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The Development of a Holistic Approach to Modeling Driver Behavior: 

Accounting for Driver Heterogeneity in Car-Following Models 
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Supervisor: Stephen Boyles 

 

Car-following behavior has been studied since the 1940s. However, complex 

calibration requirements and challenges with collecting high-resolution data have stunted 

advancements in this domain. Thus, methodologies to adequately capture naturalistic 

behavioral heterogeneity are largely missing from the literature. 

For this dissertation, a sample from the second Strategic Highway Research 

Program Naturalistic Driving Study was analyzed. This sample contains 665 trips 

completed on freeways in clear weather conditions. Driver demographics, vehicle CAN 

bus, and external sensor data are available for each trip. The trajectories in this sample were 

processed and used to calibrate the Gipps, Intelligent Driver Model, and Wiedemann 99 

car-following models. 

This dissertation seeks to improve how inter-driver heterogeneity in car-following 

behavior is accounted for in microsimulation models. This dissertation has three primary 

objectives. Objective 1 identifies which driver attributes are sources of inter-driver 

heterogeneity. Objective 2 explores the viability of using census-level data to calibrate 

microsimulation models. Objective 3 develops and evaluates a new mechanism for 

properly capturing inter-driver heterogeneity in microsimulation: an ensemble car-

following model.  
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To achieve these objectives, first, Kruskal-Wallis one-way analysis of variance 

tests were applied to show statistically significant differences in both the estimated car-

following model calibration coefficients and the overall model performance across groups 

of drivers categorized by commonalities in their driver attributes.  

Next, the Expectation Maximization clustering algorithm was applied to show that, 

despite differences in driver behavior, homogeneous driver groups, or groups of drivers 

that behave similarly, exist in the dataset. Moreover, this dissertation shows that drivers 

can be classified into their proper homogeneous driver group only knowing their driver 

specific attributes.  

Finally, VISSIM was used to implement the homogeneous driver groups in 

microsimulation. This case study illustrated that when inter-driver differences in driving 

behavior are explicitly modeled, there are notable impacts on the performance metrics 

collected from the microsimulation models. These performance metrics are ultimately used 

by decision makers to evaluate alternatives for transportation funding. Thus, this 

dissertation provides evidence of the importance of appropriately modeling inter-driver 

differences to improve the quality of the microsimulation model results and inform better 

funding allocation decisions.  
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 1 

Chapter 1:  Introduction 

Individual preferences in driving behavior (e.g., speed, reaction time) are highly 

variable between and within drivers; in simpler terms, different drivers drive differently. 

In fact, it is common for groups of people to argue over whom is the best driver because, 

despite the statistical impossibility, the majority of drivers believe they are an above 

average driver (Roy & Liersch, 2013). Yet, the field of microsimulation modeling does 

little towards systematically modeling these known differences in driving behavior. This 

dissertation seeks to fill this void by exploring the heterogeneity in driving behavior 

attributable to driver specific attributes, such as age and gender.  

First, this dissertation introduces the idea of “homogeneous driver groups.” 

Homogeneous driver groups are developed through the application of statistical tests, 

clustering algorithms, and classification algorithms to identify groups of drivers that 

exhibit behavior that is sufficiently similar within a group of like drivers, but sufficiently 

different from behavior observed in other groups. Next, this dissertation calibrates car-

following models to match the behavior observed in the different homogeneous driver 

groups using data collected through the second Strategic Highway Research Program 

(SHRP2) Naturalistic Driving Study (NDS). This dissertation then explores how different 

proportions of homogeneous driver groups in the traffic stream impact the outputs of 

microsimulation models and explores the concept of using census-level data to calibrate 

the behavioral component of microsimulation models; this effectively moves the 

behavioral calibration to the back-end of the effort and significantly increases the 

practicality of accounting for behavioral heterogeneity in car-following models. Finally, 

this dissertation develops the idea of an “ensemble” car-following model, which uses 
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multiple diverse car-following models together to better capture the inherent variability in 

naturalistic data. 

 

1.1. MOTIVATION 

Transportation planning is the comprehensive analysis of developing the vision and 

goals for a region, quantitatively evaluating and prioritizing projects/strategies, monitoring 

the implementation and operation of the system, and using the data and lessons learned to 

make better future investment decisions (Federal Highway Administration Office of 

Planning, 2007). It is a cooperative process between the local Metropolitan Planning 

Organization (MPO), state Department of Transportation (DOT), transit operating agency 

(where applicable), and the public.  

Traffic analysis tools are designed to transparently inform the decisions that feed 

the transportation planning process (Jeannotte, Chandra, Alexiadis, & Skabardonis, 2004). 

These analyses occur on a multitude of scales: microscopic, mesoscopic, and macroscopic. 

Microscopic models simulate the realistic movement of individual vehicles through the 

network; they are frequently composed of car-following (acceleration/deceleration), lane-

changing, gap acceptance, speed selection, and other modules that represent the grander 

driving task (Alexiadis, Jeannotte, & Chandra, 2004). These extremely detailed models 

enable the detailed analysis of the tradeoffs between projects, but are limited in spatial 

scope, challenging to calibrate, and are computationally expensive to run. Macroscopic 

models are based on the well-established relationships between traffic flow, density, and 

speed; the reduction in details enables the expansion of model scope with the tradeoff of 

model accuracy. Mesoscopic models exhibit properties of both microscopic and 

macroscopic models. In mesoscopic models, the relationships between traffic density, 
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volume, and flow are respected, as with macroscopic models; however, traffic is modeled 

at the link or “cell” level, which offers increased accuracy and resolution of the results, 

though not to the degree of microscopic models. This dissertation is primary focused on 

improving the methods and tools used in microscopic traffic analyses. Different 

communities within the transportation profession use these models in different ways. It is 

anticipated that this dissertation will be of most value to the traffic flow theory community 

of researchers, as this dissertation explores the impact of modeled heterogeneity on 

characteristics of traffic flow (e.g., jam density, speed at capacity, capacity).  

With the enactment of Moving Ahead for Progress in the 21st Century (MAP-21), 

there has been an increase in emphasis on performance-based planning and scenario 

development for federally funded transportation investments (Federal Highway 

Administration, 2013). Moreover, the most recent Surface Transportation Reauthorization 

Act, the Fixing America’s Surface Transportation (FAST) Act, placed increase emphasis 

on the application of traffic analysis tools in the planning process (114th Congress, 2015). 

Section 1430 explicitly states:  

“The Department should utilize, to the fullest and most economically feasible 

extent practicable, modeling and simulation technology to analyze highway and 

public transportation projects authorized by this Act to ensure that these 

projects—” 

(1) will increase transportation capacity and safety, alleviate congestion, and 

reduce travel time and environmental impacts; and 

(2) are as cost effective as practicable.” (Fixing America’s Surface 

Transportation Act, 2015, p. 117) 

Thus, the accuracy and robustness of modeling tools is of increased interest to 

transportation agencies, consultants, and researchers alike. Microsimulation software can 
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be used as a powerful tool in scenario analyses, as the outputs are an explicit representation 

of the different decisions of an individual driver. However, increased resolution of model 

outputs requires the modeler to ensure simulation accuracy in producing reasonable 

approximations of individual driver behavior. Outputs of these models are used to inform 

multimillion-dollar investments in transportation; thus, the realism of the inputs and 

algorithms housed within a model are of upmost importance. 

One of the biggest limitations of microscopic simulation models is the immense 

difficulty in properly calibrating the model (Jeannotte et al., 2004). Calibration is the 

process by which the modeler adjusts pre-defined model parameters in order to simulate 

the traffic performance of a facility. Inputs to microsimulation models for calibration 

include geometric data, control data, demand data, and system performance data (Dowling, 

Skabardonis, & Alexiadis, 2004). Of particular interest to this dissertation is the required 

system performance data. Traditionally, these data has included travel times, delays, 

queues, speeds, and traffic counts aggregated across varying temporal resolutions. Thus, 

modelers are using macroscopic data to calibrate microscopic parameters (e.g., standstill 

acceleration and headway time in VISSIM; maximum desired acceleration and maximum 

desired deceleration in the Intelligent Driver Model (IDM); reaction time and desired 

velocity in Gipps, etc.).  

This approach, though reflective of state-of-practice and found to be “good 

enough”, is fundamentally flawed. It can be easily argued that microscopic data points can 

be aggregated into macroscopic summary values and tell a consistent story; the inverse is 

not necessarily true. Take a set of five numbers as an example (e.g., [10,10,10,10,10]). 

These numbers can be aggregated to tell a bigger picture (e.g., the average of this particular 

set of numbers is 10 and can only ever be 10). However, if it is known that the average of 

five numbers is 10, there are numerous combinations of five numbers that can be used to 
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achieve a mean of 10. This is essentially what we, as a practice, are supporting when 

calibration best practices include iteratively changing coefficients representing 

microscopic parameters to match macroscopic data. 

However, recent advances in data collection and storage capabilities—via 

instrumented vehicles and aerial videos—have enabled the collection of calibration data 

that actually match the scope of the microscopic model: the vehicle trajectories themselves. 

Programs like the SHRP2 NDS (Virginia Tech Transportation Institute, 2018b) and more 

recent projects sponsored by the Federal Highway Administration Office of Research, 

Development, and Technology (Federal Highway Administration Office of Operations 

Research and Development, 2017b) have created the conditions for an overhaul of the 

microscopic simulation model calibration state-of-practice in favor of a procedure that is 

more transparent in nature and uses naturalistic position, velocity, and acceleration data to 

calibrate driver behavior parameters. 

Moreover, the more accurate representation of driver behavior—such as 

instantaneous acceleration, desired gap, and relative velocity—enable researchers to 

advance newer fields such as emissions modeling (Chen & Yu, 2007; Madi, 2016; Song, 

Yu, & Zhang, 2012; Stevanovic, Stevanovic, Zhang, & Batterman, 2009) and the modeling 

of the interaction of human driven vehicles with automated driving systems (ADS) (James, 

Melson, Hu, & Bared, 2018; Ma, Zhou, Huang, & James, 2018). Though common 

microsimulation software packages have started integrating with simulation modules for 

emissions and ADS, multiple research efforts have indicated that the (human) driver 

behavior in the microsimulation software is not consistent with naturalistic driving data; 

this significantly limits the realism of research efforts that rely on these programs to 

accurately characterize vehicle dynamics as a function of human factors (Andrew L 

Berthaume, 2015; Yang & Morton, 2012). 
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A secondary avenue for research with more accurate driver model capabilities are 

risk-based crash analyses (Fan, Wang, Liu, & Yu, 2013; Habtemichael & De Picado 

Santos, 2014). In 2008, the Federal Highway Administration sponsored the development 

of the Surrogate Safety Assessment Model (SSAM) software (Gettman, Pu, Sayed, & 

Shelby, 2008). This software was designed to enable risk-based crash analysis via the 

extraction of vehicle trajectories from microsimulation software such as VISSIM, 

CORSIM, and ETFOMM. However, a vast majority of microsimulation software packages 

are designed to elicit unrealistic acceleration values to avoid simulation collisions 

(Xyntarakis, Alexiadis, Campbell, & Flanigan, 2016); this completely circumvents the use 

of microsimulation vehicle trajectories as a tool to understand safety. Through the 

development and calibration of car-following models based on naturalistic data, it is much 

more likely that meaningful analyses may be completed to understand the impact of 

operational and geometric changes on the overall safety level of a facility.  

Though the field of car-following has been studied since the 1940s, several 

limitations of data collection, complications with calibration, and lack of model 

transparency have severely stunted the development of accurate methods in this domain. 

This dissertation seeks to contribute to the field via the development of data-driven 

methods to better account for driver heterogeneity in the car-following process. 

 

1.2. DISSERTATION CONTRIBUTIONS 

This dissertation is a broad exploration of heterogeneity in driving behavior 

captured in trajectory-level data. Moreover, this dissertation investigates the degree to 

which heterogeneity in driving behavior should be captured in transportation planning 

tools, specifically car-following models. As such, this dissertation uses trip statistics and 
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calibrated parameter sets as surrogates for driver behavior. In order to process the data to 

obtain sets of estimated calibrated parameter coefficients, three steps were required: (i) the 

identification of constrained driving (i.e., car-following) states from time-series processed 

radar data using a radar-vision algorithm, discussed in Section 3.2.2; (ii) the identification 

of candidate car-following models, covered in Section 3.2.3; and (iii) the identification of 

optimal car-following model parameter sets, discussed in Section 0.  

The primary contributions of this dissertation are not the aforementioned data 

processing tasks, but rather analyses conducted with the processed data. The work 

conducted as part of this dissertation is split into five tasks and eight research questions: 

• Task 1: Evaluate the presence of heterogeneity in the SHRP2 NDS dataset and 

determine if existing car-following models in the literature are suitable for 

capturing this heterogeneity at a trip-level.  

o Research Question 1: Is there evidence of driving behavior heterogeneity in 

the SHRP2 NDS time-series data?  

o Research Question 2: Can existing car-following models appropriately 

capture the diverse driving behavior of different drivers in the sample of 

SHRP2 NDS? 

o Research Question 3: Which model(s) best capture the diverse driving 

behavior recorded in trajectory-level data? 

• Task 2: Characterize the inter-driver heterogeneity evident in the SHRP2 NDS as a 

function of driver specific attributes (e.g., age, gender). 

o Research Question 4: Do different hypothesized groups of drivers exhibit 

statistically significant differences in driving behavior? 
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o Research Question 5: Do different subgroups of drivers behave sufficiently 

similarly to be considered one homogeneous group of drivers (i.e., do 

homogeneous driver groups exist in trajectory-level data?) 

• Task 3: Identify method(s) to capture the collective behavior of homogeneous 

driver groups in microsimulation models. 

o Research Question 6: What methods should be used to obtain a 

representative set of calibration coefficients for a group of drivers?  

• Task 4: Evaluate the utility of accounting for driver attributes in microsimulation. 

o Research Question 7: Can census-level (i.e., driver demographics) data be 

used alongside the anticipated proportions of driver subgroups to calibrate 

the car-following behavior of microsimulation models, effectively moving 

the calibration process to the back-end? 

• Task 5: Evaluate a new method for capturing inter-driver heterogeneity: an 

“empirical” driver model. 

o Research Question 8: Does the diverse driving behavior observed in 

trajectory-level data require the application of multiple car-following 

models to more adequately capture the apparent heterogeneity in driving 

styles?  

 

1.3. ORGANIZATION OF DISSERTATION 

Chapter 1 provides motivation for this dissertation effort, as well as a roadmap for 

how this dissertation is organized. Chapter 2 provides a substantial review of literature on 

the topics of microsimulation models and documented driving behavior heterogeneity. 

Chapter 3 provides a detailed summary of the data processing used to obtain the sets of 
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car-following model calibration coefficients for analysis in this dissertation. This includes 

a summary of the SHRP2 data collection effort, the Wyoming Implementation Assistance 

Program, the extraction of car-following states from time-series radar data, and the 

developed calibration procedure. Chapter 4 provides a high-level overview of the 

calibration results, intended to provide evidence of unexplained heterogeneity in the 

calibrated model parameter estimates. Chapter 5 explores the viability of using driver 

specific attributes to segment the data into subgroups with reduced behavioral 

heterogeneity. This chapter specifically explores the differences between segmented 

groups of drivers, similarities within segmented groups of drivers, and begins to cultivate 

the idea of homogeneous driver groups. Chapter 6 explores the calibrated car-following 

model performance (i.e., calibration scores) across different driver attributes. Chapter 7 

explores methods to obtain representative sets of calibration coefficients to describe the 

collective behavior of a group of drivers.  

Chapter 8 and 9 put into practice the methodologies developed in Chapter 3, 4, 5, 

6, and 7. Chapter 8 develops and applies a new framework for microsimulation model 

calibration, which relies on census-level data to calibrate the car-following model 

component of microsimulation models. Chapter 9 develops the first “ensemble” car-

following model, which leverages multiple recognized car-following models in the 

literature to better characterize the diverse driving behavior evident in naturalistic driving 

data. Finally, concluding remarks, limitations of this dissertation research, and future 

research paths are discussed in Chapter 10.  
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Chapter 2:  Literature Review  

This chapter details topics fundamental to the proposed dissertation research area. 

Section 2.1 covers information related to the collection of microscopic trajectory-level 

data. Section 2.2 reviews popular car-following models in the literature. Section 2.3 covers 

literature pertaining to driver heterogeneity in empirical data (Section 2.3.1) and efforts to 

model heterogeneity in car-following behavior (Section 2.3.2). Section 2.4 briefly 

summarizes the key takeaways from Chapter 2. 

 

2.1. MICROSCOPIC TRAJECTORY-LEVEL DATA COLLECTION METHODOLOGIES  

Microscopic trajectory-level data is required to truly understand the human factors 

impacts on vehicle dynamics. Microscopic trajectory-level data involves the collection of 

detailed vehicle data—such as position, velocity, and acceleration—at a frequency of 1Hz 

(once a second) or higher (e.g., 10Hz, which is ten times a second). Microscopic data can 

be collected from numerous sources: instrumented research vehicle (IRV), driving 

simulator, and aerial video collection. Each of these methodologies have advantages and 

disadvantages for their use; however, the relationship between the different types of 

microscopic data are not well understood and no guidance currently exists to aid agencies 

in identifying which data collection method best suits their needs. This section details 

previous research efforts that collected microscopic trajectory-level data for research 

studies. 

 

2.1.1. Instrumented Research Vehicle Data  

An instrumented research vehicle, also referred to as instrumented personal vehicle 

in naturalistic studies, is an advanced method available to collect situational microscopic 
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trajectory-level data. This typically involves the inconspicuous instrumentation of a vehicle 

to collect forward- and rear-facing video; vehicle Controller Area Network bus (CAN bus) 

data; and forward-facing radar. This enables the collection of the equipped vehicle’s 

position, velocity, and acceleration, as well as the relative position and velocity of adjacent 

vehicles (McLaughlin, Hankey, & Dingus, 2009). The primary benefit of long-term 

naturalistic driving studies collected via IRV is that the data collected represents real-

world, routine driving; although radar data are inherently noisy, they appear to be less error 

ridden than data collected aerially, where any errors in the point measures of vehicles’ 

location compound as velocity and acceleration estimates are derived (Punzo, 

Borzacchiello, & Ciuffo, 2011). Additionally, rich information about each driver is 

available and can be mapped to the behavioral data. The immense challenge of setting up 

the project and managing the overwhelming amount of data are disadvantages of IRV data 

collection efforts. Additionally, IRV forward-facing video and radar only provides details 

about the immediate downstream vehicle, limiting the analysis to one leading vehicle (i.e., 

IRV collected data is unable to study the topic of multiattention in driving behavior). 

Examples of prior efforts to collect trajectory-level data with IRVs include the Bosch 

Research Group data collection; 2002 Naples, Italy IRV data collection; Virginia Tech 

Transportation Institute Naturalistic Truck and Car Studies; Federal Highway 

Administration Office of Research, Development, and Technology Living Laboratory; and 

the second Strategic Highway Research Program Naturalistic Driving Study. 

 

Robert Bosch GmbH data collection effort 

The Robert Bosch GmbH research group collected vehicle trajectory data during 

afternoon peak stop-and-go conditions on a single lane in Stuttgart, Germany in 1995 

(Manstetten, Krautter, & Schwab, 1997). An IRV collected relative speed, relative 
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headway, and following vehicle acceleration. This data was recorded in 100ms intervals. 

Three of these trajectories, with car-following durations of 250s, 300s, and 400s, are 

available online and have enabled multiple efforts to apply trajectory-level data to calibrate 

car-following models (Kesting & Treiber, 2008; Panwai & Dia, 2005b, 2005a). 

 

Naples, Italy data 

Trajectory-level data was obtained from a series of experiments conducted in 

Naples, Italy between October 2002 and July 2003. The experiment consisted of four IRVs 

following in a platoon along urban and suburban roads under varying traffic conditions. 

The trajectory data was recorded at a frequency of 10Hz. This data enabled the study of 

both intra- and inter-driver heterogeneity (Papathanasopoulou & Antoniou, 2015; 

Papathanasopoulou, Markou, & Antoniou, 2016; Punzo, Ciuffo, & Montanino, 2012; 

Punzo & Simonelli, 2005) 

 

Virginia Tech Transportation Institute Naturalistic Truck and Car Data Collection 

Studies 

 The Virginia Tech Transportation Institute (VTTI) sponsored three large 

naturalistic driving study data collection efforts for both heavy vehicles and personal 

vehicles (Abbas et al., 2012): (i) the Drowsy Driving Warning System Field Operational 

Test (DDSW FOT), (ii) the Naturalistic Truck Driving Study (NTDS), and (iii) the 100-

Car Naturalistic Study. The data acquisition system included front radar, forward- and 

rearward-facing camera, and in-vehicle cameras. Position, velocity, and acceleration data 

was collected at a 10Hz frequency.  

 The VTTI DDWS FOT collected data from 103 truck drivers using 46 instrumented 

heavy vehicles. Each driver drove 60 hours a week for an average of 12 weeks. This 
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resulted in approximately 48,000 hours of driving data spanning 2.2 million miles (Abbas 

et al., 2012). This study produced 1,271 safety critical events.  

 The VTTI NTDS collected data for 100 commercial motor vehicle drivers for four 

months. Approximately 14,600 hours of driving data were collected traversing 735,000 

miles (Abbas et al., 2012). More than 2,800 safety critical events were identified. 

 The VTTI 100-Car Naturalistic Study instrumented 100 light vehicles for 

naturalistic data collection. Continuous driving data were collected for 108 individual 

drivers; this resulted in nearly 43,000 hours of video across two million miles (Abbas et 

al., 2012). This was the first study to instrument personally owned vehicles to collect large-

scale, naturalistic driving data.  

  These efforts collected trajectory-level data, with keen interest in safety critical 

events (e.g., to identify contributing factors of near crash events). However, later studies 

explored the viability of using this detailed trajectory-level data to explore situational 

driving behavior in baseline events (Abbas, Higgs, Adam, & Medina, 2011; Higgs & 

Abbas, 2015; Higgs, Abbas, & Medina, 2012) 

 

Federal Highway Administration Living Laboratory 

 The Federal Highway Administration (FHWA) Office of Research, Development, 

and Technology (RD&T) sponsored an extensive data collection effort to study inter- and 

intra-driver heterogeneity between work zones and non-work zones through the use of a 

Living Laboratory in Northern Virginia (Federal Highway Administration Office of 

Operations Research and Development, 2017a). A living laboratory, defined in the context 

of transportation operations, is a transportation network instrumented with technology for 

the collection of user-centric data for evaluation of operational performance (Lochrane, Al-

Deek, Dailey, & Bared, 2014). In this case, both an IRV and a connected mobile traffic 
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sensing (CMTS) system were developed for the collection of trajectory data on a freeway 

with both work zone and non-work zone segments.  

 A sport utility vehicle was equipped with the necessary on-board equipment: two 

universal median range radars (UMRR), for the collection of relative velocity and position 

of adjacent vehicles every 40ms; a speed sensor, to provide speed data at a frequency of 

10Hz; a 30 frames per second video recording system; and a computer for the data 

acquisition. For additional details on equipment specs, see Lochrane, 2014.  

 The living laboratory to collect this data was located along the I-95 corridor outside 

of Washington, D.C. stretching from Arlington, VA to Springfield, VA; this included both 

work zone and non-work zone sections. A total of 64 participants drove approximately 50 

miles—two to three hours—in either morning or afternoon peak. The participants were 

split equally in gender and ranged in age from 18 to 71, with a mean age of 41.4. These 

data were collected in 2013.  

 Because the data from the different equipment were collected at different 

frequencies, the data was consolidated to be reported every 0.1 second (10Hz). A filter was 

applied to remove noise from the data. A car-following period was specifically defined as 

an event in which the leading vehicle was less than 60 meters from the following vehicle 

in space and an event that lasted more than 20 seconds in time; later post-processing 

identified and removed hook-following. The final subset of data included approximately 

900 miles and 1.65 hours of car-following events. These data were used to create a new 

multidimensional psychophysical framework for modeling driver behavior (Lochrane, Al-

Deek, Dailey, & Krause, 2015); to inform the creation of a new social force car-following 

model, Modified Field Theory (Andrew L Berthaume, 2015); and to inform the creation of 

the FHWA Driver Model Platform, an open source graphical user interface designed to 
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streamline the use of data-driven car-following models in simulation software (Federal 

Highway Administration Office of Operations Research and Development, 2017a). 

 

The second Strategic Highway Research Program Naturalistic Driving Study  

The second Strategic Highway Research Program (SHRP2) Naturalistic Driving 

Study (NDS) is the largest study of its kind and was intended to collect data to better 

understand the role of driver behavior in traffic safety (Campbell, n.d.). Over 3,400 drivers 

participated in six different geographical locations. The participants were both male and 

female and ranged in age from 16 to 76+. This produced over 5.4 million trip summary 

records and more than 36,000 crash, near crash, and baseline driving events. Additional 

information on the SHRP2 NDS dataset is available through Insight (Virginia Tech 

Transportation Institute, 2018b). This dissertation specifically focuses on data collected via 

the SHRP2 NDS.  

 

2.1.2. Aerial Data 

 Aerial data involves the extraction of vehicle trajectories from consecutive still 

images or videos. This has been accomplished using video cameras on tall buildings 

(Halkias & Colyar, 2006), via helicopter (Netherlands Organisation for Scientific 

Research, n.d.), and via drone (Federal Highway Administration Office of Operations 

Research and Development, 2017b). The benefit of aerial photography is that it allows the 

collection of multiple vehicle trajectories simultaneously with the prevailing traffic 

conditions. However, driver attributes are not identifiable, the data tends to be collected for 

short spatial intervals, and many data errors have been reported with aerial data.  
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Netherlands Organization for Scientific Research 

 One of the foundational efforts toward characterizing driver heterogeneity in car-

following using microscopic data is the Tracing Congestion Dynamics: With Innovative 

Microscopic Data to a Better Theory sponsored by the Netherlands Organization for 

Scientific Research (TNO) (Netherlands Organisation for Scientific Research, n.d.). This 

project was awarded to Dr. S. P. Hoogendoorn at the Technische Universiteit Delft and 

spanned nine years, from February 2004 to May 2015. This project funded the collection 

of microscopic trajectory-level data via helicopter; the data was mined using remote 

sensing techniques. The data was recorded at a frequency of 10Hz over 400–500m of 

roadway for Freeway A2 in Urecht, the Netherlands. Five minutes of data were recorded. 

This data spawned over 50 publications, including two dissertations.  

 

Federal Highway Administration – Next Generation SIMulation  

In 2002, the FHWA initiated the Next Generation SIMumlation (NGSIM) project 

to collect trajectory-level data and enable the theoretical development of new traffic 

microsimulation behavioral models (Federal Highway Administration Office of 

Operations, 2017). This was accomplished by synchronizing video cameras, mounted on 

high buildings near the roadway, that recorded vehicles as they passed through a geofenced 

area. Post-processing produced position, velocity, and acceleration values at a frequency 

of 10Hz. There were four roadways that were studied: two freeways and two arterials. The 

information for the two freeway sites is summarized below in Table 2.1. These datasets are 

available freely through the Research Data Exchange (Halkias & Colyar, 2006). 
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Table 2.1 NGSIM Summary Details 

Dataset name I-80 US-101 

Site Length (ft) 1650 2100 

Number of cameras 7 8 

Number vehicles detected 5,684 6,101 

Length of data collection (min) 45 45 

 

In 2011, Punzo, Borzacchiello, and Ciuffo observed critical errors within the 

NGSIM dataset (Punzo et al., 2011). They defined "platoon consistency" and "internal 

consistency" as metrics capable of capturing the error in a trajectory-level dataset. Platoon 

consistency was derived from the inter-vehicle spacing between a vehicle pair, while 

internal consistency was derived from the basic kinematic equations of motion for the 

following vehicle. The percentage of unrealistic jerk values (> 15 m/s3), indicative of 

internal consistency, is between 6% and 17.5% of the NGSIM dataset; additionally, every 

vehicle in the dataset has at least one jerk value over an acceptable threshold. Moreover, at 

least 7% of the observed inter-vehicle spacing measurements were unrealistic (i.e., 

negative inter-vehicle spacing), with maximum bias of platoon consistency as large as 59m. 

Most importantly, the authors recognized that common filtering techniques applied to 

reduce the noise in a dataset (e.g., averaging, smoothing, and Kalman filters) do not address 

the systematic component of errors within the traveled space (Punzo et al., 2011). This led 

to the need to reconstruct the NGSIM trajectories (Montanino & Punzo, 2013). 

In 2015, Montanino and Punzo explored the impact of the errors within the NGSIM 

data by creating a “traffic informed” method for reconstructing the vehicle trajectories such 

that the physical (e.g., jerk and speed profiles) and platoon (e.g., inter-vehicle spacing) 
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integrity are maintained (Montanino & Punzo, 2015). The authors calibrated the Intelligent 

Driver Model (IDM) car-following algorithm and the Minimizing Overall Braking Induced 

by Lane Changes (MOBIL) lane-changing algorithm via OptQuest Multistart using both 

the original and the reconstructed I-80 NGSIM dataset. The selected goodness-of-fit 

function was the root mean squared error (RMSE) and the selected measure of performance 

was the inter-vehicle spacing. Surprisingly, these bad trajectories ultimately do not have 

much of an impact on car-following behavior, but the accuracy of trajectories affects 

distribution and correlation structure of lane-changing parameters (Montanino & Punzo, 

2015). 

 

Drone Data Collection Efforts  

The FHWA Office of RD&T recently sponsored a project to explore the impact of 

lane narrowing as a bottleneck mitigation strategy. As part of this effort, microsimulation 

models were calibrated with data collected on 10-foot, 11-foot, and 12-foot freeway lanes. 

Unmanned aerial vehicles, or drones, were utilized to collect trajectory-level data for model 

calibration. Eight hours of drone and helicopter footage was captured for control sites (i.e., 

basic segments with 12-foot lanes) and narrowed segments (i.e., basic segments with 10-

foot and 11-foot lanes). Data were collected in several cities around the United States: 

• Dallas, TX; 

• San Antonio, TX; 

• Seattle, WA; 

• Fort Lauderdale, FL; and 

• Honolulu, HI. 
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Figure 2.1 Aerial still image of Quality Counts drone footage in Honolulu, HI 

The trajectories of the vehicles were collected at a frequency of 10Hz. Available 

data include the following:  

• car ID; 

• car type (car, heavy vehicle); 

• X position (m); 

• Y position (m); 

• speed (m/s); 

• tangential acceleration (m/s2); 

• lateral acceleration (m/s2); and 

• temporal headway (s). 
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Through use of the DataFromSky (DFS) viewer, the leading vehicle ID can be 

obtained; this allows the collection of (multiple) leading vehicle position, velocity, and 

acceleration data with some additional manual effort. 

 

2.2. CAR-FOLLOWING MODELS  

This section reviews car-following models in the existing literature. For a more 

detailed summary of car-following models, see Brackstone and McDonald (1999), Toledo 

(2007), and Saifuzzaman and Zheng (2014).  

 

2.2.1. Stimulus-Response Models  

 The most simplistic car-following models are stimulus-response; these models 

hypothesize that driver reaction—that is, their acceleration—is directly attributed to an 

external stimulus that was observed. Though the independent stimuli vary between model 

formulations (e.g., leading vehicle velocity, inter-vehicle spacing), these models are 

deterministic and assume that the attributes of the lead and following vehicle are known 

with certainty. An example of a stimulus-response model is the Chandler-Herman- 

Montroll (CHM) model, which calculates a desired acceleration such that the relative 

velocity between the following vehicle and leading vehicle goes to zero during steady-state 

following (Chandler, Herman, and Montroll, 1958).  

 The original CHM model clearly oversimplified the car-following process. Over 

the last 70 years, numerous extensions have been made to the model. As an example, the 

Gazis-Herman-Rothery (GHR) model extends the original CHM model by accounting for 

relative distance to the leading vehicle as an explanatory factor in car-following (Gazis, 

Herman, & Rothery, 1961). Bexelius (1968) expanded the CHM model to account for more 
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than one downstream leader impacting the following vehicle, or what is now known as 

multiattention in driving (Bexelius, 1968).  

 

2.2.2. Safety Distance Models 

 Safety distance models calculate a following vehicle’s desired behavior such that 

the following vehicle can safety react to the leading vehicle should that vehicle decide to 

come to an abrupt stop. These models are based on Newtonian equations of motion. An 

example of a safety-distance model is the Gipps model, which calculates the minimum 

velocity, to be applied after an appropriate reaction time, between two velocity constraints 

(the first constraint is defined by the driver’s desired velocity, while the second is defined 

by the relationship with the leading vehicle) (Gipps, 1981; Kometani & Sasaki, 1959).  

 

2.2.3. Social Force Models 

 The IDM was developed as an analytical car-following model that is more robust 

and able to capture naturalistic driving data. Additionally, it was designed to be able to 

incorporate traffic flow phenomena, like traffic instability and hysteresis. For IDM, the 

acceleration behavior is a combination of the force compelling the driver to reach their 

desired speed and the repellant force encouraging the driver to keep a safe distance from 

the vehicle it is following; this allows the incorporation of both a free driving and 

constrained driving condition (Kesting & Treiber, 2008). This model has been expanded 

to account for multiattention in driving and is known as the Human Driver Model (HDM) 

(Treiber, Arne, & Helbing, 2006). 

 The Modified Field Theory (MFT) model is another type of social force model, 

where the total driver reaction is the summation of the independent reactions of the driver 
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to external stimuli that have been perceived (Andrew L Berthaume, 2015); using the 

FHWA Living Laboratory data, this model was extended to many additional forces beyond 

those accounted for in the IDM, including road signage, pavement markings, and barriers 

in different types of work zones. The equations developed in this research are designed to 

be applied to the psychophysical framework developed in Lochrane et al. (2015).  

 

2.2.4. Psychophysical Models 

 The psychophysical car-following model seeks to explain the natural oscillations 

in car-following behavior because of the limits of human perception. The cornerstone of 

psychophysical models is summarized as the following: a car-following phase plane is 

broken into regimes of reaction (i.e., conscious following) and no reaction (i.e., 

subconscious following); the division of the plane into regimes is a function of driver 

“action” points, or points where a driver makes a change in their behavior due to changes 

in the behavior of the leading vehicle. Drivers react to changes in following distance and 

relative velocity only when perception thresholds are reached. Each of the regimes defined 

in a psychophysical framework make different psychological driving assumptions and 

represent distinctly different driver behavior (e.g., approaching, separating, no reaction) 

(Olstam & Tapani, 2004).  

 The roots of psychophysical models can be traced back to work by Michaels (1963), 

Barbosa (1961), and Todosoiev (1963).  

 Barbosa (1961) initiated the study of simulator car-following data through the 

application of phase planes, defined as a Cartesian plane in which different phases (or 

regimes) of a physical system can be mapped. In a phase plane, the state variable is placed 

on the x-axis, while the time derivative is on the y-axis. By proposing following distance 
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as the state variable and relative velocity as the time derivative, Barbosa was the first to 

visualize the car-following spiral (Barbosa, 1961).  

