology is evaluated for its ability to capture data-supported 

network flows.  A review of available literature indicates that a process that achieves 

these objectives is largely absent.  
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Chapter 3: Methodology 

3.1 INTRODUCTION 

In this chapter, the framework to develop a centroid connector structure informed 

by parcel data, to divide demand throughout a TAZ by parcel density, and to integrate the 

new structures into existing traffic assignment paradigms is presented. In order to assess 

the impact of centroid connector placement on modeling results, static and dynamic 

traffic assignment models must be run to convergence; thus, this chapter begins by 

outlining the solution methodology for static and dynamic traffic assignment models 

identified in the literature. In addition, this chapter presents the logic for the new 

methodology that selects network nodes to act as network entry/exit points via centroid 

connectors and that allocates demand for a TAZ between two sub-zones based on the 

built environment. Finally, flow charts are presented showing the flow of work between 

the various software and Java/C codes in order to complete this analysis.  The notation 

utilized in this chapter for static traffic assignment and the methodology for the 

development of centroid connectors and demand allocation by parcel data are presented 

in Tables 3.1 and 3.2 respectively.     
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Table 3.1: Notation Summary Static Traffic Assignment (Section 3.2) 

Notation Description 

𝐺(𝑁, 𝐴) network consisting of nodes (𝑁) and arcs (𝐴) 

𝑍 set of zones 

(𝑟, 𝑠) origin (r) destination (s) pair 

𝑥𝑖𝑗 flow on link 𝑖𝑗 

𝑡𝑖𝑗 travel times on link 𝑖𝑗 as a function of the assigned flows 𝑥𝑖𝑗 

𝑡𝑖𝑗
𝑜  free flow speed on link 𝑖𝑗 

𝑐𝑖𝑗 the “practical” capacity of link 𝑖𝑗, set equal to the capacity of the link 

resulting in LOS C or 80% of the theoretical capacity 

𝛼 and 𝛽 calibration factors for BPR function, often 0.15 and 4.00, respectively. 

П𝑅𝑆 set of all acyclic paths connecting zone R to zone `S 

ℎ𝜋 number of travelers choosing path π 

𝛿𝑖𝑗
𝜋  indicator variable (takes a value 1 if link 𝑖𝑗 lies on path π, 0 otherwise) 

𝑑𝑟𝑠 number of trips between zone r and zone s 

𝑐𝜋 travel time on path π 

𝑇𝑆𝑇𝑇 total system travel time 

𝑆𝑃𝑇𝑇 “theoretical” total system travel time, if everyone were on their own 

shortest path 

Table 3.2: Notation Summary for the Data-Driven Placement of Centroid Connectors and 

Allocation of Demand by Parcel Data (Section 3.4) 

Notation Description 

𝑍𝑖 set of nodes that belong to the ith  TAZ 

𝐼𝑖 set of nodes that belong to the inner zone of the ith  TAZ 

𝑟𝑖 threshold value for zone 𝑖, dividing the zone into its inner and outer subzone 

𝑁𝑖 number of nodes in zone 𝑖 

𝑑𝑗
𝑖 Euclidean distance from zone 𝑖’s centroid to node 𝑗 

𝑤𝑖 weighted portion of demand falling spatially within the inner subzone 

𝑤𝑜 weighted portion of demand falling spatially within the outer subzone 

𝑛𝑖 parcel weight assigned to node 𝑖 

𝑑𝑖 the demand assigned to the network via connectors in inner subzone 

𝑑𝑜 the demand assigned to the network via connectors in outer subzone 

𝐷 total demand for the TAZ 
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3.2 STATIC TRAFFIC ASSIGNMENT  

In STA, the fundamental behavioral assumption of traffic assignment, the 

principle of user equilibrium, follows Wardrop’s first principle: for all origin-destination 

(O-D) pairs, all used paths will have equal and minimal travel times (Wardrop, 1952). 

The static assignment problem can be formulated as an optimization model, Equations 2 

through 5, seeking to minimize the Beckmann function (Equation 2) (Beckmann, 

McGuire, & Winsten, 1956). 

min
𝑥,ℎ

∑ ∫ 𝑡𝑖𝑗(𝑥)𝑑𝑥
𝑥𝑖𝑗

0𝑖,𝑗 ∈ 𝐴

 
 (2) 

𝑥𝑖𝑗 = ∑ 𝛿𝑖𝑗
𝜋

𝜋 ∈ П𝑅𝑆

∗ ℎ𝜋 ∀ 𝑖, 𝑗 ∈ 𝐴 
 (3) 

𝑑𝑅𝑆 = ∑ ℎ𝜋  ∀ (𝑟, 𝑠) ∈ 𝑍2

𝜋 ∈ П𝑅𝑆

 
 (4) 

ℎ𝜋 ≥ 0 ∀ 𝜋 ∈  П𝑅𝑆  (5) 

This mathematical program considers a networking comprising of 𝑁 nodes, 𝐴 

arcs and 𝑍 travel zones. The first constraint, Equation 3, requires that the flow on each 

link 𝑖𝑗 (𝑥𝑖𝑗) must be exactly equal to the total flow for all paths connecting origin-

destination (O-D) pair 𝑟𝑠 if link 𝑖𝑗 lies on the shortest path 𝜋 connecting 𝑟𝑠. The second 

constraint maintains that all demand for each O-D pair must be satisfied and assigned to a 

path 𝜋, conserving the demand between origin and destination pairs across the network 

(Equation 4). Non-negativity is maintained through constraint 3 (Equation 5) ensuring 

that no path flows are negative.  
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Though there’s not an intuitive meaning of the objective function, it was derived 

through back calculation, by Beckmann et al. (1956), from the following optimality 

conditions:  

ℎ𝜋 ≥ 0 ∀ 𝜋 ∈  П𝑅𝑆 (6) 

𝑐𝜋 ≥ 𝜅𝑟𝑠  ∀ (𝑟, 𝑠)  ∈ 𝑍2 (7) 

ℎ𝜋(𝑐𝜋 − 𝜅𝑟𝑠) = 0 ∀ 𝜋 ∈  П𝑅𝑆 (8) 

Optimality condition 1 ensures that all path flows are nonnegative (Equation 6). 

Optimality condition 2 shows that 𝜅𝑟𝑠 is the shortest path travel time between O-D pair 

𝑟𝑠 (Equation 7). Optimality condition 3 shows that if a path 𝜋 is used, the cost to traverse 

the path, 𝑐𝜋, must be equal to the shortest path travel time, 𝜅𝑟𝑠; conversely, if the travel 

time on path 𝜋 (𝑐𝜋) is longer than the shortest path travel time for the O-D pair 𝑟𝑠 (𝜅𝑟𝑠), 

the flow on path 𝜋 (ℎ𝜋)  must be 0 (Equation 8). The novelty and elegance of this static 

traffic assignment formulation is that the gradient of the objective function is the shortest 

path problem, allowing for gradient based optimization methods to determine a user 

equilibrium solution. 

The framework to obtain such a solution is iterative, starting with an initialized set 

of path flows and working toward user equilibrium. An example pseudocode can be seen 

below:  

1. Determine a feasible link flow solution (𝑥, ℎ). Initialization of the network 

is normally completed via all or nothing assignment (assign all vehicles to 

the shortest path with travel times calculated assuming zero flow on the 

network).  

2. Calculate the link travel times via the selected link performance function 

using the flows 𝑥. 
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3. Find the shortest path between all origins and destinations. This can be 

completed using a label setting algorithm (e.g. Dijkstra’s algorithm) or a 

label-correcting algorithm (e.g. Bellman-Ford algorithm).  

4. Assign all of the demand between each origin-destination pair to the 

shortest path. Let this be ℎ∗. Let 𝑥∗be the link flows corresponding to ℎ∗.  

5. Shift some of the travelers onto the newly identified shortest path between 

each O-D pair. Update the link flow via the following equation:  

𝑥 ←  𝜆𝑥∗ + (1 − 𝜆)𝑥 (9) 

By shifting the flows in an incremental fashion, it avoids oscillation 

between solutions. Thus, the selection of 𝜆 is critical. Two options for 

finding 𝜆 identified in the traffic assignment problem (TAP) literature 

include the Method of Successive Averages (MSA) or Frank-Wolfe 

algorithm. 

6. If the updated solution satisfies a pre-defined convergence criterion, then 

the pseudocode terminates. Else, return to step 2. The convergence criteria 

measures how close the solution is to equilibrium conditions; this concept 

has been defined in a number of ways. One of the more accepted 

termination criteria for shortest path assignment is when the average 

excess cost drops below a predefined threshold. Average excess cost, 

which is normalized to show how much longer the average vehicle trip is 

compared to the shortest path travel time, is calculated by the equation 

shown below: 

 

𝐴𝐸𝐶 =
𝑇𝑆𝑇𝑇 − 𝑆𝑃𝑇𝑇

∑ 𝑑𝑟𝑠
𝑟𝑠

 (10) 
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3.3 DYNAMIC TRAFFIC ASSIGNMENT 

Dynamic traffic assignment (DTA) models account for temporal and spatial 

dependencies of travel behavior and the subsequent impacts on traffic flow across a 

network. As mentioned within the literature review, DTA methodologies can avoid the 

limitations of static modeling, realistically accounting for the development of congestion 

(e.g. queuing, spillback, lane changing and merging behavior) and real-time information 

based impacts on route choice (Balakrishna et al., 2013, Chiu et al., 2011). Observing the 

impact of centroid connector placement from a dynamic context is vital from a demand, 

routing, and capacity assessment perspective.  

As mentioned in Section 2.3, there are a number of variations for which DTA 

formulations have been created.  In general, most DTA models are based on the extension 

of the static user equilibrium principle to create “dynamic user equilibrium” (DUE), 

which is a time-dependent version of the Wardropian equilibrium: all used paths have 

equal and minimal travel times for each origin-destination pair and departure time. 

The concept of DUE can be presented considering discretized time (Merchant and 

Nemhauser 1978a, Merchant and Nemhauser 1978b) and continuous time (Boyce et al., 

2001, Friesz et al., 1989, Friesz et al., 1993). The modeling conducted within this thesis 

utilizes VISTA, a simulation-based platform approach using a cell transmission model, 

considers discretized time and is described in Section 2.4. Accordingly, the DUE 

formulation applied within the software originates from the seminal work of Merchant 

and Nemhauser in 1978. 

One of the more straight forward steps in static traffic assignment is the 

calculation of link travel times using link performance functions and then adding the 

links associated to specific paths to determine path travel times. In contrast, this is the 

most complex step in DTA and is known as the network loading problem (NLP).  The 



 31 

NLP uses link models and node models to simulate traffic flow throughout the network 

based on fundamental diagrams (FD) of traffic flow. Link models, summarized in Figure 

3.1, model what would happen on a single roadway link and yield the sending 

(downstream) and receiving (upstream) flows based on the Lighthill-Whitham-Richards 

(LWR) model of traffic flow as a fluid (Lighthill and Whitham, 1955; Richards, 1956). 

Node models (see Figure 3.2) utilize the sending flow of the upstream link and the 

receiving flow of the downstream link to find the number of vehicles physically allowed 

to travel from one link to the next based on prevailing congestion conditions. The list of 

node models in Figure 3.2 is far from exhaustive, as models also exist for control devices 

at intersections (e.g. signals, yield signs, and roundabouts) as well as those more 

concerned with capturing the behavior of drivers with turn taking or gap acceptance 

(Tampere, Corthout, Cattrysse, & Immers, 2011; Corthour, Flotterod, Viti, and Tampere, 

2012).   

 

 

 

 



 32 

 

Figure 3.1: Examples of Link Models commonly used in the NLP 

 

 

Figure 3.2: Examples of Node Models in the Literature 
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Upon completion of the network loading problem, the DTA methodology closely 

follows that of static traffic assignment.  Thus, a potential pseudocode is as follows: 

1. Start with initial path flows, 𝐻0. This can be found by placing all or a 

fraction of travelers on their shortest path assuming zero flow (like the 

first step in STA), placing travelers according to the optimal solution 

found with static assignment, or some other “warm start” methodology 

(Nezamuddin, 2011).  

2. Find the travel times on each path using the network loading procedure 

described above. This yields a travel time matrix, 𝑇, which reports the 

travel time on each path for each departure time. 

3. Find the shortest path between each O-D pair at each departure time after 

network loading using a time-dependent shortest path (TDSP) algorithm 

(Ziliaskopoulos and Mahmassani, 1993).  

4. Subsequently, the target path flow matrix, 𝐻∗, is obtained by placing all 

travelers on the available shortest path at their departure time.  

5. Update the solution for the path flows matrix by taking a weighted average 

of the path flow matrix, 𝐻, and the target path flow matrix based on TDSP 

after network loading, 𝐻∗. This can be completed via a convex 

combination of the two solutions (e.g. using the method of successive 

averages to find the step size, 𝜆), simplicial decomposition, or gradient 

projection. 

6. If the updated solution satisfies a pre-defined convergence criteria, then 

the  pseudocode terminates. Else, return to step 2. The convergence 

criteria measures how close the solution is to equilibrium conditions. One 

common termination criteria is the average excess cost, or the average cost 
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of all paths for all departure times, weighted by the total number of people 

on each path at each departure time. In dynamic traffic assignment, AEC 

is defined as: 

 

𝐴𝐸𝐶 =  
∑ ℎ𝜋,𝑡𝜋,𝑡 𝜏𝜋,𝑡 − ∑ ℎ𝜋,𝑡

∗
𝜋,𝑡 𝜏𝜋,𝑡

∑ ℎ𝜋,𝑡𝜋,𝑡
 (11) 

 

3.4 ALGORITHM FOR CONNECTOR PLACEMENT VIA PARCEL DENSITY 

The focus of this research is to develop an automated centroid connector 

placement strategy that uses parcel data to generate network entry/exit points consistent 

with the likely location of activities within a TAZ, thus achieving more realistic traffic 

patterns on local and major streets.  

This research builds on the work of Jafari et al. (2015), who found that the 

distribution of centroid connection points throughout a TAZ—as opposed to either the 

locations nearest the zonal centroid or along the zonal boundary, both of which are 

suggested in the literature—achieves more realistic traffic patterns on networks with 

detailed representation of lower functional class roadways (2015). The predecessor work 

utilized a network-wide, user-defined demand split between two concentric zones 

dividing the TAZ and a radial distribution of a user-defined number of centroid 

connectors to eligible nodes nearest the zonal centroid in each subzone. This work 

differentiates itself by utilizing built environment parcel data to automate the selection of 

TAZ-specific inner-to-outer subzone demand splits and to select a user-defined number 

of areas of high development as the appropriate locations to connect TAZ centroids to the 

network in each subzone of a TAZ.     
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The approach is straightforward. A list of eligible nodes is created by filtering out 

nodes that are undesirable network entry/exit locations (e.g. nodes on a limited access 

facility or at a signalized intersection). The residential and commercial land use parcels 

are then assigned to the nearest eligible node using a geospatial analysis tool in order to 

“weight” the nodes, or differentiate the nodes that were more likely to be actual entry/exit 

points in the real world. Additionally, the Euclidean distance of each eligible node to the 

centroid of its TAZ is computed. This information is critical in order to create a zone-

specific “threshold” for each TAZ; this threshold is used to split the zones into a 

concentric inner and outer subzone, found in the literature to achieve more realistic 

network loading patterns. The demand split between the two concentric subzones in each 

TAZ is determined uniquely using the geographic dispersion of parcel density in each 

TAZ. The methodology then selects the highest 𝑛 weighted nodes in each subzone of a 

TAZ to serve as the new connector nodes. The following sections provide further detail 

on each component of the proposed approach, including the initial data processing steps. 

The methodology was implemented in Java, while most of the pre-processing steps were 

accomplished using GIS software. The only user inputs required for this methodology are 

the determination of eligible nodes and the number of connectors per subzone.  A 

summary of the notation used in this section can be found in Table 3.2.  A pictorial 

representation of this placement of centroid connectors via parcel data can be found in 

Figure 3.3.  

3.4.1 Data Preprocessing 

Data preprocessing was necessary for both parcel-level and traffic network data. 

For the latter, the proposed methodology requires distinguishing between centroid nodes 

and regular “eligible” nodes. The “eligible” list only includes the network nodes that are 
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reasonable entry/exit points (e.g. excludes nodes on limited access facilities). GIS 

software was used to assign a TAZ ID to each eligible node through a one-to-many 

approach. This allows nodes along TAZ borders to be assigned to each neighboring zone, 

thus making them eligible connection points for any of the corresponding centroids. As 

such, the match operation selected in the software tool assigns nodes a particular TAZ ID 

if it was within a specified distance of the TAZ boundary. For this particular network, a 

buffer distance of five feet led to the inclusion of nodes that lay along the border between 

TAZs without adding superfluous nodes.  

Parcels, originally geocoded as polygons, were translated into point data using 

GIS software to facilitate the algorithmic implementation of the proposed methodology. 