 Through his observation that portions of the phase plane trajectory are parabolic—

that is, the second derivative of the spacing with respect to the relative speed is piecewise 

constant—the idea of a “decision point model” was introduced. The decision point model 

assumes that in close-following conditions, the driver decides to take an action—that is, 

accelerate—at a constant rate; these actions result in a phase plane trajectory that oscillates 

around an approximate equilibrium point, where the spacing is optimal and the relative 

speed is null.  

 Todosoiev (1963) studied the car-following process with respect to the second order 

phase plane—that is in the relative acceleration vs. relative speed plane. The parabolic 

trajectories observed by Barbosa were transformed to rectangular trajectories. Todosoiev 

coined the term “action points” and defined these points as locations where both the 

following are true: the acceleration changes magnitude and the algebraic sign of the 

acceleration changes. The action points and thresholds identified by this definition are 

points where the effect of the driver’s perception become visible through changes in 

acceleration (Todosoiev, 1963).  

 Michaels (1963) first showed that drivers respond to changes in the size of the 

leading vehicle in three separate conditions: simple overtaking, steady-state following, and 

response to acceleration of a leading vehicle. He is attributed with discovering the 

importance of perceptual factors and their influence on drivers (Michaels, 1963). 

 More modern representations of psychophysical car-following models are the ones 

developed by Wiedemann and Reiter (1992) and Fritzsche (1994). Fritzsche has five self-

define regimes: danger, following 1, following 2, closing in, and free driving (Fritzsche, 
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1994). The Wiedemann model has four defined regimes: following, closing-in, free 

driving, and emergency regime (Wiedemann & Reiter, 1992).  

 

2.2.5. Utility Theory-Based Car-Following Models 

 Li, Dixit, and Hamdar (2016) created a car-following model using expected utility 

theory from behavioral economics incorporating risk aversion and perception. Constant 

relative risk aversion was used for risk attitude estimation. Risk perception was 

successfully calibrated using NGSIM data using nonlinear regression in Strata. The model 

predicts the driver speed that maximizes utility. The model accurately predicts speed, with 

R2 = 0.90. They conclude that risk perception is a function of driving experience, risk 

attitude is not a function of driving experience, and that both risk perception and attitude 

are function of the leader-follower pair type. 

 

2.2.6. Data-Driven Car-Following Models 

 Data-driven car-following models are one of the newer categories of car-following 

models; they apply artificial intelligence and fuzzy logic concepts to imitate the uncertainty 

and ambiguity associated with human perception and recognition. Neural networks were 

frequently found in the literature as structures for learning car-following behavior. A neural 

network is a system of “neurons” that are placed sequentially such that the output of the 

upstream neuron is the input of the next neuron. The artificial neural network is a machine 

learning technique inspired by biology and intended to mimic the human brain. Artificial 

neural networks can model complex systems with many interrelated parameters. Thus, it is 

a highly logical extension that the car-following decision-making process, which has 
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traditionally been poorly captured through analytical models, may be well explained using 

neural networks.  

 Using IRV data from the VTTI NCDS, a fuzzy rule based neural network was 

developed to model car-following events; it was calibrated using reinforcement learning 

(Chong, Abbas, Flintsch, & Higgs, 2013). This effort derived car-following driving rules 

from NDS data, such that a trained neural network could produce similar behavior. Driver 

behavior is a function of traffic states; traffic states are continuous, with fuzzy logic applied 

to partition the states into discrete fuzzy sets. State variables included were spacing, relative 

velocity, and both the leading and following vehicle’s velocity. Reinforcement learning 

works well for this type of application because it is an agent-based learning that rewards 

correct decisions and penalizes incorrect decisions, effectively training the agent to respond 

similarly to the target. First, the authors calibrated two individual drivers using NDS 

trajectories; later, a basic mega-agent was derived from two drivers’ trajectory data. The 

process is summarized as follows: (i) fuzzy rules scan their associated weights; (ii) optimal 

actions are selected; and (iii) weights are updated according to a reinforcement learning 

algorithm. These steps were completed for each timestamp of the event (i.e., at a 10Hz 

frequency). To avoid reaching local optima, significant training is required; this paper used 

400,000 time steps (Chong et al., 2013). 

 Using two drivers from the NGSIM dataset Hao, Ma, and Xu (2016) created and 

calibrated an extensive fuzzy-rule based car-following model. The authors used a genetic 

algorithm to calibrate the IDM as a base case; the goodness-of-fit function was mean 

squared error (MSE) between simulated and actual velocity. The authors calibrated the 

model using three drivers from the NGSIM dataset; model performance was validated 

using two different drivers from the same dataset. Their model replaces the stimulus-

response framework with a five-layer structure: perception, anticipation, inference, 
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strategy, and action. This included eight fuzzy sets, 152 fuzzy rules, and 80 attributes. In 

the perception stage, the neural network collects information by imitating observations of 

variables; this observation may be deterministic (e.g., follower speed, number of lanes) or 

fuzzified (e.g., lead vehicle speed, space headway). In the anticipation stage, the neural 

network predicts the acceleration and velocity of the leading vehicle in the short-term. In 

the inference stage, the neural network imitates the decision-making process of the human; 

it generates multiple "reasonable control instructions" based on perception and 

anticipation. In the strategy state, the algorithm selects the most optimal control instruction 

as a function of safety, degree of comfort, and degree of satisfaction. In the action stage, 

the driver reacts based on what was learned in the perception, anticipation, and strategy 

states. The authors found that their fuzzy set car-following model performs significantly 

better than the IDM because it analyzes information acquisition and the decision-making 

process (Hao et al., 2016). 

Panwai and Dia (2005) used IRV data collected by the Robert Bosch GmbH 

Research Group. Relative speed and relative space headway were used to predict the 

following vehicle’s speed at each time step. Several artificial neural network architectures, 

learning rules, and transfer functions were studied during this effort. The architectures 

explored included back-propagation, fuzzy predictive adaptive resonance theory 

(ARTMAP), and radial basis function network. All models resulted in classification rates 

exceeding 96% accuracy. Additionally, both microscopic and macroscopic data was used 

to verify the efficacy of using artificial neural networks to predict driver behavior (Panwai 

& Dia, 2005a).  

Khodayari, Ghaffari, Kazemi, and Braunstingl (2012) applied a neural network to 

NGSIM data; they used 6101 vehicle trajectories recorded over the course of 45 minutes 

on eastbound US-101. They did not use the reconstructed NGSIM data, electing to filter 
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the data with a moving average filter with a window of 1s. The estimated instantaneous 

reaction delay, relative speed, relative distance, and following vehicle velocity were used 

as inputs to the artificial neural network; the following vehicle acceleration was the output. 

A back-propagation algorithm was used to train the model (Khodayari et al., 2012).  

 

2.3. DRIVER HETEROGENEITY  

 There are two types of driver behavior heterogeneity: intra-driver heterogeneity and 

inter-driver heterogeneity. Intra-driver heterogeneity describes the phenomenon where a 

single driver behaves inconsistently within themselves while driving. Instantaneous level 

of congestion (e.g., congested vs. uncongested condition), operational conditions (e.g., 

presence of a work zone), and asymmetries between a driver’s behavior while accelerating 

vs. decelerating are all examples of intra-driver heterogeneity. Conversely, inter-driver 

heterogeneity describes the phenomena where different drivers drive differently under the 

same conditions. Differences in desired speed, following distance, reaction time, and 

acceleration/deceleration rates are empirical examples of inter-driver heterogeneity. An 

extensive literature review has shown that though the existence of both types of driver 

heterogeneity is quite strongly supported, little work has been conducted to understand the 

root causes of driver behavior heterogeneity or how to accurately capture it in car-following 

models. 

 

2.3.1. Heterogeneity in Empirically Collected Data 

 In response to Brackstone and McDonald’s car-following model review from an 

engineering perspective, Ranney (1999) wrote a summary of the psychological factors that 

influence car-following models. Ranney hypothesizes that the individual factors that 
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influence car-following behavior can be broken into two categories: individual differences 

and situational factors. The relative influence of these two factors is hypothesized to be a 

function of the level-of-service of traffic flow near the subject vehicle. He hypothesized 

that at lower densities, individual differences are more influential; at higher densities, 

situational factors have more influence. Individual differences suggested by the author 

include age, gender, marital status, vehicle type, and risk-taking propensity; suggested 

situational factors include time of day, weather, and road type (Ranney, 1999). Section 

2.3.1 discusses heterogeneity observed in empirical data. This chapter is categorized into 

subsections by the surrogate for driver behavior (e.g., gap, reaction time) 

 

2.3.1.1. Heterogeneity in Desired Gap and Headway Selection  

 Of all the surrogates for driving behavior encountered in articles reviewed for 

Section 2.3.1, the most commonly observed surrogate was observed gap and headway 

selection. Thus, this chapter is further segmented into heterogeneity in gap/headway as a 

function of driver specific attributes and as a function of the situational environmental 

factors. 

 

Heterogeneity attributed to driver attributes 

 Evans and Wasielewski (1983) used a photographic technique to record 

observations of people’s naturalistic headway selection. Over 12,000 observations of 

headway were recorded. Evans and Wasielewski found that both gender and age have an 

impact on headway choice. They observed that females chose longer headways than males. 

Additionally, desired headway was positively correlated with driver age. Lastly, it was 

observed that the age of the vehicle, which is possibly an indirect indicator of driver 
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income, was correlated with decreased headways. These relationships were all statistically 

significant at the 5% level (Evans & Wasielewski, 1983). 

 Elander, West, and French (1993) observed that younger drivers tend to maintain 

shorter headways. This research studied empirical data and found that both driving skill 

and driving style contribute to crash risk. This research clearly indicates that young drivers 

generally adopt more aggressive/risky driving styles and older drivers tend to be more 

cautious than middle age drivers (Elander et al., 1993). 

 A study by Boyce and Geller (2002) observed that young age, defined as between 

18 and 25, is a strong predictor of following distance. An IRV was used to collect data 

from 61 drivers between the ages of 18 and 82. Older drivers maintained a safe vehicle 

speed more than both younger and middle-aged drivers. Men were observed to follow at 

an unsafe time gap more frequently than women (Boyce & Geller, 2002). 

 Wu, Brackstone, and McDonald (2003) further corroborated the observation that 

driver age impacts headway selection. They observed that drivers over the age of 59 

selected an average headway of 1.83s; this is 23% higher than a driver between the ages of 

23 and 37 (Wu et al., 2003). 

 Underwood (2013) explored how driving behavior changes with experience as a 

function of age. The drivers were between 17–19 and 22–44 years old. Drivers were tested 

in an IRV zero, three, and six months after acquiring their license. It was observed that all 

drivers tended to increase their average speed as they gained experience driving. The older 

group showed stronger indications of more conservative driving with experience, as their 

headways increased over time. This study concluded that there is a correlation between age 

and driving experience with regard to driving style (Underwood, 2013). 

Lochrane, Al-Deek, Jiang, Dailey, and Shurbutt (2017) showed that when driving 

through work zones driver experience is the most critical factor in identifying a driver’s 
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average time gap; drivers with less than 10 years of experience followed at significantly 

shorter gaps than the rest of the population (2.65s vs. 3.28s). In non-work zones, driver 

experience was once again the most significant predictor of mean time gap; drivers with 

less than 10 years driving experience selected a shorter time gap. For drivers with less 

driving experience, the next most significant indicator was educational attainment; 

surprisingly, those with an advanced degree selected an average mean time gap of 1.52s, 

compared to 2.12s observed in the subpopulation with a college degree or less. For more 

experienced drivers, gender was the next most significant indicator; males selected a 

shorter average time gap, almost a full second shorter than the average female time gap. 

The data for this study was collected via IRV in FHWA’s Living Laboratory. The data 

from 12 drivers was reduced to over 5,000 logged time gap points for the decision tree 

analysis (Lochrane et al., 2017). 

 

Heterogeneity attributed to traffic conditions and leading vehicle type 

 Dijker, Bovy, and Vermijs (1998) examined the differences in headways 

maintained by different vehicle type categories on two Dutch freeways. Holding speed 

fixed, they found significant differences in car-following headways between congested and 

uncongested conditions. They observed that for passenger cars, the distance gap in 

congested conditions is smaller than the distance gap observed in uncongested conditions. 

However, for heavy vehicles the distance gap was approximately the same regardless of 

the traffic flow (Dijker et al., 1998). Brackstone, Waterson, and McDonald (2009) found 

conflicting results: they concluded that the prevailing flow of traffic has negligible impact 

on headways. For this analysis, data was collected via IRV equipped with sensors capable 

of collecting following vehicle speed and relative distance to the leading vehicle. Other 

conclusions drawn from this study include that driver behavior is strongly impacted by lead 
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vehicle type, driver behavior is not influenced by roadway type, and that intra-driver 

variation in following driver behavior—including reaction time, variation in lateral 

position, and variation in speed—exist in the data (Brackstone et al., 2009). 

 Yin et al. (2009) found that in uncongested conditions, vehicle headway 

distributions are best described by a lognormal distribution; in congested conditions, they 

are best fitted by a log-logistic distribution. The data for this analysis was obtained from 

video recordings of two busy expressways in Beijing, China. Kolmogorov–Smirnov (KS) 

tests were performed to confirm the model fits were statistically significant (Yin et al., 

2009). 

Zhu, Wang, and Wang (2016) explored the inter- and intra-driver heterogeneity 

observed in naturalistic headway selection as a function of operating speed, weather, 

roadway type, and traffic density using naturalistic data collected in China; a single IRV 

was driven by 55 drivers for two months, resulting in 1489 car-following events. The 

primary conclusions were that the distribution of car-following headways is most closely 

represented by the lognormal distribution. Additionally, drivers tended to select longer 

headways when speeds are reduced, during low light conditions, and when traffic is 

congested. Three levels of congestion were examined: sparse, moderate, and high; these 

were classified as a function of traffic density. The alteration of driver behavior was 

statistically significant, with p-values < 0.01, for the aforementioned independent variables 

(Zhu et al., 2016). 

Geng, Liang, Xu, and Yu (2016) applied the SHRP2 NDS data to determine general 

differences in car-following behaviors under different driving conditions (e.g., traffic, 

vehicle types, weather, etc.). They determined that the average headway for each event is 

a function of traffic condition, lead vehicle type, time of day, and weather at a statistically 

significant level (Geng et al., 2016). 
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 Ye and Zhang (2009) explored the differences in headway between different leader-

follower vehicle pairs. They found that the passenger car / passenger car (PC-PC) pair had 

the shortest headway, while the heavy vehicle / heavy vehicle (HV-HV) pair had the 

longest headway. This, however, varied with level of congestion. In uncongested traffic, 

the headway distribution between all four combinations of leader-follower pairs were fairly 

consistent. However, in congested traffic, the headways tend to be smaller for all leader-

follower vehicle pairs; additionally, the dispersion of headway within a leader-follower 

pair category is significantly higher under congested conditions (Ye & Zhang, 2009).  

 Weng, Meng, and Fwa (2014) segmented vehicle headway data collected in work 

zones on expressways in Singapore into four categories by leader-follower vehicle pairs: 

HV-HV, PC-PC, HV-PC and PC-HV. Using a non-parametric analysis of variance 

(ANOVA) and a Mann-Whitney test, they confirmed that the median values of the four 

categories of vehicle-pair headways varied significantly as a function of level of 

congestion, percentage of heavy vehicles, work intensity, and lane position. Additionally, 

using maximum likelihood estimation and KS test techniques, they concluded that the 

headway distribution when a PC was the leading vehicle was best described by a log-

normal distribution, while the headway distribution when a HV was the leading vehicle 

was best described by an inverse Gaussian distribution (Weng et al., 2014).  

 Aghabayk, Sarvi, Forouzideh, and Young (2013) used the NGSIM data to explore 

the inter-driver heterogeneity in spacing and acceleration distributions. This research 

looked at variability in driver behavior as a function of leading vehicle type. Four types of 

pairs were considered: PC-PC, PC-HV, HV-PC, and HV-HV. Using space-time diagrams, 

the authors first observed different headways as a function of leader-follower pair. Next, 

the authors categorized the acceleration data of the following vehicle in 0.1m/s2 bins and 

created a distribution. Kolmogorov-Smirnov tests were conducted to compare the 



 33 

discretized acceleration behavior as a function of leader-follower pair. This analysis 

confirmed that acceleration distributions are different at a statistically significant level 

between the leader-follower pair categories. This effort also applied a Cochrane-Orcutt 

procedure to determine the impact of independent variables on acceleration (in absence of 

the issue of autocorrelation). This analysis indicates that relative velocity is the most 

important variable for all four vehicle pairs. The PC-PC pair had the most variables 

identified as important (four), while the HV-HV pair had the least (two); this indicates that 

the PC-PC leader-follower pair is the most sensitive to external stimuli while HV-HV 

leader-follower pair is the least. Desired spacing is only identified as an important stimulus 

in the PC-PC pairing (Aghabayk, Sarvi, & Young, 2014). 

 

2.3.1.2. Heterogeneity in Desired Speed 

 Elander, West, and French (1993) observed that younger drivers travel at faster 

speeds than older drivers. This research studied empirical data and found that both driving 

skill and driving style contribute to crash risk. This research clearly indicates that young 

drivers generally adopt more aggressive/risky driving styles and older drivers tend to be 

more cautious than average (Elander et al., 1993). De Waard, Dijksterhuis, & Brookhuis 

(2009) observed similar results via a human driving simulator; they observed that older 

drivers (65+) kept a lower speed than younger drivers during a merging scenario. 

 A study by Boyce and Geller (2002) observed that young age, defined as between 

18 and 25, is a strong predictor of risky behavior, such as speeding. An IRV was used to 

collect data from 61 drivers between the ages of 18 and 82. Driver age and type A 

personality characteristics were significant predictors of vehicle speed and following 

distance. Men and women were observed to have an equivalent propensity towards 
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speeding (Boyce & Geller, 2002). The absence of gender as a predictor of risky speed 

selection was also observed by Ericsson (2000).  

 

2.3.1.3. Heterogeneity in Acceleration Behavior 

 Ericsson (2000) found that men tended to accelerate harder than females, especially 

on local feeder roads in a residential area. Additionally, she found that deceleration rates 

were lower during peak hour compared to off-peak periods, possibly indicative of intra-

driver heterogeneity as a function of prevailing traffic conditions. This study was intended 

to improve emission models of urban traffic (Ericsson, 2000). 

 Wang, Wang, Chen, and Jing (2011) observed intra-driver heterogeneity between 

the acceleration and deceleration phases of a single driver. Using data from Dutch 

motorways, they observed that 65% of drivers demonstrate different driving styles between 

the two states. The heterogeneity is so abundant that a car-following model calibrated for 

the acceleration behavior of a driver cannot sufficiently capture the deceleration behavior 

of that same driver. They recommend a multi-phase car-following model to better capture 

this heterogeneity (Wang et al., 2011). Furthermore, Li and Chen (2017) concluded that 

the strong right-skew of empirical headway distributions are a byproduct of intra-driver 

heterogeneity between the acceleration and deceleration process; this has far reaching 

inferences on macroscopic traffic flow phenomenon (Li & Chen, 2017). 

 Itkonen et al. (2017) explored the relationships between time headway, 

acceleration, and jerk in a simulated environment where vehicle and environment were 

controlled variables. They observed trade-offs made between “close but jerky” vs. “far but 

smooth” following behavior; they hypothesize that this tradeoff serves as an indicator of a 

possible latent factor underlying the driving styles hypothesized in traffic psychology 
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literature. Their highway driving simulator (HDS) experiment consisted of 15 participants 

(five males, ten females) with a mean age of 31. The authors analyzed the geometric mean 

of time headway and the mean of the absolute values of acceleration and jerk. They found 

that, on average, drivers fall into one of two categories: they decide to match the leader’s 

speed at close distances (with stronger reactions when the lead vehicle 

accelerates/decelerates) or they maintain a longer gap and regulate their speed in a more 

“calm” manner. They proposed that the relationship between short time gaps and the 

“jerky” driving tradeoff can be interpreted as an “intensity-calmness” parameter of driving 

style (Itkonen et al., 2017).  

 

2.3.1.4. Heterogeneity in Reaction/Braking Time 

 Warshawsky-Livne and Shinar (2002) analyzed the impact of age, gender, vehicle 

transmission type, and event uncertainty on the observed braking time. Braking time was 

split into components of perception-reaction time and brake movement time. Perception-

reaction time was positively correlated with age at a statistically significant level; age was 

not found to be an explanatory factor of brake movement time. The reaction time of the 

older group of drivers (mean age 62) was 20% higher than that of the youngest group of 

drivers (mean age 23). Conversely, gender was found not to be an explanatory factor of 

perception-reaction time; however, the average brake-movement time for male drivers was 

slightly longer than that for female drivers. This study was completed in a driving 

simulator, with data collected for 72 subjects (Warshawsky-Livne & Shinar, 2002). 

 Mehmood and Easa (2009) developed a driver reaction time model in a car-

following context accounting for various statistically significant human factors. Driver’s 

age, gender, speed, and spacing were all found to be statistically significant in predicting 
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the acceleration/deceleration reaction time. The data for this study was collected via driving 

simulator for sixty participants between the ages of 18 and 70. This effort observed that 

reaction time for both acceleration and deceleration decrease with age; they also observed 

that females react more slowly than males (Mehmood & Easa, 2009). 

 

2.3.1.5. Heterogeneity in Traffic Violations and Crashes 

 Laapotti, Keskinen, and Rajalin (2003) analyzed younger drivers’ attitudes and 

self-reported driving behavior. They showed that between the years of 1978 and 2001 the 

gender difference in traffic offenses has remained steady, with females committing fewer 

traffic infractions and having a lower crash rate (Laapotti et al., 2003). 

 Corbett (2007) observed that there is a gender gap between males and females in 

terms of car-related crimes and convictions (e.g., speeding); she also observed that females 

are more heterogeneous with their driving styles, as there is a “ladette” group of younger 

females whose driving styles are more reflective of young males (Corbett, 2007).  

 

2.3.1.6. Personality Questionnaires and Driving Behavior  

 In Brackstone (2003), data was collected via IRV for 11 participants (ten males, 

one female). The possible correlation between the Sensation Seeking and Internality-

Externality Scales was explored with naturalistically collected following distance. A 

positive correlation was observed between driver externality rating and low speed behavior 

(30mph or less), whilst a negative correlation was observed between sensation seeking 

scale V and low speed behavior. For higher speeds, these scales are not valid predictors; 

instead, the participant’s rating of aggressiveness is most strongly correlated with driver 

behavior (Brackstone, 2003). 
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 Ulleberg and Rundmo (2003) distributed a questionnaire designed to collected data 

to study the importance of personality traits and their relationships with risk behavior in 

traffic. High scores on sensation seeking, normlessness, and aggression were associated 

with risk-taking attitudes and risky driving behavior. Individuals scoring high on altruism 

and anxiety traits were less likely to report risky behavior in traffic. The personality 

variables accounted for 47% of the total observed attitude variance; this supports the 

hypothesis that risk-taking attitudes could be explanatory variables for the variance in 

driving behavior. The results of this study strongly support the importance of exploring the 

indirect effects of personality relative to risk-taking attitudes and driver behavior. The 

results for this study were derived from the responses from 1932 adolescents in Norway 

(Ulleberg & Rundmo, 2003).  

 Ishibashi, Okuwa, Doi, and Akamatsu (2007) collected data from sixteen drivers 

between the ages of 22 and 52, equally split between male and female, via IRV; the 

participant’s driving style was collected through a driving style questionnaire (DSQ). The 

researchers were interested in low-speed car-following events, defined as 4–40 kph 

follower speed and less than 50m following distance. They collected data on drivers’ 

acceleration and deceleration behavior. It was observed through multiple regression 

analyses that the DSQ indices are statistically significant explanatory variables for 

following distance (Ishibashi et al., 2007). 

 Kleisen (2011) used the multi-dimensional driving style inventory (MDSI) to 

compare driving styles between younger drivers of both genders; it was observed that 

females scored higher with respect to positive driving styles–identifying as “patient” and 

“careful”—whereas males were identified as “risky”, “angry”, and “high-velocity” 

(Kleisen, 2011). 
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2.3.1.7. Heterogeneity Observed Through Data-Driven Clustering Techniques 

 Constantinescu, Marinoiu, and Vladoiu (2010) applied (i) hierarchical clustering 

techniques based on Euclidean distance and Ward’s method and (ii) principal component 

analysis from exploratory statistics to establish relationships with driving behavior. The 

data from 23 different drivers in a single city, Bucharest, was used. This research used 

driving parameters, not driver characteristics, to cluster the data by driving style. Percent 

of time with speed in excess of 60 kph, average speed, standard deviation of speed, standard 

deviation of acceleration, mean and standard deviation of positive acceleration values, and 

mean and standard deviation of negative acceleration (braking) values were mined from 

the data as explanatory variables. Data was sampled at a frequency of 1Hz. Aggressiveness, 

ranging from moderately low to high, and speed, ranging from low-moderate to high, were 

used as principal components. Positive acceleration, ranging from moderate to high, and 

braking, ranging from smooth-moderate to sudden, were analyzed as rotated components. 

This resulted in six observed clusters of behavior for this dataset. As future research, they 

recommend accounting for individual characteristics when developing the clusters of 

driving styles (Constantinescu et al., 2010). 

 Wu, Du, Qi, and Xu (2015) applied clustering techniques to extract latent driving 

states from longitudinal driving behavior for ten drivers; the data was collected via an IRV. 

They applied an ensemble clustering method combining the kernel fuzzy C-means 

algorithm and the modified latent Dirichlet allocation model to determine underlying 

structures for ‘aggressive’, ‘cautious’, and ‘moderate’ driving styles. The clustering 

method was based on longitudinal driving data (e.g., acceleration, headway) and not 

characteristics of the drivers (Wu et al., 2015).  

 Fernandez and Ito (2016) developed a fuzzy rule-based system to classify drivers 

into different driver profiles based on their behavior. Inputs to the fuzzy model included 
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the percentage of time the driver used the gas/brake pedals and the speed of the vehicle. 

This work also accounted for driver age using trapezoidal membership functions. The rule-

based system either classifies the driver as “aggressive” or “passive”. Ultimately, the 

system is used to predict route choice and time to destination in a small example with five 

roads and six intersections (Fernandez & Ito, 2016).  

Li, Li, Cheng, and Green (2017) estimated the driving style of 28 drivers as a 

function of maneuver transitions. A conditional likelihood maximization method was 

applied to extract maneuver transition patterns from naturalistic driving data; a random 

forest algorithm was then applied to classify driving styles. Transitions between five 

maneuver states—free driving, approaching, near following, constrained left lane changes, 

and constrained right lane changes—were found to reliably classify drivers into different 

driving styles—low-,moderate-, and high-risk. This effort did not consider any driver 

characteristics or the prevailing congestion level as explanatory variables for driving style. 

This data was only collected during light traffic conditions (LOS A) (G. Li et al., 2017).  

 

2.3.2. Capturing Heterogeneity in Car-Following Models 

 This chapter discusses the limited research in establishing and accounting for 

heterogeneity in car-following models. The existence of heterogeneity is strongly 

supported in the literature. However, only level of congestion and leading vehicle type have 

been used as explanatory factors for driver heterogeneity in car-following models.  

 

2.3.2.1. Intra-Driver Heterogeneity 

Wang, Wang, Chen, and Jing (2010) leveraged the NGSIM data to study 

differences in intra-driver behavior during the acceleration and deceleration process using 
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a Helly, IDM, and Gipps model. The authors found that Helly and IDM predict driving 

behavior better than Gipps. Additionally, drivers respond to changes in traffic more quickly 

and intensely in the deceleration process than in acceleration. The response to speed 

difference stimuli is very different between the acceleration and deceleration phases; 

conversely, the response to distance gap stimuli is more equivalent between the 

acceleration and deceleration phases. More than 65% of drivers were observed to drive 

according to different optimal car-following models in the acceleration and deceleration 

process. The optimal model parameters of the acceleration process were observed to be 

very different from that of the deceleration process. They concluded that the IDM was the 

most robust model. Helly and Gipps were both observed to be highly sensitive to time 

delay. Lastly, Gipps was observed to have better consistency between the acceleration and 

deceleration phases, but performed the worst overall (Wang et al., 2011). 

Zheng, Suzuki, and Fujita (2012) used three pairs of vehicle trajectories from 

NGSIM dataset to calibrate several car-following models. One trajectory collected during 

congested stop-and-go traffic was used for calibration, while two separate trajectories, one 

from more severe congestion and one collected in uncongested conditions, were used for 

validation; the trajectories were collected from different drivers. The authors calibrated 

five different car-following models: GHR stimulus-response model, Gipps safety distance 

model, Newell's trajectory translation model, Cellular automa, and the optimal velocity 

model (OVM). The authors calibrated the model using a genetic algorithm seeking to 

minimize the relative error between predicted and observed relative spacing. They 

observed high error rates (i.e., 17–34%) even though the parameters were all well within 

the range of suggested values. They concluded that these models suffered from overfitting 

in the validation process; however, it is possible they failed to recognize intra-driver 
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heterogeneity induced by the vastly different conditions under which their calibration and 

validation datasets were collected (Zheng et al., 2012).  

Abbas, Higgs, and Medina (2011) used the VTTI 100-Car NDS data. Ten car-

following periods from five different drivers were used in the calibration process. A car-

following framework was created such that the car-following regimes were defined by the 

traditional Wiedemann model, but the equations for acceleration in each regime were 

replaced by the stimulus-response GHR model, with different parameters selected for each 

of the approaching, closely approaching, acceleration following, and deceleration 

following regimes. The calibration process was completed with a genetic algorithm. The 

primary result is that this hybrid model is more independent of the behavior of the lead 

vehicle; this is in direct contrast with most other car-following models, where the lead 

vehicle behavior is the most influential attribute (Abbas, Higgs, & Medina, 2011; Abbas, 

Higgs, Medina, & Yang, 2010). 

Papathansopoulou and Antonio (2016) created a flexible car-following model using 

ten vehicle trajectories from the reconstructed NGSIM dataset by accounting for the 

density of the adjacent lanes. The objective of the calibration problem was to minimize the 

normalized RMSE between modeled and observed speed. This model was calibrated using 

a pair of vehicle trajectories and validated using nine pairs of vehicle trajectories. A 

“metamodel” was developed to evaluate the magnitude of the effect of the independent 

variables. The authors found that in lower speed, higher density conditions, car-following 

behavior is conservative and harder to model accurately. Accounting for density helps this 

new data-driven model perform better than a calibrated Gipps model (Papathanasopoulou 

& Antoniou, 2016). 
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2.3.2.2. Inter-Driver Heterogeneity 

Brockfeld, Kuhne, and Wagner (2004) calibrated ten different car-following 

models using IRV data from an eight-car platoon on a test track collected in Japan in 2001. 

The downhill simplex method was used to minimize the percent error and absolute error 

between simulated and empirical time headways. The authors found errors of 9–24% for 

each model. No model significantly outperformed the rest for all drivers, with average 

errors between 15.1% and 16.2%. Using holdback data, the validation error was between 

17 and 22%, which they attributed to overfitting the data. The differences between 

individual drivers were found to be more significantly different than the differences 

between models (Brockfeld et al., 2004). 

Ranjitkar, Nakatsuji, and Asano (2004) calibrated the Gipps, Krauss, Newell, 

Castello, Brando, and Excess Critical Speed stimulus-response (ECS) model using 2001 

IRV data from an eight-car platoon on a test track in Japan. The researchers applied a 

genetic algorithm to minimize the percent error between simulated and observed velocity 

and headway. Velocity was found to be the better measure of performance, with errors 

between 3.87% and 4.71%, compared to 12.04–12.91% for headway. They concluded the 

optimal parameters inter-driver variation is much more significant than the differences 

between model variables (Ranjitkar et al., 2004).  

Punzo and Simonelli (2005) used the smoothed Naples IRV data to calibrate four 

models: MITSIM, Gipps, Newell, and the IDM. The authors calibrated the models by 

minimizing the root mean square percentage error (RMSPE) between predicted and 

observed headway, speed, and spacing. They found that although it is easier to calibrate to 

speed (i.e., a lower RMSPE is achievable), it is much more robust to calibrate based on 

spacing because the error accurately accumulates through the trajectory. However, they 

observed that though the calibration errors (mean error of 15.5%) were on par with those 



 43 

noted in the literature, cross-validation completed on withheld data resulted in much higher 

errors (mean error of 22.31%), which they attributed to overfitting (Punzo & Simonelli, 

2005). 

Ossen and Hoogendoorn (2005) used the helicopter trajectory data, whose 

collection was sponsored by TNO, to calibrate three different functional formats of the 

GHR stimulus-response model. They estimated the parameter ‘C’ via least squares fit for 

all feasible reaction times; if the relationship between the stimuli and response was 

statistically significant at the 5% alpha level, the estimation of C as a function of reaction 

time was kept for further analysis. The optimal reaction time was found using a Bayesian 

regulation objective function to reduce the likelihood of overestimating extreme values of 

reaction time. They discovered that inter-driver heterogeneity is existent in the trajectory 

data, with variation observed with both optimal parameters and the car-following 

functional forms between the different leader-follower pairs. They were able to establish a 

relationship between the stimuli (i.e., relative speed, relative distance, and speed of 

following car) and the response (acceleration of the following car) for 80% of the leader-

follower pairs. They determined that different drivers have varied reactions to different 

stimuli and that drivers that react to the same stimuli do so with different sensitivities 

(Ossen & Hoogendoorn, 2005). 

Ossen, Hoogendoorn, and Gorte (2006) explored the heterogeneity in the aerially 

collected data funded by the TNO. The authors calibrated stimulus-response (i.e., GHM, 

Bexelius, Helly, Addison and Low, and Tampère), safety distance (i.e., Gipps), and 

trajectory translation (i.e., Newell) models. The authors calibrated the parameters of each 

model assuming the reaction time is known or given. They applied simplex search with 

multistart to solve an optimization problem seeking to minimize Theil's U with respect to 

relative speed and relative distance. The calibration process was completed for a range of 
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feasible reaction times (i.e., 0.5–3.5s). The reaction time yielding the optimal objective 

value was selected. The models were evaluated on two levels: average performance of each 

model and on the level of the individual driver. They analyzed the empirical cumulative 

density function (CDF) of the minimized objective values, the change in optimal value of 

objective function when model B is used instead of model A, and the parameter empirical 

CDFs. The simplest models were not able to capture the dynamics of car-following 

behavior correctly. For more complex models, optimal parameter settings differ among 

drivers. They determined inter-driver differences cannot be captured via different 

parameter settings alone (i.e., analysis indicated that the driving styles of different drivers 

appear inherently different; in other words, different car-following models are needed to 

model a population) (Ossen et al., 2006).  

Brockfeld and Wagner (2006) used four different sets of data to explore driver 

heterogeneity: (i) data collected by Daganzo in 2000 consisting of travel times between 

points on a single lane road; (ii) an eleven car platoon on a test track collected in 2013; (iii) 

data collected on I-80 using loop detectors with flow, occupancy, and speed aggregated to 

15s averages; and (iv) NGSIM data, 1 km in length for 45 minutes collected at a frequency 

of 10Hz. They calibrated a total of thirteen models. They found that the average calibration 

error was about 15% (range: 12–20%) and the validation error is on average 20% (range: 

15–25%). They concluded that almost all models perform similarly and that simple models 

perform no more poorly than the most complicated ones. Ultimately, they found the 

difference between models is smaller than the difference between different drivers, again 

underscoring the importance of understanding and accounting for driver heterogeneity 

(Brockfeld & Wagner, 2006).  