Relevant information for each parcel from the original shapefile includes coordinate data, 

built square footage, and classification of the land use of the parcel (e.g. residential, 

commercial, etc.). The necessary information to obtain from GIS for the new 

methodology includes the TAZ that a parcel falls within and the nearest eligible network 

node. This was completed using the spatial analysis tool. The built square footage of 

every residential and commercial land parcel was assigned to only one TAZ, as most 

TAZ boundaries are physical barriers (e.g. rivers, major roads, etc.), and to the node 

nearest to the geometric centroid of the parcel by Euclidean distance. Each parcel was 

assigned to a single node and TAZ to avoid inappropriately biasing the demand 

distribution. This seeks to approximate reality, as the most densely developed areas in a 

TAZ are presumably going to generate the most demand on the real-world network. 

3.4.2 Dividing the TAZ into an Inner and Outer Subzone 

The algorithm for the data-driven placement of centroid connectors first divides 

the TAZ into two concentric areas: an inner subzone and an outer subzone (see Figure 
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3.3b). The motivation behind this decision was supported by previous research: having 

two subzones was found to achieve a more even distribution of entry/exit points 

throughout the TAZ and encourages the simulated vehicles to use local streets in a 

manner consistent with real world behavior (Jafari et al., 2015). The inner subzone’s 

radius was computed as the average distance between each node in the selected TAZ (i.e. 

each potential entry location onto the network) and the TAZ’s centroid, as shown in 

Equation 12: 

 

𝑟𝑖 =
1

𝑁𝑖
∑ 𝑑𝑗

𝑖

𝑗 ∈ 𝑍𝑖

 
(12) 

where 𝑟𝑖 is the threshold value for zone 𝑖, 𝑁𝑖 is the number of nodes (potential entry 

locations) in zone 𝑖, and 𝑑𝑗
𝑖 is the Euclidean distance from zone 𝑖’s centroid to node 𝑗. 𝑍𝑖 

defines the set of nodes that belong to zone 𝑖. In terms of implementation, the process 

effectively splits each centroid into two: a sub-centroid for the inner subzone and a sub-

centroid for the outer subzone. This allows the demand split between the two subzones to 

be enforced. 
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Figure 3.3: Pictorial Representation of Methodology 



 39 

3.4.3 Determining the Demand Split for the Subzones 

Based on the data produced by the preprocessing described in Section 3.4.2, each 

parcel was assigned to the nearest eligible network node by Euclidian distance (see 

Figure 3.3c); note that a node 𝑛 is considered accessible to a zone 𝑧 if a parcel belonging 

to zone 𝑧 is assigned to node 𝑛. Parcels, especially at zone 𝑧’s boundary, may be assigned 

to a node 𝑛 in a different zone z′, and in this way that node 𝑛 is accessible from zone z′ 

even though node 𝑛 is outside the zone 𝑧′’s boundary; this is argued as an acceptable 

process as, in reality, zone boundaries do not exist.  

The weight of each node 𝑛 is equal to the total built square footage of parcels 

assigned to it. The demand split for each TAZ’s inner and outer subzone was computed 

by summing the weight (built square footage) of all nodes that fall spatially within each 

subzone and dividing by the total weight (built square footage) of all parcels that are 

accessible to the TAZ. This is demonstrated mathematically in Equations 13 and 14:  

𝑤𝑖 =
∑ 𝑛𝑖𝑖∈𝐼𝑖

∑ 𝑛𝑧𝑧∈𝑍𝑖

 (13) 

𝑤𝑜 = 1 − 𝑤𝑖 (14) 

where 𝑤𝑖 is the weighted proportion of the demand that belongs to the inner subzone, 𝑛𝑖 

is the parcel weight assigned to node 𝑖, 𝑛𝑧 is the parcel weight assigned to node 𝑧, 𝑤𝑜 is 

the weighted proportion of the demand that belongs to the outer subzone, 𝐼𝑖 is the set of 

nodes that belong to the inner zone of the ith  TAZ, and 𝑍𝑖 is the set of nodes that belong 

to the ith  TAZ where 𝐼 is a subset of 𝑍. 

For example, if a TAZ housed parcels that summed to 100,000 square feet, where 

75,000 square feet were assigned to nodes that fell spatially within the inner subzone, the 

demand ratio would be 3-to-1 inner-to-outer split. Thus, if the representative centroid for 

this TAZ had a demand of 100 vehicles, 75 vehicles would be assigned to enter the 
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network within the inner subzone and the remaining 25 vehicles would enter through 

nodes in the outer subzone. This is explained mathematically in Equations 15 and 16: 

𝑑𝑖 = 𝑤𝑖 ∗ 𝐷 (15) 

𝑑𝑜 = 𝑤𝑜 ∗ 𝐷 (16) 

where 𝑑𝑖 is the demand that is assigned to the network via connectors in the inner 

subzone, 𝑑𝑜 is the demand that is assigned to the network via connectors in the outer 

subzone, and 𝐷 is the total demand for the TAZ. 

This represents an advancement of prior work, as the demand split is unique to 

each TAZ and not a “one-size-fits-all” approach. There are two exceptions to this rule: in 

the case of a subzone having no parcel information, or zero built square footage, 100 

percent of the demand is assigned to the other subzone; in the case of no parcels residing 

in a TAZ, or zero built square footage, the demand is split 50/50 between the two 

subzones. The split of 50/50 was selected because it was argued that without additional 

network, demand, or development detail in the area, a rational case cannot be made to 

allocate demand asymmetrically. 

3.4.4 Selecting the Entry/Exit Nodes 

The number of centroid connectors (𝑛) per subzone is a user input variable 

requiring sensitivity analysis, which is consistent with prior studies. This project builds 

on the methodology identified in prior research for selecting entry/exit nodes. In work by 

Jafari et al. (2015), 𝑛 entry nodes are selected based on their distance from the TAZ 

centroid. In this methodology, the entry nodes for each subzone are the 𝑛 highest 

weighted nodes in each subzone (see Figure 3.3d). In the case of a TAZ with no parcels, 

the entry nodes are selected using the previous method whereby the 𝑛 nodes chosen in 
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each subzone are the closest, defined by Euclidian distance, to the centroid of the parcel-

less TAZ.  

3.5 IMPLEMENTATION  

The work flow for this project is shown in Figures 3.4 and 3.5 for static traffic 

assignment and dynamic traffic assignment, respectively.  The input data manipulation is 

completed using ArcGIS, though the results are replicable with any spatial analysis tool. 

The creation of the new centroid connector structure and demand profile, updated using 

the inner-to-outer demand ratio, is completed via a Java code, created by Ehsan Jafari, 

and run directly from the file server, where the model and the code are stored. The 

resultant network structure and demand profile are uploaded directly into VISTA for 

analysis (DTA) or export (STA). The static assignment code utilized in this analysis was 

provided by Dr. Stephen Boyles and is available online at https://tinyurl.com/SteveBoyles 

under CE 392C: Transportation Network Analysis 1. Additionally, Michael Levin 

provided a base code to aid in the data manipulation to export the network from VISTA 

into a format compatible with the static assignment code. The selected DTA software is 

VISTA (Section 2.4). 

 

 



 42 

 

Figure 3.4: Static Traffic Assignment Workflow 
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Figure 3.5: Dynamic Traffic Assignment Workflow 
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Chapter 4: Network Data and Experimental Design 

4.1 INTRODUCTION 

This section describes the numerical experiments conducted to assess the 

performance of the methodology described in the previous chapter. The goal of these 

experiments is to explore whether using parcel data allows for a better approximation of 

vehicle entry/exit points, ultimately leading to more accurate models. Field counts and 

travel times along major corridors are used to assess model performance. 

4.2 NETWORK DESCRIPTION 

Experiments were conducted using a sub-area network in the Austin, TX region 

located in Williamson County. The network topology and attributes were extracted from 

the Capital Area Metropolitan Planning Organization’s (CAMPO) regional model, and 

refined to incorporate additional roadway detail throughout the network. The resulting 

base network includes 3,440 links, 1,680 nodes, 399 centroids, and 823 centroid 

connectors and supports a demand of 135,616 vehicles. Traffic signal data were provided 

by state and local agencies and entered into the model. Sub-area demand for the AM peak 

period (6 a.m. - 9 a.m.) was extracted from a regional DTA model. Available field data 

collected to calibrate the network includes counts on 1,305 network links and travel times 

along 18 corridors (Figure 4.1). Parcel data were obtained from GIS files provided by the 

Capital Area Council of Governments (CAPCOG).  
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Figure 4.1: Network and Validation Data 

4.3 SCENARIO DESCRIPTION 

A total of fifteen different scenarios were modeled in this effort—seven in DTA 

and eight in STA, with five scenarios appearing in both analyses. The selected DTA 

software package, VISTA, is simulation-based and finds equilibrium solutions expected 

to represent recurrent congestion patterns (Waller & Ziliaskopoulous, 2000). The static 

assignment code utilized in this analysis was provided by Dr. Stephen Boyles and 

available online at https://tinyurl.com/SteveBoyles under CE 392C: Transportation 

Network Analysis 1.  