Chen, Li, Hu, and Geng (2010) applied the I-80 NGSIM data to calibrate the 

MITSIM and IDM car-following models. The authors concluded that neither MITSIM nor 
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IDM can accurately simulate all driving behaviors. They observed that the calibrated 

parameters approximately form a hyperplane. Within the hyperplane, there is little 

clustering; instead, points are dispersed, which can be interpreted as inter-driver 

heterogeneity (Chen et al., 2010). 

Sangster, Rakha, and Du (2013) applied the VTTI 100-Car NDS data to study inter-

driver heterogeneity. Two thousand car-following events, recorded by eight drivers 

traversing a multilane highway, were extracted for approximately 1,000 hours of car-

following. Four different car-following models were calibrated: Gipps, IDM, GHR, and 

Rakha-Pasumarthy-Adjerid (RPA) models. The models were calibrated using a variant of 

the RMSPE metric with speed and space headway as the measures of effectiveness; the 

optimization problem was solved with the evolutionary non-linear approach in Excel. The 

authors found that the RPA model best simulates the trajectory-level data, followed by the 

Gipps model. However, the RPA and Gipps model both produce less variability in behavior 

when plotted as a fundamental diagram compared to the observed data (Sangster et al., 

2013). 

 

2.3.2.3. Combined Inter- and Intra-Driver Heterogeneity 

 Soria and Elefteriadou (2011) applied IRV data collected by the Florida Research 

Center to calibrate the Gipps, Pitt, MITSIM, and modified Pitt model using Solver in 

Microsoft Excel. This paper assessed car-following models and their performance under 

different conditions and for different driver types; the goal of this paper was to improve 

the application and understanding of existing car-following models. Driver types were 

categorized into different aggressiveness categories as a function of the number of 

discretionary lane changes and the observed speed when driving under free-flow 



 46 

conditions. The models were calibrated to minimize RMSE between observed and 

simulated speed and spacing. The author concluded that it is more robust to calibrate based 

on spacing. They also found that congested conditions are easier to calibrate than 

uncongested conditions; additionally, the best performing model varied between congested 

(Gipps, MITSIM) and uncongested conditions (MITSIM). Analysis of the calibrated 

models indicated that under congested conditions driver behavior is better predicted when 

calibrated by level of congestion, while in uncongested conditions the performance is better 

when calibrated by driver type. Additionally, it is shown that conservative and aggressive 

driver behavior is more accurately captured when calibrated by driver type. In other words, 

under congested conditions intra-driver heterogeneity as a function of traffic density is the 

most explanatory factor of driving behavior. Conversely, in uncongested condition, inter-

driver heterogeneity as a function of aggressiveness level is most critical; this may be 

attributable to the fact that driver aggression, as defined by the author, is a function of speed 

under free flow conditions and discretionary lane changes (neither which can be observed 

accurately in congested conditions) rather than driver attributes (Soria, 2010; Soria & 

Elefteriadou, 2011). 

Ossen and Hoogendoorn (2011) explored the impact of leading-vehicle type as an 

explanatory factor for inter-driver heterogeneity. The authors calibrated eight different car-

following models: CHM, Bexelius, Tampere, Addison and Low, Gipps, IDM, OVM, and 

the two leader Lenz models; they used the helicopter data collected by the Technical 

University of Delft funded by the TNO. A constrained non-linear optimization algorithm 

based on the simplex method was used to minimize Theil's U considering both follower 

speed and relative distance. Six hypotheses regarding driver heterogeneity were tested: 

three hypotheses explaining driving style heterogeneity and three hypotheses regarding 

heterogeneity within a driving style. For the extraction of a car-following event, the authors 
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required that no lane changes take place for a triple of vehicles whilst the data was 

collected, there was a speed change of at least 5 meters per second during the data 

collection, and the cars were adjacent for at least 15s. From this effort, the authors 

confirmed that different drivers follow different styles. The Tampère model was most 

optimal for 34% of drivers; the Lenz performed best for 27% of the remaining drivers. 

Moreover, the standard deviation of error of the models further suggested significant 

heterogeneity within the data. Additionally, it was shown that within the passenger car 

subpopulation there was a significant amount of unexplained heterogeneity. Conversely, 

HVs were much more robust than the passenger cars; they tend to travel with a more 

constant speed and are less eager to return to their desired space gap. Lastly, they show that 

characteristics of a facility (e.g., capacity) are highly dependent on the longitudinal driving 

characteristics of the vehicles on the facility. This further underscores the importance of 

accurately characterizing driver heterogeneity in microscopic models (Ossen & 

Hoogendoorn, 2011). 

Higgs, Abbas, and Medina (2011) calibrated the Wiedemann model for different 

drivers segmented into different speed ranges using the VTTI 100-Car dataset. A genetic 

algorithm was used to solve the calibration problem, which sought to minimize the 

difference between model and observed following vehicle speed. They found that the 

Wiedemann coefficients were vastly different for different speed bins and that the variation 

seemed to be driver dependent (Higgs, Abbas, & Medina, 2011).  

Trieber and Kesting (2013) documented one of the most extensive studies regarding 

the viability and efficacy of using microscopic trajectory data to calibrate car-following 

models. In this effort, they observed the existence of both inter- and intra-driver 

heterogeneity. Using aerial and floating car data to calibrate the IDM, OVM, and the full 

difference velocity (FVD) models, they determined that different models represent 
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different driving styles more appropriately; this supports the existence of inter-driver 

heterogeneity. Additionally, they studied the importance of different parameters 

representing different driving situations (e.g., cruising, approaching, following, free-

driving, etc.). They concluded that models that use different calibrated parameters to 

capture different driving situations are the most robust (Treiber & Kesting, 2013b).  

Higgs and Abbas (2013) explored differences in driving styles using data of three 

drivers from the VTTI 100-Car study; these drivers were selected because they represented 

a high-risk, medium-risk, and low-risk driver. Risk was assessed by the relative number of 

"conflicts" experienced by each driver while data was collected. Ten car-following periods 

were used for each driver. The data was segmented using time-dependent clustering, which 

identified the optimal segment lengths; each segment has its own centroid. Each centroid 

has eight dimensions: longitudinal acceleration, lateral acceleration, yaw rate, vehicle 

speed, lane offset, yaw angle, range, and range rate. Afterwards, the segments were 

clustered to find similar behaviors in the data via a k-means clustering algorithm. This 

analysis shows that common car-following model assumptions regarding heterogeneity 

(i.e., not accounting for inter-driver and intra-driver heterogeneity) are strongly violated in 

the naturalistic driving study data, as behavior varied between drivers, between car-

following periods, and within a single car-following period (Higgs & Abbas, 2013). 

Higgs and Abbas (2014) applied the VTTI 100-Car NDS datasets to study driving 

behavior heterogeneity. They used ten different drivers and over 3000 car-following 

periods. This research calibrated the GHR, IDM, velocity difference, Wiedemann, hybrid 

Wiedemann-GHR, and clustered GHR car-following models. This research was conducted 

at four different resolutions: (i) all drivers (i.e., all 3000+ car-following instances from the 

ten drivers are calibrated to obtain one set of parameters), (ii) driver specific (i.e., one set 

of calibrated parameters is obtained for an individual driver using all of the car-following 
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periods for that driver), (iii) car-following period specific (i.e., one set of calibrated 

parameters is obtained for each car-following period), and (iv) cluster specific (i.e., one set 

of calibrated parameters is obtained for each cluster of data in a car-following period). 

Calibration parameters were obtained by minimizing the RMSE between the simulated and 

observed speed. At the driver specific level, the hybrid-Wiedemann and the velocity 

difference models reported the lowest error. At the car-following period specific level, the 

hybrid Wiedemann model performed the best. At the segmented car-following period level, 

the segmented GHR model outperformed the rest of the models. Additionally, at the car-

following period level, the segmented IDM and segmented GHR models performed better 

than their unsegmented counterparts; however, the segmented velocity difference model 

performed significantly worse than the original velocity difference model. This highlights 

the advantages and disadvantages of different models at different levels of analysis (Higgs 

& Abbas, 2014).  

Higgs and Abbas (2015) applied the VTTI 100-Car and truck NDS datasets to study 

inter-driver differences between PC and HV drivers. They used 20 different drivers, ten 

HV drivers and ten PC drivers. First, each car-following period was segmented using 

segment length, defined as time length of each segment, and segment centroid, defined as 

the average of the data points within a segment. The centroid has eight dimensions: average 

longitudinal acceleration, average lateral acceleration, average yaw rate, average vehicle 

speed, average lane offset, average range, and average range rate. These variables are 

accounted for in the centroid calculation by converting all variables to a normal Z-scale. 

Segment lengths were optimized using Metropolis (initialized with segment lengths of 3s) 

and centroids were identified using MATLAB. Secondly, clusters were developed, defined 

as regions of similar behavior, using a k-nearest neighbor algorithm in the SAS JMP 

software. Last, these clusters of behavior were calibrated using the GHR model. A genetic 
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algorithm was applied to minimize the RMSE between the simulated and observed model 

outputs (velocity). The calibration procedures applied to the clustered data resulted in a 

much lower RMSE compared to a calibration procedure applied to all drivers, a single 

driver, and even a single car-following period. Additionally, this research showed 

significant heterogeneity among PC drivers, where there is a distribution of clusters that 

describe each individual car driver; in contrast, truck drivers were observed to be much 

more homogeneous in car-following behavior (Higgs & Abbas, 2015). 

Lochrane, Al-Deek, Dailey, and Krause (2015) used IRV data collected from 64 

drivers traversing interstate work zone and non-work zone segments along I-95 as part of 

the FHWA Living Laboratory. The authors developed and calibrated a new 

multidimensional psychophysical car-following framework for driver behavior in work 

and non-work zones. This framework has five different thresholds that are easily observed 

in data and have physical meaning. The study shows that four different categories of car-

following behavior models exist; they can be segmented by traffic condition (congested, 

uncongested) and by operational condition (work zone, non-work zone). The study found 

that the car-following model framework thresholds follow different parameter distributions 

depending on the traffic and operational conditions; these differences in distributions were 

found to be statistically significant by KS goodness-of-fit tests. This supports the 

hypothesis that intra-driver heterogeneity exists both between work zones and non-work 

zones and between congested and uncongested conditions (Lochrane et al., 2015). 

Durrani, Lee, and Moah (2016) applied the NGSIM dataset to calibrate Wiedemann 

99 car-following model. The authors investigated differences in vehicle following behavior 

among PCs, HVs, and motorcycles while accounting for lead vehicle type. Each variable 

(C0–C9) was calibrated via the definition of the variable. The results were validated on a 

set of validation data by comparing the cumulative distributions of speed and acceleration 



 51 

between the observed and simulated data. The authors found that vehicle following 

behavior is significantly different among different vehicle classes and vehicle following 

pairs (e.g. PC-PC, PC-HV). The authors concluded that different driving behavior 

parameters should be specified for different following vehicle classes and different leader-

follower vehicle pairs. Moreover, they found that the variability of parameters for different 

vehicle pairs should be considered in the formation of distributions of parameters (Durrani, 

Lee, & Maoh, 2016). 

Kurtc and Trieber (2016) used the reconstructed NGSIM dataset to extensively 

explore the calibration process for the IDM and the full velocity difference model (FVDM). 

They used four different objective functions: relative error gap, absolute error gap, mixed 

error weighted between relative and absolute error of gap, and absolute error of speed. 

They used three different calibration methods: local (i.e., calibrated model acceleration 

compared directly to observed acceleration), global (i.e., simulated trajectory of follower 

compared to empirical trajectory) and platoon (i.e., dynamics of platoon compared to entire 

empirical dataset). They calibrated the models by applying the interior point algorithm in 

the MATLAB optimization toolbox. They compared distributions of parameters obtained 

with the four different measures for each specific model parameter using a two-sample KS 

test. The variance of absolute gap error was used to explore inter- and intra-driver 

heterogeneity. They found that global calibration error rates of the car-following models 

are considerably lower than what can be achieved through macroscopic calibration. The 

platoon approach is somewhat higher in terms of calibration error, but still acceptable. The 

ratio between inter-driver and intra-driver variables was between 0.6% and 0.7% for 

calibration to speed and 4.7% to 5.9% for calibration to gap (Kurtc & Treiber, 2016). 

The aerial data sponsored by TNO also enabled some of the first studies into the 

existence of multi-anticipatory behavior in traffic. Hoogendoorn and Ossen (2006) 
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observed evidence that the strength of the sensitivity of a driver to their second leading 

vehicle was approximately half that of their sensitivity to the immediate leading vehicle. 

In some cases, the sensitivity to the second leading vehicle was observed to be higher than 

the sensitivity to the direct leading vehicle. The leader-follower pair vehicle types were 

observed to be a critical explanatory factor for the sensitivity of different drivers to multiple 

leaders; vehicles following a truck were observed to have a weaker reaction to the second 

leader than vehicles following a passenger car (Hoogendoorn & Ossen, 2006). 

Additionally, truck drivers were observed to have the strongest reaction to the second 

leader. A later study, Hoogendorn, Ossen, and Schreuder (2006), explored the existence of 

inter-driver heterogeneity with respect to multi-anticipatory behavior. Using vehicle 

trajectory-level data collected from a helicopter, the authors obtained estimates for the 

parameter values of the Bexelius, Lenz, and modified Helly car-following models via the 

maximum likelihood estimation method. Large variations in parameters indicated the 

existence of inter-driver heterogeneity. Additionally, the authors noted that neither model 

was observed to be the best in all cases; that is, all models were necessary to describe all 

of the drivers in the dataset (Hoogendoorn, Ossen, & Schreuder, 2006). Furthermore, a 

2007 study by Hoogendoorn, Ossen, and Schreuder found that accounting for multi-

anticipatory behavior significantly improves the performance of the model, with the three-

leaders models performing the most robustly. Additionally, they determined drivers are 

responsive to the relative speed differential between themselves and the second and third 

downstream vehicle (Hoogendoorn, Ossen, & Schreuder, 2007). 
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2.4. CHAPTER 2 CONCLUSIONS 

Chapter 2 summarizes literature related to microscopic trajectory-level data, 

existing car-following models, and efforts to characterize driver heterogeneity in 

naturalistic data. The following points are the key takeaways of Chapter 2: 

• Trajectory-level data is a promising emerging new data source for driver 

behavior research. This can be collected aerially or via instrumented 

vehicles. 

• The application of trajectory-level data for car-following calibration is not 

a new task. However, there is not consensus in the literature regarding the 

appropriate framework for using trajectory-level data for calibration.  

• Many car-following models have been implemented in commercial 

microsimulation softwares.  

• There is unexplained behavioral heterogeneity in trajectory-level data; it has 

been observed in speed, headway, and acceleration data. 

• There have been few attempts to identify explanatory factors for 

heterogeneity in driving behavior. These attempts have been limited to 

heterogeneity between acceleration/deceleration behavior, the use of traffic 

condition (uncongested and congested) and the use of leading vehicle type 

to explain heterogeneity.  

This dissertation explores the degree to which driver specific attributes can be used 

to characterize inter-driver heterogeneity in car-following behavior and develop a 

framework to account for this heterogeneity in microsimulation software. Chapter 3 details 

the data used in this dissertation and the methods applied to process the data and obtain 

car-following model calibration parameter estimates for future analyses. 
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Chapter 3:  Data Processing 

The ultimate goal of this dissertation is to develop a framework to better account 

for inter-driver heterogeneity attributable to driver specific attributes in microsimulation 

models. Thus, to evaluate the degree to which heterogeneity can be captured in car-

following models, this dissertation uses estimates for car-following model calibration 

coefficients as a proxy for driver behavior. This chapter details how these calibration 

parameter estimates were obtained.  

Chapter 3 is split into two subsections. Section 3.1 briefly details the data 

acquisition process; this includes an overview of the second Strategic Highway Research 

Program (SHRP2) Naturalistic Driving Study (NDS) data collection effort in Section 3.1.1, 

the SHRP2 Solutions Implementation Assistance Program (IAP) in Section 3.1.2, and the 

Wyoming Department of Transportation (DOT) IAP dataset in Section 3.1.3. Next, Section 

3.2 discusses the procedures applied to obtain estimated car-following model parameter 

coefficients. First, a brief summary of the radar data post-processing completed by the 

Virginia Tech Transportation Institute (VTTI) is provided in Section 3.2.1. The procedure 

for classifying the data into unconstrained and constrained (i.e., car-following) driving 

states is discussed in Section 3.2.2. Justification for the selection of three car-following 

models for calibration is provided in Section 3.2.3. Finally, Section 0 details the car-

following model calibration procedure and solution algorithm applied to obtain optimal 

calibrated parameter coefficients for later analyses.  

This chapter resulted in two peer-reviewed conference publications. A paper 

detailing the development of the radar-vision algorithm was accepted as a special session 

paper to the 2018 Institute of Electrical and Electronics Engineers Intelligent 

Transportation Systems Conference in Maui, Hawaii. A paper detailing the developed 
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calibration procedure and a small case study was accepted as a regular session paper to the 

same conference. The citations for these two papers are included below: 

Hammit, B. E., James, R. M., & Ahmed, M. M. (2018). Radar-Vision Algorithms 

to Process the Trajectory-Level Driving Data in the SHRP2 Naturalistic Driving Study. 

Proceedings of the 2018 Institute of Electrical and Electronics Engineers Intelligent 

Transportation Systems Conference, Maui, Hawaii.  

Hammit, B. E., James, R. M., & Ahmed, M. M. (2018). A Case for Online Traffic 

Simulation: Systematic Procedure to Calibrate Car-Following Models Using Vehicle Data. 

Proceedings of the 2018 Institute of Electrical and Electronics Engineers Intelligent 

Transportation Systems Conference, Maui, Hawaii. 

 

3.1. DATA ACQUISITION 

The dataset used in this dissertation was collected as part of the revolutionary 

SHRP2 NDS data collection effort between 2010 and 2013. Section 3.1.1 provides a brief 

overview of the SHRP2 NDS data collection effort. Then, Section 3.1.2 introduces the 

SHRP2 Solutions IAP, which was intended to help deploy insights gleaned from the 

SHRP2 NDS into practice. Finally, Section 3.1.3 provides an overview of the Wyoming 

DOT IAP, which was how this dataset was queried from the larger SHRP2 NDS dataset. 

 

3.1.1. The Second Strategic Highway Research Program Naturalistic Driving Study 

Data Collection Effort 

The SHRP2 was a collaborative partnership between the Federal Highway 

Administration (FHWA), American Association of State Highway and Transportation 

Officials (AASHTO), and the Transportation Research Board (TRB) (Blatt et al., 2015; US 
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Department of Transportation Federal Highway Administration, 2018d). This research 

program was originally authorized as a part of the Safe, Accountable, Flexible, Efficient 

Transportation Equity Act: A Legacy for Users (SAFETEA-LU) in August 2005. As part 

of SHRP2, there were four product focus areas: safety, infrastructure renewal, reliability, 

and capacity (Blatt et al., 2015).  

The safety component of SHRP2 represents the first large scale study that aimed at 

preventing the occurrence of collisions, as opposed to previous effort that sought to 

decrease the severity and improve the survivability of inevitable crashes. The motivation 

behind the SHRP2 safety data collection effort postulates that by studying diverse drivers’ 

naturalistic behaviors, professionals can better understand the behaviors that cause and 

avert crashes (Blatt et al., 2015); this knowledge could then be used to improve driver 

training programs and develop effective countermeasures for crash avoidance. Towards 

this end, the SHRP2 sponsored a massive naturalistic data collection effort, known as the 

SHRP2 NDS, which involved instrumenting the personal vehicles of over 3,400 drivers 

between the ages of 15 and 94 across six data collection locations: Seattle, Washington; 

Tampa, Florida; Durham, North Carolina; State College, Pennsylvania; Bloomington, 

Indiana; and Buffalo, New York (Blatt et al., 2015; Virginia Tech Transportation Institute, 

2018b). The VTTI was awarded the contract to collect the SHRP2 NDS dataset and are 

now maintaining the database; freely available information about the dataset can be found 

on the InSight webpage (Virginia Tech Transportation Institute, 2018b). 

The data acquisition system (DAS) collected visual (e.g., forward facing camera) 

and quantitative (e.g., vehicle position, velocity, and acceleration) trajectory-level data 

regarding the behavior of the driver for each trip, from engine start to stop, at a frequency 

of 10Hz (i.e., ten data points collected per second). The components of the DAS are 

summarized in Table 3.1. Ultimately, the SHRP2 NDS collected 5.4 million trip files while 
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amassing over 4,300 years of naturalistic driving behavior for analysis (Hankey, 

McClafferty, & Perez, 2016; Virginia Tech Transportation Institute, 2018b). 

 

Table 3.1 DAS used for SHRP2 NDS Data Collection (Blatt et al., 2015; Virginia 

Tech Transportation Institute, 2018b) 

Instrumentation Notes 

Four video cameras 

Front windshield (forward facing), rear windshield 

(backward facing) and in-cabin cameras (i.e., to capture 

driver face and hands) 

Accelerometers (3 axis) Lateral, longitudinal, and vertical 

Global positioning system 

(GPS) unit 
Latitude, longitude, elevation, time, and velocity 

Forward radar 

Relative range (i.e., position) and range rate (i.e., 

(velocity) of up to seven vehicles in front of the 

instrumented vehicle 

Vehicle network data 

[Vehicle Controller Area 

Network bus (CAN-BUS)] 

Accelerator, brake pedal activation, automatic braking 

system (ABS), gear position, steering wheel angle, 

speed, horn, seat belt information, airbag deployment, 

and other data 

 

The variables of interest for the exploration of acceleration/deceleration behavior 

proposed in this dissertation include the following: 

• Relative velocity | Reported via the front radar unit’s longitudinal range rate; 

• Relative following distance | Reported via the front radar unit’s longitudinal range; 

• Subject vehicle acceleration | Reported via vehicle CAN-BUS; and 

• Subject vehicle speed | Reported via vehicle CAN-BUS. 

It should be noted that all “relative” values occur between the instrumented vehicle, 

also referred to as the subject vehicle or following vehicle, and their immediate leading 

vehicle, also denoted as the target vehicle; the relative velocity values are calculated as 

subject vehicle (following) minus target (lead) vehicle.  
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In addition to detailed time-series data about driver behavior, the SHRP2 NDS 

dataset collected extensive data about the driver through self-reporting surveys. This 

includes, but is not limited to driver demographics questionnaires, risk perception and 

taking questionnaires, driving knowledge questionnaires, sensation seeking scale 

inventory, and visual and cognitive tests. The driver surveys and time-series datasets are 

easily linked through the unique driver ID primary key. For an exhaustive list of the data 

available about the NDS drivers, see data dictionaries available through InSight (Virginia 

Tech Transportation Institute, 2018b). For a list of the driver attributes of interest to this 

dissertation, see Table 3.2. 

 

Table 3.2 Subcategories Comprising the Driver Attributes  

Gender Male, Female 

Age (years) 
20–24, 25–29, 30–34, 35–39, 40–44, 45–59, 

60–69, 70+ 

Race Caucasian, Not Caucasian 

Educational Attainment 
No College Degree, College Degree, 

Graduate Degree 

Marital Status 
Single, Unmarried Partners, Married, 

Divorced, Widow(er) 

Living Status 
Live Alone, One Parent Household, Two 

Parent Household 

Work Status 
Not Working Outside the Home, Part-Time, 

Full-Time 

Income ($) 
Under 39k, 40–49k, 50–69k, 70–99k, 100–

149k, 150k+ 

Household Size 1, 2, 3, 4+ 

Driver Mileage Last Year 
0–5k, 6–9k, 10–12k, 13–15k, 16–19k, 20–

24k, 25k+ 

 

Moreover, there exists a global information system (GIS) based tool which 

documents detailed information about roadway facilities near the six SHRP2 data 
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collection sites. The Roadway Information Database (RID) collected elements on more 

than 25,000 miles of roadway. These elements include, but are not limited to, number, 

width, and classification (e.g., high occupancy vehicle (HOV), turn, through) of lanes; 

location, number of approaches, and control type (e.g., all-way stop, signalized, 

roundabout) of intersections; and guardrail/barrier types (Smadi, 2015). The RID and NDS 

dataset can be easily linked using GPS coordinates as the primary key. Pairing the NDS 

and RID datasets with the driver specific questionnaires gives an unprecedented glimpse 

into the complex interactions of the driver, roadway, and environment during baseline and 

safety critical (e.g., crash, near crash) events.  

In order to protect the privacy of the participants, this dataset is not available freely 

online. Moreover, requests for data are highly specific to the research question and require 

both Institutional Review Board (IRB) approval and a data use license (DUL) (Virginia 

Tech Transportation Institute, 2018a). Although the data collection was federally funded, 

there is a cost associated with querying a specific dataset to answer a scoped research 

question; the VTTI can be contacted to obtain a quoted price for the query. However, some 

queried datasets have been made available freely through the SHRP2 InSight Dataverse 

(Virginia Tech Transportation Institute, 2018c); these datasets still require IRB approval 

and a DUL. Many of the datasets available on the Dataverse were originally queried as part 

of the SHRP2 Solutions IAP, which is described in Section 3.1.2.  

 

3.1.2. Research to Deployment: The Implementation Assistance Program 

The IAP was developed to help state and local agencies deploy SHRP2 Solutions 

(US Department of Transportation Federal Highway Administration, 2018b). Seven rounds 

of the IAP were offered between 2013 and 2016. To date, over 130 million dollars in 
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technical and financial assistance have been offered to agencies deploying SHRP2 

Solutions. 

As part of the IAP Round 4 solicitations, eleven states were awarded 1.1 million 

dollars to develop proof-of-concept prototypes for analyzing driver behavior to understand 

the factors contributing to highway crashes (US Department of Transportation Federal 

Highway Administration, 2018a). During Phase 1, state agencies and their research 

partners obtained a reduced NDS dataset to identify contributing factors for crash and near 

crash events and suggest possible countermeasures. The eleven states selected for Phase 1 

are summarized below: 

• Florida | Pedestrian safety at signalized intersections; 

• Iowa | Roadway departure crashes; 

• Michigan | Roadway geometry and speeding; 

• Minnesota | Work zones; 

• Nevada | Pedestrian safety; 

• New York | Pedestrian safety through high visibility crosswalks; 

• North Carolina | Horizontal and vertical curvature; 

• Utah | Interchange ramps; 

• Washington State | Speeding behavior; 

• Washington State | Roadway infrastructure (lighting); and 

• Wyoming | Adverse weather conditions (US Department of Transportation 

Federal Highway Administration, 2018c). 

Upon completion of Phase 1, state agencies could apply for up to two additional 

phases of work. Phase 2 funded additional research on a complete dataset. Phase 3 was 

awarded for the development and implementation of crash countermeasures. 
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This dissertation applies a subsample of the Wyoming DOT dataset obtained 

through Phase 2 of the IAP. Section 3.1.3 describes how the Wyoming DOT IAP dataset 

was queried.  

 

3.1.3. The Wyoming Department of Transportation Implementation Assistance 

Program Grant 

 The Wyoming DOT was awarded an IAP grant to explore how drivers respond to 

adverse weather and road conditions. The ultimate goal of this IAP was to develop a more 

realistic variable speed limit (VSL) system and better understand how drivers adjust their 

behavior to compensate for increased crash risk in adverse weather conditions (Ahmed, 

2016; US Department of Transportation Federal Highway Administration, 2018c). As 

such, the data query for this IAP focused on identifying trips that occurred during adverse 

weather conditions. The University of Wyoming developed three complementary 

procedures to automatically flag trips occurring in adverse weather conditions in the larger 

NDS dataset (Ghasemzadeh, Hammit, Ahmed, & Eldeeb, 2018).  

In addition to the adverse weather trips, matching trips occurring in clear weather 

conditions were obtained for use as a baseline. A clear weather trip matched to an adverse 

weather trip if it was on the same route, with the same driver, and roughly at the same time 

of day. For every adverse weather trip queried from the SHRP2 NDS for the Wyoming 

DOT, two clear weather trips were collected.  

Ultimately, a sample of 1284 trips completed by 92 drivers was queried from the 

SHRP2 NDS as part of the Wyoming DOT IAP. The average trip length was 25.8 minutes, 

amounting to approximately 1212 hours of driving data for analysis. These trips were 

segmented by varying severity of precipitation: clear, fog, very light rain, light rain, 

moderate rain, heavy rain, and snow.  
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Previous research has characterized the intra-driver heterogeneity attributable to 

adverse weather conditions (Hammit, Ghasemzadeh, James, Ahmed, & Young, 2018; 

Hammit, James, Ahmed, & Young, 2019). However, a substantial amount of unexplained 

heterogeneity was observed in the 665 trips occurring in clear weather conditions; 

summary statistics for these trips are shown in Table 3.3. Thus, this dissertation seeks to 

characterize the inter-driver heterogeneity observed in trips traversed on freeways during 

clear weather conditions obtained through the Wyoming DOT IAP.  

 

Table 3.3 Time-Series Data Summary Statistics 

 Average 
Standard 

Deviation 

Trip Duration [min] 26.1 13.8 

Number of Driving States 

(i.e., car-following or non-car-following) 
33.7 19.1 

Time Spent in Constrained Driving State  

(i.e., car-following) [min] 
7.32 4.46 

Velocity in Constrained Driving State 

(i.e., car-following) [m/s] 
28.0 3.71 

Time Gap in Constrained Driving State  

(i.e., car-following) [s] 
1.87 0.61 

Following Distance in Constrained Driving 

State (i.e., car-following) [m] 
49.5 13.6 

Distance Traveled During a Constrained 

Driving State (i.e., car-following) [m] 
368 198 

 

3.2. CAR-FOLLOWING MODEL CALIBRATION FRAMEWORK  

This section details the procedures used to transform the time-series radar and 

CAN-BUS data into car-following model calibration coefficient estimates, which are used 

through the remainder of this dissertation to gain insight into differences in driving 
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behavior as a function of driver attributes. Section 3.2.1 briefly summarizes the post-

processing completed by VTTI to improve the quality of the radar data. Section 3.2.2 

discusses the motivation for the development of the radar-vision algorithm to identify states 

of constrained driving behavior. Section 3.2.3 justifies the selection of the Wiedemann 99 

(W99), Gipps, and Intelligent Driver Model (IDM) car-following models for calibration. 

Finally, Section 0 details the calibration procedure used in this dissertation.  

 

3.2.1. Virginia Tech Transportation Institute Radar Data Post-Processing 

The VTTI was selected as the original SHRP2 NDS secure data enclave (SDE) and 

performed significant data post-processing to improve the quality of the radar data. A 

summary of the post-processing efforts relevant to the variables of interest are listed below: 

• Removed ghost targets; 

• Identified target vehicle’s lane classification relative to subject vehicle; 

• Calculated lateral range and range rate variables; 

• Smoothed longitudinal range and range rate variables via the application of a cubic 

spline; 

• Created continuous targets via joining of objects; 

• Corrected DAS time-lag; and  

• Reorganized radar data into a more intuitive format (Gorman, Stowe, & Hankey, 

2015). 

 

3.2.2. Extraction of Car-Following Segments with Radar-Vision Algorithms 

In Chapter 2, previous research that analyzed trajectory-level data for driving 

behavior insights was discussed; much previous research in this area was conducted using 
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aerially collected data (e.g., drone, helicopter) and floating cars (i.e., GPS data in planned 

platoons of vehicles); in contrast, the SHRP2 NDS was collected using instrumented 

research vehicles (IRVs). One of the distinct differences between IRV and aerially 

collected trajectories is the spatial and temporal scope. Aerially collected trajectories tend 

to be limited in scope (e.g., 1000m in the I-80 NGSIM dataset), while IRV trajectories 

extend the entire duration of a driver’s trip (i.e., from engine, or DAS, start to stop). Some 

of the trajectories in the Wyoming DOT sample of data contain more than an hour of 

continuous driving data, only some of which is defined as car-following. For the 665 trips 

in clear weather conditions queried through the Wyoming IAP, the average trip length is 

26 minutes, with almost 10 minutes spent in a car-following state. Therefore, an added 

challenge of working with IRV data is developing an efficient and reliable protocol to 

identify segments of continuous following behavior. In a previous effort, a radar-vision 

algorithm was developed to identify the presence of a leading vehicle through the available 

CAN-BUS and radar data; extended details of this algorithm can be found in Hammit and 

James (2018b).  

The radar-vision algorithm is an iterative smoothing algorithm that uses future and 

historical radar data to identify the target ID, or lack thereof, that is most likely the leading 

vehicle. At the termination of this algorithm, the starting and stopping timestep for each 

driving state is known. A driving state can either be unconstrained, no lead target ID, or 

constrained, with the target ID of the leading vehicle identified.  

Thirty-two hours of driving data were watched for manual verification of the radar-

vision algorithm; manual verification of the algorithm confirmed an accuracy rate of 96%. 

Moreover, the application of this algorithm improved the continuity of the driving states 

by reducing the number of distinct driving segments by 79.5% and increasing the average 

duration of driving segments by 79.2%. 
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After processing each of the trips through the radar-vision algorithm to identify 

continuous segments of car-following, a moving average filter with a window size of one 

second was applied to the radar range rate—i.e., relative velocity—to smooth the resulting 

measurements. Relative velocity was selected as the smoothing variable based on both a 

literature search and the observation that it was noisier than the relative distance (i.e., 

processed range) variable. The window size was identified from a sensitivity analysis, as 

it provided optimal smoothing while maintaining the original data trends. Figure 3.1 shows 

the results of applying a moving average filter on processed range rate with a window of 

one second for a random sample of SHRP2 NDS data. Figure 3.1a shows the difference 

between the relative velocity before and after the application of the moving average filter. 

Figure 3.1b and Figure 3.1c illustrate the contrast between the psychophysical car-

following plane using the processed range rate (Figure 3.1b) and the processed range rate 

after the moving average filter was applied (Figure 3.1c). Figure 3.1 illustrates the 

improved clarity of car-following trends as a result of the application of the moving average 

filter. 
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Figure 3.1 Application of moving average filter using relative velocity variable with a 

one second window (Ahmed et al., 2018) 

 

3.2.3. Car-Following Model Selection  

Car-following models are one of the most critical components of microsimulation 

models because they control the longitudinal, or acceleration, behavior of vehicles; this has 

a substantial impact on critical model outputs for decision-making, such as capacity. In the 

literature, a variety of car-following models have been developed and validated 

(Brackstone & McDonald, 1999; Toledo, 2007). Moreover, multiple efforts have 

concluded that no one model best fits all observed driving behaviors consistently 

(Brockfeld et al., 2004; Ossen et al., 2006; Treiber & Kesting, 2013b). Therefore, this 

dissertation applies three vastly different car-following models in the calibration process: 
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W99, Gipps, and IDM. These models were selected for their widespread use in practice 

and because they each represent a different “family” of car-following models. The decision 

regarding which models get ‘to be in the room where it happens’ is documented in this 

chapter.  

 

3.2.3.1. The Wiedemann 99 Car-Following Model  

The W99 car-following model is one of the most frequently used car-following 

models, given its application in the Planung Transport Verkehr (PTV) Verkehr in Städten 

– SIMmulationsmodell (VISSIM) software. The W99 car-following model is a 

psychophysical model; psychophysical models assume that drivers oscillate between 

regimes of conscious and subconscious reactions to the leading vehicle, depending on the 

driver’s perception thresholds of following distance and relative velocity. A driver’s 

perception is defined as a function of their perceived following distance and speed 

differential relative to the leading vehicle. Perception thresholds are divided into distinct 

regimes located on the psychophysical plane (i.e., relative travel speed on the x-axis and 

following distance on the y-axis) (see Figure 3.2).  
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Figure 3.2 W99 Model Regimes on a Psychophysical Plane (Hammit et al., 2019) 

Table 3.4 W99 Model Calibration Parameters Interpretations 

Variable 
Literature Value 

(Liu, 2016) 
Search Range* Description 

cc0 1.5 [0.1, 10.0] standstill distance [m] 

cc1 1.3 [0.1, 5.0] spacing time [s] 

cc2 4 [0.1, 15.0] following variation, max drift [m] 

cc3 -12 [-27.0, -5.0] threshold for entering 'following' [s] 

cc4 -0.25 [-5.0, 0.0] negative following threshold [m/s] 

cc5 0.35 [0.0, 5.0] positive following threshold [m/s] 

cc6 0.0006 [0.1, 11.0] speed dependency of oscillation *6/10000 [10-4 rad/s] 

cc7 0.25 [0.0, 7.0] oscillation acceleration [m/s2] 

cc8 2 [0.1, 7.0] standstill acceleration [m/s2] 

cc9 1.5 [0.1, 8.0] acceleration at 80kph [m/s2] 

v_des 35 [0.1, 40.0] desired travel speed [m/s] 
*Parameter search spaces were initially set as the bounds recommended in the original model documentation. 

A random sample of trajectories were selected for sensitivity analysis of the parameter search space. If a 

majority of the selected trajectories’ optimal parameter estimates were on the boundaries of the search space, 

the search space was expanded; the exception was in cases where expansion of the parameter definition was 

limited due to physical constraints (e.g., standstill distance should not be negative). 
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Table 3.5 W99 Model Variable Definitions  

Variable Description 

t Timestamp [s] 

T Time step [s] 

seed random integer to generate unique vehicle behavior [1,1000] 

AF Predicted following vehicle acceleration for the next timestamp [𝐴𝑓  = 𝑎𝑓(𝑡 + 1)] 

Input Data Variables 

vL(t) Lead vehicle velocity [m/s] at timestamp t 

vF(t) Following vehicle velocity [m/s] at timestamp t 

aL(t) Lead vehicle acceleration [m/s2] at timestamp t 

aF(t) Following vehicle acceleration [m/s2] at timestamp t 

dV(t) Relative velocity (vL – vF) [m/s] at timestamp t 

dX(t) Following distance [m] at timestamp t 

Framework Variables 

SDXV(t) Threshold separating Regime ‘B’ and Regime ‘w’ [m] at timestamp t 

SDXC(t) Threshold separating Regime ‘A’ and Regimes ‘B’ and ‘f’ [m] at timestamp t 

SDXo(t) Threshold separating Regime ‘f’ and Regime ‘w’ [m] at timestamp t 

SDVC(t) Threshold separating Regime ‘B’ and Regime ‘f’ [m/s] at timestamp t 

SDVo(t) Threshold separating Regime ‘f’ and Regime ‘w’ [m/s] at timestamp t 

Regime Variables 

R(t) Psychophysical Regime at timestamp t 

A Regime A: Crash/danger zone 

B Regime B: Approaching zone 

f Regime f: Following zone 

w Regime w: Free flow zone 

 

Wiedemann’s 1999 car-following model predicts the following vehicle’s 

acceleration and requires eleven input parameters, as shown in Table 3.4. The remaining 

variables used in the framework (see Figure 3.2), regime (see Figure 3.2), and acceleration 

calculations are defined in Table 3.5. The framework equations are listed in Equations 3.1 

through 3.7: 

 

𝑑𝑉(𝑡) = 𝑣𝐿(𝑡) − 𝑣𝐹(𝑡 3.1 

𝑆𝐷𝑋𝑐(𝑡) = {

𝐶𝐶0 𝑖𝑓 𝑣𝐿(𝑡) ≤ 0

𝐶𝐶0 + 𝐶𝐶1 ∗ 𝑣𝐹(𝑡) 𝑖𝑓 𝑣𝐿(𝑡) > 0 ∧ (𝑑𝑉(𝑡) ≥ 0 ∨ 𝑎𝐿(𝑡) < −1)

𝐶𝐶0 + 𝐶𝐶1 ∗ (𝑣𝐿(𝑡) − 𝑑𝑉(𝑡) ∗ (0.5 − 𝑏𝐹)) 𝑖𝑓 𝑣𝐿(𝑡) > 0 ∧ 𝑑𝑉(𝑡) < 0 ∧ 𝑎𝐿(𝑡) ≥ −1
} 3.2 



 70 

𝑆𝐷𝑋𝑜(𝑡) = 𝐶𝐶2 + 𝑆𝐷𝑋𝑐(𝑡) 3.3 

𝑆𝐷𝑋𝑉(𝑡) =  𝑆𝐷𝑋𝑜(𝑡) + 𝐶𝐶3 ∗ (𝑑𝑉(𝑡) − 𝐶𝐶4) 3.4 

𝑆𝐷𝑉(𝑡) = 𝐶𝐶6 ∗ 𝑑𝑋(𝑡)
2 3.5 

𝑆𝐷𝑉𝑐(𝑡) = {
𝐶𝐶4 − 𝑆𝐷𝑉(𝑡) 𝑖𝑓 𝑣𝐿(𝑡) > 0

0 𝑖𝑓 𝑣𝐿(𝑡) ≤ 0
} 3.6 

𝑆𝐷𝑉𝑜(𝑡) = {
𝐶𝐶5 + 𝑆𝐷𝑉(𝑡) 𝑖𝑓 𝑣𝐹(𝑡) > 𝐶𝐶5

𝑆𝐷𝑉(𝑡) 𝑖𝑓 𝑣𝐹(𝑡) ≤ 𝐶𝐶5
} 3.7 

The equation to determine which regime (i.e., free flow, approaching, separating, 

and crash zone) a driver is in at each timestep is included in Equation 3.8. 
 

𝑅(𝑑𝑉(𝑡), 𝑑𝑋(𝑡) =

{
 
 

 
 
𝐴 𝑖𝑓 𝑑𝑋(𝑡) ≤ 𝑆𝐷𝑋𝑐(𝑡) ∧ 𝑑𝑉(𝑡) ≤ 𝑆𝐷𝑉𝑜(𝑡)

𝐵 𝑖𝑓 𝑑𝑉(𝑡) < 𝑆𝐷𝑉𝑐(𝑡) ∧ 𝑑𝑋(𝑡) < 𝑆𝐷𝑋𝑉(𝑡) ∧ 𝑑𝑋(𝑡) > 𝑆𝐷𝑋𝑐(𝑡)

𝑓 𝑖𝑓 𝑑𝑉(𝑡) ≤ 𝑆𝐷𝑉𝑜(𝑡) ∧ 𝑑𝑉(𝑡) ≥ 𝑆𝐷𝑉𝑐(𝑡) ∧ 𝑑𝑋(𝑡) ≤ 𝑆𝐷𝑋𝑜(𝑡) ∧ 𝑑𝑋(𝑡) > 𝑆𝐷𝑋𝑐(𝑡)

𝑤 𝑒𝑙𝑠𝑒 }
 
 

 
 

 

 

3.8 

The acceleration equations for each regime are included in Equations 3.9 through 

3.15. Documentation efforts in Liu (2016) and Wiedemann (1996) were used to implement 

the W99 model for this dissertation.  

 

𝐴𝐹(𝑅(𝑑𝑉(𝑡), 𝑑𝑋(𝑡))) =

{
 
 

 
 
𝐴𝐹,𝐴 𝑖𝑓 𝑅(𝑑𝑉(𝑡), 𝑑𝑋(𝑡)) = 𝐴

𝐴𝐹,𝐵 𝑖𝑓 𝑅(𝑑𝑉(𝑡), 𝑑𝑋(𝑡)) = 𝐵

𝐴𝐹,𝑓 𝑖𝑓 𝑅(𝑑𝑉(𝑡), 𝑑𝑋(𝑡)) = 𝑓

𝐴𝐹,𝑤 𝑖𝑓 𝑅(𝑑𝑉(𝑡), 𝑑𝑋(𝑡)) = 𝑤}
 
 

 
 

 

3.9 

Regime A 

𝐴𝐹,𝐴 =

{
 
 

 
 0 𝑖𝑓 𝑣𝐹(𝑡) ≤ 0

𝑚𝑖𝑛 [𝑎𝐿(𝑡) +
𝑑𝑉(𝑡)2

𝐶𝐶0 − 𝑑𝑋(𝑡)
, 𝑎𝐹(𝑡)] 𝑖𝑓 𝑣𝐹(𝑡) > 0 ∧ 𝑑𝑉(𝑡) < 0 ∧ 𝑑𝑋(𝑡) > 𝐶𝐶0

𝑚𝑖𝑛[𝑎𝐿(𝑡) + 0.5(𝑑𝑉(𝑡) − 𝑆𝐷𝑉𝑜(𝑡)), 𝑎𝐹(𝑡)] 𝑖𝑓 𝑣𝐹(𝑡) > 0 ∧ 𝑑𝑉(𝑡) < 0 ∧ 𝑑𝑋(𝑡) ≤ 𝐶𝐶0}
 
 

 
 

 

 

3.10 
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𝐴𝐹,𝐴 = {

0 𝑖𝑓 𝐴𝐹,𝐴 = 0

−𝐶𝐶7 𝑖𝑓 𝐴𝐹,𝐴 > −𝐶𝐶7

𝑚𝑎𝑥[𝐴𝐹,𝐴, −10 + 0.5√𝑣𝐹(𝑡)] 𝑖𝑓 𝐴𝐹,𝐴 ≤ −𝐶𝐶7

} 

3.11 

Regime B 

𝐴𝐹,𝐵 = 𝑚𝑎𝑥 [
0.5 ∗ 𝑑𝑉(𝑡)2

𝑆𝐷𝑋𝑐(𝑡) − 𝑑𝑋(𝑡) − 0.1
, −10] 

3.12 

Regime f 

𝐴𝐹,𝑓 = {

𝑚𝑖𝑛[𝑎𝐹(𝑡),−𝐶𝐶7] 𝑖𝑓 𝑎𝐹(𝑡) ≤ 0

𝑚𝑖𝑛 [𝑚𝑎𝑥[𝑎𝐹(𝑡), 𝐶𝐶7],
𝑣𝑑𝑒𝑠 − 𝑣𝐹(𝑡)

𝑇
] 𝑖𝑓𝑎𝐹(𝑡) > 0 

} 

3.13 

Regime w 

𝐴𝐹,𝑤 =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑑𝑋(𝑡) ≤ 𝑆𝐷𝑋𝑐(𝑡)

𝐶𝐶7 𝑖𝑓 𝑑𝑋(𝑡) > 𝑆𝐷𝑋𝑐(𝑡) ∧ 𝑅(𝑡 − 1) = 𝑤

min [
𝑑𝑉(𝑡)2

𝑆𝐷𝑋𝑜(𝑡) − 𝑑𝑋(𝑡)
, 𝐶𝐶8 + 𝐶𝐶9 ∗ 𝑚𝑖𝑛 [𝑣𝐹(𝑡),

80 ∗ 1000

3600
]] 𝑖𝑓 𝑑𝑋(𝑡) > 𝑆𝐷𝑋𝑐(𝑡) ∧ 𝑅(𝑡 − 1) ≠ 𝑤 ∧ 𝑑𝑋(𝑡) < 𝑆𝐷𝑋𝑜(𝑡)

𝐶𝐶8 + 𝐶𝐶9 ∗ 𝑚𝑖𝑛 [𝑣𝐹(𝑡),
80 ∗ 1000

3600
] 𝑖𝑓 𝑑𝑋(𝑡) > 𝑆𝐷𝑋𝑐(𝑡) ∧ 𝑅(𝑡 − 1) ≠ 𝑤 ∧ 𝑑𝑋(𝑡) ≥ 𝑆𝐷𝑋𝑜(𝑡)}

 
 
 

 
 
 

 

3.14 

𝐴𝐹,𝑤 = {

0 𝑖𝑓 𝐴𝐹,𝑤 = 0

𝑚𝑖𝑛 [𝐴𝐹,𝑤 ,
𝑣𝑑𝑒𝑠 − 𝑣𝐹(𝑡)

𝑇
] 𝑖𝑓 𝐴𝐹,𝑤 ≠ 0

} 

3.15 

 

3.2.3.2. The Gipps Car-Following Model 

The Gipps car-following model was selected because of its widespread commercial 

use in the software AIMSUN. The Gipps car-following model is a type of safety distance 

or collision avoidance model; collision avoidance models are based on Newtonian 

equations of motion and produce predictions of driver behavior such that the following 

vehicle can safely react to the leading vehicle should that vehicle decide to come to an 

abrupt stop.  

This dissertation implements the original Gipps model, which was introduced in 

1981 and produces driver’s desired velocity as an output (Gipps, 1981). This model has six 
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calibration parameters, all of which have physical interpretations (e.g., desired 

acceleration, desired deceleration, and minimum following distance); these parameters and 

their interpretations are listed in Table 3.6. This car-following model predicts the following 

vehicle’s desired velocity subject to two constraints: (i) the desired velocity of the 

following vehicle (first equation) and (ii) the relative speed and following distance to the 

leading vehicle (second equation). Table 3.7 summarizes the data inputs required for the 

Gipps model; these are all easily obtainable from the SHRP2 data. The Gipps equation for 

desired velocity is shown in Equation 3.16: 

 

𝑣𝑓(𝑡 + 𝜏) = 𝑚𝑖𝑛

{
 
 

 
 

𝑣𝑓(𝑡) + 2.5𝑎𝑓𝜏 ∗ (1 −
𝑣𝑓(𝑡)

𝑉𝑓
) ∗ √0.025 +

𝑣𝑓(𝑡)

𝑉𝑓

𝑏𝑓𝜏 + √𝑏𝑓
2𝜏2 − 𝑏𝑓 ∗ (2[𝑥𝑙(𝑡) − 𝑥𝑓(𝑡) − 𝑔𝑚𝑖𝑛] − 𝑣𝑓(𝑡)𝜏 −

𝑣𝑙(𝑡)
2

𝑏�̂�
)
}
 
 

 
 

 

 

3.16 

Table 3.6 Gipps Model Calibration Parameters Interpretations 

Variable 

Literature Values 

(Gipps, 1981; Olstam 

& Tapani, 2004) 

Search Range* Description 

𝑉𝑓 35.0 [0.1, 40.0] desired speed [m/s] 

𝑎𝑓 2.0 [0.1, 4.0] maximum acceleration [m/s2] 

𝜏 0.7 [0.1, 2.0] true reaction time [s] 

𝑏𝑓 -3.0 [-4.0, -0.1] most severe braking desired (negative value) [m/s2] 

�̂�𝑙 -3.5 [-4.0, -0.1] 
estimated most severe braking desired of lead 

vehicle (negative value) [m/s2] 

𝑔𝑚𝑖𝑛 1.0 [0.1, 10.0] minimum following distance at stop (vf = 0) [m] 

*Parameter search spaces were initially set as the bounds recommended in the original model documentation. 

A random sample of trajectories were selected for sensitivity analysis of the parameter search space. If a 

majority of the selected trajectories’ optimal parameter estimates were on the boundaries of the search space, 

the search space was expanded; the exception was in cases where expansion of the parameter definition was 

limited due to physical constraints (e.g., reaction time should not be negative). 
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Table 3.7 Gipps Model Variable Definitions 

Variable Description 

𝑣𝑓(𝑡) velocity of following vehicle at time (t) [m/s] 

𝑣𝑙(𝑡) velocity of lead vehicle at time (t) [m/s] 

𝑥𝑓(𝑡) front bumper position of following vehicle at time (t) [m] 

𝑥𝑙(𝑡) back bumper position of lead vehicle at time (t) [m] 

 

3.2.3.3. The Intelligent Driver Model Car-Following Model 

The IDM was selected for its prevalent use in practice as the featured car-following 

model in both the Microscopic Open Traffic Simulation (MOTUS) and Simulation of 

Urban MObility (SUMO) software. The IDM is a type of social force model; the theory 

underlying social force models assumes that driving behavior is the resultant of competing 

forces. The original IDM has two competing forces: (i) the force that encourages the driver 

to reach and maintain their desired speed and (ii) the force that compels the driver to 

maintain a desired safe distance from the vehicle it is following.  

The IDM predicts following vehicle acceleration and requires six calibration 

parameters, as shown in Table 3.8; variable definitions used in the model are provided in 

Table 3.9. This dissertation features the original formulation of the IDM (Treiber, 

Hennecke, & Helbing, 2000), as documented in Equations 3.17 and 3.18: 

 

𝑎𝐼𝐷𝑀 = 𝑎 [1 − (
𝑣

𝑣0

 

)
𝛿

− (
𝑠∗

𝑠
)
2

] 3.17 

𝑠∗ = 𝑠0 +max (0, 𝑣𝑇 + 
𝑣∆𝑣

2√𝑎𝑏
) 3.18 
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Table 3.8 IDM Calibration Parameters Interpretations 

Variable 

Literature Values 

 (Kesting, Treiber, & 

Helbing, 2010) 

Search Range* Description 

𝑣0 35.0 [0.1, 40.0] Desired speed [m/s] 

𝛿 4 [1, 100] Free acceleration exponent [unitless] 

𝑇 1.5 [0.1, 5.0] Desired time gap [s] 

𝑠0 2.0 [0.1, 10.0] Jam distance [m] 

𝑎 1.4 [0.1, 4.0] Maximum acceleration [m/s2] 

𝑏 2.0 [0.1, 4.0] Desired/comfortable deceleration [m/s2] 
*Parameter search spaces were initially set as the bounds recommended in the original model documentation. 

A random sample of trajectories were selected for sensitivity analysis of the parameter search space. If a 

majority of the selected trajectories’ optimal parameter estimates were on the boundaries of the search space, 

the search space was expanded; the exception was in cases where expansion of the parameter definition was 

limited due to physical constraints (e.g., jam distance should not be negative). 

Table 3.9 IDM Variable Definitions 

Variable Description 

𝑣 Current velocity [m/s] 

∆𝑣 Velocity differential = follower – leader 

�̇� =  
𝑑𝑣

𝑑𝑡
= 𝑎𝐼𝐷𝑀 Predicted acceleration for vehicle at time t [m/s2] 

𝑠∗ Desired safe gap [m] 

 

3.2.4. Calibration Procedure 

The calibration of car-following models is a complex and resource intensive 

process. There are two primary schools of thought regarding how to best obtain parameter 

estimates. The first argues that because car-following models consist of variables that are 

easily measured in the field (e.g., relative distance, following vehicle speed at time instance 

t, etc.), these parameters should be estimated using the physical values observed in the 

empirical data; applying the maximum likelihood estimation method to each parameter is 

one way that this can be achieved (Hoogendoorn & Hoogendoorn, 2010; Hoogendoorn et 
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al., 2006; Treiber & Kesting, 2013b). Others argue it is best to use an optimization 

framework to holistically calibrate all of the parameters in a car-following model 

simultaneously because of the underlying relationships between car-following model 

parameters (i.e., known correlation between variables) (Ciuffo, Punzo, & Montanino, 

2012; Kim & Mahmassani, 2011; Montanino, Ciuffo, & Punzo, 2012; Punzo & Simonelli, 

2005). A thorough study by Treiber and Kesting (2013b) provided conclusive evidence 

that an optimization-based estimation framework is more reliable for car-following model 

calibration because it is able to capture serial correlations of gaps and speeds. Thus, this 

research applies the latter method by solving a mathematical model with a nonlinear 

solution algorithm.  

Applying an optimization-based framework for car-following model calibration is 

no trivial task. As explicitly stated in Ciuffo et al. (2012), the appropriate definition of the 

optimization problem (i.e., goodness-of-fit function, measure of performance) and 

identification of solution algorithm is paramount for the successful calibration of car-

following models. The measure of performance is the metric used to determine how well 

the estimated parameters replicate the observed trajectory; temporal headway (Brockfeld 

et al., 2004; Punzo & Simonelli, 2005), following distance (i.e., relative spacing) (Ciuffo 

et al., 2012; Punzo, Montanino, & Ciuffo, 2015; Punzo & Simonelli, 2005; Soria, 

Elefteriadou, & Kondyli, 2014; Treiber & Kesting, 2013b), following vehicle speed (Ciuffo 

et al., 2012; Punzo et al., 2012, 2015; Punzo & Simonelli, 2005; Ranjitkar et al., 2004; 

Soria et al., 2014; Treiber & Kesting, 2013b), and following vehicle acceleration (Ossen & 

Hoogendoorn, 2005; Treiber & Kesting, 2013b) have been used for calibration of 

trajectories.  

Both Treiber and Kesting (2013b) and Punzo and Montanino (2016) provide strong 

arguments regarding why following distance (i.e., inter-vehicle spacing) is the optimal 
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choice for measure of performance for this type of problem. Though the use of speed as a 

measure of performance tends to result in smaller errors, the results are not robust because 

the error does not adequately propagate through the trajectory. That is, when calibrating to 

following distance, reasonable following vehicle speeds and acceleration results are 

produced; the inverse is not true (i.e., negative inter-vehicle spacings are frequently 

observed when inter-vehicle spacing is not selected as the measure of performance). Thus, 

inter-vehicle spacing, or following distance, is adopted as the measure of performance for 

the calibration procedure used in this dissertation. None of the selected car-following 

models directly produce spacing as an output; therefore, it must be derived from kinematic 

equations of motion from the model predicted acceleration, for the W99 and IDM car-

following models, and velocity, for the Gipps car-following model. 

The goodness-of-fit function, otherwise referred to as the objective function, 

determines the extent to which poor model fit with observed data is penalized. Common 

selections include root mean square error (RMSE) (Punzo et al., 2012, 2015; Punzo & 

Simonelli, 2005; Soria et al., 2014), sum of square errors (Treiber & Kesting, 2013b), GEH 

statistic (Punzo et al., 2012), and Theil’s U coefficients (Ossen & Hoogendoorn, 2009; 

Punzo et al., 2012). An extensive study documented in Ciuffo et al. (2012) confirmed via 

synthetic data that the RMSE goodness-of-fit function resulted in the best replication of 

vehicle dynamics, though specifically for the Gipps car-following model. Thus, the 

objective function for the calibration procedure adopted by this dissertation is shown in 

Equation 3.19: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑑𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑑𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑁
𝑖=1

𝑁
 3.19 

It is worth noting that this research effort decided to obtain calibration parameter 

coefficient sets for each collective trip, instead of each individual car-following state (i.e., 



 77 

a constrained driving state with an identified leading vehicle), to ensure there was sufficient 

data completeness to obtain reliable estimates of parameter coefficients, as discussed in 

Treiber and Kesting (2013b). A complete trip is comprised of two types of driving states: 

a constrained state with a leading vehicle identified and an unconstrained state. Because of 

the decision to use inter-vehicle spacing as the measure of performance, this calibration 

procedure must only consider constrained driving states (i.e., unconstrained driving states 

have an undefined inter-vehicle spacing). Therefore, the weighted average of the RMSE 

across all segments of continuous car-following in a trip was reported as the objective 

function.  

It is also worth noting that although only constrained driving states were used for 

model calibration, there was still sufficient data collected in a free driving state (i.e., 

without significant influence from a leading vehicle) for parameters such as desired 

velocity to be properly calibrated. The average maximum following distance of constrained 

driving states (i.e., car-following) exceeded 90m (more than four car lengths between 

vehicles), which should conceivably allow drivers to behave without concern of their 

distant leading vehicle. Moreover, a data completeness framework based on the 

Wiedemann driving regimes (e.g., free driving, approaching, following, and crash zone) 

was developed and applied as a method to assess the "completeness" of the dataset; this 

framework validated that all trips had data in these different driving regimes. 

Finally, the solution method determines how the space of feasible parameter 

coefficients will be searched to identify the set of parameters that best match the observed 

data in accordance with the selected measure of performance and goodness-of-fit function. 

There has been a lot of success reported by researchers applying nonlinear solution 

heuristics. Common solution methodologies include genetic algorithms (Ciuffo et al., 

2012; Kesting & Treiber, 2008; Ranjitkar et al., 2004), OptQuest Multistart (Ciuffo et al., 
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2012; Punzo et al., 2012, 2015), and Downhill Simplex (Kim & Mahmassani, 2011; Punzo 

et al., 2012). A literature review revealed that genetic algorithms are the most commonly 

used heuristic for calibrating car-following models (Ciuffo et al., 2012). It was also 

documented that although genetic algorithms are not an exact solution algorithm, they are 

capable of identifying the true values of model parameters in synthetic data (Punzo et al., 

2012). Therefore, this dissertation uses a genetic algorithm to calibrate the Gipps, IDM, 

and W99 car-following model by identifying the sets of model parameters that minimize 

the RMSE between the predicted and observed inter-vehicle spacing profiles across the 

car-following states comprising a complete trip. This is summarized in Figure 3.3. Details 

on the genetic algorithm, which was developed using the Distributed Evolutionary 

Algorithm in Python (DEAP), are included in Hammit and James (2018a). 
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Figure 3.3 Summary of Calibration Procedure (Hammit et al., 2018a) 

 

3.3. CHAPTER 3 CONCLUSIONS 

Chapter 3 details the data acquisition and data processing required to transform the 

time-series radar and CAN-BUS data into the trip-specific optimal calibration coefficient 

estimates of interest to this dissertation. Section 3.1—Data Acquisition—includes a 

summary of the SHRP2 NDS data collection effort (Section 3.1.1), the SHRP2 Solutions 

IAP (Section 3.1.2), and the data queried through the Wyoming DOT IAP grant (Section 

3.1.3). Section 0—Data Processing—details the radar data post-processing completed by 

VTTI (Section 3.2.1), the identification of constrained driving states through a radar-vision 
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algorithm (Section 3.2.2), the justification for the selection of three car-following models 

for calibration (Section 3.2.3), and the applied calibration procedure (Section 0).  

The key points of Chapter 3 are summarized as follows: 

• The data used for this dissertation is a subsample of the SHRP2 NDS 

dataset. The data was queried through the Wyoming DOT IAP. 

• The data used in this dissertation was collected on freeways during clear 

weather conditions. Six hundred sixty-five trips were identified when the 

aforementioned filtering criteria were applied to the Wyoming DOT IAP 

dataset. These trips were completed by 82 drivers. These trips spent, on 

average, almost 10 minutes in a constrained driving state (i.e., car-

following). 

• Constrained driving states were extracted using a radar-vision algorithm, an 

iterative smoothing algorithm that identified periods of homogeneous 

driving states (e.g., no leading target; leading target ID = 1). 

• The W99, Gipps, and IDM car-following models were calibrated as part of 

this dissertation. 

• The calibration procedure used in this dissertation produced a set of 

estimated car-following model calibration coefficients for each trip in the 

dataset. The calibration procedure identified the set of car-following model 

parameter coefficients that minimized the RMSE between the predicted and 

observed following distance between two vehicles across a trajectory using 

a genetic algorithm.   
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Chapter 4:  Evidence of Inter-Driver Heterogeneity in the Second 

Strategic Highway Research Program Naturalistic Driving Study 

Dataset (Task 1)  

This chapter seeks to determine if there is sufficient heterogeneity in the available 

sample of the second Strategic Highway Research Program (SHRP2) Naturalistic Driving 

Study (NDS), described in detail in Chapter 3, to warrant a dissertation dedicated toward 

understanding and characterizing the unexplained variability in driving behavior. As 

explained in Chapter 3, this dataset is already controlling for some intra-driver behavioral 

heterogeneity attributable to road type and weather conditions; this is because the data for 

this dissertation was queried such that it only contains trips taken on freeways in clear 

weather conditions. This chapter looks at both trip statistics from the original NDS data 

sample and the calibrated parameter estimates for the Wiedemann 99 (W99), Gipps, and 

Intelligent Driver Model (IDM) car-following models.  

 

4.1. VARIATION ACROSS TRIP STATISTICS 

Figure 4.1 illustrates the distributions of trip statistics for the car-following states 

identified in each trip of the available NDS sample used in this dissertation. The selected 

statistics include the minimum and maximum acceleration rates and the average 

acceleration rate, following distance, relative velocity, and time headway. What is 

immediately evident with a visual inspection of Figure 4.1 is the spread of data points 

across the distributions. The curves are roughly bell shaped, with some trip statistics more 

strongly skewed than others. The most symmetric trip statistics are the mean acceleration 

rate, maximum acceleration rate, and relative velocity, with skewness values around ± 0.4. 

The minimum acceleration rate is most strongly skewed left, while the time headway 
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distribution is the most strongly skewed right. None of the trip statistics report large 

kurtosis values, which is one indication that this dataset does not have significant outliers.  

 

Figure 4.1 Distributions of Trip Statistics 
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4.2. VARIATION ACROSS INDIVIDUAL PARAMETER ESTIMATES 

Figure 4.2 portrays the variation in the estimated W99 calibration coefficients; for 

additional details on this model, see Section 3.2.3.1. There is substantial visible variation 

in the data across most distributions of estimated parameter coefficients. The modes of the 

distributions occurred at one of the boundaries of the search space for the following 

variation, maximum drift (cc2), threshold for entering following (cc3), negative following 

threshold (cc4), positive following threshold (cc5), and oscillation acceleration (cc7) 

distributions (see Figure 4.2). Moreover, the distributions of these estimated parameter 

coefficients are less bell shaped in nature than the trip statistics. The standstill distance 

(cc0) and desired velocity (v_des) distribution are the most symmetric, with skewness 

values below ± 0.5. The most asymmetric distributions are the negative following threshold 

(cc4) and acceleration at 80 kph distributions. The highest kurtosis values are reported for 

the spacing time (cc1), negative following distance (cc4), and the acceleration at 80 kph 

(cc9) distributions. Figure 4.2 does confirm that there is significant spread across the 

distributions of estimated calibration parameter coefficients. However, Figure 4.2 also 

illustrates that these distributions are far from normally distributed; this should be 

accounted for when hypothesis tests are conducted in later chapters of this dissertation (i.e., 

this violates the assumption of normality required for some statistical tests, such as the one-

way analysis of variance).  
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Figure 4.2 Distributions of W99 Car-Following Model Estimated Parameter 

Coefficients 
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Figure 4.3 shows the distributions of estimated calibration parameter coefficients 

for the Gipps car-following model; for additional details on this model, see Section 3.2.3.2. 

Figure 4.3 confirms that there is substantial variation across the distributions of calibration 

parameter estimates. These distributions are substantially less skewed than the W99 

calibration parameter coefficients, evident by the skewness and kurtosis values. The 

estimated desired velocity (v_des) coefficient distribution is the most symmetric (skewness 

value close to 0); this is consistent with observations made about the W99 model. The 

desired following vehicle deceleration (d_des), perceived desired deceleration of the 

leading vehicle (d_lead), and minimum following distance at a stop (g_min) parameters 

were also classified as having fairly symmetric distributions (-0.5 < skewness index < 0.5). 

The only parameter estimate that appears to be highly skewed is the maximum desired 

acceleration (a_des) distribution. The kurtosis values are relatively low across all the 

estimated parameter coefficient distributions, indicating that these distributions are not 

troubled by outliers (i.e., numerous estimates on the distribution tails). It does not appear 

that most calibration parameter distributions are normally distributed, which is consistent 

with what was observed with the W99 model and has implications for the forthcoming 

hypothesis tests. 
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Figure 4.3 Distributions of Gipps Car-Following Model Estimated Parameter 

Coefficients 

 

Figure 4.4 portrays the distributions of estimated calibration parameter coefficients 

for the IDM; for additional details on this model, see Section 0. Visual inspection of Figure 

4.4 confirms that there is substantial variation across the distributions of calibrated 
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parameter estimates. The desired velocity estimated parameter distribution is the most 

symmetric, with a skewness value of 0.004; this is consistent with observations made about 

both the W99 and Gipps models. The estimated maximum desired deceleration (b) and the 

free acceleration exponent (𝛿) coefficient distributions reported low skewness indices. The 

distributions of IDM calibration coefficients all have relatively low kurtosis values; this is 

consistent with the Gipps distributions of calibration coefficients. However, half of the 

IDM calibration coefficient distributions have modes which fall on the boundaries of the 

search space (see Figure 4.4): desired deceleration (b), free acceleration component (𝛿), 

and desired velocity (v_des); this was similar to the modal observations reported for the 

W99 model. It does not appear that most parameter distributions are normally distributed, 

which is consistent with observations made about the W99 and Gipps models. 
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Figure 4.4 Distributions of Intelligent Driver Model Car-Following Parameter 

Estimates 
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4.3. VARIATION ACROSS PARAMETERS WITH SIMILAR PHYSICAL INTERPRETATIONS 

The three car-following models selected for analysis in this dissertation are 

comprised of a total of 23 different calibration parameters. Although the three car-

following models have different functional forms, several calibration parameters across the 

models have similar, though not exact, physical interpretations. Therefore, it is an 

interesting exercise to see how the parameters with similar physical meanings relate across 

the different model structures. In addition, consistent trends and estimates for these 

similarly defined parameters helps to increase confidence in the model calibration 

procedure, which was optimized with a heuristic instead of an exact solution method. There 

are five physically interpretable parameters that are seen in two or more of the calibrated 

models:  

• Time gap: (i) W99 spacing time (cc1) and (ii) IDM desired time gap (t_gap) 

• Maximum acceleration rate: (i) Gipps maximum desired acceleration rate 

(a_des) and (ii) IDM maximum desired acceleration rate (a); 

• Maximum deceleration rate: (i) Gipps maximum desired deceleration rate 

(d_des) and (ii) IDM maximum desired deceleration rate (b); 

• Inter-vehicle spacing at a stop: (i) W99 standstill distance (cc0), (ii) Gipps 

minimum gap at a stop (g_min), and (iii) IDM jam distance (g_min); and  

• Desired velocity: (i) W99 desired velocity (v_des), (ii) Gipps desired 

velocity (v_des), and (iii) IDM desired velocity (v_des). 

Figure 4.5 shows the parameters related to time gap: (i) W99 spacing time (cc1) 

and (ii) IDM desired time gap (t_gap). The distributions have similar measures of central 

tendency (i.e., mean, median, and mode). Moreover, both distributions are skewed right, 

although the estimated W99 spacing time coefficient distribution shows stronger 

skewedness than the IDM desired time gap coefficient distribution. The estimated IDM 
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desired time gap coefficient distribution achieves a much smaller kurtosis value than the 

W99 spacing time distribution, likely attributable to the smaller range of estimated values 

(i.e., range of estimated W99 spacing time coefficients is [0m, 3.15m), while the range of 

estimated IDM time gap coefficients is [0m, 1.50m)). 