The base scenario for both analyses includes the original centroid connector 

structure provided in the CAMPO regional model developed using the TransCAD 

software package.  
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4.3.1 Summary of DTA Scenarios 

For comparison purposes, two scenarios were built using the aforementioned bi-

level approach developed by Jafari et al. (2015), the critical predecessor to this work. 

Two inner-to-outer demand split ratios, 50/50 and 90/10, were considered for further 

implementation and testing of the bi-level method as part of this research effort based on 

their performance in previous research. The 90/10 inner-to-outer subzone demand split 

was selected because it was found to have the highest locality factor; the 50/50 inner-to-

outer subzone demand split was selected because it was the ratio that marked a threshold 

of stability in the network total system travel time (Jafari et al., 2015).  

In order to test the data-driven placement of centroid connectors presented in this 

study, four additional scenarios were developed using parcel data to determine the 

demand split between subzones: two with two connectors per subzone and two with four 

connectors per subzone. Much of the available literature suggests that using signalized 

intersections as entry/exit points for centroids should be avoided as it may create artificial 

congestion at these locations. Thus, alternate scenarios for the two connector and four 

connector case studies were implemented where nodes at signalized intersections were 

eliminated from eligible entry points in the network. A summary of these scenarios is 

presented in Table 4.1.   
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Table 4.1: Summary of DTA scenarios 

Scenario Description 

Base 
 Base network exported from CAMPO’s regional 

model 

Bilevel, 

50/50 

Demand 

Split 

 

 Jafari et al., 2015 

 Created two subzones for each TAZ and divided 

demand 50/50 between the subzones for all TAZs 

Bilevel, 

90/10 

Demand 

Split 

 Jafari et al., 2015 

 Created two subzones for each TAZ and divided 

demand 90/10 between the subzones for all TAZs 

Parcel Based, 

2 

Connectors, 

Signals 

Permitted 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 2 connectors placed at highest weighted nodes in 

each subzone of a TAZ 

 Connection points were allowed at signalized 

intersections 

Parcel Based, 

2 

Connectors, 

Signals not 

Permitted 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 2 connectors placed at highest weighted nodes in 

each subzone of a TAZ 

 Connection points were not allowed at signalized 

intersections 

Parcel Based, 

4 

Connectors, 

Signals 

Permitted 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 4 connectors placed at highest weighted nodes in 

each subzone of a TAZ 

 Connection points were allowed at signalized 

intersections 

Parcel Based, 

4 

Connectors, 

Signals not 

Permitted 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 4 connectors placed at highest weighted nodes in 

each subzone of a TAZ 

 Connection points were not allowed at signalized 

intersections 
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4.3.2 Summary of STA Scenarios 

 The two and four connector strategies using parcel data and the base scenarios 

were utilized identically in the static traffic assignment analysis, with no necessary 

alterations of the network created for analysis in VISTA. Three additional scenarios were 

created independently from the DTA analysis.  Based on the literature, there was concern 

that simulated vehicles would abide by the demand split by subzone, but choose to utilize 

the connector in the subzone that places them the closest to their destination or to a high-

speed facility, given the inability to model queue spillback and congestion propagation 

(Qian and Zhang, 2012). Thus, two new scenarios were created using one connector per 

subzone, one with connection at signalized intersections allowed and the other without. 

These were created to force simulated vehicles to enter the network at the location mostly 

likely to be a high demand generator in each subzone, based on built environment data 

alone, thus limiting the ability of the demand to load simply where convenient. 

However, the literature also indicates that too few connectors can create artificial 

congestion in STA at entry points. Thus, this same logic was carried out with two 

connectors per subzone; this required splitting each TAZ centroid in the network into 

eight components—one sub-centroid per connector, with two subzones per TAZ and two 

connectors per subzone. For example, for a given TAZ with a demand of 100, let’s 

assume that 80% of the parcel density falls within the inner subzone. Per Section 3.4.3, 

80 vehicles will be assigned to the inner subzone and 20 vehicles will be assigned to the 

outer subzone. Now let’s assume that the two highest weighted nodes in the inner 

subzone both have 2,000 square feet assigned to each entry/exit node. In the prior 

scenarios, the 80 vehicles are free to choose which of the two connectors they wish to 

utilize based on the shortest path algorithm, not necessarily respecting the parcel density.  

Thus, the “micromanaged” scenario was created to ensure the demand split at the node 
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level was consistent with the parcel density by creating a sub-centroid for each connector 

and assigning the properly portioned demand to each sub-centroid.  Thus, in the above 

scenario, 40 vehicles will enter at one node in the inner subzone of the TAZ, while the 

remaining 40 vehicles enter at the other node, regardless of which one would provide a 

more “convenient” route.  This greatly increases the size of the origin-destination matrix 

and is not realistic in large DTA networks, but was worthy of analysis in STA due to the 

model’s efficiency gains elsewhere. A summary of these scenarios is presented in Table 

4.2.   

 

 

  



 50 

Table 4.2: Summary of Scenarios for STA analysis 

Scenario Description 

Base  See Table 4.1 for description 

Parcel Based, 1 

Connector, 

Signals 

Permitted 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 1 connector placed at highest weighted node in each 

subzone of a TAZ 

 Connection points were allowed at signalized 

intersections 

Parcel Based, 1 

Connector, 

Signals not 

Permitted 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 1 connector placed at highest weighted node in each 

subzone of a TAZ 

 Connection points were not allowed at signalized 

intersections 

Parcel Based, 2 

Connectors, 

Signals 

Permitted 

 See Table 4.1 for description 

Parcel Based, 2 

Connectors, 

Signals not 

Permitted, 

“Micromanaged” 

demand 

 Demand divided into two subzones with demand 

allocation determined by parcel density 

 2 connector placed at highest weighted node in each 

subzone of a TAZ 

 Demand entered/exited network proportionally to 

parcel density at entry/exit node through creation of 

sub-centroid for each connector 

 Connection points were not allowed at signalized 

intersections 

Parcel Based, 2 

Connectors, 

Signals not 

Permitted 

 See Table 4.1 for description 

Parcel Based, 4 

Connectors, 

Signals 

Permitted 

 See Table 4.1 for description 

Parcel Based, 4 

Connectors, 

Signals not 

Permitted 

 See Table 4.1 for description 
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Chapter 5: Results 

5.1 INTRODUCTION 

This section describes the results from the numerical analyses in terms of the 

updated centroid connector structure and the corresponding model performance. For 

convenience, a summary of the 15 scenarios analyzed can be found in Table 5.1; for 

additional detail concerning the motivation for why each scenario was created, please see 

in Tables 4.1 and 4.2 for static and dynamic traffic assignment, respectively. All 

scenarios are analyzed with respect to the base model from CAMPO in order to provide 

insight on how this methodology improves the state of practice. 

The static assignment results are presented first. These results are analyzed with 

respect to the methodology’s ability to output “behaviorally consistent” results (e.g. 

output model results that increase the flow on lower capacity links and decrease the flow 

on higher capacity links), which are performance metrics suggested by Friedrich and 

Galster (2009) and Qian and Zhang (2012). Part of the novelty of this research is that 

available field traffic counts as described in Section 4.2, are used to assess if the more 

“behaviorally consistent” results are better capturing real world behavior (flows); other 

research in the literature uses stability of results or the ability to capture realistic route 

choice behavior, instead of consistency with field data, as a performance metric in STA.  

Next, the dynamic traffic assignment results are presented. DTA results are 

analyzed with respect to the methodology’s ability to accurately represent loading 

consistent with the built environment of the subnetwork and for the ability of the 

methodology to produce more realistic travel times and link counts without manual 

refinement of the connector structure or excessive calibration efforts. Visual inspection of 

the network, the average parcel density per entry/exit location, and the number of 

entry/exit points with zero square footage assigned are analyzed to assess the ability of 
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the methodology to capture nature of the built environment within the subnetwork. Field 

corridor travel times are compared to the resultant travel times on the corresponding 

corridor in the converged model to assess the ability of the methodology to better capture 

reality; model link flows are analyzed in the same manner to assess the ability of the 

model to replicate realistic traffic counts.  
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Table 5.1: Summary Table of Scenarios 

Static Traffic Assignment Dynamic Traffic Assignment 

Base Base 

----- 

Jafari et al, 2015 

Bilevel 

50/50 Demand Split 

----- 

Jafari et al, 2015 

Bilevel 

90/10 Demand Split 

Parcel Based 

1 Connector 

 Signals not Permitted 

----- 

Parcel Based 

 1 Connector 

 Signals Permitted 

------ 

Parcel Based 

 2 Connectors 

 Signals not Permitted 

Parcel Based 

 2 Connectors 

Signals not Permitted 

Parcel Based 

 2 Connectors 

 Signals not Permitted 

“Micromanaged” demand 

----- 

Parcel Based 

 2 Connectors 

 Signals Permitted 

Parcel Based 

2 Connectors 

 Signals Permitted 

Parcel Based 

 4 Connectors 

 Signals not Permitted 

Parcel Based 

 4 Connectors 

 Signals not Permitted 

Parcel Based 

 4 Connectors 

Signals Permitted 

Parcel Based 

 4 Connectors 

 Signals Permitted 

5.2 PARCEL METHODOLOGY’S IMPACT ON STATIC ASSIGNMENT RESULTS 

In the literature where centroid connectors and their impact on the results of 

traffic assignment models are of concern, methodologies are evaluated in one of two 



 54 

ways: either (a) by their ability to show that one methodology better achieves more 

realistic volume-to-capacity (𝑉/𝐶) ratios compared to another or (b) that there’s a change 

in resultant flows through the network that causes them to be more behaviorally 

consistent as a result of the new connector structure (Friedrich & Galster, 2009; Qian & 

Zhang, 2012). Table 5.2 summarizes how the resultant flow on functionally classified 

links changes as a direct result of the altered centroid connector structures, summarized in 

Section 4.3.2.  The percent change in flow between scenarios is calculated by Equation 

17: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝐹𝑙𝑜𝑤𝑖 − 𝐹𝑙𝑜𝑤𝑏𝑎𝑠𝑒

𝐹𝑙𝑜𝑤𝑏𝑎𝑠𝑒
∗ 100 

(17) 

where 𝐹𝑙𝑜𝑤𝑖 is the resultant flow on each link of the specified functional classification in 

the seven new scenarios and 𝐹𝑙𝑜𝑤𝑏𝑎𝑠𝑒 is the resultant flow in the base scenario.  Thus, 

for example, the parcel-based methodology with one connector per subzone per TAZ and 

connector placement not permitted at signalized intersections increased flow on local 

links by 93 percent and decreased flows on principal arterials by 8 percent compared to 

the original base centroid connector structure provided by CAMPO.   
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Table 5.2: Percentage Change in Flow between Scenarios 

 
Local Collector 

Minor 

Arterial 

Principal 

Arterials 

Base Base network is reference case 

Parcel Based, 1 

Connector, Signals 

not Permitted 

93% 0% -4% -8% 

Parcel Based, 1 

Connector, Signals 

Permitted 

88% 0% -3% -8% 

Parcel Based, 2 

Connectors, Signals 

not Permitted 

66% -7% -8% -11% 

Parcel Based, 2 

Connectors, Signals 

not Permitted 

“Micromanaged” 

Demand 

87% -5% -9% -12% 

Parcel Based, 2 

Connectors, Signals 

Permitted 

54% -6% -8% -10% 

Parcel Based, 4 

Connectors, Signals 

not Permitted 

32% -9% -9% -9% 

Parcel Based, 4 

Connectors, Signals 

Permitted 

23% -9% -10% -9% 

As shown in Table 5.2, all parcel-based methodologies increased the resultant 

flow on local streets when compared against the original centroid connector structure. In 

addition, a marginal decrease in the flow on the higher capacity links in the network is 

evident. The largest increases in flow on local streets were in the one connector cases and 

the two connector case where the demand is assigned to a specific connector as a function 

of parcel density (“micromanaged” demand). Not coincidentally, these were the three 

cases where the selection of a connector by a simulated vehicle was not a result of 

shortest path assignment; thus, the vehicles were likely forced to enter the network closer 



 56 

to the zonal centroid than the shortest path algorithm would have optimally selected. 

Aside from the significant increase in flow utilizing the lowest capacity roadways with 

application of the parcel-based methodology, which decreased as the number of 

connectors increased, there wasn’t a lot of variation amongst the scenarios for collector 

streets, minor arterials, or principal arterials; in other words, the changes in flow for the 

collector streets, minor arterials, and principle arterials were fairly stable with respect to 

the parcel-based methodology for centroid connector placement. 
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Table 5.3: Changes in V/C Ratio (number of links) 

 
≥ 𝟏. 𝟎 𝟎. 𝟕𝟓 ≤ 𝑽

𝑪⁄ < 𝟏. 𝟎 𝟎. 𝟓 ≤ 𝑽
𝑪⁄ < 𝟎. 𝟕𝟓 𝟎. 𝟓 ≤ 𝑽

𝑪⁄ < 𝟎 = 0 

Base 173 188 257 1438 551 

Parcel Based, 1 

Connector, 

Signals not 

Permitted 

202 178 370 1524 334 

Parcel Based, 1 

Connector, 

Signals Permitted 

197 184 366 1512 349 

Parcel Based, 2 

Connectors, 

Signals not 

Permitted 

176 191 321 1621 299 

Parcel Based, 2 

Connectors, 

Signals not 

Permitted 

“Micromanaged” 

Demand 

187 201 344 1656 220 

Parcel Based, 2 

Connectors, 

Signals Permitted 

178 192 317 1594 327 

Parcel Based, 4 

Connectors, 

Signals not 

Permitted 

176 178 290 1630 334 

Parcel Based, 4 

Connectors, 

Signals Permitted 

176 178 278 1627 349 
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As indicated in Tables 5.3 and 5.4, the number of links with 𝑉/𝐶 ratio greater 

than 1 increased while the number of links with 𝑉/𝐶 ratios equal to 0 decreased. 

Although 𝑉/𝐶 >1 is an outcome in static assignment that researchers desire to limit, as it 

can indicate artificial congestion is occurring (Qian and Zhang, 2012), when combining 

insights from Tables 5.2 and 5.3, it’s more likely that the lower capacity roads are the 

links that have increased 𝑉/𝐶 ratios in the parcel-based methodology model results. For 

example, although the parcel-based methodology with one connector per subzone, not 

permitted to be located at signalized intersections, saw an increase in 𝑉
𝐶⁄  by 17 percent 

compared to the original centroid connector structure, given that the flow on lower 

capacity links increased by 93 percent and the flow on principal arterials decreased by 8 

percent, compared to the base, it’s reasonable to conclude that the increased 𝑉
𝐶⁄  did not 

occur on higher capacity links. The parcel-based methodology did successfully increase 

the number of links being utilized at user equilibrium by 10 percent or more in all 

scenarios; this indicates the parcel-based methodology is better distributing the traffic 

across all links of the network (Table 5.5). The percent change between the base scenario 

and each of the remaining scenarios was calculated via Equation 17.  
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Table 5.4: Changes in V/C Ratio (percentage change) 

 
≥ 𝟏. 𝟎 𝟎. 𝟕𝟓 ≤ 𝑽

𝑪⁄ < 𝟏. 𝟎 𝟎. 𝟓 ≤ 𝑽
𝑪⁄ < 𝟎. 𝟕𝟓 

𝟎. 𝟓 ≤ 𝑽
𝑪⁄

< 𝟎 
= 0 

Base Base case is the reference case 

Parcel Based, 1 

Connector, 

Signals not 

Permitted 

17% -5% 44% 6% -39% 

Parcel Based, 1 

Connector, 

Signals Permitted 

14% -2% 42% 5% -37% 

Parcel Based, 2 

Connectors, 

Signals not 

Permitted 

2% 2% 25% 13% -46% 

Parcel Based, 2 

Connectors, 

Signals not 

Permitted 

“Micromanaged” 

Demand 

8% 7% 34% 15% -60% 

Parcel Based, 2 

Connectors, 

Signals Permitted 

3% 2% 23% 11% -41% 

Parcel Based, 4 

Connectors, 

Signals not 

Permitted 

2% -5% 13% 13% -39% 

Parcel Based, 4 

Connectors, 

Signals Permitted 

2% -5% 8% 13% -37% 
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Table 5.5: Variation in Number of Utilized Links per Scenario 

 # used 

links 

% change 

from base 

Base 2,056 (Reference) 

Parcel Based 

1 Connector 

Signals not Permitted 

2,274 10.6% 

Parcel Based 

1 Connector 

Signals not Permitted 

2,259 9.9% 

Parcel Based 

1 Connector 

Signals Permitted 

2,309 12.3% 

Parcel Based 

2 Connectors 

Signals not Permitted 

2,388 16.1% 

Parcel Based 

2 Connectors 

Signals not Permitted 

“Micromanaged” 