 

 

Figure 4.5 Calibration Parameters that are Interpreted to Represent Desired Time Gap 

Figure 4.6 compares the Gipps (a_des) and the IDM (a) maximum desired 

acceleration rate estimated coefficient distributions. There is quite a bit of disparity 

between the distributions, despite their similar physical interpretations. The median of the 

Gipps maximum desired acceleration rate coefficient distribution is almost double that of 

the comparable IDM parameter distribution. However, the models have approximately the 

same range of estimated values and are both considered strongly skewed to the right. The 

primary difference appears to be in the distribution mode. The mode of the estimated Gipps 

maximum desired acceleration rate coefficient (1.0 m/s2) is an order of magnitude higher 

than the IDM maximum desired acceleration rate coefficient distribution mode (0.1 m/s2). 

Moreover, the Gipps maximum desired acceleration rate coefficient distribution has a 

higher number of estimates towards the upper bound of the parameter distribution than the 

IDM maximum desired acceleration rate coefficient distribution. These results are 
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considered moderately corroborative given the overall similarities in the distribution 

structures. 

 

 

Figure 4.6 Calibration Parameters that are Interpreted to Represent Maximum Desired 

Acceleration Rate 

Figure 4.7 compares the Gipps (d_des) and the IDM (b) maximum desired 

deceleration rate coefficient estimate distributions. It is important to note that comparisons 

should be made between the absolute values of the parameter estimates, as the Gipps 

estimates are negative while the IDM estimates are positive (this is due to differences in 

the model functional forms). For these distributions, the modes are identical and occur at 

the parameter search space boundary. The distribution medians are relatively close in value 

(i.e., 2.80 m/s2 vs. 2.40 m/s2). Additionally, both distributions are considered fairly 

symmetric, with skewness values between ± 0.5. Moreover, both distributions appear to be 

inversely related to the desired acceleration distribution: that is, the desired acceleration 

parameter distributions are more skewed towards smaller acceleration rates, while the 

desired deceleration parameter distributions are more skewed towards larger deceleration 

rates. However, the IDM distribution for desired deceleration rate has a kurtosis value 

double that for the Gipps distribution; this is because of the higher number of instances of 
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maximum desired deceleration rates of 4.0 m/s2. These differences in parameter coefficient 

distributions, despite similarities in parameter physical interpretations, could be 

attributable to differences in the correlation structures of the underlying model parameters. 

For example, it is well known that the Gipps desired deceleration parameter (d_des) is 

highly correlated with the Gipps parameter that captures the following vehicle’s perceived 

desired deceleration rate of the leading vehicle (d_lead).  

 

 

Figure 4.7 Calibration Parameters that are Interpreted to Represent Maximum Desired 

Deceleration Rate 

Figure 4.8 compares the distributions of the parameter coefficients that capture the 

minimum desired following distance at low speeds: W99 standstill distance (cc0), Gipps 

minimum gap at a stop (g_min), and IDM jam distance (g_min). The parameter 

distributions have approximately the same ranges, with estimates occurring between the 

boundaries of 0 and 10 m. Moreover, all three distributions are fairly symmetric, with slight 

right leaning skews. The Gipps model achieved the lowest median value (3.1m), while the 

W99 model was estimated to have the highest median (4.2 m). The modes of the Gipps and 

IDM parameter estimates are identical and lie toward the parameter search space boundary 

(0.1 m), while the mode of the W99 model occurs toward the center of the distribution (4.0 

m). These distributions appear dissimilar. The differences in the model parameter estimates 
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may be due to data incompleteness (i.e., low speed conditions were not well represented in 

this dataset). This dataset was collected on freeways; thus, it is not guaranteed that each 

trip experienced sufficient congestion during car-following to force the instrumented 

vehicle to follow a target vehicle at low speeds (i.e., the physical interpretation of this 

parameter). 

 

 

Figure 4.8 Calibration Parameters that are Interpreted to Represent Minimum Inter-

Vehicle Spacing 

Finally, Figure 4.9 compares the desired velocity parameter distributions for the 

W99, Gipps, and IDM car-following models. Across all “similarly defined” model 

calibration parameter definitions, the desired velocity parameter is the only one with an 

identical definition across models; this has translated to the most similarities in the 

estimated parameter distributions. The medians across the distributions are markedly 
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similar, ranging from 32.0 m/s to 33.5 m/s. Moreover, the three parameter distributions are 

bell shaped in nature, with small skewness and kurtosis indices.  

 

 

Figure 4.9 Calibration Parameters that are Interpreted to Represent Desired Speed 

 

4.4. CHAPTER 4 CONCLUSIONS 

This chapter discusses the variation in distributions of trip statistics and estimated 

model calibration parameter coefficients in the sample of the SHRP2 NDS dataset available 

for this dissertation. This dataset was collected in clear weather conditions on freeways, 

controlling for some known sources of intra-driver behavioral heterogeneity. Key chapter 

takeaways are summarized below: 
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• There is significant variation across estimated calibration parameter 

coefficient distributions. This indicates that there is currently unexplained 

variation in the dataset that is worthy of further exploration.  

• The trip summary statistics are mostly normally distributed. 

• The model calibration parameter coefficients are not normally distributed, 

aside from the desired velocity parameter. This has implications for 

hypothesis testing completed in subsequent chapters of this dissertation.  

• In Chapter 3 it was discussed that the three car-following models used in 

this dissertation are substantially different in intuition and functional form. 

However, there are five model calibration parameters that have similar 

physical interpretations. Aside from the minimum inter-vehicle spacing 

parameter, which potentially suffers from data incompleteness, these 

parameters are remarkably similar in measures of central tendency (e.g., 

mean, median, mode) and distribution shape (e.g., skewness, kurtosis). This 

provides support in the validity and accuracy of the calibration procedure, 

which was optimized using a heuristic instead of an exact solution method.  

Chapter 4 successfully illustrates that there is unexplained variation of driving 

behavior in the SHRP2 NDS sample. Chapter 5 begins to explore the degree to which driver 

specific attributes (e.g., age, gender) can be used to control for the inter-driver behavioral 

heterogeneity observed in Chapter 4.  
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Chapter 5:  Characterizing the Inter-Driver Heterogeneity Observed in 

the Second Strategic Highway Research Program Naturalistic Driving 

Study Dataset (Task 2)  

It is illustrated in Chapter 4 that the driving behaviors captured through the second 

Strategic Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) dataset 

are diverse, with strong evidence of behavioral heterogeneity. Chapter 5 seeks to determine 

the degree to which driver specific attributes, such as one’s age and gender, help to 

characterize the observed behavioral heterogeneity. Section 5.1 provides a brief summary 

of the motivation. Section 5.2 evaluates the differences between different groups of drivers, 

segmented by driver attributes (e.g., are there statistically significant differences in driving 

behavior between male and female drivers?). Section 5.3 explores evidence of similarities 

in driving behavior within a group of drivers segmented by driver attributes (e.g., are there 

similarities in driving behavior within a group of younger drivers? Moreover, are there 

notable differences between driving behavior of younger drivers and older drivers?). The 

analysis conducted to support Section 5.2 was accepted as a peer reviewed special session 

paper at the 2018 Institute of Electrical and Electronics Engineers Intelligent 

Transportation Systems Conference in Maui, Hawaii. The analysis conducted to support 

Section 5.3 was accepted for presentation at the 2019 Annual Meeting of the Transportation 

Research Board and recommended for publication in the Transportation Research Record. 

Lastly, a presentation on the development of the homogeneous driver groups was made at 

the Seventh International Symposium on Naturalistic Driving Research. The citations for 

each of these are provided below: 

James, R. M. & Hammit, B. E. (2018). Exploring the Use of Driver Attributes to 

Characterize Heterogeneity in Naturalistic Driving Behavior. Proceedings of the 2018 



 97 

Institute of Electrical and Electronics Engineers Intelligent Transportation Systems 

Conference, Maui, Hawaii.  

James, R. M. & Hammit, B. E. (2019). Identifying Contributing Factors to 

Heterogeneity in Driving Behavior: A Clustering and Classification Approach. In Press: 

Transportation Research Record. 

James, R. M. & Hammit, B. E. (2018). The Role of Driver Attributes in 

Understanding Driver Behavior. Seventh International Symposium on Naturalistic Driving 

Research. Blacksburg, VA. Podium Session.  

 

5.1. MOTIVATION 

Heterogeneity in driving behavior is becoming increasingly well-documented, 

especially as high-resolution data is becoming more ubiquitously collected. This 

behavioral heterogeneity can take one of two forms: inter-driver heterogeneity, where a 

sample of drivers exhibit different behaviors despite similarity in driving conditions (e.g., 

cautious drivers vs. aggressive drivers), and intra-driver heterogeneity, where the same 

driver behaves differently as a function of variations in their driving conditions (e.g., one’s 

driving behavior in clear weather conditions vs. their behavior in adverse weather 

conditions, such as snow). One area in transportation where this phenomenon has been 

evident is in crash rate analysis. In this sector, it is apparent that one’s gender and age 

influences their likelihood of being involved in a crash. Using crash rates per 100-thousand 

drivers, one can see that men have a higher crash rate than women across all crash types; 

however, male drivers make up a much higher proportion of drivers involved in fatal 

crashes (75% / 25% split) compared to property damage only (58% / 42% split) (Insurance 

Information Institute, 2018). Moreover, age also appears to be correlated with crash risk. 
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When normalizing by vehicle miles traveled, it was observed that drivers under the age of 

18 and over the age of 80 are the most at-risk age groups for all crash types (Tefft, 2017). 

Although these statistics do not control for exposure rates, they do indirectly support the 

hypotheses of inter-driver behavioral heterogeneity. 

This dissertation evaluated the heterogeneity in a sample of the SHRP2 NDS 

dataset obtained through the Wyoming Department of Transportation (DOT) 

Implementation Assistance Program (IAP) in Chapter 4. The distribution of optimal car-

following model calibration coefficients illustrated that there is significant heterogeneity 

in the data, despite controlling for weather condition and facility type, and that standard 

car-following models used in microsimulation packages can capture this heterogeneity 

when properly calibrated. Additionally, as illustrated in Section 2.3.1, there is considerable 

evidence that inter-driver heterogeneity as a function of driver specific attributes exists in 

empirically collected data. Previous calibration studies have concluded that the existence 

of driving behavior heterogeneity constitutes a baseline that no model ignoring the 

presence of this heterogeneity in the underlying data can outperform (Treiber & Kesting, 

2013a).  

Presently, state-of-practice calibration efforts account for heterogeneity through the 

random sampling of driver parameters from known distributions. This dissertation 

hypothesizes that by controlling for driver attributes we can further segment the driving 

population into groups exhibiting more homogeneous driving behavior, which are more 

appropriate to model with a set of representative calibration parameter estimates. Towards 

this end, Chapter 5 seeks to characterize the heterogeneity in driving behavior that may be 

attributable to driver specific attributes, such as age and gender.  

There are two primary research questions in Chapter 5. The first seeks to understand 

how different the driving behaviors are between different groups of drivers (e.g., do male 
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drivers exhibit statistically significant differences in driving behaviors from female 

drivers). The second research question seeks to understand how similar the driving 

behaviors are within different groups of drivers (e.g., should female drivers be considered 

a group of homogeneous drivers? Or are their behaviors too inconsistent to be clustered 

together?). By the conclusion of Chapter 5, evidence will be provided that the larger driving 

population can be divided into homogeneous driver groups, segmented by different 

combinations of driver attributes; this will be used for application in later chapters of this 

dissertation. 

 

5.2. DIFFERENCES IN DRIVING BEHAVIOR BETWEEN SUBGROUPS OF DRIVERS 

SEGMENTED BY DRIVER SPECIFIC ATTRIBUTES 

The objective of this chapter is to better understand how different the driving 

behaviors are between different groups of drivers (e.g., do male drivers exhibit statistically 

significant differences in driving behaviors from female drivers). Chapter 5.2 is intended 

to answer research question 4 of this dissertation. More specifically, this dissertation hopes 

to understand the following: when subsamples of drivers are created using driver attributes 

for segmentation, are the parameter sets for the different subsamples sufficiently different 

to justify the separation of the data (e.g., is the calibrated reaction time of male drivers 

statistically different than female drivers)? 

 

5.2.1. Methodology 

The methodology used to conduct this analysis has three components. The first 

effort identifies which car-following models to include in the analysis; for details on this 

effort, the reader is referred to Section 3.2.3. The second effort develops and implements a 
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calibration procedure to identify optimal parameter sets for each trip; for details on this 

effort, the reader is referred to Section 0. Next, the calibrated parameter coefficient 

estimates are split into “subcategories” (e.g., male, female) that comprise a driver 

“attribute” (e.g., gender). The driver attributes and their comprising subcategories available 

for the SHRP2 NDS drivers are shown in Table 3.2. Finally, hypothesis tests are conducted 

to evaluate if there are significant differences between the subcategories that comprise a 

driver attribute; the selected statistical tests are described next 

Kruskal-Wallis one-way analysis of variance (ANOVA) tests were applied to 

provide insight regarding the statistical differences in driving behavior across drivers 

categorized by their unique driver attributes; this is a non-parametric alternative to the 

traditional one-way ANOVA test and is required given the non-normality of the 

distributions of calibration parameter coefficient estimates, confirmed using Anderson-

Darling statistical tests. In this context, the null hypothesis assesses if the medians of the 

subcategories’ calibration coefficients (e.g., reaction time) are equal (i.e., there is not a 

statistical difference in reaction times between male and female drivers). Thus, small p-

values, 5% alpha level selected for this analysis, result in a rejection of the null hypothesis 

and the conclusion that there are behavioral differences between the subgroups of drivers. 

It is important to note that the ANOVA p-values do not necessarily indicate a statistically 

significant difference between every subgroup of drivers, but rather that there is a statistical 

difference between all of the subgroups of drivers.  

This section evaluates the variation in estimated calibration parameter coefficients 

across all subcategories (e.g., male, female) comprising a driver specific attribute (e.g., 

gender). There are eight driver specific attributes that are analyzed in this chapter (see 

Table 3.2): gender, age, race, educational attainment, marital status, income, household 

size, and driver mileage last year. These driver specific attributes have a variable number 
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of subcategories ranging from two (e.g., gender, race) to eight (e.g., age). The trends in 

estimated parameter coefficients across subcategories of driver attributes are evaluated 

from a qualitative and quantitative perspective. The trends are evaluated qualitatively in 

Figure 5.1 through Figure 5.29 and interesting observations are annotated in the text of this 

chapter. Quantitative evaluations of estimated parameter coefficients are supported by 

Table A.1 through Table A.29, included in Appendix A of this dissertation, and are 

discussed in this chapter. 

 

5.2.2. Results 

The results of this subsection are divided into two sections. Section 5.2.2.1 explores 

trends across important trip summary statistics as a function of driver specific attributes. 

Section 5.2.2.2 explores trends in estimated parameter coefficients across driver attributes 

for each individual calibration parameter of the car-following models. Although three 

different car-following models were used for calibration, some of the parameters are 

“shared” across models (i.e., they have similar physical interpretations. In Section 5.2.2.3, 

trends in the shared parameters are described.  

 

5.2.2.1. Trip Descriptive Statistics Results 

Figure 5.1 shows how the average acceleration rate of all car-following segments 

comprising a complete trip varies according to driver attributes. The differences in average 

acceleration rate vary at a statistically significant level for each of the subcategories that 

divide a specific driver attribute. This strongly suggests that acceleration behavior in the 

naturalistic driving data, the output of car-following models, varies between different 

groups of drivers. However, there are not many conclusive visual trends in the data, 
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particularly for the attributes that are segmented into multiple categories. According to 

Figure 5.1a, male drivers tend to have smaller average acceleration rates than female 

drivers; however, the large confidence intervals associated with the male and female 

subcategories indicate variability within the subcategories. Figure 5.1d suggests that as 

one’s level of education increases, their average acceleration rates decrease. In Figure 5.1e, 

drivers that identify as single or unmarried partners have approximately equal average 

acceleration rate, while married, divorced, and widow(er) subcategories of marital status 

have approximately equal average acceleration rates; the former subcategories exhibit a 

smaller average acceleration rate than the latter. Finally, there are only two subcategories 

of data where the average acceleration rate across all drivers belonging to said subcategory 

are negative: drivers with a graduate degree and drivers with reported incomes exceeding 

$150k.  

The highest within subcategory variation is observed for the widow(er) subcategory 

of the marital status attribute (standard deviation = 0.21 m/s2), while the lowest within 

subcategory variation is observed for the unmarried partners subcategory (standard 

deviation = 0.03 m/s2); this is illustrated in Figure 5.1 and documented in Table A.1. The 

standard deviations of the subcategories that comprise a driver attribute are averaged to 

assess the variation of parameter estimates across the subcategories (i.e., the within 

attribute variation). The attribute variation is remarkably similar across the eight attributes, 

ranging from 0.12 to 0.13 m/s2. 

Figure 5.2 shows how the average minimum acceleration, or deceleration, rate of 

all car-following events comprising a complete trip varies according to driver attributes. 

The race, education, and household size attributes were not found to be statistically 

significantly different between the respective subcategories. As illustrated in Figure 5.2a, 

the average female driver minimum acceleration rate is stronger than that observed in the 
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male data. Moreover, Figure 5.2b suggests that as age increases the average minimum 

acceleration rate decreases (i.e., age and average hard braking value are inversely related).  

Table A.2 indicates that the strongest average minimum acceleration rate was 

observed for the youngest age group (mean = -0.99 m/s2); this could be related to the 

inexperience of younger drivers. The least severe average minimum acceleration rate was 

observed for the widow(er) subcategory (mean = -0.58 m/s2); the second least severe 

braking behavior was observed for the oldest age category (mean = -0.64 m/s2). This could 

be indicative of risk aversion in driving behavior, possibly attributable to self-regulated 

risk-taking behavior due to known cognitive and motor skills decline. The most variation 

within a subcategory of drivers was observed for the under $39k income group (standard 

deviation = 0.39 m/s2), while the least variation was observed for the unmarried partner 

subcategory (standard deviation = 0.21 m/s2). The within attribute variation was 

remarkably similar across the different attributes, with average standard deviations ranging 

from 0.30 m/s2 to 0.32 m/s2.  
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Figure 5.1 Mean Acceleration Segmented by Driver Attributes 
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Figure 5.2 Minimum Acceleration Segmented by Driver Attributes 
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Figure 5.3 illustrates how the average maximum acceleration rate of all car-

following events comprising a complete trip varies according to driver attributes. There are 

statistically significant differences in all subcategories of driver attributes except for the 

race attribute. Figure 5.3a, suggests that female drivers exhibit a higher average 

acceleration rate than male drivers. Considering the trends of Figure 5.1a, Figure 5.2a, and 

Figure 5.3a, it appears that female drivers in this particular NDS sample exhibit stronger 

acceleration and deceleration rates than male drivers, on average; this could be evidence 

that female drivers are more aggressive or drive more distracted (e.g., children in vehicle) 

than male drivers. Figure 5.3b indicates there is a general trend that as age increases the 

average strongest exhibited acceleration rate decreases. Moreover, as income increases, the 

average maximum acceleration rate decreases, with exception of the $50–69k subcategory 

(Figure 5.3f).  

As documented in Table A.3, the strongest average acceleration rate was observed 

with the 25–29-year-old driver subcategory (mean = 0.97 m/s2), while the smallest average 

maximum acceleration rate was estimated for the oldest age group (mean = 0.65 m/s2). The 

smallest within subcategory variation was observed for the unmarried partners subcategory 

(standard deviation = 0.12 m/s2), while the largest within subcategory variation was 

calculated for the widow(er) subcategory (standard deviation = 0.27 m/s2). The smallest 

attribute variation was calculated for the marital status attribute [mean(standard deviation) 

= 0.22 m/s2], while the largest attribute variation was observed within the driver mileage 

last year attribute [mean(standard deviation) = 0.27 m/s2]. 
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Figure 5.3 Maximum Acceleration Segmented by Driver Attributes 
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Figure 5.4 portrays how the average relative velocity of all car-following events 

comprising a complete trip varies according to driver attributes. The relative velocity was 

calculated as following vehicle speed minus leading vehicle speed; thus, positive values 

indicate the following vehicle was traveling faster than the leading vehicle. All differences 

between subcategories of driver attributes are statistically significantly different. As 

illustrated in Figure 5.4a, male drivers exhibit higher relative velocities than female drivers. 

Figure 5.4d suggests that as educational attainment increases, relative velocity increases. 

Moreover, household size and relative velocity appear to be positively correlated (Figure 

5.4g).  

As documented in Table A.4, the unmarried partners subcategory of marital status 

has the highest average velocity differential, by a significant margin (mean = 2.2 m/s2); it 

was one of two subcategories with mean relative velocities above 1.5 m/s2, indicating the 

following vehicle was traveling much faster than the leading vehicle. The widow(er) 

subcategory reported the smallest average velocity differential (mean = -1.5 m/s2); it is one 

of three subcategories to report a negative average relative velocity value, where the 

leading vehicle was consistently moving faster than the following vehicle (i.e., widow(er), 

age group 70+, and 6–9k subcategory of driver mileage last year). The 30–34 age group 

reported the smallest within subcategory variation (standard deviation = 0.5 m/s2), while 

the 70+ age group reported the largest variation (standard deviation = 1.7 m/s2). The marital 

status attribute had the lowest average standard deviation across all subcategories (i.e., 

within attribute variation) [mean(standard deviation) = 0.95 m/s2], while the driver mileage 

last year attribute reported the highest variation [mean(standard deviation) = 1.07 m/s2]. 
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Figure 5.4 Mean Relative Velocity Segmented by Driver Attributes 
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Figure 5.5 shows how the average following distance of all car-following events 

comprising a complete trip varies according to driver attributes. All driver attributes 

exhibited statistically significant differences amongst the different subcategories of data. 

According to Figure 5.5a, female drivers maintain smaller inter-vehicle spacings than male 

drivers, on average. As illustrated in Figure 5.5b, driver age and inter-vehicle spacing are 

positively correlated, with younger drivers maintaining smaller gaps than older drivers. 

Figure 5.5e suggests that relative gap and marital status are strongly correlated.  

According to Table A.5, the smallest average following distance was documented 

for the 25–29 age group (mean = 44.53 m). The largest average following distance was 

documented for the widow(er) marital status subcategory (mean = 83.77 m). The smallest 

within subcategory variation was calculated for the unmarried partners subcategory 

(standard deviation = 7.05 m), while the largest variation was recorded for the 6–9k driver 

mileage last year subcategory (standard deviation = 24.27 m). The smallest within attribute 

variation was calculated for the age attribute [mean(standard deviation) = 13.5 m]. The 

largest attribute variation occurred for the driver mileage last year attribute [mean(standard 

deviation) = 16.9 m]. 

Figure 5.6 documents how the average headway of all car-following events 

comprising a complete trip varies according to driver attributes. The only attributes that 

did not exhibit statistically significant differences in behavior across the subcategories are 

gender and race. As evident in Figure 5.6b, the youngest and oldest subcategories of drivers 

exhibit higher headways than middle-aged drivers; this is also corroborated by marital 

status in Figure 5.6e, where the widow(er) subcategory reports substantially higher 

headways than the rest of the sample.  
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Figure 5.5 Mean Relative Following Distance Segmented by Driver Attributes 
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Figure 5.6 Mean Headway Segmented by Driver Attributes 
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According to Table A.6, the smallest headway was observed for the 25–29 age 

group (mean = 1.7 s), while the largest headway was observed for the widow(er) 

subcategory (mean = 3.4 s). The smallest within subcategory variation was observed for 

the unmarried partners subcategory of drivers (standard deviation = 0.2 s), while the largest 

variation was observed for the 6–9k driver mileage last year subgroup (standard deviation 

= 1.0s). The marital status and age attributes were calculated to have the smallest average 

standard deviation across all subcategories [mean(standard deviation) = 0.60 s], while the 

income attribute had the most dispersion across the subcategories comprising the attribute 

[mean(standard deviation) = 0.71 s]. 

 

5.2.2.2. Individual Parameter Results 

Figure 5.7 shows how the W99 standstill distance (cc0) coefficient estimates vary 

across the eight driver attributes. The gender and driver mileage last year attributes were 

not found to have statistically significant differences across the subcategories. There are 

not clear, succinct qualitative trends visible in Figure 5.7a through Figure 5.7g.  

As documented in Table A.7, the 30–34 age group reported the highest calibrated 

standstill distance coefficient estimate (mean = 5.7 m), while the $50–69k income 

subcategory reported the lowest calibrated standstill distance coefficient estimate (mean = 

3.8 m). These results are a bit surprising, as one would have expected the widow(er) and 

the 25–29 age group to have reported the highest and lowest estimated value for standstill 

distance, as suggested by the trip summary statistics. The within subcategory standard 

deviations were remarkably similar across the attributes. The 13–15k subcategory for 

driver mileage last year reported the highest within subcategory variation (standard 

deviation = 2.8 m), while the 0–5k subcategory reported the lowest variation (standard 
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deviation = 2.2 m). The smallest average within attribute variation was calculated for the 

race attribute [mean(standard deviation = 2.38 m], while the driver mileage last year 

attribute reported the highest [mean(standard deviation = 2.48 m]. 

Figure 5.8 illustrates how the W99 spacing time (cc1) coefficient estimates vary 

across the subcategories of driver attributes. The gender, race, and education attainment 

attributes were not found to vary across the subcategories at a statistically significant level. 

There are not clear, succinct qualitative trends visible in Figure 5.8a through Figure 5.8g. 

The age, marital status, and miles driven last year attributes each had one subcategory with 

substantially higher spacing time estimated parameter coefficients compared to adjacent 

categories: the 70+ age group, widow(er), and 6–9k miles driven last year subcategories, 

respectively. It is worth noting that these are all categories that showed correlation in other 

Kruskal-Wallis ANOVA analyses (e.g., headway vs. driver attributes in Figure 5.6).  

Quantitative results are documented in Table A.8. The widow(er) subcategory 

reported the highest calibrated spacing time value (mean = 2.16 s), while the 25–29 age 

group reported the lowest calibrated spacing time value (mean = 0.58 s). The widow(er) 

subcategory reported the highest within subcategory variation (standard deviation = 1.11 

s). Reassuringly, these results are consistent with the average time headway summary 

statistics. The 25–29 age group reported the lowest within subcategory variation (standard 

deviation = 0.27 s). The age attribute achieved the lowest average within attribute variation 

[mean(standard deviation) = 0.49s] , while the marital status attribute reported the highest 

average variation [mean(standard deviation = 0.58 s]. 
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Figure 5.7 Estimated Wiedemann 99 Standstill Distance (cc0) Coefficient Segmented 

by Driver Attributes 



 116 

 

Figure 5.8 Estimated Wiedemann 99 Spacing Time (cc1) Coefficient Segmented by 

Driver Attributes 
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Figure 5.9 illustrates how the W99 following variation, or maximum drift, (cc2) 

coefficient estimates vary with driver attributes. The cc2 parameter defines the height of 

the following regime, which is defined by the SDXC and SDXO thresholds of the W99 

model in Figure 3.2. This parameter represents the range of distances that a driver 

subconsciously aims to stay within while following a leading vehicle (the actual range is 

the cc2 estimated parameter ± the average following distance). Smaller estimated cc2 

parameter coefficients suggests a smaller range of values that a driver ‘drifts’ between 

while following a leading vehicle (i.e., a more attentive or aggressive driver). The gender, 

educational attainment, household size, and driver mileage last year attributes did not vary 

across the subcategories at a statistically significant level for the following variation 

parameter.  

As documented in Table A.9, the $40–49k income subcategory reported the highest 

average calibrated following variation coefficient (mean = 11.86 m), while the 40–59 age 

group subcategory reported the lowest average following variation estimated coefficient 

(mean = 8.13 m). The 35–39 age group reported the highest within subcategory variation 

(standard deviation = 5.53 m) for the following variation estimated coefficient, while the 

highest income category reported the lowest within subcategory variation (standard 

deviation = 3.75 m). The smallest within attribute variation was calculated for the income 

attribute [mean(standard deviation = 4.6 m), while the largest attribute variation occurred 

in the gender attribute [mean(standard deviation = 4.9 m). 
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Figure 5.9 Estimated Wiedemann 99 Following Variance, Maximum Drift (cc2) 

Coefficient Segmented by Driver Attributes 
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Figure 5.10 depicts how the threshold for entering ‘following’ (cc3) coefficient 

estimates for the W99 model change across subcategories of driver attributes; this 

parameter is used in the calculation of the SDXV perception threshold in Figure 3.2, which 

separates the free flow and the approaching regimes of the W99 car-following model (i.e., 

as the magnitude of this parameter decreases, the perception-reaction threshold for 

approaching a lead vehicle increases and a driver reacts more quickly to the presence of a 

leading vehicle). The educational attainment, income, household size, and driver mileage 

last year attributes were not found to vary at a statistically significant level across the 

various subcategories.  

As documented in Table A.10, the 13–15k miles driven last year subcategory 

reported the largest estimated value for the threshold for entering ‘following’ coefficient 

(mean = -23.6 s). The 45–59 age group reported the lowest threshold for entering 

‘following’ calibrated coefficient (mean = -20.0 s). Moreover, the 13–15k miles driven last 

year subcategory reported the smallest within subcategory variation (standard deviation = 

3.93 s), while the 45–59 age group reported the largest standard deviation within the 

subcategory (standard deviation = 6.96 s). The smallest average attribute variation was 

recorded for driver race [mean(standard deviation = 5.48 s), while the largest attribute 

variation was calculated for driver marital status [mean(standard deviation = 5.82 s]. 
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Figure 5.10 Estimated Wiedemann 99 Threshold for Entering Following (cc3) 

Coefficient Segmented by Driver Attributes 
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Figure 5.11 describes how the W99 negative following threshold (cc4) coefficient 

estimates vary according to driver attributes. The negative following threshold coefficient 

is used to calculate the SDVC and SDVO thresholds of the W99 model; these thresholds 

describe the range of relative velocity values a driver subconsciously tries to stay within 

while following a lead vehicle. Specifically, the negative following threshold dictates how 

quickly the following vehicle reacts when approaching the lead vehicle (i.e., the larger the 

absolute value of the following threshold, the greater the acceptable difference in relative 

velocity). The educational attainment, income, and household size attributes were not 

found to vary at a statistically significant level across the subcategories. Trends across the 

subcategories are observed for the gender (Figure 5.11a), age group (Figure 5.11b), race 

(Figure 5.11c), and marital status (Figure 5.11e) attributes. Figure 5.11a suggests that the 

average male negative following threshold is larger than that of female drivers. Figure 

5.11b suggests that the negative following threshold is correlated with driver age; that is, 

as age increases, the negative following threshold generally increases. Moreover, Figure 

5.11e indicates that marital status and negative following threshold estimated coefficients 

are correlated.  

According to Table A.11, the widow(er) subcategory reported the most extreme 

average calibrated negative following threshold value (i.e., the least reactive to changes in 

relative velocity) (mean = -1.7 m/s) and the highest within subcategory variation (standard 

deviation = 1.8 m/s). The unmarried partners subcategory reported the most modest 

calibrated value for the negative following threshold coefficient (i.e., more sensitivity to 

changes in relative velocity) (mean = -0.25 m/s) and the lowest within subcategory 

variation (standard deviation = 0.52 m/s). The race attribute reported the lowest average 

variation across all subcategories comprising the attribute [mean(standard deviation) = 1.1 

m/s], while the driver mileage last year attribute reported the highest variation 
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[mean(standard deviation) = 1.3 m/s]. 

 

 

Figure 5.11 Estimated Wiedemann 99 Negative Following Threshold (cc4) Coefficient 

Segmented by Driver Attributes 
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Figure 5.12 portrays how the W99 positive following threshold (cc5) estimated 

coefficients vary across driver attributes. The positive following threshold coefficient is 

used to calculate the SDVC and SDVO thresholds of the W99 model, as shown in Figure 

3.2; these thresholds describe the range of relative velocity values a driver subconsciously 

tries to stay within while following a leading vehicle. The positive following threshold 

dictates how quickly the following vehicle reacts when separating from the lead vehicle 

(i.e., the larger the absolute value of the following threshold, the greater the acceptable 

difference in relative velocity). The gender, educational attainment, and income attributes 

were not found the vary across subcategories at a statistically significant level. Figure 5.12e 

suggests that marital status and the calibrated positive following threshold are correlated.  

Quantitative results are documented in Table A.12. The widow(er) and unmarried 

partners subcategories reported the highest (mean = 2.05 m/s) and lowest (mean = 0.95 

m/s) calibrated coefficient estimates, respectively; this is consistent with the trends 

observed with the negative following threshold estimated coefficients. The 25–29 age 

group reported the lowest within subcategory variation (standard deviation = 1.02 m/s), 

while the 45–59 age group reported the highest (standard deviation = 1.61 m/s). The 

education attainment attribute reported the lowest average variation within subcategories 

comprising an attribute [mean(standard deviation) = 1.25 m/s], while the age and income 

attributes reported the highest average variation [mean(standard deviation) = 1.32 m/s].  
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Figure 5.12 Estimated Wiedemann 99 Positive Following Threshold (cc5) Coefficient 

Segmented by Driver Attributes 
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Figure 5.13 illustrates how the W99 speed dependency of oscillation (cc6) 

estimated coefficients vary with driver attributes; this parameter is also used in the 

calculation of the SDVC and SDVO thresholds in Figure 3.2. The speed dependency of 

oscillation parameter specifically impacts the magnitude of the oscillation of driving 

behavior on a psychophysical plane (i.e., a larger magnitude represents wider oscillation, 

while a smaller magnitude represents narrower oscillation). Education attainment, income, 

household size, and reported driver mileage last year were all found to not vary at a 

statistically significant level across the subcategories comprising the driver attributes. 

Figure 5.13a indicates that male drivers have a higher speed dependency of oscillation 

parameter coefficient than female drivers. Moreover, it appears that the speed dependency 

of oscillation estimated calibration coefficient is positively correlated with driver age, with 

the exception of a large spike in this value for the 35–39 age group.  

According to Table A.13, the divorced subcategory was estimated to have the 

highest average speed dependency of oscillation coefficient (i.e., wider oscillation 

behavior) (mean = 3.3 x 10-4 rad/s); this subcategory also had the highest within 

subcategory variation. The 20–24 age group was estimated to have the smallest speed 

dependency of oscillation coefficient (i.e., narrower oscillatory behavior) (mean = 1.7 x 

10-4 rad/s); the 40–44 age group achieved the smallest within subcategory variation. The 

income attribute reported the smallest average variation across all subcategories 

comprising the attribute (2.2 x 10-4 rad/s). The driver mileage last year attribute reported 

the largest average variation across all subcategories (2.3 x 10-4 rad/s).  
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Figure 5.13 Estimated Wiedemann 99 Speed Dependency of Oscillation (cc6) 

Coefficient Segmented by Driver Attributes 
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Figure 5.14 describes how the W99 oscillation acceleration (cc7) parameter 

estimates vary with driver attributes; this parameter represents the maximum acceleration 

of the following vehicle during the oscillatory behavior of the following process. Only 

three of the eight driver attributes were found to vary across subcategories at a statistically 

significant level: age group, race, and income. The 40–44 age group was estimated to have 

the lowest oscillatory acceleration (mean = 0.62 m/s2), as well as the lowest within 

subcategory variation (standard deviation = 0.8 m/s2), as documented in Table A.14. The 

$40–49k income subcategory was estimated to have the highest oscillatory acceleration 

(mean = 2.13 m/s2). The widow(er) subcategory had the highest within subcategory 

variation (standard deviation = 3.0 m/s2). The income attribute achieved the lowest average 

variation across all subcategories (standard deviation = 1.8 m/s2). Lastly, the marital status 

attribute had the highest average variation across all subcategories (standard deviation = 

2.1 m/s2); it is worth noting that the widow(er) subcategory significantly increased the 

variation across the marital status attribute. 