Demand 

2,281 10.9% 

Parcel Based 

2 Connectors 

Signals Permitted 

2,274 10.6% 

Parcel Based 

4 Connectors 

Signals not Permitted 

2,259 9.9% 

Root mean squared error (RMSE) and mean average error (MAE) are the 

performance metrics used to evaluate success of the model in producing flows consistent 

with reality. The root mean squared error is the square root of the mean of the square of 

all the error.  It is calculated by Equation 18: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

 (18) 

where 𝑛 is the sample size, 𝑦𝑖 is the ith link field count and ŷ𝑖 is the ith link flow predicted 

by VISTA. The RMSE tends to give a high weight to large errors, and is more useful 
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when large errors are understandable. Thus, the mean average error, which measures the 

magnitude of the error, is also utilized to characterize the accuracy of the model in 

producing link flows consistent with field data.  The mean average error is calculated by 

Equation 19:  

𝑀𝐴𝐸 =
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

 (19) 

Table 5.6 details the results of the analysis of the scenarios with respect to field 

data, with RMSE and MAE calculated by Equations 18 and 19, respectively, and the 

percent change between the base scenario and each of the respective alternative scenarios 

calculated by Equation 17. Although the parcel-based scenario seems to be performing 

better than the original scenarios in the aforementioned analyses, based on the behavioral 

performance metrics found in the literature (e.g. the results show an increase in the 

number of links utilized, an increase in the resultant flow on low capacity links, and a 

decrease in the resultant flow on higher capacity links), Table 5.6 shows that these 

changes are obsolete with respect to accurately representing real world data as there isn’t 

a sufficient change in the root mean squared error or mean average error of the static 

traffic assignment counts and the field data across the various scenarios. This indicates 

that this methodology is not better approximating reality, despite a large variation in 

flows indicated in Tables 5.2-5.5. In fact, the model performance of the model seems to 

be slightly derogated, as all parcel-based methodologies, except the scenarios with four 

connectors per subzone, resulted in some sort of minor increase in the RMSE and MAE. 

One interesting trend is that as the number of connectors increase, the results better 

mimic real world data, which is in dissonance with other STA research that states that an 

increase the number of connectors tends to negatively affect the results because it 

increases the number of options of connectors that can be utilized in a behaviorally 
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inconsistent manner (Qian and Zhang, 2012). Although the results aren’t promising in 

terms of getting more accurate results from static traffic assignment, this parcel-based 

methodology does represent a data-driven and transparent approach to centroid connector 

placement in static traffic assignment that performs similarly to the more ambiguous 

traditional connector placement methodology.  

Table 5.6 Count Data Analysis for STA 

 RMSE MAE 

 RMSE % Change MAE % Change 

Base 2154.12 (Reference) 1468.71 (Reference) 

Parcel Based 

1 Connector 

Signals not Permitted 

2,180 2.41% 1491.52 1.55% 

Parcel Based 

1 Connector 

Signals Permitted 

2,206 1.18% 1524.42 3.79% 

Parcel Based 

2 Connectors 

Signals not Permitted 

2,180 1.18% 1491.62 1.56% 

Parcel Based 

2 Connectors 

Signals not Permitted 

“Micromanaged” demand 

2,223 3.20% 1538.79 4.77% 

Parcel Based 

2 Connectors 

Signals Permitted 

2,174 0.92% 1486.49 1.21% 

Parcel Based 

4 Connectors 

Signals not Permitted 

2,160 0.28% 1467.53 -0.08% 

Parcel Based 

4 Connectors 

Signals Permitted 

2,149 -0.22% 1455.63 -0.89% 
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5.3 DYNAMIC TRAFFIC ASSIGNMENT RESULTS 

This section details the impact of placing connectors in locations consistent with 

the built environment of the subnetwork captured by parcel data. Section 5.3.1 analyzes 

the ability of the methodology to capture the built environment, in terms of built square 

footage assigned to connector nodes, better than traditional centroid connector placement 

techniques. Section 5.3.2 investigates the ability of the methodology to produce resultant 

flows that are more consistent with real world count and corridor travel time data. 

5.3.1 Demand Allocation and Parcel Density at Connector Points 

Given DTA’s increased reliance on accurate network representation, this section 

explores the ability of the methodology to visually capture locations that are likely to be 

high demand locations without manual refinement. Table 5.7 details the number of 

centroids and connectors created under each of the proposed scenarios. The number of 

regular links and nodes remained constant across scenarios. When the demand is split 

between an inner and outer subzone, additional sub-centroids are required to redistribute 

the demand accordingly. This number is not exactly double because subnetwork 

boundary centroids are not split as they represent flow across these points extracted from 

the regional model and are not associated with a TAZ.  
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Table 5.7: Modeled Scenarios and their Centroid Connector Structure 

Scenario 
No. of 

Centroids 

No. of 

Connectors 

Base 399 823 

Bilevel, 50/50 Demand Split, 

Signals not Permitted 
715 1,545 

Bilevel, 90/10 Demand Split, 

Signals not Permitted 
715 1,545 

Parcel Based, 2 Connectors, 

Signals Permitted 
715 1,117 

Parcel Based, 2 Connectors, 

Signals not Permitted 
715 1,075 

Parcel Based, 4 Connectors, 

Signals Permitted 
715 1,585 

Parcel Based, 4 Connectors, 

Signals not Permitted 
715 1,443 

Parcel Based, 4 Connectors, 

Signals not Permitted 
715 1,443 

One of the novel features of this research is that the demand is split uniquely 

according to parcel density for each individual TAZ, building on the methodology 

created by Jafari et al. (2015), who first discovered that allocating demand throughout a 

TAZ, instead of selecting the 𝑛 nearest nodes to the zonal centroid (Qian and Zhang, 

2012), achieves better network loading patterns. Figure 5.1 shows the distribution of 

inner demand ratios, as explained in Section 3.4.3, for all 158 TAZs in the network. This 

seems to indicate, at least for this specific test subnetwork, that it is indeed more realistic 

to place the majority of demand at entry points closer to the zonal centroid. However, the 

relatively widespread distribution of ratios also suggests that it is valuable to use an 

approach that is capable of endogenously selecting an appropriate split. 
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Figure 5.1: Inner Demand Ratio Frequency Based on Parcel Data 

As shown in Figure 5.2, the parcel methodology visually appears to be selecting 

entry/exit nodes that are more consistent with field entry/exit points in the network, with 

the limitation that only so many connection points can be created with the abstracted 

model. In order to quantify this feature of the methodology for the entirety of the 

network, the average parcel density per node and the number of nodes with zero assigned 

parcel density was calculated and is available in Table 5.8 and Table 5.9, respectively; 

the percent change between the base scenario and each of the respective alternative 

scenarios was calculated via Equation 17. 
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Figure 5.2: Visual Inspection of Centroid Connector Structure 
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Table 5.8: Parcel Density per Connector Compared Across Scenarios 

 

Sum of 

built square 

footage assigned to 

entry/exit points 

Average built 

square 

footage per 

entry/exit 

point 

% change 

with respect 

to base 

scenario 

Base  210,000,000   255,600  (Reference) 

Parcel Based 

 2 Connectors 

 Signals not Permitted 

 319,000,000   296,500  16.0% 

Parcel Based 

 2 Connectors 

 Signals Permitted 

 331,000,000   296,700  16.1% 

Parcel Based 

 4 Connectors 

 Signals not Permitted 

 385,000,000   267,100  4.5% 

Parcel Based 

 4 Connectors 

 Signals Permitted 

 416,000,000   267,400  4.6% 

 

Table 5.9: Entry/Exit Nodes with Zero Parcels Assigned 

 

Entry/exit 

nodes with 0 

parcels 

assigned 

% Entry/exit nodes with 0 

parcels assigned (as a 

function of total entry/exit 

points in the network) 

Base 96 11.66% 

Parcel Based 

2 Connectors 

Signals not Permitted 

76 6.69% 

Parcel Based 

2 Connectors 

Signals Permitted 

73 6.26% 

Parcel Based 

4 Connectors 

Signals not Permitted 

104 6.51% 

Parcel Based 

4 Connectors 

Signals Permitted 

106 5.93% 
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As can be seen in Table 5.8, the total built square footage assigned to network 

entry/exit points increases as a function of the utilization of the parcel-based 

methodology and the number of connectors. In an attempt to prevent a scenario from 

looking artificially well designed because of an increase in the number of connectors, the 

average parcel density per entry/exit location was calculated. There’s a pretty substantial 

increase between the base scenario and all four parcel-based approaches in terms of 

average square footage assigned to each entry/exit location in the network according to 

Table 5.8, which is promising if built environment is an accurate proxy for demand, as 

indicated by the literature.  