Figure 5.15 describes how the W99 standstill acceleration (cc8) coefficient 

estimates vary as a function of subcategories of driver attributes; this parameter represents 

the maximum acceleration of the following vehicle when accelerating from a stop. None 

of the attributes were found to vary at a statistically significant level across the different 

subcategories. Again, this could be attributable to data incompleteness, where not all trips 

consist of data collected at very low speeds. 

Figure 5.16 describes how the W99 acceleration at 80 kph (cc9) coefficient 

estimates vary with driver attributes; this parameter represents the maximum acceleration 

of the following vehicle when it is travelling at high speeds. Race was the only attribute 

for which there were statistically significant differences in the calibrated cc9 values across 

the subcategories.  



 128 

Practically speaking, the negative inverse of the cc7, cc8, and cc9 parameters are 

used to calculate the maximum deceleration rates of the W99 model. It is quite surprising 

that so little valuable differences between the subcategories of driver attributes are 

observed, especially given the variation of the observed minimum, maximum, and average 

acceleration values in the original SHRP2 data, as shown in Figure 5.1 through Figure 5.3. 

The author has two hypotheses for this discrepancy. The first hypothesis is concerned that 

the W99 model may oversimplify the nuanced differences in acceleration behavior evident 

in the naturalistic data. However, this observation is more likely an artifact of the 

calibration process itself. The W99 car-following model is the most complex to calibrate, 

given the necessity to calibrate eleven separate parameters. It has been observed through 

other calibration efforts, such as Methods and tolls for supporting the Use calibration and 

validation of Traffic simulation moDEls (MULTITUDE) project (European Cooperation 

in Science and Technology, n.d.), that the car-following model calibration problem likely 

does not produce a unique solution. The author is confident in the calibration process, as 

the genetic algorithm consistently converges with an acceptable root mean squared error 

between the predicted and observed spacing profiles. It is possible that the algorithm is 

leveraging the large number of calibration coefficients to its advantage (i.e., the algorithm 

identifies reasonable values for coefficients that are harder to calibrate and toys with the 

values for the remaining parameters to achieve a more optimal solution). In future research, 

the author recommends innovative calibration strategies, such as those documented in 

Punzo, Montanino, and Ciuffo (2015), to reduce the calibration complexity by only 

calibrating the most critical car-following model parameters.  
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Figure 5.14 Estimated Wiedemann 99 Oscillation Acceleration (cc7) Coefficient 

Segmented by Driver Attributes 
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Figure 5.15 Estimated Wiedemann 99 Standstill Acceleration (cc8) Coefficient 

Segmented by Driver Attributes 
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Figure 5.16 Estimated Wiedemann 99 Acceleration at 80 kph (cc8) Coefficient 

Segmented by Driver Attributes 
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Figure 5.17 describes how the calibrated desired velocity parameter of the W99 car-

following model varies according to driver attributes. All driver attributes were found to 

vary at a statistically significant level across the different subcategories. As illustrated in 

Figure 5.17a, male drivers were estimated to have a lower desired velocity than female 

drivers. Moreover, in Figure 5.17b it is shown that age and desired velocity appear to have 

a negative correlation, with the exception of a large spike in desired velocity for the 40–44 

age group.  

According to Table A.17, the unmarried partners subcategory of the marital status 

attribute was estimated to have the highest desired velocity value (mean = 35.3 m/s), as 

well as the smallest within subcategory variation (standard deviation = 1.5 m/s). The 

widow(er) subcategory was estimated to have the smallest desired velocity value (mean = 

27.3 m/s); this subcategory also had the highest within subcategory variation (standard 

deviation = 3.9 m/s). The age attribute had the lowest average variation across all of the 

subcategories comprising the attribute [mean(standard deviation) = 2.54 m/s], while the 

education attainment attribute appeared to have the highest variation across the 

subcategories [mean(standard deviation) = 2.96 m/s].  
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Figure 5.17 Estimated Wiedemann 99 Desired Velocity (v_des) Coefficient Segmented 

by Driver Attributes 
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Figure 5.18 illustrates how the Gipps desired acceleration parameter estimate varies 

across the eight driver attributes available with the NDS dataset. All driver attributes were 

found to vary at a statistically significant level across subcategories, except the driver 

mileage last year attribute. As illustrated in Figure 5.18a, the calibrated estimate for desired 

acceleration is smaller for male drivers than female drivers; moreover, Figure 5.18c 

indicates that the calibrated value for desired acceleration of Caucasian drivers is smaller 

than that of drivers that did not identify as Caucasian. Figure 5.18b indicates that the 

calibrated desired acceleration estimate is inversely correlated with driver age: as driver 

age increases, the desired acceleration coefficient estimate decreases. Lastly, Figure 5.18e 

suggests that driver desired acceleration is associated with reported marital status.  

As documented in Table A.18, the largest average desired acceleration value was 

estimated for the $40–49k income subcategory (mean = 1.8 m/s2). The smallest average 

desired acceleration value was estimated for the widow(er) marital status subcategory 

(mean = 0.6 m/s2); this subcategory also achieved the smallest within subcategory variation 

(standard deviation = 0.55 m/s2). The largest within subcategory variation was observed in 

the 30–34 age group (standard deviation = 1.18 m/s2). The average attribute variation was 

calculated by averaging the standard deviation across all of the subcategories that comprise 

an attribute (e.g., the male and female subcategories comprise the gender driver attribute); 

the marital status attribute achieved the lowest attribute variation [mean(standard 

deviation) = 0.82 m/s2]. The driver mileage last year attribute had the largest attribute 

variation [mean(standard deviation) = 0.962 m/s2].  



 135 

 

Figure 5.18 Estimated Gipps Desired Acceleration (a_des) Coefficient Segmented by 

Driver Attributes 
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Figure 5.19 depicts how the Gipps desired deceleration coefficient estimate varies 

according to driver attributes. The estimated parameter coefficients were found to vary at 

a statistically significant level for all available driver attributes. Figure 5.19a indicates that 

male drivers were estimated to have larger desired decelerations than female drivers. Figure 

5.19c indicates that Caucasian drivers were estimated to have larger desired decelerations 

than drivers that reported that they are not Caucasian. Figure 5.19b suggests that there is a 

relationship between the estimated desired deceleration and driver age: middle age drivers 

were estimated to have larger desired deceleration values than younger and older drivers. 

Lastly, Figure 5.19g suggests that household size and desired deceleration rates are 

positively correlated: as household size grows, desired deceleration increases. 

Quantitative results are provided in Table A.19. The smallest average desired 

deceleration value was estimated for the widow(er) subcategory (mean = -1.9 m/s2); this 

subcategory also was observed to have the largest within subgroup variation (standard 

deviation = 1.21 m/s2). The largest average desired acceleration value was estimated for 

the unmarried partners subcategory (mean = -3.5 m/s2); this subcategory was also observed 

to have the smallest within subcategory variation (standard deviation = 0.54 m/s2). The 

household size attribute had the smallest average attribute variation [mean(standard 

deviation) = 0.88 m/s2], while the driver mileage last year attribute had the largest attribute 

variation [mean(standard deviation) = 0.94 m/s2]. 
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Figure 5.19 Estimated Gipps Desired Deceleration (d_des) Coefficient Segmented by 

Driver Attributes 
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Figure 5.20 shows how the Gipps parameter that captures the following vehicle 

driver’s perception of the leading vehicle desired deceleration varies with driver specific 

attributes. The estimated parameter coefficients were found to vary across subcategories of 

driver attributes at a statistically significant level. Figure 5.20a indicates that male drivers 

were estimated to have smaller perceptions of leading vehicle desired decelerations than 

female drivers. Figure 5.20b suggests that there is a relationship between the estimated 

desired deceleration and driver age: middle age drivers were estimated to have smaller 

perceptions of leading vehicle desired deceleration values than younger and older drivers. 

If the trends in the data sound familiar, it is because we observed these trends with a 

previously described parameter: desired deceleration; in fact, the relationship between the 

estimated perceived driver deceleration rate and driver attributes very closely follows the 

relationships observed for the estimated following vehicle desired deceleration rate and 

driver attributes. This is because the following vehicle desired deceleration parameter and 

the following vehicle’s perception of the leading vehicle’s desired deceleration parameter 

are highly correlated (Pearson R correlation coefficient = 0.86) (Hammit, Ghasemzadeh, 

et al., 2018).  

As documented in Table A.20, the smallest average perception of leader’s desired 

deceleration value was estimated for the widow(er) subcategory (mean = -1.7 m/s2); this 

subcategory was observed to have the largest within subgroup variation (standard deviation 

= 1.1 m/s2). The largest average perception of leading vehicle desired acceleration 

coefficient was estimated for the unmarried partners subcategory (mean = -3.1 m/s2); this 

subcategory was also observed to have the smallest within subcategory variation (standard 

deviation = 0.7 m/s2). The household size attribute had the smallest average attribute 

variation [mean(standard deviation) = 0.90 m/s2], while the driver mileage last year 
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attribute was found to have the largest attribute variation [mean(standard deviation) = 0.94 

m/s2]. 

Figure 5.21 illustrates how the Gipps desired distance at a stop (g_min) estimated 

parameter coefficient varies across subcategories of driver attributes. The desired distance 

at a stop parameter varied at a statistically significant level for half of the available driver 

attributes: age, race, marital status, and income.  

According to Table A.21, the smallest average desired distance at a stop parameter 

was estimated for the 35–39 age group subcategory (mean = 3.2 m). The largest average 

desired distance at a stop parameter was estimated for the widow(er) subcategory of the 

marital status attribute (mean = 5.9 m). The widow(er) subcategory was one of three to be 

estimated to have desired distance at a stop parameter status above 5m; the other two 

subcategories were 60–69 and 70+ age groups. The smallest within subcategory variation 

was observed for the $40–49k income group (standard deviation = 2.6 m). The largest 

within subcategory variation was observed for the widow(er) subcategory (3.7 m). The 

smallest average variation within an attribute was observed for the race attribute 

[mean(standard deviation) = 2.98 m]. The largest average variation within an attribute was 

observed for the driver mileage last year [mean(standard deviation) = 3.6 m]. 

Figure 5.22 portrays how the estimated Gipps driver reaction time (t_rxn) 

coefficient estimate varies across driver attributes. The estimated reaction time coefficient 

varied at a statistically significant level for all attributes except driver gender. 

 

 



 140 

 

Figure 5.20 Estimated Gipps Perceived Desired Deceleration of Leading Vehicle 

(d_lead) Coefficient Segmented by Driver Attributes 
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Figure 5.21 Estimated Gipps Desired Gap at a Stop (g_min) Coefficient Segmented by 

Driver Attributes 
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According to Figure 5.22 and Table A.22, the smallest average reaction time 

parameter coefficient was estimated for the $50–69k subcategory of the income attribute 

(mean = 0.50 s); this subcategory was also found to have the smallest within subcategory 

variation (standard deviation = 0.40 s). The largest average reaction time coefficient was 

estimated for the widow(er) subcategory of the marital status driver attribute (mean = 1.0 

s); this subcategory was also found to have the largest within subcategory variation 

(standard deviation = 0.60 s). The educational attainment attribute had the smallest average 

variation across the subcategories [mean(standard deviation) = 0.50 s]. The age attribute 

was found had the largest average variation across the comprising subcategories 

[mean(standard deviation) = 0.52 s]. 

Figure 5.23 illustrates how the Gipps’ desired velocity (v_des) estimated 

coefficient varies across driver specific attributes. The desired velocity estimates were 

found to vary across all subcategories of driver attributes at a statistically significant level. 

In Figure 5.23a, it is illustrated that the estimated value for desired velocity is smaller for 

male drivers than it is for female drivers. In Figure 5.23c, it is observed that the estimated 

parameter coefficient for desired velocity is smaller for Caucasian drivers than for drivers 

that do not identify as Caucasian. Figure 5.23b suggests that desired velocity and driver 

age are inversely correlated excluding the 40–44 age group, which is significantly higher 

than adjacent subcategories. Figure 5.23f indicates that driver income and desired velocity 

may be positively correlated apart from the $70–99k subcategory, which is abruptly smaller 

than adjacent subcategories.  
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Figure 5.22 Estimated Gipps Reaction Time (t_rxn) Coefficient Segmented by Driver 

Attributes 
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As illustrated in Figure 5.23 and Table A.23, the smallest average desired velocity 

coefficient was estimated for the widow(er) subcategory (mean = 28.1 m/s). The maximum 

average desired velocity coefficient was estimated for the unmarried partners subcategory 

(mean = 35.0 m/s). It should be noted that these trends are consistent with the desired 

velocity parameter estimated for the W99 car-following model, documented in Figure 5.17 

and Table A.17. The smallest within subcategory variation was observed for the divorced 

subcategory (standard deviation = 1.7 m/s). The largest within subcategory variation was 

calculated for the 60–69 age group (standard deviation = 4.4 m/s). The smallest within 

attribute variation was calculated for the age attribute [mean(standard deviation) = 3.1 m/s], 

while the largest within attribute variation was calculated for the household size attribute 

[mean(standard deviation) = 3.6 m/s]. 

Figure 5.24 illustrates how the IDM maximum desired acceleration (a) estimated 

parameter coefficient varies across driver specific attributes. The maximum desired 

acceleration estimated coefficient varied across all subcategories of driver attributes except 

gender and age.  

According to Table A.24, the smallest average maximum desired acceleration 

coefficient was estimated for the widow(er) subcategory of the marital status attribute 

(mean = 0.32 m/s2); this subcategory was also observed to have the smallest within 

subcategory variation (standard deviation = 0.32 m/s2). The largest average maximum 

desired acceleration parameter coefficient was estimated for the $40–49k income category 

(mean = 1.39 m/s2). The largest within subcategory variation was observed to occur within 

the 35–39 age group (standard deviation = 1.06 m/s2). The smallest average within attribute 

variation across the subcategories was observed for the marital status attribute 

[mean(standard deviation) = 0.76 m/s2]. The largest average within attribute variation was 

calculated for the household size attribute [mean(standard deviation) = 0.84 m/s2). 
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Figure 5.23 Estimated Gipps Desired Velocity (v_des) Coefficient Segmented by Driver 

Attributes 
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Figure 5.24 Estimated Intelligent Driver Model Maximum Desired Acceleration (a) 

Coefficient Segmented by Driver Attributes 
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Figure 5.25 portrays how the IDM maximum desired deceleration (b) estimated 

coefficient varies across driver specific attributes. The maximum desired deceleration 

parameter estimates were found to vary at a statistically significant level for all 

subcategories of driver attributes. According to Figure 5.25a, the average maximum 

desired acceleration coefficient for male drivers is larger than that estimated for female 

drivers. In Figure 5.25b, it is observed that the estimated maximum desired deceleration 

rate for middle age drivers is higher than for younger and older drivers; this observation is 

consistent with trends observed across the calibrated estimates for the Gipps maximum 

desired deceleration parameter in Figure 5.19b. Figure 5.25c suggests that the estimated 

maximum desired deceleration rate is higher for Caucasian driver than it is for drivers who 

do not identify as Caucasian. Lastly, Figure 5.25g indicates that household size and 

estimated maximum desired deceleration rate are positively correlated: as household size 

increases, maximum desired deceleration rate increases. 

According to Table A.25, the smallest average maximum desired deceleration rate 

was estimated for the $40–49k subcategory of the income attribute (mean = 1.4 m/s2). The 

largest average maximum desired deceleration rate was observed for the unmarried 

partners subcategory of the marital status attribute (mean = 3.2 m/s2); this attribute was 

also observed to have the smallest within subcategory variation (standard deviation = 1.07 

m/s2). The subcategory with the largest variation was the widow(er) subcategory (standard 

deviation = 1.60 m/s2). The marital status attribute was observed to have the smallest 

average within attribute variation [mean(standard deviation) = 1.35 m/s2]; the household 

size attribute was calculated to have the largest [mean(standard deviation) = 1.41 m/s2]. 
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Figure 5.25 Estimated Intelligent Driver Model Maximum Desired Deceleration (b) 

Coefficient Segmented by Driver Attributes 
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Figure 5.26 shows how the IDM free acceleration exponent (𝛿) estimated parameter 

coefficient varies across driver specific attributes. This parameter describes how a driver’s 

acceleration decreases as the velocity approaches the desired velocity. The free 

acceleration exponent was found vary at a statistically significant level across all attributes 

except gender and age.  

According to Table A.26, the smallest average 𝛿 parameter coefficient was 

estimated for the widow(er) subcategory (mean = 24.6); the widow(er) subcategory also 

achieved the smallest within subcategory variation (standard deviation = 28.6). The largest 

average 𝛿 parameter coefficient was estimated for the divorced subcategory (mean = 59.4). 

The largest within subcategory variation was observed for the 60–69 age group (standard 

deviation = 41.7). The smallest average variation across an attribute was observed for 

marital status [mean(standard deviation) = 35.8]. The largest average variation across an 

attribute was observed for driver age [mean(standard deviation) = 38.6]. 

Figure 5.27 portrays how the IDM jam distance (g_min) estimated coefficient 

varies across driver attributes. The jam distance estimated coefficient varied at a 

statistically significant level for half of the driver attributes: age, race, marital status, and 

income. According to Table A.27, the largest average parameter estimate for jam distance 

was found for the unmarried partner subcategory (mean = 5.3 m). The smallest average 

jam distance coefficient was estimated for the 6–9k miles driven last year subcategory 

(mean = 3.2 m). The smallest within subcategory variation was calculated for the $40–49k 

income subcategory (standard deviation = 2.3 m). The largest within subcategory variation 

occurred in the widow(er) subcategory (standard deviation = 3.9 m). The smallest average 

within attribute variation was calculated for the race attribute [mean(standard deviation) = 

3.1 m], while the largest average within attribute variation occurred in the age attribute 

[mean(standard deviation) = 3.3 m]. 
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Figure 5.26 Estimated Intelligent Driver Model Free Acceleration Component (𝛿) 

Coefficient Segmented by Driver Attributes 



 151 

 

Figure 5.27 Estimated Intelligent Driver Model Jam Distance (g_min) Coefficient 

Segmented by Driver Attributes 
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Figure 5.28 illustrates how the IDM desired time gap (t_gap) estimated coefficient 

varies according to driver attributes. The estimated desired time gap coefficient varies at a 

statistically significant level across all subcategories of driver attributes, excluding race.  

According to Table A.28, the smallest average desired time gap coefficient was 

estimated for the 25–29 age group (mean = 0.47 s); this subcategory also achieved the 

smallest within subcategory variation (standard deviation = 0.20 s). The largest average 

desired time gap coefficient was estimated for the widow(er) subcategory (mean = 1.73 s); 

this subcategory was also found to have the largest within subcategory variation (standard 

deviation = 1.52 s). The smallest average attribute variation across subcategories was 

calculated for the household size attribute [mean(standard deviation) = 0.50 s]; conversely, 

the largest average attribute variation was calculated for the driver mileage last year 

attribute [mean(standard deviation) = 0.55 s].  

Figure 5.29 documents how the IDM desired velocity attribute estimated 

coefficient changes across driver attributes. The desired velocity coefficient estimates were 

found to vary at a statistically significant level across all subcategories of driver attributes. 

As illustrated in Figure 5.29a, the estimated desired velocity of male drivers is lower than 

that estimated for female drivers. Figure 5.29b suggests that desired speed and driver age 

are inversely correlated; the 40–44 age group does not fit this trend, with a significant spike 

in estimated value compared to the adjacent subcategories. Figure 5.29f may suggest that 

desired speed is somewhat positively correlated with driver income; the $70–99k 

subcategory does not fit this trend, with a significant drop in estimated value compared to 

adjacent categories. Figure 5.29e illustrates that marital status and desired velocity are 

correlated.  
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Figure 5.28 Estimated Intelligent Driver Model Desired Time Gap (t_gap) Coefficient 

Segmented by Driver Attributes 
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The smallest desired velocity coefficient was estimated for the widow(er) 

subcategory (mean = 29.4 m/s). The unmarried partner subcategory was estimated to have 

the largest average desired velocity coefficient (35.8 m/s). The smallest within subcategory 

variation was calculated for the divorced subcategory of the marital status attribute 

(standard deviation = 2.1 m/s). The largest within subcategory variation was calculated for 

the 13–15k miles driven last year subcategory (standard deviation = 5.3 m/s). The smallest 

average within attribute variation across subcategories was calculated for the age attribute 

[mean(standard deviation) = 3.1 m/s]. The largest within attribute variation was found in 

the educational attainment attribute [mean(standard deviation) = 3.5 m/s]. 
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Figure 5.29 Estimated Intelligent Driver Model Desired Velocity (v_des) Coefficient 

Segmented by Driver Attributes 
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5.2.2.3. Comparing Results across Car-Following Models: Shared Parameters 

In the previous section, this dissertation evaluates trends in calibrated parameter 

estimates for three car-following models across eight available driver attributes in the 

SHRP2 NDS. These three car-following models are comprised of a total of 29 different 

calibration parameters. Although the three car-following models have different functional 

forms, several calibration parameters have similar physical interpretations across the 

models. Therefore, it is an interesting exercise to see how the parameters with similar 

physical meanings relate across the different model structures. In addition, consistent 

trends and estimates for these similarly defined parameters helps to increase confidence in 

the model calibration procedure, which was solved with a heuristic instead of an exact 

solution method. There are five physically interpretable parameters that are seen in two or 

more of the calibrated models:  

• Time gap: (i) W99 spacing time (cc1) and (ii) IDM desired time gap (t_gap)  

• Maximum acceleration rate: (i) Gipps maximum desired acceleration rate 

(a_des) and (ii) IDM maximum desired acceleration rate (a); 

• Maximum deceleration rate: (i) Gipps maximum desired deceleration rate 

(d_des) and (ii) IDM maximum desired deceleration rate (b); 

• Inter-vehicle spacing at a stop: (i) W99 standstill distance (cc0), (ii) Gipps 

minimum gap at a stop (g_min), and (iii) IDM jam distance (g_min); and  

• Desired velocity: (i) W99 desired velocity (v_des), (ii) Gipps desired 

velocity (v_des), and (iii) IDM desired velocity (v_des). 

The W99 spacing time and the IDM desired time gap estimated coefficients are 

documented in Figure 5.8 and Figure 5.28, respectively. There were more driver attributes 

exhibiting statistically significant differences in estimated parameter coefficients for the 

IDM desired time gap parameter; however, race was not found to vary at a statistically 
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significant level for either parameter. The 25–29 age group was estimated to have the 

smallest value for both parameters, with average coefficients of 0.58 s and 0.47 s, 

respectively. Moreover, the widow(er) subcategory was estimated to have the highest 

parameter coefficients, with average values of 2.16 s and 1.73 s, respectively. For both 

parameters, the 25–29 age group and widow(er) subcategories were found to have the 

smallest and largest within subcategory variation, respectively.  

The Gipps and IDM maximum desired acceleration estimated parameter 

coefficients are documented in Figure 5.18 and Figure 5.24, respectively. The $40–49k 

income subcategory was estimated to have the largest average maximum desired 

acceleration rate for both parameters, with values of 1.8 m/s2 and 1.4 m/s2, respectively. 

Moreover, the widow(er) subcategory was estimated to have the smallest average 

maximum desired acceleration rate for both models, with estimates of 0.6 m/s2 and 0.3 

m/s2, respectively; this subcategory achieved the smallest within subcategory variation for 

both estimated parameters. Additionally, the marital status attribute was calculated to have 

the smallest within attribute variation for both estimated parameters.  

The Gipps and IDM maximum desired deceleration estimated parameter 

coefficients are documented in Figure 5.19 and Figure 5.25, respectively. Numerous 

similarities in trends are documented. All subcategories comprising driver specific 

attributes were found to vary at statistically significant levels for both calibration 

parameters. Male drivers were estimated to have larger maximum desired deceleration 

parameter coefficients than female drivers for both models. Additionally, both models were 

estimated to have larger maximum desired deceleration rates for middle age drivers than 

for younger or older driver groups. Furthermore, household size and maximum desired 

deceleration rate were found to be positively correlated for both models. Although the 

subcategories documented as having the smallest maximum desired deceleration rate were 



 158 

slightly different (widow(er) and $40–49k income subcategory, respectively), the 

unmarried partners subcategory was assigned the largest average parameter estimate for 

both models, with average coefficients of 3.6 m/s2 and 3.18 m/s2, respectively. 

Parameters loosely representing the minimum inter-vehicle spacing when vehicles 

are stopped are included in all three models: W99 standstill distance (Figure 5.7), Gipps 

minimum distance at a stop (Figure 5.21), and IDM jam distance (Figure 5.27). Of the five 

examples of similarly interpretable model parameters, this attribute is documented as 

having the least similarities across the different models. The estimated parameter 

coefficients were not found to vary at a statistically significant level across subcategories 

for the driver gender or reported mileage driven last year attributes for any of the three 

parameters. Additionally, across all three models, the race attribute achieved the lowest 

average within attribute variation, while the mileage driven last year attribute achieved the 

highest average variation for the Gipps and W99 parameters.  

Finally, the W99, Gipps, and IDM models each have a desired velocity estimated 

parameter; these estimates are included in Figure 5.17, Figure 5.23, and Figure 5.29. All 

subcategories of driver attributes were found to vary at statistically significant levels for 

each of the three estimated parameters. Across all three models, male drivers were 

estimated to have lower desired velocities than female drivers. Additionally, the results 

suggest that driver age and desired velocity are inversely correlated; for each of the three 

models, the 40–44 age group appears to be an exception, as this subcategory has a 

substantially higher estimated coefficient than the adjacent subcategories. The results also 

suggest that desired velocity and income are somewhat correlated for each of the three 

models, with an exception for the $70–99k income group; this income group has a 

considerably lower average estimated parameter coefficient than adjacent categories across 

each of the three model parameters. The widow(er) subcategory was estimated to have the 
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smallest average desired velocity coefficient for each of the three models, with desired 

speeds of 27.3 m/s, 28.1 m/s, and 29.4 m/s, respectively. Additionally, the unmarried 

partners subcategory was estimated to have the largest average desired velocity values 

across all three models: 35.2 m/s, 34.9 m/s, and 35.8 m/s, respectively.  

 

5.2.3. Conclusions 

In conclusion, this effort explores research question number four posed by this 

dissertation: when subsamples of drivers are created using driver attributes, are the 

parameter sets for the different subsamples of drivers sufficiently different to justify the 

segmentation of the data? 

To answer this question, three widely accepted car-following models are calibrated 

to a 665-trip sample of the SHRP2 NDS dataset. Eight driver attributes collected in 

questionnaires as part of the SHRP2 NDS data collection effort—gender, age, race, 

educational attainment, marital status, income, household size, and self-reported driver 

mileage last year—are used to segment data into hypothesized subgroups of data. 

The purpose of this chapter is to provide support for Chapters 8 and 9 of this 

dissertation. Toward this end, this chapter provides significant evidence that there are 

statistically significant differences in driver behavior (i.e., calibrated car-following model 

parameter estimates) between different subcategories (e.g., male, female) of driver 

attributes (e.g., gender). Segmenting the data across some attributes, such as driver age and 

marital status, produced more conclusive trends than other attributes, such as gender and 

driver mileage last year.  
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5.3. SIMILARITIES IN DRIVING BEHAVIOR WITHIN SUBGROUPS OF DRIVERS 

SEGMENTED BY DRIVER SPECIFIC ATTRIBUTES 

The first objective of this research is to identify homogeneous groups of driving 

behavior. As mentioned throughout this dissertation, there is substantial evidence of 

variation in driving behavior in naturalistic data (A. L. Berthaume, James, Hammit, 

Foreman, & Melson, 2018; James, Hammit, & Ahmed, 2018; Ossen & Hoogendoorn, 

2011). This research seeks to determine if homogeneous groups of driving behavior exist 

within the data: that is, do groups of drivers that behave sufficiently similarly to one another 

for inclusion in a single homogeneous group exist within the data?  

Should question 1 be true, it is important to understand the similarities between 

drivers clustered into the same group of homogeneous driving behavior (i.e., if Driver A 

and Driver B are placed into the same group, what other commonalities do they have 

beyond those used in the similarity assessment?). It is equally important to understand the 

differences between groups of homogeneous drivers (i.e., if Driver A and B are in group 

1, while Driver C and D are in group 2, how are Driver A/B and C/D different?). This 

dissertation hypothesizes that driver attributes can be used to identify commonalities within 

a group and differences between groups of homogeneous driving behavior. 

 

5.3.1. Methodology 

To study these two research questions, first, the Gipps, IDM, and W99 car-

following models are calibrated independently for each of the 665 trips in the available 

sample of SHRP2 NDS data; this procedure is detailed in Section 0. This produces almost 

2000 trip-specific sets of calibration coefficients for analysis.  

Clustering methods were identified as appropriate tools to explore question 1; the 

goal of a clustering analysis is to identify a specified number of classes within the data such 
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that an instance placed in a class is sufficiently similar to the other instances placed within 

the class and sufficiently different to the instances in other classes. Specifically, the 

Expectation Maximization algorithm within Weka, or the Waikato Environment for 

Knowledge Analysis, was selected as the clustering algorithm for this analysis. The 

Expectation Maximization algorithm is a soft clustering algorithm; it assigns instances to 

classes probabilistically and is capable of identifying the optimal number of clusters. The 

Expectation Maximization algorithm has similar intuition to the k-means clustering 

algorithm, but does not produce hard clusters. For k-means, when a cluster is placed, only 

the points within the cluster boundary belong and contribute to the calculation of the cluster 

centroid. For Expectation Maximization, the clusters can be thought of as a distribution 

and boundaries are less rigid. Every single data point will contribute to the location of 

cluster centroids in Expectation Maximization, with data points strongly associated with a 

cluster providing more influence to that cluster’s centroid than other data points (Witten, 

Frank, Hall, & Pal, 2017d). 

Assigning cluster IDs probabilistically requires an iterative solution: what comes 

first, the apple or the egg? If one knew which instance belonged to which distribution or if 

one knew the mean and variance of the normal distributions to which the instances 

belonged, assigning cluster IDs would be trivial. Given that that information is not initially 

available the Expectation Maximization algorithm is required. 

To initialize the Expectation Maximization algorithm, k Gaussian distributions (i.e., 

clusters) are placed with an assumed mean (𝜇) and variance (𝜎2). For conciseness, this 

explanation will assume k=2 (Cluster A and Cluster B), though this algorithm extends 

beyond two clusters. 
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The mean and variance parameters of each Gaussian are used to calculate the 

probability that each data point is associated with each distribution. Equations 5.1 and 5.2 

determine if an instance appears more like a sample from Cluster A or Cluster B: 

𝑃(𝑥𝑖  |𝑎) =  
1

√2𝜋𝜎𝑎2
exp (−

(𝑥𝑖 − 𝜇𝑎)
2 

2𝜎𝑎2
) 

5.1 

𝑃(𝑥𝑖 |𝑏) =  
1

√2𝜋𝜎𝑏
2
exp (−

(𝑥𝑖 − 𝜇𝑏)
2 

2𝜎𝑏
2 ) 

5.2 

Next, the points are softly assigned to the distributions through posterior 

probabilities, which are conditional probabilities assigned after relevant evidence (i.e., 

means and variances of the distributions) is accounted for. Equations 5.3 and 5.4 determine 

the degree to which each point belongs to Cluster A and Cluster B (i.e., soft clustering): 

𝑎𝑖 = 𝑃(𝑎𝑖|𝑥𝑖) =  
𝑃(𝑥𝑖 |𝑎) 𝑃(𝑎)

𝑃(𝑥𝑖 |𝑎)𝑃(𝑎) +  𝑃(𝑥𝑖 |𝑏)𝑃(𝑏)
 5.3 

𝑏𝑖 =  𝑃(𝑏𝑖|𝑥𝑖) = 1 − 𝑎𝑖   5.4 

Next, the means and variances of the distributions are adjusted based on the 

probability of the points belonging to each of the distributions: 

𝜇𝑎 =
𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛

𝑎1 + 𝑎2 +⋯+ 𝑎𝑛
 

5.5 

𝜎𝑎
2 =

𝑎1(𝑥1 − 𝜇𝑎) + ⋯+ 𝑎𝑛(𝑥𝑛 − 𝜇𝑎)

𝑎1 +⋯+ 𝑎𝑛
 5.6 

𝜇𝑏 =
𝑏𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛
𝑏1 + 𝑏2 +⋯+ 𝑏𝑛

 5.7 

𝜎𝑏
2 =

𝑏1(𝑥1 − 𝜇𝑏) + ⋯+ 𝑏𝑛(𝑥𝑛 − 𝜇𝑏)

𝑏1 +⋯+ 𝑏𝑛
 5.8 
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This procedure—identifying the probability that each point belongs to each cluster 

and re-estimating the parameters of the Gaussian distributions for each cluster based on the 

probabilities—repeats until convergence.  

An example of the results of the Expectation Maximization algorithm for one of 

the parameters is shown in Figure 5.30. The Expectation Maximization algorithm assigns 

each trip (i.e., driver) a cluster ID, indicating to which cluster of homogeneous car-

following model parameter coefficients driver belongs. 

 

 

Figure 5.30 Clusters Identified by the Expectations Maximization Algorithm for the 

Maximum Desired Acceleration Parameter of the Gipps Model (James & Hammit, 2019) 

Classification methods were explored as tools to provide insight into question 2. 

This effort classifies the data based on similarity/differences in driver attributes (e.g., age, 

gender, marital status). Four classification methods were utilized in this dissertation: 

• ZeroR: Predicts that all data belongs to the majority class (Witten, Frank, 

Hall, & Pal, 2017b). For the purpose of this paper, this is the “baseline” 

accuracy measure (i.e., model performance without using driver attributes 

to improve the classification results). This is analogous to a modeler using 

the most common driving behavior to describe all of the observed behavior.  
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• OneR: Produces a one-level decision tree in the form of a set of rules for the 

most predictive attribute (Witten et al., 2017b).  

• Divide-and-conquer strategies: The goal of divide-and-conquer strategies is 

to maximize the separation between classes by choosing attributes that 

maximize the information gain on which to split. The J48 Decision Tree 

and PART Decision Rules algorithms are both types of divide-and-conquer 

classification strategies (Witten et al., 2017b) 

o J48 Decision Tree: Recursively builds a C4.5 decision tree, taking 

all classes into account when making decisions. The logic of the J48 

algorithm is as follows: (i) select attributes for root node, creating 

one branch for each attribute value; (ii) split instances into subsets, 

one for each branch extending from the node; and (iii) recursively 

repeating the process for each branch, only using attributes that 

reach that branch (Witten et al., 2017b).  

o PART Decision Rules: Derives classification rules using a C4.5 

inspired heuristic, concentrating on one class at a time. The logic of 

the PART algorithm is as follows: (i) make a rule by building a tree 

and reading off the rule for the largest leaf; (ii) remove all instances 

this rule covers; (iii) discard the tree; and (iv) repeat steps for 

remaining data not covered by previously developed rules (Witten 

et al., 2017b).  