There’s also a considerable decrease in the average parcel density at entry/exit 

locations between the parcel data-driven approach with two connectors and the 

methodology with four connectors, despite an increase in total square footage assigned to 

entry/exit points. For example, in the no signalized intersections at connection points 

scenarios, the average parcel density per entry/exit points drops from 296,500 square feet, 

with two connectors per subzone, to 267,100 square feet, with four connectors per 

subzone. This shows that nodes in less developed areas are being selected to meet the 

“four connector” user input requirement, supporting the need to find a data-informed 

methodology for endogenously determining optimal connector count for each TAZ or 

subzone. Somewhat surprisingly, there’s no observed large benefit in allowing connectors 

to be placed at signals, indicating that removing signalized intersections from the list of 

eligible nodes, as recommended in the literature (Chiu et al., 2011) does not hinder this 

methodology’s ability to capture built environment in the tested network.  

Additionally, Table 5.9 explores the frequency of entry/exit nodes being selected 

at locations where zero parcel data is assigned. For example, 11.66 percent of all of the 

entry/exit locations in the base network have no built square footage assigned to them; 
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this is reduced to 5.93 percent of all entry/exit locations in the parcel-basedscenario with 

four connectors per subzone and signalized intersections permitted as access points. As 

discussed in Section 3.4.4, instances of zero square footage assigned to an entry/exit node 

occur in the new methodology when no parcel data is available for the entire TAZ and the 

𝑛 nearest nodes to the zonal centroid is selected as the entry/exit point. Thus, the parcel 

data-driven approach offers improvements here as well, with a large decrease in the 

occurrence of an entry/exit point to the network being created with zero built square 

footage assigned to the entry node (see Figure 5.2). Consistent with other results, there’s 

very little change in the number of entry/exit points with zero assigned built square 

footage for two and four connector scenarios and only a marginal improvement between 

signals and no signals. This, again, supports that the removal of signalized nodes from the 

list of entry/exit points to the network does not have a detrimental impact on the 

methodology. Additionally, the aforementioned results indicate that simply increasing the 

number of connectors per TAZ does not have significant impact on the number of 

connection points with zero square feet assigned for a subnetwork, once again supporting 

the need for a data-informed approach to select the number of connectors per TAZ or 

subzone.  

5.3.2 Model Performance  

Table 5.10 reports a summary of the average system level performance metrics. 

The lowest total system travel time, total vehicle miles traveled, average origin-

destination (OD) travel time, average path link, and the highest average speed are 

achieved using the parcel data methodology with four connectors per subzone. This 

strongly suggests that this approach avoids artificial bottleneck creation. This is 

substantiated through the evaluation of model performance relative to field travel times. 
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Table 5.10: Test Network Statistics after Convergence 

  
TSTT 

(h) 

VMT 

(veh mi) 

Average 

OD Travel 

Time (min) 

Average 

Speed 

(mph) 

Average 

Path Length 

(mi) 

Base 22,858 830,970 10.11 36.80 6.24 

Bilevel 

 50/50 Demand Split 

Signals not Permitted 

23,853 847,555 10.56 36.43 6.32 

Bilevel 

90/10 Demand Split 

Signals not Permitted 

23,911 848,571 10.61 36.25 6.34 

Parcel Based 

 2 Connectors 

 Signals Permitted 

21,267 844,503 9.41 37.96 6.30 

Parcel Based 

 2 Connectors 

 Signals not Permitted 

21,643 847,728 9.58 37.63 6.33 

Parcel Based 

 4 Connectors 

 Signals Permitted 

20,463 820,166 9.05 38.44 6.14 

Parcel Based 

 4 Connectors 

 Signals not Permitted 

20,703 826,481 9.16 38.21 6.18 

Table 5.11 shows minimum, maximum, and average corridor travel time error for 

each of the seven strategies. Field travel times were collected along select corridors 

during peak periods, while model travel times along the same corridors are computed 

based on the travel time of simulated probe vehicles. The travel time error is the absolute 

value of the deviation of the model corridor travel time from the field collected corridor 

travel time.  The minimum travel time error is the smallest deviation from the field data 

that occurred on the 18 corridors where data were available; likewise, the maximum 

travel time error is the absolute value of the largest deviation between the field data and 

the modeled data for the 18 corridors. The average travel time error is the average of all 
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the deviations of modeled travel time on each of the 18 corridors from the field data.  The 

Table 5.11 also shows the percent change between the base methodology for allocating 

centroid connectors and the remaining six strategies. The percentage change between 

each respective alternative scenario and the base scenario, with a centroid connector 

structure created by CAMPO, is calculated in accordance to Equation 17. 
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Table 5.11: Corridor Travel Time Validation Results 

Network 

Min 

TT 

Error 

(min) 

Max 

TT 

Error 

(min) 

Average 

TT 

Error 

(min) 

% Change 

Min 

% Change 

Max 

% Change 

Average 

Base 0.028 9.885 1.706 (Reference) (Reference) (Reference) 

Bilevel, 50/50 

Demand 

Split, 

Signals not 

Permitted 

0.029 8.094 1.636 5% -18% -4% 

Bilevel, 90/10 

Demand 

Split, Signals 

not Permitted 

0.029 10.933 1.656 5% 11% -3% 

Parcel Based, 

2 Connectors, 

Signals 

Permitted 

0.039 2.232 0.969 40% -77% -43% 

Parcel Based, 

2 Connectors, 

Signals not 

Permitted 

0.001 2.173 0.960 -95% -78% -44% 

Parcel Based, 

4 Connectors, 

Signals 

Permitted 

0.010 2.235 0.982 -65% -77% -42% 

Parcel Based, 

4 Connectors, 

Signals not 

Permitted 

0.004 2.213 0.973 -85% -78% -43% 

 

As one can see, it is clear that the parcel-based performs better than the base 

methodology with respect to travel time data on the test network. The approach that best 

matched the field data was the strategy that involved splitting demand and placing 

connectors via parcel data with signalized intersections not on the eligible node list and 

two connectors selected per subzone. This resulted in a 95 percent decrease from the base 



 73 

case in minimum corridor travel time error, a 78 percent decrease from the base case in 

maximum corridor travel time error, and a 44 percent decrease from the base case in 

average corridor travel time errors. One important observation is that the scenario that 

performed the best with respect to field corridor travel times is the scenario that achieved 

the highest average parcel density per entry/exit network node, discussed in Table 5.8, 

indicating that parcel density is a great proxy for demand generation in the real world. 

Table 5.12 shows the results of the error associated with link volume counts. The 

table also details the percent change between the calibrated base methodology and the 

remaining six strategies in terms of root mean squared error and mean absolute error, as 

calculated by Equations 18 and 19, respectively. Field counts, available at various levels 

of temporal aggregation, were compared with model volumes aggregated in a consistent 

manner. The percent change for each alternative scenario with respect to the base 

scenario is calculated via Equation 17.  
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Table 5.12: Field Traffic Count Validation Results 

Network RMSE MAE 
% Change from 

Base 

Base 413.9 256.5 --- --- 

Bilevel, 50/50 Demand 

Split, 

Signals not Permitted 

440.6 258.5 6% 1% 

Bilevel, 90/10 Demand 

Split, Signals not 

Permitted 

424.3 253.0 2% -1% 

Parcel Based, 2 

Connectors, Signals 

Permitted 

367.4 237.3 -11% -7% 

Parcel Based, 2 

Connectors, Signals not 

Permitted 

362.6 232.8 -12% -9% 

Parcel Based, 4 

Connectors, Signals 

Permitted 

372.2 239.5 -10% -7% 

Parcel Based, 4 

Connectors, Signals not 

Permitted 

367.7 234.6 -11% -9% 

 

Both the root mean square error and the mean average error are consistently lower 

using the parcel-data based approach when compared against the base model. It is 

interesting to note that the bi-level approach actually increased the RMSE of the link 

count errors, though it demonstrated improvement in terms of travel times and resulted in 

more behaviorally consistent utilization of local links (Jafari et al, 2015). This is likely a 

consequence of the “one size fits all” approach to distributing demand between the inner 

and outer subzone. It is clearly shown in Figure 5.1 that while the majority of TAZs 

support larger inner-to-outer demand split ratios, there is variability across the network.  

Much of the data used in this experiment were collected on major streets, and 

thus, comparatively accurate model results depend on proper allocation of demand along 
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connecting roadways. Parcel level data seems to support a more realistic placement of 

centroid connectors, the subsequent distribution, and loading of demand for use in DTA. 