The success of the classification method is determined by the model’s ability to 

accurately assign a trip to the cluster it belongs to only using attributes about the driver; 

this is referred to as the model’s accuracy rate, or the number of trips correctly assigned to 
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the homogeneous behavioral cluster to which it belongs. A 10-fold cross-validation 

protocol was used to robustly estimate the accuracy rate of the classification algorithms. 

Attribute selection methods were used to help eliminate redundant and irrelevant 

attributes before the classification procedures were applied (Witten, Frank, Hall, & Pal, 

2017c). Specifically, the CfsSubsetEval method in Weka was utilized, which uses an 

entropy-based metric called symmetric uncertainty to explore the predictive power and the 

degree of inter-redundancy of each attribute before making independent variable 

recommendations in the classification problem.  

The framework used to cluster and classify driving behavior by driver attributes is 

shown in Figure 5.31. The process is repeated independently for each of the calibration 

model parameters from each car-following model. 
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Figure 5.31 Framework of Proposed Procedure to Cluster and Classify Calibrated 

Parameter Coefficients (James & Hammit, 2019) 



 167 

5.3.2. Results 

The results of the attribute selection process for the W99, Gipps, and IDM, models 

are available in Table 5.1, 0, and Table 5.3, respectively. The results of the clustering and 

classification methods for the W99, Gipps, and IDM models are available in Table 5.4, 

Table 5.5, and Table 5.6, respectively.  

 

5.3.2.1. Attribute Selection 

As evident in Table 5.1, 0, and Table 5.3, the most important driver attributes vary 

between each parameter. The most commonly selected attributes were age (21 parameters), 

marital status (18 parameters), and income (11 parameters). The least frequently selected 

attributes were gender, race, and educational attainment. This is somewhat corroborative 

with the literature review, where age was more commonly used than gender to reduce 

heterogeneity in desired speed and headway data (Boyce & Geller, 2002; Elander et al., 

1993). The frequency of the selection of marital status as a critical attribute in the 

identification of clustered behavior was a bit surprising; the authors postulate that one 

possible explanation for this observation could be the presence of passengers (e.g., spouse, 

children) in the vehicle, but this is difficult to verify given the data available.   
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Table 5.1 W99 Parameters Attribute Selection Results 

 Model Calibration Parameters CfsSubsetEval Results 

Standstill Distance (cc0) Marital Status, Income 

Spacing Time (cc1) Age Group, Driver Mileage Last Year 

Following Variation, Maximum 

Drift (cc2) Gender, Age Group, Marital Status 

Threshold for Entering ‘Following’ 

(cc3) 

Age Group, Marital Status, Income, Driver 

Mileage Last Year 

Negative Following Threshold (cc4) Age Group, Marital Status, Household Size 

Positive Following Threshold (cc5) Age Group, Marital Status, Household Size 

Speed Dependency of Oscillation 

(cc6) 

Gender, Age Group, Marital Status, Driver 

Mileage 

Oscillation Acceleration (cc7) Age Group, Marital Status, Race 

Standstill Acceleration (cc8) Age Group, Race, Income, Household Size 

Acceleration at 80 kph (cc9) Age Group, Marital Status, Driver Mileage 

Desired Speed (vdes) 
Age Group, Marital Status, Driver Mileage 

Last Year  

All W99 Parameters Age Group, Marital Status 

 

Table 5.2 Gipps Parameters Attribute Selection Results 

Model Calibration Parameter CfsSubsetEval Results 

Maximum Desired 

Acceleration (a)  

Age Group, Education, Marital Status, Living 

Status, Work Status, Income 

Maximum Desired 

Deceleration (b) 

Gender, Age Group, Education, Marital Status, 

Income 

Perception of Leading 

Vehicle’s Desired Braking (�̂�) 

Age Group, Education, Marital Status, Income, 

Driver Mileage Last Year 

Minimum Following Distance 

at a Stop (s0) 
Marital Status, Age Group, Income 

Reaction Time (𝝉)  Age Group, Income, Driver Mileage Last Year 

Desired Velocity (V) 

Age Group, Marital Status, Driver Mileage Last 

Year 

All Gipps Parameters  
Age Group, Marital Status, Education, Income, 

Household Size, Gender 
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Table 5.3 IDM Parameters Attribute Selection Results 

 Model Calibration Parameter CfsSubsetEval Results 

Maximum Desired Acceleration (a)  Age Group, Household Size 

Maximum Desired Deceleration (b)  

Gender, Age Group, Education, Marital 

Status, Income 

Free Acceleration Exponent (𝜹) Education, Marital Status, Race, Income 

Jam Distance (s0) Age Group, Marital Status, and Income 

Desired Time Gap (T) Age Group, Driver Mileage Last Year 

Desired Velocity (v0) 

Age Group, Marital Status, Driver Mileage 

Last Year 

All IDM Parameters 

Marital Status, Age Group, Driver Mileage 

Last Year 

 

5.3.2.2. Number of Clusters 

The clusters are intended to represent pockets of homogeneous driver behavior. The 

Expectation Maximization algorithm successfully identified clusters of calibrated car-

following model parameter coefficients; this provides significant evidence towards the 

hypothesis that there exist trips (i.e., drivers) that are sufficiently similar to one another to 

be considered a homogeneous group. The optimal number of clusters varies significantly 

between each parameter, as shown in Table 5.4, Table 5.5, and Table 5.6. The number of 

optimal clusters, determined by the Expectation Maximization algorithm, varied from three 

clusters to eleven clusters. Three and four clusters were the most frequently occurring 

number of optimal clusters, each occurring four times across the parameters.  

 

5.3.2.3. Classification  

The classification results are shown in Table 5.4, Table 5.5, and Table 5.6. As 

discussed in the Methodology section, the ZeroR algorithm produces the accuracy rate 
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when all data are classified as the majority class; this is considered the baseline 

classification accuracy rate (i.e., the best one can do without using independent variables 

in the classification process). The OneR, J48, and PART algorithms were applied to discern 

if there were underlying relationships between the clusters of homogeneous parameter 

coefficients and driver specific attributes; this would be evident by an improvement in the 

accuracy rate when using driver attributes as independent variables.  
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Table 5.4 W99 Parameters Clustering and Classification Results 

Model Calibration 

Parameter 

Optimal 

# of 

Clusters 

ZeroR  

Accuracy 

Rate 

Best Model  

Accuracy 

Rate 

Difference 

From 

ZeroR (%) 

Best 

Model 

Standstill Distance 

(cc0) 
6 163 201 23 OneR 

Spacing Time (cc1) 9 173 216 25 J48 

Following Variation, 

Maximum Drift (cc2) 
3 450 494 10 OneR 

Threshold for 

Entering ‘Following’ 

(cc3) 

4 345 345 0 ZeroR 

Negative Following 

Threshold (cc4) 
4 451 454 1 OneR 

Positive Following 

Threshold (cc5) 
5 214 236 10 OneR 

Speed Dependency of 

Oscillation (cc6) 
10 114 131 15 OneR 

Oscillation 

Acceleration (cc7) 
6 264 296 12 J48 

Standstill 

Acceleration (cc8) 
4 226 229 1 PART 

Acceleration at 80 

kph (cc9) 
5 518 518 0 ZeroR 

Desired Speed (vdes) 4 288 412 43 PART 

All W99 Parameters 4 196 242 23 J48 

 

As shown in Table 5.4, Table 5.5, and Table 5.6, there appears to be a correlation 

between driver specific attributes and clusters of homogeneous driving behavior. Across 

all three models, the use of driver attributes to classify drivers by their desired velocity 

cluster ID was the most successful, with more than a 40% increase in the number of trips 

correctly classified. 
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Table 5.5 Gipps Parameters Clustering and Classification Results 

Model Calibration 

Parameter 

Optimal 

# of 

Clusters 

ZeroR  

Accuracy 

Rate 

Best Model  

Accuracy 

Rate  

Difference 

From 

ZeroR (%) 

Best 

Model 

Maximum Desired 

Acceleration (a)  4 249 299 20 J48 

Maximum Desired 

Deceleration (b) 3 312 342 10 PART 

Perception of Leading 

Vehicle’s Desired 

Braking (�̂�) 4 312 330 6 J48 

Minimum Following 

Distance at a Stop (s0) 6 172 182 6 PART 

Reaction Time (𝝉)  11 187 184 -2 ZeroR 

Desired Velocity (V) 5 229 360 57 J48 

All Gipps Parameters 4 250 298 19% PART 

 

The maximum desired acceleration parameter appears in both the Gipps and IDM 

parameter lists. For both models, there is an improvement in the accuracy rate of the 

classification of drivers by their cluster ID of around 25%. The maximum desired 

deceleration parameter in the Gipps and the IDM results are not quite as consistent. The 

maximum desired deceleration parameter in the Gipps model sees an increase of 10% in 

the accuracy rate; for the IDM parameter, the improvement is 45%. This is an example of 

parameter correlation observed by Kim and Mahmassani (2011) and Punzo et al. (2015), 

where although the parameter has the same physical interpretation, the calibrated value is 

biased by its interaction with the other parameters in the model.  
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Table 5.6 IDM Parameters Clustering and Classification Results 

Model Calibration 

Parameter 

Optimal 

# of 

Clusters 

ZeroR  

Accuracy 

Rate 

Best Model  

Accuracy 

Rate  

Difference 

From 

ZeroR (%) 

Best 

Model 

Maximum Desired 

Acceleration (a)  6 200 251 26 PART 

Maximum Desired 

Deceleration (b)  5 199 288 45 PART 

Free Acceleration 

Exponent (𝜹) 3 291 311 7 PART 

Jam Distance (s0) 4 316 311 -2 PART 

Desired Time Gap (T) 5 249 343 38 J48 

Desired Velocity (v0) 5 194 332 71 J48 

All IDM Parameters 4 185 248 34% OneR 

 

This phenomenon is quite evident in the minimum following distance at a stop 

parameter, which is roughly included in the Gipps (s0), IDM (s0), and the W99 (cc0) car-

following models. For the minimum following distance at a stop parameter, the Gipps and 

W99 model see an improvement in the accuracy rate over the baseline of 6% and 23%, 

respectively. Conversely, for the IDM, the ZeroR method performs best; the introduction 

of the driver attributes as explanatory variables causes the classification method to perform 

more poorly than if they had not been considered at all. The results of the IDM jam distance 

parameter (s0) is an example of overfitting, where the model learned on the training data 

does not generalize to the validation data; the learned model performs worse than the 

baseline model, as the OneR, J48, and PART algorithms should have all learned a model 

that assigns all instances to the majority class. Though there are two instances where the 

use of driver attributes reduces the classification accuracy below that of the baseline model, 

it seems the benefits of using driver attributes in the classification problem outweigh the 

risk.  
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5.3.3. Conclusions 

Section 5.3 sought to address two specific questions concerning car-following 

models and heterogeneity in driving behavior: 

1. Can groups of sufficiently similar driving behavior be identified in trajectory-

level data? 

2. Provided question one proves true, which attributes are valuable in discerning 

similarities within a homogeneous group and differences between homogeneous 

groups? 

To explore these questions, a 665 trip sample from the SHRP2 NDS database was 

obtained and used to calibrate the Gipps, IDM, and W99 car-following models. The 

calibrated model parameters were used as surrogates to represent driving behavior. The 

Expectation Maximization clustering algorithm was applied to each of the car-following 

model parameters to identify the optimal number of clusters of homogeneous groups within 

the dataset. The successful application of the clustering algorithm provides insight into 

question 1: there is evidence in naturalistic data that some drivers behave sufficiently 

similar to one another (and sufficiently different from drivers belonging to a different 

group) to be considered a homogeneous group of drivers.  

Next, attribute selection and classification algorithms were applied to assign drivers 

to the previously obtained clusters of homogeneous driving behavior purely based on driver 

attributes; this was intended to inform insights into question 2. Age and marital status were 

the most commonly selected attributes, while gender, race, and educational attainment 

were the least commonly selected attributes. Although the improvements varied depending 

on the model parameter used for clustering, results indicate that clusters of homogeneous 

car-following model parameters are correlated with driver attributes (i.e., age). Put 

succinctly, some drivers drive sufficiently alike to form a cluster of similar behavior. 
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Moreover, driver specific attributes can be carefully utilized to classify drivers into these 

homogeneous driver groups. 

The practical implications of this research are as follows. Previous research has 

illustrated the importance of modeling an appropriate level of driver heterogeneity, as it 

impacts the propagation of shockwaves and the projected capacity (Ossen & Hoogendoorn, 

2008, 2011). This research illustrates that a modeler may not need to model every single 

driver differently; by identifying groups of drivers that behave sufficiently similar (e.g., 

males, young drivers, drivers navigating work zones), modelers may be able to improve 

the realism of their models, by accounting for heterogeneity, without significantly 

increasing the complexity. These findings reinforce the need to develop a new framework 

to represent car-following heterogeneity in microsimulation models, with the ultimate goal 

of producing more realistic predictions of traffic flow behavior.  

 

5.4. CHAPTER 5 CONCLUSIONS 

In this chapter, there were two primary research questions. The first seeks to 

understand how different the driving behaviors are between different groups of drivers 

(e.g., do male drivers exhibit statistically significant differences in driving behaviors than 

female drivers). The second research question seeks to understand how similar the driving 

behaviors are within different groups of drivers (e.g., should females be considered a group 

of homogeneous drivers, or are the behaviors too inconsistent to be clustered together?).  

The first research question was explored in Section 5.2. Section 5.2 provided two 

fundamental insights critical to this dissertation. The first is that heterogeneity in 

naturalistic driving behavior does vary according to driver specific attributes. This provides 
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some of the first evidence that by controlling for different driver attributes, such as age and 

gender, the heterogeneity in behavior is reduced.  

Section 5.3 explores the second research question. Through the successful 

application of a classification algorithm, this dissertation provides evidence that there does 

exist groups of drivers that behave sufficiently similar to one another to be considered as a 

“homogeneous driver group”. Moreover, this chapter overwhelmingly provides evidence 

that driver attributes may be used to successfully determine these homogeneous driver 

groups, without an a priori knowledge of the specific driver’s behavior.  

Now that it has been established that behavioral heterogeneity is reduced by 

controlling for driver specific attributes, Chapter 6 of this dissertation seeks to determine 

if some models are able to capture the behavior of subgroups of drivers, which are 

segmented by driver attributes, than other models.  
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Chapter 6:  Assessing Relative Model Performance across Driver 

Attributes (Task 2) 

6.1. MOTIVATION 

In Chapter 2 of this dissertation several studies were documented observing 

significant heterogeneity in naturalistic data. In fact, several studies noted that the 

heterogeneity in driving behavior was so significant that it required different optimal 

parameter sets and car-following model functional forms to adequately capture this 

behavioral heterogeneity (Ossen & Hoogendoorn, 2005, 2011). Moreover, adequately 

capturing this heterogeneity was found to alter microsimulation outputs, including the 

propagation of shockwaves and overall corridor capacity (Ossen & Hoogendoorn, 2007). 

Thus, it is a logical extension to wonder if model performance is a function of driver 

attributes. More specifically, this chapter seeks to answer research question number 3 

posed by this dissertation: of common car-following models in the literature, do certain 

models describe subsamples of drivers better than others (e.g., does the Gipps model 

describe female drivers better than the Wiedemann 99 (W99) model)?  

 

6.2. METHODOLOGY 

The methodology used to conduct this analysis has three components. The first 

effort identifies which car-following models to include in the analysis; for details on this 

effort, the reader is referred to Section 3.2.3. The second effort develops and implements a 

calibration procedure to identify optimal parameter sets for each trip. Of interest to this 

chapter is the model calibration score that is attained when the optimal parameter sets are 

obtained. As a reminder, the calibration objective function seeks to identify the set of 

calibration parameter coefficients that minimize the root mean square error (RMSE) 

between the predicted and observed relative spacing profile across the constrained driving 
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states in a second Strategic Highway Research Program (SHRP2) Naturalistic Driving 

Study (NDS) trip; for additional details, the reader is referred to Section 0. To answer the 

aforementioned research question, the model calibration scores are split into 

“subcategories” (e.g., male, female) that comprise a driver “attribute” (e.g., gender). For 

complete details on the available driver attributes, the reader is referred to Table 3.2. To 

evaluate if there are significant differences between the subcategories that comprise a 

driver attribute, the third effort applies statistical tests; this effort is described herein.  

To answer questions regarding the relative performance between models when 

controlling for driver attributes, Kruskal-Wallis one-way analysis of variance (ANOVA) 

tests are conducted; this is a non-parametric alterative to the traditional one-way ANOVA 

test and is required given the non-normality of the distribution of calibration scores, 

confirmed using Anderson-Darling statistical tests. The Kruskal-Wallis is a type of 

hypothesis test that seeks to determine if two or more samples are from identical 

distributions using the distribution medians (i.e., are the distributions statistically 

different?). This allows one to evaluate the statistical significance of differences in 

calibration score within a subcategory (e.g., female W99 score vs. female IDM score vs. 

female Gipps score). The null hypothesis in this test is that the true medians of the 

population scores are equal (i.e., the model performance for that particular driver subgroup 

is essentially the same). Thus, small p-values, 5% alpha levels selected for this analysis, 

result in a rejection of the null hypothesis and the conclusion that the performance of the 

models at capturing the driving behavior for a subpopulation of drivers is statistically 

different.  
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6.3. RESULTS 

Figure 6.1 illustrates how the W99, Gipps, and Intelligent Driver Model (IDM) 

calibration scores vary across subcategories of gender. For all three models, the models 

were able to better predict male driving behavior compared to female behavior, though not 

at a statistically significant level. The W99 model achieved a lower average and median 

score compared to the Gipps and IDM car-following models; the differences in male scores 

across the models were statistically significant, while the differences in female scores were 

not. However, the W99 model also produced the most variability in scores across a 

subcategory: the Gipps model achieved the smallest standard deviation in scores across 

male drivers, while the IDM achieved the smallest standard deviation for female drivers. 
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Figure 6.1 Model Performance Across the Gender Attribute 
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Figure 6.2 portrays the W99, Gipps, and IDM calibration scores across 

subcategories of age. For all three models, the 25–29 and 35–39 age groups exhibited the 

behavior that was the easiest to predict (i.e., lowest calibration score); the behavior of the 

30–34 age group was the most challenging for the models to replicate (i.e., highest 

calibration score). The average and median scores varied across subcategories at a 

statistically significant level for all three car-following models. According to median score, 

the W99 best captured the driving behavior of six of the eight subcategories of age; the 

Gipps model best captured the driving behavior of 35–39-year-olds, while the IDM best 

captured the behavior of 30–34-year-old drivers.  

Figure 6.3 shows the W99, Gipps, and IDM calibration scores across subcategories 

of race. Across all three models, the behavior of Caucasian drivers was better replicated 

than the behavior of drivers that did not identify as Caucasian at a statistically significant 

level. The W99 car-following model better captured the behavior of both subcategories of 

race compared to the Gipps and IDM car-following models. The W99 model also produced 

the highest variability in model calibration score; the Gipps model achieved the smallest 

within subcategory variation for both subcategories of race. 

Figure 6.4 illustrates how the W99, Gipps, and IDM calibration scores vary across 

educational attainment. All three models were able to capture the behavior of the no college 

degree subcategory better than the college degree and graduate degree subcategories; the 

college degree subcategory’s driving behavior received the highest calibration score. The 

score varied across educational attainment subcategories at a statistically significant level. 

The W99 model attained the lowest median score for the no college degree and graduate 

degree subcategories, while the Gipps model achieved the lowest median score for the 

college degree subcategory. The Gipps model obtained the lowest intra-subcategory score 

variation for all three car-following models. 
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Figure 6.2 Model Performance Across the Age Attribute 
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Figure 6.3 Model Performance Across the Race Attribute 
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Figure 6.4 Model Performance Across the Educational Attainment Attribute 
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Figure 6.5 portrays how the W99, Gipps, and IDM calibration scores vary across 

subcategories of marital status. The W99 car-following model best captured the behavior 

of married drivers, while the Gipps and IDM were able to best model divorced drivers’ 

behavior. The single and widow(er) subcategories were the hardest to replicate for the three 

car-following models. The variation in calibration score across the subcategories of marital 

status was statistically significant. The W99 model achieved the lowest median score for 

the unmarried partners, married, and divorced subcategories of drivers. The Gipps model 

best modeled single drivers, while the IDM performed best for the widow(er) subcategory 

of drivers. The W99 model achieved the lowest within subcategory variation for the 

widow(er) subcategory. The Gipps model achieved the lowest within subcategory variation 

for the unmarried partners and married subcategories. The IDM obtained the lowest score 

standard deviation for the single drivers subcategory. The W99 and IDM were able to 

achieve equally small score standard deviations for the divorced subcategory. 

Figure 6.6 documents how the W99, IDM, and Gipps calibration scores vary across 

annual income. The variation in scores was statistically significant for all three models. 

The $50–69k income subcategory achieved the lowest calibration score for each of the 

three models, while the largest income subcategory reported the highest calibration score. 

The W99 model achieved the smallest median calibration score for half of the 

subcategories: $40–49k, $70–99k, and $100–149k. The Gipps model achieved the smallest 

median score for the under $39k and $50–69k income subcategories. Finally, the IDM 

model was best able to capture the driving behavior of the largest income subcategory. The 

Gipps model achieved the lowest within subcategory variation for all of the subcategories 

except one; the IDM produced the smallest within subcategory variation for the smallest 

income subcategory. 

 



 186 

 

Figure 6.5 Model Performance Across the Marital Status Attribute 
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Figure 6.6 Model Performance Across the Annual Income Attribute 
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Figure 6.7 shows how the W99, IDM, and Gipps calibration scores vary across 

reported household size. The variation in scores was statistically significant for all three 

models. The three household members subcategory recorded the lowest calibration score 

for each of the three models. The W99 model best replicated the driving behavior of each 

subcategory of data. Moreover, the W99 model achieved the lowest within subcategory 

variation for all subcategories except the single household member subcategory. 

Figure 6.8 illustrates how the W99, IDM, and Gipps calibration scores vary across 

estimated mileage driven over the last calendar year. The variation in scores was 

statistically significant across the subcategories for all three models. Reported driver 

mileage and calibration scores were inversely correlated, with the lowest category of 

mileage achieving the highest calibration score and the highest category of mileage 

achieving the lowest calibration score. The W99 model achieved the smallest median 

calibration score for the 0–5k, 10–12k, and 20–23k subcategories. The Gipps model best 

matched the 16–19k and 25k+ subcategories. The IDM best replicated the 6–9k and 13–

15k subcategories. Overall, the driver mileage last year attribute achieved the lowest 

average within attribute score (i.e., average(median score) across all subcategories of driver 

mileage last year).  
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Figure 6.7 Model Performance Across the Household Size Attribute 
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Figure 6.8 Model Performance Across the Reported Annual Mileage Driven Last Year 

Attribute 
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6.4. CHAPTER 6 CONCLUSIONS 

Chapter 6 explored the variability of model performance across different 

subcategories of drivers segmented by their driver specific attributes. Towards answering 

research question number 3 posted by this dissertation, Chapter 6 indicates that different 

car-following models have varying degrees of success in capturing the driving behavior of 

different drivers. This is evidence that different car-following models should be used to 

approximate the behavior of different drivers. Furthermore, Chapter 6 suggests that driver 

attributes are one element that could be used successfully to decide which model should be 

used to characterize the behavior of a driver. 

The key points of the chapter are summarized as follows: 

• The variation in score was statistically significant across all driver attribute 

subcategories except those that comprise the gender attribute. This provides 

support that different subcategories of driver attributes should be modeled 

differently.  

• No one model best described all subcategories of data. This further supports 

previously documented observations that in order to adequately capture the 

heterogeneity in naturalistic driving data, different sets of optimal calibration 

parameters and different car-following models may be required (Ossen, 2008; 

Ossen & Hoogendoorn, 2005, 2011).  

• The driver mileage last year attribute attained the lowest average score across 

subcategory medians (i.e., the average of the median scores for the 0–5k, 6–9k, 

10–12k, 13–15k, 16–19k, 20–23k, and 25k+ subcategories).  

• The educational attainment attribute obtained the lowest average score across 

subcategory means (i.e., the average of the mean scores for the no college 

degree, college degree, and graduate degree subcategories).  



 192 

• The annual income driver attribute obtained the lowest average standard 

deviation across the subcategory scores (i.e., the average of the standard 

deviations of the under $39k, $40–49k, $50–69k, $70–99k, $100–149k, and 

$150k+ income subcategories).  

As a recap, Chapter 5 established that the behavior of different subgroups of drivers, 

defined by subcategories of driver attributes, are statistically significant; moreover, the 

application of clustering algorithms has indicated that there are homogeneous groups of 

drivers in the naturalistic data, which can be defined through driver attributes. Practically 

speaking, this means that behavioral heterogeneity can be reduced by controlling for driver 

specific attributes. Chapter 6 provided evidence that no one model best describes all of the 

drivers in the sample of SHRP2 NDS; that is, some models describe subgroups of drivers 

better than others. The next chapter of this dissertation seeks to develop a method to obtain 

a set of representative car-following model calibration coefficients for collections of 

diverse trajectories (i.e., male drivers, young drivers, married drivers).  
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Chapter 7:  Methods to Obtain Representative Car-Following Model 

Parameters from Trajectory-Level Data for Use in Microsimulation 

(Task 3) 

In Chapters 5 and 6, support was provided that suggests that drivers with different 

driver attributes (e.g., young female drivers, middle-aged female drivers, older male 

drivers) may need to be modeled differently (i.e., different car-following model calibration 

parameter estimates; different car-following models) to more adequately capture the inter-

driver heterogeneity evident in naturalistic driving data. However, to the author’s best 

knowledge, minimal research has been conducted to identify methods to aggregate diverse 

trajectories from groups of drivers (i.e., the homogeneous driver groups discussed in 

Chapter 5) into one representative set of model parameters. This chapter explores eight 

viable methods for obtaining representative sets of calibration parameter coefficients for a 

group of drivers and recommends a best method for the Wiedemann 99 (W99), Gipps, 

Intelligent Driver Model (IDM), and Newell car-following models. A paper describing this 

effort was submitted for presentation at the 2019 Annual Meeting of the Transportation 

Research Board and for publication in the Transportation Research Record. The paper was 

accepted for presentation and is currently in a second round of reviews for publication. A 

citation for this paper is as follows: 

James, R. M., Hammit, B. E., and Boyles, S. D. (2018). Methods to Obtain 

Representative Car-Following Model Parameters from Trajectory-Level Data for Use in 

Microsimulation. In Press: Transportation Research Record.  

 

7.1. MOTIVATION 

Transportation agencies are seeking reliable methods to reduce the burden of 

resource constraints through improved decision-making. Microsimulation models are one 
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such tool available to agencies. These models facilitate detailed scenario analyses, enabling 

agencies to obtain robust estimates of performance metrics for possible intervention 

strategies; this significantly improves their ability to make decisions by comparing 

estimated costs with a more realistic estimate of benefits. However, these detailed models 

are highly dependent both on the realism of the underlying sub-models (e.g., car-following, 

lane-changing) and the accuracy of the input data used for model calibration. Of particular 

importance is the validity of car-following models, the sub-model within microsimulation 

that controls longitudinal driving behavior (i.e., acceleration).  

Emerging sources of trajectory-level data are providing researchers with an 

unprecedented opportunity to improve car-following models. To date, this has primarily 

been studied through the process of calibration, where trajectory-level data are used to 

obtain optimal parameter sets for common car-following models. There is now consensus 

in the literature regarding best practices to obtain a calibrated parameter set for a single 

collection of data (e.g., a single driver’s trajectory; a single trip) (Ciuffo et al., 2012; 

Hammit et al., 2018a; Montanino et al., 2012; Punzo & Montanino, 2016; Treiber & 

Kesting, 2013b). However, the application of trajectory-level data is challenging common 

practices for using car-following models in microsimulation, particularly the assumption 

of behavioral homogeneity within a designated driver population. Through the calibration 

of car-following models, several researchers have noted the existence of differences in 

driving behavior, both between different drivers and within a single driver, evident in 

trajectory-level data (Brockfeld et al., 2004; Ossen & Hoogendoorn, 2005, 2011; Ossen et 

al., 2006; Punzo & Simonelli, 2005; Sangster et al., 2013; Soria et al., 2014). Moreover, it 

has been shown that this behavioral heterogeneity impacts the propagation of shockwaves 

(Ossen & Hoogendoorn, 2008) and ultimately has an impact on the predicted capacity of a 

facility (Ossen & Hoogendoorn, 2011). 
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Therefore, methods to practically account for behavioral heterogeneity deserve 

additional attention. For the application of trajectory-level data in the model calibration 

process to become feasible in practice, methods to sample the observed driving behaviors 

to obtain representative parameter sets must be reliably demonstrated. The adoption of 

these methods to characterize a population of drivers (e.g., men, younger drivers) or driving 

conditions (e.g., snowy weather, work zones, narrow lanes) have been impeded by 

ambiguous validation results.  

Validation practices in transportation often involve the use of holdout data: can the 

calibrated parameter sets obtained on a trajectory from dataset A be used to accurately 

predict a trajectory from dataset B, which was not used in the calibration process? 

(Brockfeld & Wagner, 2006; Punzo & Simonelli, 2005; Zheng et al., 2012). However, this 

procedure has consistently resulted in high validation errors regardless of the car-following 

model used. As a result, many studies associate the high errors as evidence of the model 

overfitting to the behavior observed in the calibration data (Brockfeld et al., 2004; Punzo 

& Simonelli, 2005; Zheng et al., 2012). 

Although the hold-out validation procedure is ubiquitously accepted, the data 

science literature provides additional insights into alternative procedures that result in 

robust error estimates while reducing the risk of overfitting (Witten, Frank, Hall, & Pal, 

2017a). In particular, the n-fold cross-validation procedure, or the repeated holdout method 

of error estimation, allows modelers to use all available data for training, while producing 

a reliable estimate of the error; this reduces the likelihood of using an unrepresentative 

dataset for training or validation.  

This paper applies a ten-fold cross-validation framework to a 100-trip sample from 

the second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study 

(NDS) to test eight methods for obtaining representative car-following model parameters 
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that describe a collection of trips. These eight methods build on prior work (Hammit et al., 

2018a) focusing on the ultimate goal of practical implementation. The methods are divided 

into two groups: methods that preserve possible correlations between parameter 

coefficients (Kim & Mahmassani, 2011; Monteil, Billot, Sau, Buisson, & El Faouzi, 2014) 

and methods that obtain parameter estimates independent of the other parameter 

coefficients. Intuitively, the methods adopt the following strategies: (i) identifying average 

behavior, (ii) identifying the most frequently occurring behavior, and (iii) using random 

sampling techniques. 

The remainder of this chapter is organized as follows. Section 7.2 discusses the data 

sampling procedure used to obtain a 100-trip sample for the SHRP2 NDS dataset and the 

trajectory-level calibration procedure used to obtain the trip-specific sets of calibration 

parameter coefficient estimates for each car-following model. Section 7.3 discusses the 

eight viable methods for obtaining a representative set of calibration coefficients and the 

Calibration-Validation framework used to evaluate the sets of calibration coefficients for 

each method. The cross-validation results are discussed in Section 7.4. Finally, concluding 

remarks for this chapter are provided in Section 7.5. 

 

7.2. DATA ACQUISITION AND SAMPLING 

This section uses a sample of the SHRP2 NDS dataset queried through the 

Wyoming Department of Transportation (WYDOT) Implementation Assistance Program 

(IAP); for additional details on the SHRP2 NDS and the WYDOT IAP, see Section 3.1.1 

and Section 3.1.3, respectively. The goal of this paper is to evaluate methodologies to 

obtain a representative car-following model parameter set to describe a population of 

drivers or specific driving condition. Therefore, the WYDOT sample was further reduced 
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to remove unnecessary sources of heterogeneity that could confound validation results. To 

this end, the road type and weather condition were restricted to freeways and clear weather 

conditions, as past studies have shown these factors are sources of intra-driver 

heterogeneity. Moreover, to ensure sufficient data for calibration, sampled trips are at least 

1000 seconds in length (i.e., at least 10,000 inter-vehicle spacing data observations 

available for each trip).  

A distinction between instrumented research vehicle (IRV), such as those collected 

via SHRP2, and aerially collected trajectories is the spatiotemporal scope. Aerially 

collected trajectories tend to be limited in scope (e.g., 1000-m in the I-80 NGSIM dataset), 

while IRV trajectories cover the entire duration of a driver’s trip. Some of the trajectories 

in the WYDOT sample contain over an hour of continuous data, only some of which is 

defined as car-following. A radar-vision algorithm to identify the presence of a leading 

vehicle through CAN-Bus and radar data was developed in a previous effort (Hammit et 

al., 2018b) and is described in Section 3.2.2. This algorithm was applied to all WYDOT 

trips to identify the car-following segments in a trip. It should be noted that only 

constrained driving states were used for calibration. However, it was confirmed that the 

average maximum following distance for the constrained driving states is about 90 m; this 

distant “leader” should allow for calibration of parameters that represent free driving states, 

such as desired velocity. Moreover, a data completeness framework was developed based 

on the definitions of driving regimes in the W99 car-following model (i.e., free driving, 

approaching, following, crash zone) to confirm that sufficient data in each of the four 

regimes was evident in the queried dataset. 

Ultimately, a 100-trip sample was randomly obtained from the set of data that met 

the road type, weather, and trip length thresholds. Summary statistics for the 100-trip 

sample are shown in Table 7.1. Each of the four models—W99, Gipps, IDM, and Newell—
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were calibrated independently to match the trajectories of each of the 100 trips. This 

produced 400 sets of calibrated parameters. A set of estimated calibration parameters 

obtained for a specific trip will be referred to as the “trip-specific calibration parameter 

coefficients” for the remainder of this paper. 

 

Table 7.1 Descriptive Statistics for 100-Trip Sample 

Descriptive Statistics Minimum Average Maximum 
Standard 

Deviation 

Trip Duration [min] 16.8 22.7 33.2 2.80 

Number of Driving States 

(i.e., car-following or non-car-

following) 

10.0 25.6 65.0 12.7 

Time Spent in Constrained 

Driving State  

(i.e., car-following) [min] 

8.54 11.8 19.5 4.40 

Velocity in Constrained Driving 

State  

(i.e., car-following) [m/s] 

17.9 27.7 34.9 3.4 

Time Gap in Constrained Driving 

State  

(i.e., car-following) [s] 

0.70 1.96 4.95 0.66 

Distance Traveled During 

Constrained Driving State  

(i.e., car-following) [m] 

80.0 371 1585 218 

Following Distance in Constrained 

Driving State 

 (i.e., car-following) [m] 

20.9 53.0 150 17.1 

 

The calibration procedure was derived from a survey of best practices in calibrating 

car-following models using trajectory-level data, which is documented in Section 0. It was 

identified that optimization problems designed to minimize the root mean square error 

(RMSE) between the predicted and observed following distance profiles between a leader-
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follower pair of vehicles (dX) achieves the most reliable calibration results. Specifically, 

let m index the car-following models (i.e., trajectory translation, safety distance, social 

force, and psychophysical). Each model involves parameters 𝜃𝑚 which must be calibrated; 

let Θ𝑚 be the set of all such parameters for model m and Θ𝑚̅̅ ̅̅  represent the set of feasible 

parameters for this model. Let i index the trips in the dataset and t index the time stamps 

for the observations. The dataset contains 𝑑𝑋𝑖(𝑡) values, denoting the following distance 

to the lead vehicle for each trip and time index. Given the trajectory of the lead vehicle, 

and given parameters Θ𝑚, each model m produces an estimate 𝑑�̂�𝑖,𝑚(𝑡|Θ𝑚) of this 

distance. 