This ultimately reduces the observed errors associated with resultant model flow and 

simulated travel times on key corridors.   
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Chapter 6: Discussion 

The results presented in the previous section suggest that parcel data may be 

utilized to produce more accurate static and dynamic traffic assignment model results. 

Additional insights from this research that may inform future model improvements and 

implementation are discussed below. 

Simply showing that results are more behaviorally consistent in static traffic 

assignment and dynamic traffic assignment is not a sufficient criterion for establishing 

that a centroid connector placement strategy is superior to another methodology. As 

discussed in Table 5.2, the utilization of built environment data to inform the placement 

of centroid connectors in static traffic assignment significantly increased the utilization of 

lower capacity links while marginally decreasing the resultant flows on higher capacity 

links. According to the literature concerning centroid connector placement, this indicates 

that this new methodology provides a more accurate way to place centroid connectors in 

static traffic assignment. However, when comparing modeled output with field counts, it 

is evident that the new methodology did not make a significant contribution to STA’s 

ability to produce results that match count data. Given the inner-to-outer demand split 

ratios (Figure 5.1), it is hypothesized that the new methodology forced a larger quantity 

of vehicles to enter the network closer to the centroid of the TAZ than in the base 

scenario. In the scenarios where the number of connectors is lower, or the demand is 

forced to enter at a certain location, it is anticipated that this created artificial congestion 

and encouraged the vehicles selecting a route based on the shortest path algorithm to 

spread out and utilize an increased number of lower capacity links in their trip closest to 

the centroid. Ultimately, this methodology cannot mitigate the fundamentally unrealistic 

low travel time estimations calculated by using link performance functions during 
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congested conditions (Section 2.5.1); thus, the vehicles continued to overload the higher 

capacity links with the fastest travel times to make the majority of their trip, which is 

inconsistent with field data.   

Areas where most intersections are signalized require special attention. 

Signalized intersections were found to present a special challenge in the selection of 

nodes to load demand. In the modeled network there are 150 signalized intersections. 

When centroid connectors were linked via highest weighted node not excluding these 

intersections, 50 and 70 signalized intersections were selected as entry nodes for the two 

and four connector scenarios, respectively. However, when the average built square 

footage per connector node was examined, no negative implications were observed. One 

potential mitigation technique is that additional nodes could be created near signalized 

intersections as possible entry/exit nodes to address this issue; however, the simulation 

technique used in the selected model application is prone to generating artificial 

congestion along short links, particularly at signal approaches. Thus, further research is 

required to address this issue appropriately.  

More connectors do not necessarily mean better results. As noted in Table 5.10, 

though the four connector per subzone scenario seemed to yield the best system 

performance metrics—total system travel time, vehicle miles traveled, average OD travel 

time, average speed, and average length path—it was not the scenario that best matched 

field data. The two-connector-per-subzone scenario marginally outperformed the four-

connector scenarios. This supports similar conclusions that more connectors per TAZ 

does not necessarily mean better results, found to be true in static traffic assignment 

(Qian and Zhang, 2012). However, as a whole, the results for the two- and four- 

connector scenarios were very similar and both showed improvements over traditional 

approaches in a dynamic setting. 
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Splitting demand arbitrarily within TAZs may not provide accurate loading 

patterns. The work performed by Jafari et al. (2015) was an important step towards 

recognizing the importance of centroid connector placement on ensuring reasonable 

traffic patterns, and providing scalable solutions to improve large regional network 

models. However, the implemented one-size-fits-all demand split, along with the lack of 

information regarding the actual location of activities within a TAZ, resulted in 

limitations in the effectiveness of the approach. Given that this new methodology 

performs better than the bi-level approaches in terms of capturing realistic travel times 

and count data in model outputs, it’s apparent that the built environment detail provided 

by the parcel data is paramount to the success of this effort.   

Utilizing parcel data to assign network entry/exit locations better approximates 

real world entry/exit points. Figure 6.1 depicts the centroid connector structure resulting 

from both a typical placement strategy and the parcel-based approach, along with the 

location of built environment based on parcel data within a TAZ in the Williamson 

County network. Figure 6.2 is a Google Earth aerial image of the area depicted in Figure 

6.1 to show what the TAZ physically looks like compared to its abstraction by parcel data 

and the network representation. With the base methodology, two of the three connectors 

are placed at nodes in the network where there is likely no demand generated (no 

development indicated in the parcel map or the Google Earth image). Additionally, there 

is no connector servicing a residential development in the lower left quadrant of the TAZ. 

Thus, the use of parcel data helps to more accurately load/unload demand at appropriate 

locations. 

The need for a data-driven approach to endogenously select the optimal number 

of connectors per TAZ is evident.  The lack of improvement between the two- and four- 

connector scenarios, with respect to the average parcel density per connection point and 
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the number of connection points with no built square footage assigned, indicates that the 

algorithm was forced to select non-ideal nodes as a result of the user specified number of 

connectors per TAZ.  This insight supports the need for future research into how to 

decide the number of connectors per TAZ and is consistent with the results analyzed with 

respect to travel time and counts.  
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Figure 6.1: Centroid Connector Placement Before and After Comparison 
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Figure 6.2: Google Earth Image of Area Modeled in Network in Figure 6.1 
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Chapter 7: Conclusions and Recommendations 

This thesis proposes a data-driven methodology informed by parcel level built 

environment data to automatically place centroid connectors in networks for both static 

and dynamic traffic assignment applications. Simulation-based DTA models are 

particularly sensitive to the topological detail of the traffic network, including the 

location of centroid connectors. Traditional centroid connector placement strategies may 

lead to excessive congestion and unrealistic traffic patterns, while manual network 

refinement is prohibitive in large regional models. This research uses parcel-level data to 

both allocate travel demand between two sub-areas within each TAZ and to select 

appropriate network access points within each of these zones. It extends previous work 

by allowing the demand split among TAZ sub-areas to vary across zones, and by 

considering the parcel density when selecting network entry/exit locations.  

 

7.1 IMPLICATIONS OF RESULTS 

Static Traffic Assignment 

 Although the results indicated that the data-driven methodology for centroid 

connector placement by parcel data achieve more behaviorally consistent resultant flows, 

no significant improvements were observed with respect to matching field count data. It 

is hypothesized that the strategy encourages vehicles to make use of a larger variety of 

lower functional class links by forcing vehicles to enter the network at a limited number 

of locations closer to the zonal centroid. However, this ultimately did nothing to 

discourage vehicles from using higher functional class links to make the majority of their 

trip, as link performance functions make the highest functional class links unrealistically 

appealing under the principle of user equilibrium. However, this thesis presents a simple, 
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transparent, and data-driven approach for centroid connector placement in static traffic 

assignment that performs as well as traditional methods. The systematic approach 

presented in this thesis, provides a more robust and scientific approach to centroid 

connector placement and further research can potentially yield improved static modeling. 

Dynamic Traffic Assignment 

Numerical experiments suggest that the proposed methodology leads to solutions 

that are more consistent with field data than both traditional centroid placement 

approaches and previous research findings. In the numerical experiments conducted on a 

real-world network, the approach involving two connectors per subzone while avoiding 

signalized intersections produced the most realistic results. When compared against real 

world travel times on 18 corridors in the network, the maximum travel time error was 

reduced to just 2 minutes and 11 seconds and the average travel time error dropped to 

under a minute (58 s). This was a 95 percent and a 44 percent improvement, respectively, 

when compared against the base network. Link counts were also found to be more 

consistent with real-world data when the data-driven approach to centroid connector 

placement and demand split was used. The RMSE of the 1,305 links with field traffic 

counts was found to decrease by 12 percent compared to the base case.  

The findings also suggest that a larger number of centroid connectors does not 

necessarily lead to better model results, verifying what had been suggested in the 

literature. The presence of traffic signals at intersections was observed to introduce 

additional challenges in the placement of connectors, which may motivate further 

research, though it was shown that avoiding the placement of connectors at these 

locations improved the results. In summary, the results are encouraging and highlight the 

value and importance of collecting, processing and understanding new data sources in the 

development of traffic models.  
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7.2 FUTURE RESEARCH 

This thesis lays the groundwork for future research extensions and considerations 

for centroid connector placement in traffic assignment. The next steps in this research 

effort are to refine how demand is allocated across connectors and explore methods to 

endogenously determine an appropriate number of centroid connectors to generate per 

zone. Using parcel density to determine the appropriate number of connectors per TAZ, 

eliminating another user defined input, is anticipated to not only supplement this process, 

but to further automate the implemented procedure. 
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