Trip-specific calibration parameter estimates were obtained by minimizing RMSE 

of these following distances, producing trip-specific calibration parameters Θ𝑖,𝑚
∗  for each 

model, that is, 

Θ𝑖,𝑚
∗ ∈ arg min

Θ∈Θm̅̅ ̅̅ ̅
√∑(𝑑𝑋𝑖(𝑡) − 𝑑�̂�𝑖,𝑚(𝑡|Θ) 

𝑡

 5.1 

From the calibration process, 100 “trip-specific calibration parameter coefficients” 

were obtained for each model. 

 

7.3. CALIBRATION-VALIDATION FRAMEWORK 

This section provides an overview of the eight calibration methods and discusses 

the 10-fold cross-validation procedure used to evaluate the performance of each method. 

The goal of these methods is to obtain a set of parameters Θ𝑚
∗  for a particular model across 

all trips, in contrast to the Θ𝑖,𝑚
∗  values, which are specific to a particular trip (Section 0). 
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7.3.1. Proposed Calibration Methods  

This study evaluates eight different methods for obtaining a representative set of 

car-following parameters to describe a population of drivers or a specific driving condition. 

The differences between each of the eight methods are visible in Figure 7.1.  

The methods can be categorized in several ways. Method 1 is truly a “calibration” 

method, as it does not apply the trip-specific calibrated parameter sets; rather, it ingests the 

raw car-following data from all trips and solves a nonlinear optimization problem to obtain 

a single set of calibration parameters. Methods 2–8 are more accurately described as 

sampling methods, as they sample from the trip-specific parameter coefficients. Although 

Method 2 makes use of the previously obtained trip-specific parameter coefficients, it also 

requires the original trajectory-level driving data, as discussed next. Methods 3–8 only 

require the sets of optimal trip-specific parameter coefficients Θ𝑖,𝑚
∗  that were previously 

identified, which makes these methods easier to apply, especially for large datasets.  

The methods also differ in whether they maintain possible correlations between 

parameters (Kim & Mahmassani, 2011; Monteil et al., 2014). Many car-following model 

parameters have physical interpretations, such as desired acceleration or reaction time 

(Gipps, 1981). However, when calibrated alongside other model parameters, the values 

may not reflect this intended meaning due to influence by other parameters. For example, 

interaction between the computed reaction time and desired acceleration parameters of the 

Gipps model suggest that observed trajectories could be described either by high 

acceleration rates with low reaction times, or low acceleration rates with high reaction 

times. Methods 1–4 maintain the presumed relationships between calibrated parameter 

coefficients, while Methods 5–8 relax this assumption. Finally, all methods have 

qualitative interpretations corresponding to alternative calibration goals: Methods 1, 2, 5, 

and 6 represent different ways to obtain “average” driving behavior; Methods 3 and 7 are 
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intended to capture the most frequently occurring driving behavior; and Methods 4 and 8 

attempt to capture inherent variability in driving behavior through random sampling 

techniques.  

 

 

 

Figure 7.1 Eight Proposed Calibration Methods used to obtain a Representative Set of 

Model Parameters (James, Hammit, & Boyles, 2019) 
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Methods Requiring Original Trajectory-Level Data 

Methods 1 and 2 are the most computationally expensive, because they require the 

original trajectory-level data to identify representative calibration parameters. Method 1 

should be thought of as a calibration procedure, as it is the only method that requires the 

use of a genetic algorithm to generate an optimized set of parameter coefficients, Θ𝑚
∗ . 

Method 2 is a systematic sampling procedure, using the trip-specific calibration 

coefficients Θ𝑖,𝑚
∗  obtained from Equation 5.1. It is less computationally expensive than 

Method 1 because it leverages the trip-specific calibration coefficients, which are assumed 

to have been previously computed. However, Method 2 is more computationally expensive 

than Methods 3 through 8 because it requires the use of the trajectory-level data to evaluate 

how well an existing trip-specific set of estimated parameter coefficients predicts the 

behavior observed in the calibration dataset. Method 1 and Method 2 are described in more 

detail in the following subsections.  

Method 1 

Method 1 is the most computationally intensive method, as it uses all of the 

available segments of car-following data in a single calibration process to obtain one 

optimal parameter set. The calibration procedure used for Method 1 was described in 

Section 7.2, the difference being the amount of data used in the calibration process (i.e., all 

the available data vs. the data for a single trip). The Method 1 representative parameter set 

is the set that best minimizes the weighted average RMSE(dX) across all of the car-

following states in the calibration data simultaneously: 

Θ𝑚
∗ ∈ arg min

Θ∈Θm̅̅ ̅̅ ̅
√∑∑(𝑑𝑋𝑖(𝑡) − 𝑑�̂�𝑖,𝑚(𝑡|Θ) 

𝑡𝑖

 5.2 

A genetic algorithm was used to solve this optimization problem. 
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Method 2 

Method 2 identifies the “average” behavior observed in the calibration data, while 

maintaining possible correlations between parameters. This is the most computationally 

expensive method that makes use of the previously obtained sets Θ𝑖,𝑚
∗  (Methods 2–8). 

However, it is less burdensome than Method 1 because it does not optimize over the space 

of all feasible parameter coefficients; instead, it only searches the previously obtained trip-

specific parameter sets Θ𝑖,𝑚
∗ , identifying the trip-specific parameter set best matching all 

trips in the calibration dataset: 

Θ𝑚
∗ ∈ argmin

𝑖 √∑∑(𝑑𝑋𝑖(𝑡) − 𝑑�̂�𝑖,𝑚(𝑡|Θ𝑖,𝑚
∗ ) 

𝑡𝑖

 5.3 

The optimal solution is found by enumerating over the trip-specific parameter sets. 

Specifically, the following logic is applied: (i) identify a set of trip-specific calibration 

parameters in the calibration data; (ii) calculate the error (i.e., RMSE(dX)) in using that 

trip-specific parameter set to describe all the car-following states in the calibration data; 

(iii) repeat steps 1 and 2 using every set of trip-specific calibration parameters in the 

calibration dataset; and (iv) identify the set of estimated trip-specific calibration parameters 

that produce the minimum RMSE(dX) across all of the calibration data. This trip-specific 

parameter set was selected as the Method 2 representative parameter set.  

 

Methods Not Requiring Original Trajectory-Level Data  

Method 3–8 are less computationally expensive, as they only involve the trip-

specific parameter sets Θ𝑖,𝑚
∗  and not the original trajectory data. Method 3 through Method 

8 assume that the trip-specific calibration coefficients, as described in Section 7.2, have 

already been obtained and are available for sampling. 
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Method 3 

Method 3 captures the most frequently observed driving behavior, maintaining the 

relationships and possible correlations between estimated parameter coefficients: 

Θ𝑚
∗ = mode{Θ𝑖,𝑚

∗ } 5.4 

In the experiments that follow, ties are broken randomly. In the case where the Θ𝑖,𝑚
∗  

are all distinct, the method fails to produce a value. Such occurrences are relatively rare 

and are noted in the numerical results. 

 

Method 4 

Method 4 produces a set of parameters by sampling from the complete set of trip-

specific calibration parameter coefficients: 

Θ𝑚
∗ = mode{Θ𝑖,𝑚

∗ } 5.5 

This is intended to capture the common practice of randomly sampling parameter 

coefficients from a desired distribution, while maintaining the potential relationships 

between parameter coefficients. The experimental results evaluate this method by 

averaging over ten samples from the set of Θ𝑖,𝑚
∗  values. 

 

Methods 5–8 

The remaining methods identify parameter coefficients 𝜃𝑚 independently of the 

other model parameters, rather than estimating the entire set Θ𝑚 at once. In what follows, 

the notation 𝜃𝑖,𝑚
∗  refers to the specific value of the parameter 𝜃𝑚 from the trip-specific 

calibration parameter set Θ𝑖,𝑚
∗  . The methods differ according to how the parameter is 

chosen: Method 5 chooses the median (Equation 5.6), Method 6 the mean (Equation 5.7), 

Method 7 the mode (Equation 5.8), and Method 8 a random sample (Equation 5.9), like 

what was defined in Method 4. 



 205 

θ𝑚
∗ = median{θ𝑖,𝑚

∗ } 5.6 

θ𝑚
∗ = mean{θ𝑖,𝑚

∗ } 5.7 

θ𝑚
∗ = mode{θ𝑖,𝑚

∗ } 5.8 

θ𝑚
∗ = sample{θ𝑖,𝑚

∗ } 5.9 

 

7.3.2. Ten-Fold Cross-Validation Procedure 

This study uses n-fold cross-validation to evaluate the methods. This procedure 

iteratively changes which portion of the data is used in the validation process (Witten et 

al., 2017a). This method is able to ascertain a fair assessment of model error by always 

ensuring the data used for model validation are not used in the calibration process. This 

method also obviates the decision of how much data to use in training and testing, by 

iteratively using each fold of data. In data science, cross-validation is often applied as 

follows. Using nine folds of the data (e.g., F2–10), a model is learned; this learned model 

is evaluated using the first fold of data, which was withheld from the learning process and 

a validation score is recorded. The next iteration holds out a new fold of data (F2) while 

the remaining nine folds (F1,3–10) are used to learn a model. This process is repeated using 

each fold, obtaining 10 different validation scores using the 10 different sets of data 

iteratively withheld from the learning process. To assess the overall performance of the 

model, the validation scores are averaged. A final model is learned using all of the data and 

the model score is reported as the aforementioned average validation score across the 10 

folds of holdout data. This method reduces the likelihood of overfitting or using an 

unrepresentative dataset for either calibration or validation by allowing the modeler to use 

all available data. 
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For this study, a 10-fold cross-validation procedure was used. Ten folds were 

selected because this number works well in multiple domains (Witten et al., 2017a). This 

procedure is used to assess the eight calibration methods, with the intention of identifying 

the method producing the smallest error estimate, or “fold score”, computed as the average 

RMSE(dX) between the predicted behavior from the set of parameters identified in the 

calibration process and the actual car-following behavior in the validation fold. The 

“method score” is the average RMSE(dX) across all 10 folds of validation data. 

This complete procedure is illustrated in Figure 7.2. The 100-trip sample is first 

randomized and segmented into 10 equivalent folds. Nine-folds are merged to create the 

calibration data (90 trips) and one-fold is isolated for validation (10 trips). The radar-vision 

algorithm (Hammit et al., 2018b) is applied to identify all car-following segments in the 

calibration and validation datasets. Then, the procedure in Hammit et al. (2018a) obtains 

trip-specific calibration parameters Θ𝑖,𝑚
∗ . Each of the eight methods are then applied and 

used to calculate the fold score. This procedure is repeated 10 times, using each of the data 

folds for validation. Once each fold of data has been used for validation, the method score 

is computed. 
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Figure 7.2 Validation Framework for Evaluating Calibration Methods (James et al., 

2019) 

 

7.4. RESULTS 

The results are organized in two sections. First, the performance of the car-

following models is discussed. Second, a comparison of the calibration methods is 

conducted.  
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7.4.1. Performance of Car-Following Models 

Table 7.2 provides the cross-validation results for each calibration method 

performed with each car-following model. When comparing models across the best 

performing calibration method, the results indicate that W99—the most complex car-

following model with 11 calibration parameters—had the best overall performance. This 

finding suggests that W99, on average, can better predict the naturalistic driving behavior 

in the SHRP2 NDS. Conversely, Newell performed the worst, with a score 50% higher 

than that of W99. 

The Newell model achieved the lowest standard deviation of model scores across 

all calibration methods, followed by IDM, W99, and Gipps. Due to the simplicity of the 

Newell model, it is not able to match the driving trajectories as well as the other models; 

this phenomenon is called underfitting. Underfitting occurs when a model cannot capture 

underlying trends within the input data. The Gipps model had the second-best overall score, 

yet the highest standard deviation; when it performed poorly, significantly larger validation 

scores were reported (e.g., M8). This finding is associated with the actual model theory; 

although Gipps and IDM contain the same number of calibration parameters, the 

underlying assumptions used to form the Gipps model introduce the possibility for 

instability caused by certain combinations of parameters within a set. When combined, 

these poor parameter sets produce unrealistic predictions often resulting in excessive 

vehicle oscillations and crashes (Wilson, 2001). This finding further supports the notion 

that parameter correlation and interaction are critical factors when sampling representative 

parameter sets and that the influence of this correlation has a greater impact on certain car-

following models.  

 

 



 209 

Table 7.2 Ten-Fold Cross-Validation Results for Each Calibration Method 

Calibration Methods 

Validation Error Estimate 

Method Score 

Gipps IDM Newell W99 

Number of Model Parameters 6 6 2 11 

Literature Values (Gipps, 1981; 

Kesting et al., 2010; Liu, 2016; 

Punzo & Simonelli, 2005) 

26.73 42.40 13.99 25.95 

M1: Calibrate once for all data 9.76 8.55 13.04 9.10 

M2: Average trip-specific 

parameter set 
8.23* 8.41* 12.99* 7.70* 

M3: Most frequently occurring 

trip-specific parameter set 
--- --- 13.10 --- 

M4: Randomly sampled trip-

specific parameter set  
38.07 37.51 13.75 46.60 

M5: Median value of each 

parameter 
10.41 9.43 12.99* 10.83 

M6: Mean value of each 

parameter 
9.41 8.59 13.03 11.80 

M7: Mode value of each 

parameter 
26.94 15.55 13.10 21.82 

M8: Random sample of each 

parameter 
83.64 25.14 14.35 37.79 

 

7.4.2. Comparison of Calibration Methods 

Figure 7.3 illustrates the relative ranking of each calibration method. For all four 

car-following models, the best performing method was Method 2, which identified the 

average trip-specific parameter set, respecting the potential relationships between 

parameter coefficients. The only exception to this observation is seen in the Newell model, 

where Method 5 exhibited the same performance; further investigation showed that the 

average trip-specific parameter set was equivalent to the independently calculated medians. 

This is not surprising due to the simplicity of the Newell model. For IDM and W99, the 
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second-best performing method was Method 1, where the calibration procedure was 

completed once with all calibration data. For Gipps and Newell, the second-best 

performing method was Method 6, which calculated the mean value for each of the 

parameters independently. 

Each of the eight methods fit into three behavioral categories: average behavior 

(M1, M2, M5, M6); most frequent behavior (M3, M7); and randomly sampled behavior 

(M4, M8). Four of the methods preserve the relationships between the model parameters 

by sampling complete sets of parameter coefficients from the calibration data, while the 

remaining methods obtain individual parameter estimates independent of the other 

parameters. In most cases, the methods that preserved the unknown relationships between 

the model parameters (M2, M3, M4) outperformed their counterpart that treated parameters 

as individual entities (M5/6, M7, M8). This further adds corroborative evidence that the 

preservation of these unknown relationships between parameters are important to ensure 

sampled parameter sets produce realistic behavior that will generalize to an unobserved 

population. 

The exceptions are observed in the random sampling methods for IDM and W99 

(M4, M8). For the purpose of this case study, the reported scores for Methods 4 and 8 are 

the average method score calculated from 10 random samples to reduce the risk of selecting 

one highly unrepresentative parameter set. Regardless, Methods 4 and 8 were the worst 

performing methods for each model. Further investigation illustrates that these methods 

have the highest standard deviation, i.e., 12.2 meters (M4) and 26.4 meters (M8), compared 

to the lowest standard deviation of 1.3 meters (M5). Although Method 4 preserved the 

correlation structure between the parameters, the completely random selection of trips 

resulted in the capturing of driving behavior that was not representative of the larger 
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population; instead, methods that did not preserve the correlation structure, but did capture 

more representative average behavior, outperformed this method (M5, M6).  

 

 

Figure 7.3 Ranking of Each Calibration Method According to the Results from the 10-

Fold Cross-Validation Procedure (James et al., 2019) 

The suggested literature values for IDM performed worse than any of the eight 

proposed methods. For the other models, validation success of the literature values was 

only slightly better or slightly worse than the random sampling methods. This reinforces 

the importance of calibrating car-following models, rather than relying on the default 

values. This finding is corroborated with previous research documented in Hammit et al. 

(2018a). 

Method 7, where the most frequently occurring parameter coefficients are selected 

independently, exhibited poor performance for each model. A review of the data indicates 

that for at least one-third of each model’s parameters, the mode was either the minimum or 

maximum parameter boundary. It is likely that this method performed so poorly for 

validation because this combination of multiple extreme parameter coefficients produced 
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unrealistic driving behavior not replicated in naturalistic data. It should be noted that 

Newell was the only model that produced at least one repeated set of trip-specific 

calibration parameters in any of the 10 collections of calibration data (M4). For that reason, 

Method 3 was not applied to the other models. Moreover, the Newell representative 

parameter sets for Method 3 and Method 7 were identical; that is, the most frequently 

occurring trip-specific parameter set was equivalently the independent modes of the two 

parameter coefficients.  

It was originally hypothesized that Method 1 would produce the lowest validation 

score. However, a review of calibration results showed that the calibration procedure using 

all following trajectories converged at a local minimum. The massive influx of car-

following data (i.e., on average 3.8 hours per fold, 34 hours per calibration set) exhausted 

the available computational resources. With unlimited time and computational power, this 

method would likely produce the “best” representative parameter set; however, this method 

is not feasible for practical implementation. 

Ultimately, there is no single best method. It is apparent from this study that 

methods that sample the most frequently observed behaviors (M3, M7) and methods that 

randomly sample parameter coefficients (M4, M8) did not perform well at producing 

generalizable driving behaviors. Conversely, methods that captured the average behavior 

(M1, M2, M5, M6) are the top performing methods for all models. The methods that 

captured the average driving behavior while disregarding the correlation structure between 

parameters (M5, M6) performed better than the methods that preserved the correlation 

structure between parameters but focused on capturing the most frequently observed 

behavior (M3); this trend was also true for methods that randomly sampled trip-specific 

parameter sets (M4). Although accounting for the correlation structure is important to 

method performance—this is evident because M2 was the best performing method 
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overall—these results provide evidence that capturing the average behavior is the most 

important factor for obtaining a representative parameter set. Because of the computational 

burden associated with M1 and M2, the decision regarding whether or not to preserve the 

underlying correlation structure (M1, M2 vs. M5, M6) depends on the available resources, 

project scope, data sample, and selected car-following model.  

 

7.5. CHAPTER 7 CONCLUSIONS 

Microsimulation models are an excellent resource to help agencies obtain more 

robust estimates of project benefits and spend their resources more effectively. However, 

the realism of these models is strongly dependent on the quality of the sub-models 

controlling individual driver behavior and the input data. The accuracy of car-following 

models is of particular importance to agencies interested in forecasting a facility’s capacity, 

average travel speed, and average travel time.  

Procedures for calibrating car-following models using a single driving trajectory 

are mature and well-documented in the literature. However, before trajectory-level data 

can be applied to calibrate a microsimulation model in practice, methods for identifying 

the most representative parameter set to describe the generalizable behavior of a group of 

drivers (e.g., males) or a specific driving condition (e.g., work zones) must be developed 

and tested. Toward this objective, this research develops eight viable methods for obtaining 

representative sets of calibration parameters. The methodologies are grouped into three 

behavioral categories: (i) average behavior, (ii) most frequently observed behavior, or (iii) 

randomly sampled behavior; moreover, these methods are designed to evaluate the 

importance of preserving possible correlations between calibration parameters. A 100-trip 

sample of the SHRP2 NDS was applied to calibrate four common car-following models. A 
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robust validation strategy from the data science literature, 10-fold cross-validation, was 

implemented to evaluate the performance of the eight methods.  

The research findings show that the method that captured the average behavior 

while preserving correlations between the calibrated model parameters (M2) performed the 

best across all four models; this illustrates the importance of accounting for the underlying 

relationships between model parameters, as observed in (Kim & Mahmassani, 2011; 

Monteil et al., 2014). However, methods that adequately captured the average behavior 

while relaxing the assumption of underlying parameter correlations (M5, M6) performed 

better than all other methods. In other words, although the more computationally 

burdensome methods produce optimal results, simply taking the mean or median of the 

distribution of individual parameter coefficients offers a practical approach for generating 

a representative parameter set. For all models, these methods (M5, M6) demonstrated 

significantly better performance than the default parameter sets. 

The availability of trajectory-level driving data is providing new opportunities to 

improve the accuracy of car-following models and their application in practice. The SHRP2 

NDS dataset is of keen interest to modelers as it provides this high-resolution driving data 

for over five million trips, representing 3,400 diverse drivers in naturalistic driving 

conditions. Despite its potential, the sensitive nature of the collected data (i.e., personally 

identifiable information) and the massive quantity of trips makes it challenging to widely 

distribute. However, if verified calibration procedures were applied to this database, trip-

specific calibration parameters for common car-following models could be disseminated 

without fear of privacy violations. This would offer an unprecedented amount of data to 

practitioners and researchers for model development and analysis. With these data readily 

available, the methods presented in this chapter provide a feasible approach to improve the 

realism of current microsimulation practices.  
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Chapter 8:  New Car-Following Model Calibration Framework – Using 

Census-Level Data for Calibration (Task 4) 

8.1. MOTIVATION 

In fiscal year 2016, the Federal Highway Administration (FHWA) kicked off a 

project funded by the Traffic Analysis and Simulation Transportation Pooled Fund Study. 

This project, the Transportation Systems Simulation Manual (TSSM), was intended to 

develop better guidance on the application of simulation to conduct transportation analyses. 

As part of this project, FHWA hosted a series of stakeholder meetings and virtual 

roundtables to better assess the current climate of applying simulation to evaluate 

transportation alternatives and understand needs and gaps within the community. From this 

assessment, it was revealed that calibration of complex traffic analysis models is the most 

commonly cited challenge facing State Departments of Transportation (DOTs). These 

conversations also found that a lack of robust data and requests for increasingly complex 

traffic analyses, without additional funding to cover incurred costs, have pushed 

practitioners to cut costs by cutting corners, such as omitting the calibration of the driver 

behavior component of the simulation model and relying on default model parameters 

instead. 

This dissertation explores a new framework for driver behavior model calibration 

that aims to reduce the burden of calibrating driver behavior in microsimulation models. 

The assumptions in the framework are as follows. First, this framework assumes that high-

resolution data describing driver behavior, such as the second Strategic Highway Research 

Program (SHRP2) Naturalistic Study Data (NDS), are available. This framework also 

assumes that these data have been processed (see Section 3.1) and used to obtain trip-

specific calibration coefficients (see Section 3.2) for each available trajectory. This is a 

reasonable assumption because eventually trip-specific calibration coefficients for the 
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SHRP2 NDS trips could be posted freely online for practitioner use. Some trip statistics 

for the SHRP2 NDS trips are currently available freely and openly on the SHRP2 Insight 

website; although calibrated car-following model parameter values are not currently 

posted, it is not unreasonable to assume that this information could one day be made 

available freely online given that it is not protected personally identifiable information 

(PII). 

This new framework hypothesizes that inter-driver heterogeneity is explainable 

using census-level details about the driver (i.e., demographics data). This framework takes 

advantage of existing large-scale trajectory-level data collection efforts, such as the SHRP2 

NDS, to pre-process and calibrate car-following models and shift the calibration burden 

toward the back-end of the effort, significantly increasing the practicality of accounting for 

inter-driver differences in microsimulation models. The proposed framework for using 

census-level data in the calibration process is shown in Figure 8.1.  

The remainder of this chapter is organized as follows. Section 8.2 briefly overviews 

the methodology applied in this chapter. Section 8.3 covers the results of the chapter. 

Finally, Section 0 discusses the conclusions, limitations, and planned future research 

inspired by this effort.  

It should be noted that this chapter is not able to determine the accuracy of using 

this framework for car-following model calibration, compared against traditional methods 

of car-following model calibration, as the simulation network is hypothetical and ground-

truth verification data is not available. However, this chapter does show that different 

proportions of driver groups do produce considerably different key performance metrics of 

a microsimulation model (e.g., capacity), which could impact the results of an alternatives 

assessment and ultimately influence which projects are selected for funding. At a 

minimum, this chapter successfully provides evidence suggesting that the influence of 
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inter-driver differences on key transportation performance metrics are worthy of additional 

analysis. 

 

Figure 8.1 Proposed Car-Following Model Calibration Framework  
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8.2. METHODOLOGY 

Estimated car-following model calibration coefficients are required for each 

trajectory as input to the framework. The methodologies adopted by this dissertation for 

acquiring trip-specific calibration coefficients are all summarized in Chapter 3. For the 

sake of brevity, the reader is referred to Section 3.1.3 for an overview of the Wyoming 

DOT sample of the SHRP2 NDS dataset used for this analysis, Section 3.2.3 for an 

overview of three car-following models applied in this chapter (i.e., Gipps, Intelligent 

Driver Model (IDM), and Wiedemann 99 (W99)), and Section 0 for an overview of the 

nonlinear optimization problem and genetic algorithm used to identify the optimal car-

following model calibration parameters for each trip in the 665-trip sample available for 

analysis. 

 

Identifying Homogeneous Driver Groups  

In Section 5.3 of this dissertation, a data-driven methodology for identifying 

clusters of similar driving behavior, or homogeneous driver groups, was discussed. To 

illustrate the validity of this method, Section 5.3 initially applies the clustering and 

classification methodology to each calibration parameter, individually. This allowed for 

visual inspection of the developed clusters. In this chapter, homogeneous driver groups 

were developed considering all calibration parameters belonging to a car-following model, 

holistically. The Expectation Maximization clustering algorithm was applied (see Section 

5.3.1 for algorithm specifics). The Expectation Maximization algorithm identified that four 

clusters was the optimal number of clusters of driving behavior for the Gipps, IDM, and 

W99 car-following models, separately; this algorithm also assigned each trip to their proper 

cluster. 
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Next, classification algorithms were used to identify which driver attributes can be 

used to accurately assign a driver to their cluster ID. The ZeroR, OneR, PART Decision 

Rules, and J48 Decision Tree classification algorithms were considered; for additional 

details on the four classification algorithms, see Section 5.3.1. This procedure found that 

the PART Decision Rules algorithm best classified the Gipps homogeneous driver group 

clusters, the OneR algorithm best classified the IDM homogeneous driver group clusters, 

and the J48 Decision Tree algorithm best classified the W99 homogeneous driver group 

clusters. Marital status and age group were the most predictive attributes of homogeneous 

driver groups. The driver demographics used to divide the 665 trips into their homogeneous 

driver groups for simulation by the Gipps, IDM, and W99 car-following models are shown 

in Table 8.1, Table 8.2, and 0, respectively.  
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Table 8.1 Gipps Homogeneous Driver Groups Developed using PART Decision Rules 

Algorithm* 

Cluster 

1 

17. Income = 110–149k & Age Group = 35–39  

21. Age Group = 35–39 

23. Any remaining drivers 

Cluster 

2 

3. Age Group = 25–29 & Gender = F & Income = 50–69k  

6. Marital Status = divorced & Age Group = 35–39  

13. Income = 110–149k & Age Group = 40–44  

15. Income = 50–69k  

20. Education = College degree 

22. Gender = F 

Cluster 

3 

1. Marital Status = unmarried partners  

5. Age Group = 25–29  

9. Education = No college degree & Age Group = 70+* & Income = 40–49k 

10. Education = No college degree 

Cluster 

4 

2. Age Group = 25–29 & Education = College degree & Marital Status = single  

4. Age Group = 60–69* 

7. Income = 50–69k & Education = College degree  

8. Education = No college degree & Age Group = 70+* & Income = Under 39k* & 

HH Size* = 1  

11. Income = 70–99k  

12. Marital Status = single 

14. Income = 110–149k & Marital Status = married & Education = Graduate Degree  

16. Marital Status = married & Income = 110–149k & Age Group = 45–59*  

18. Income = 150k+ & Age Group = 70+*  

19. Income = 150k+ & Gender = M & Age Group = 30–34 & HH Size* = c: 3  

* Given the nature of decision rules, to correctly classify the drivers, the data that is covered by each rule 

must be removed from the master dataset in the order that the rules are numbered in the table. 
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Table 8.2 IDM Homogeneous Driver Groups Developed Using OneR Algorithm 

Cluster 1 divorced 

single 

Cluster 2 married 

Cluster 3 widow(er) 

Cluster 4 unmarried partners 

 

Table 8.3 Wiedemann 99 Homogeneous Driver Groups Developed Using J48 

Decision Tree Algorithm 

Cluster 1 

Marital Status = single & Age Group = 25–29 & Income = 40–49k 

Marital Status = single & Age Group = 25–29 & Income = Under 39k 

Marital Status = single & Age Group = 20–24 

Marital Status = unmarried partners  

Cluster 2 

Marital Status = divorced 

Marital Status = single & Age Group = 45–59 

Marital Status = single & Age Group = 40–44 

Marital Status = married 

Cluster 3 Marital Status = widow(er) 

Cluster 4 
Marital Status = single & Age Group = 35–39 

Marital Status = single & Age Group = 30–34 

 

Obtaining Calibration Parameters to Describe Collections of Trajectories 

In Chapter 7 of this dissertation, methods for identifying representative parameter 

sets to describe a collection of trajectories were evaluated and validated. From this analysis, 

it was determined that the best method varied according to the car-following model applied. 

For the Gipps and IDM car-following models, simply taking the average of each calibration 

parameter for the collection of trajectories, independently, proved practical and sufficiently 

accurate; for the W99 car-following model, taking the median of each calibration parameter 

for the collection of trajectories, independently, was found to work best from a practical 

perspective. Thus, once all of the trips are segmented into their homogeneous driver groups 

according to the definitions in Table 8.1, Table 8.2, and 0, the representative parameter sets 

for the Gipps, IDM, and W99 models are identified using the most well-performing, yet 
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practical, methods, as identified in Chapter 7. This produced estimated sets of calibration 

parameters for each model, which are documented in Table 8.4, Table 8.5, and Table 8.6. 

 

Table 8.4 Representative Calibration Parameter Sets Variation Across Gipps 

Homogeneous Driver Groups 

Model Parameters Default C1 C2 C3 C4 

G
ip

p
s 

Desired Velocity [m/s] 35.0 33.0 33.4 33.4 31.7 

Desired Acceleration 

[m/s2] 
2.0  1.4 1.1 1.2 1.5 

Reaction Time [s] 0.7 1.3 0.4 0.7 0.8 

Desired Deceleration 

[m/s2] 
-3.0 -3.0 -3.0 -3.1 -2.4 

Predicted Maximum 

Deceleration of Lead 

Vehicle [m/s2] 

-3.5 -2.5 -2.9 -2.8 -2.2 

Minimum Standstill 

Distance [m] 
1.0 4.9 3.0 5.0 4.7 

 

Some initial reactions to the magnitude of the representative parameter sets for the 

Gipps homogeneous driver groups are discussed next. Table 8.4 shows that the default 

Gipps desired velocity parameter is significantly higher than the calibrated desired velocity 

parameter across all four homogeneous driver groups. However, the default desired 

acceleration parameter is only marginally larger than the calibrated desired acceleration 

parameter for the four clusters of similar driving behavior. The default reaction time 

parameter is contained within the range of calibrated reaction time parameters. The default 
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and calibrated desired deceleration parameters are very close in magnitude, but the default 

maximum perceived deceleration of the leading vehicle is considerably higher than the 

calibrated values for the four homogeneous driver groups; this is an interesting observation 

because correlation analyses have shown that these two parameters are highly correlated 

(Hammit et al., 2018). Moreover, with the default parameters, the desired deceleration 

estimate is smaller than the estimated perceived deceleration of the leading vehicle. 

However, for all four clusters of calibrated driving behavior, the desired acceleration 

estimate is larger than the perceived deceleration of the leading vehicle; this can lead to 

instability of the car-following behavior and is somewhat of a cause for concern. Finally, 

the default estimate for the minimum standstill distance is significantly lower than the 

calibrated values for the minimum standstill distance parameter, with perhaps the exception 

of Cluster 2. As observed in previous chapters, this is likely an artifact of the data (i.e., 

collected on freeways where not all trips experienced congested conditions).  
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Table 8.5 Representative Calibration Parameter Sets Variation Across IDM 

Homogeneous Driver Groups 

Model Parameters Default C1 C2 C3 C4 
In

te
ll

ig
en

t 
D

ri
v
er

 M
o
d

e
l 

Desired Velocity 

[m/s] 
35.0 33.1 33.4 29.4 35.9 

Free Acceleration 

Component 
4.0 54.3 36.7 24.6 42.6 

Desired Time Gap [s] 1.5 0.7 0.7 1.7 0.5 

Jam Distance [m] 2.0 4.0 3.4 5.3 4.0 

Desired Acceleration 

[m/s2] 
1.4 1.1 0.8 0.3 0.9 

Desired Deceleration 

[m/s2] 
2.0 2.0 2.7 2.4 3.3 

 

The IDM representative parameter sets for the four homogeneous driver groups are 

shown in Table 8.5. Cluster 4, which represents unmarried partners, was estimated to have 

the highest desired velocity parameter value; the smallest desired velocity parameter was 

observed for Cluster 3, or the widow(er) subcategory. The calibrated free acceleration 

components are all significantly larger than the default value. The default desired time gap 

parameter is within the range of the calibrated desired time gap parameters, although it is 

on the higher end of the spectrum. The smallest desired time gap parameter was estimated 

for Cluster 4, or the unmarried partners drivers, while the largest was estimated for Cluster 

3, the widow(er) subcategory. The smallest jam distance belongs to the default parameter 

set. The largest jam distance was estimated for Cluster 3, or the widow(er) drivers. The 

largest desired acceleration parameter value occurred in the default parameter set. The 
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smallest desired acceleration parameter value was estimated for Cluster 3, the widow(er) 

subgroup. The smallest desired deceleration parameter was estimated for Cluster 1, which 

represents both single and divorced drivers; this is equivalent to the default desired 

deceleration parameter value. The largest desired deceleration parameter was estimated for 

Cluster 4, or the unmarried partners subgroup of drivers. 
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Table 8.6 Representative Calibration Parameter Sets Variation Across W99 

Homogeneous Driver Groups 

Model Parameters Default C1 C2 C3 C4 

W
9
9
 

CC0: Standstill Distance 

[m] 
1.5 5.1 3.6 6.0 4.5 

CC1: Spacing Time [s] 1.3 0.6 0.6 1.0 0.5 

CC2: Following 

Variation, Max Drift [m] 
4.0 13.8 11.9 12.4 13.2 

CC3: Threshold for 

Entering Following [s] 
-12 -25.6 -23.8 -23.8 -24.1 

CC4: Negative Following 

Threshold [m/s] 
-0.25 0.0 -0.1 0.0 -0.1 

CC5: Positive Following 

Threshold [m/s] 
0.35 0.7 1.0 1.0 1.2 

CC6: Speed Dependency 

of Oscillation [10-4 rad/s] 
0.0006 1.3 2.1 1.4 1.8 

CC7: Oscillation 

Acceleration [m/s2] 
0.25 1.3 0.6 1.1 1.0 

CC8: Standstill 

Acceleration [m/s2] 
2.0 1.3 1.6 1.5 1.7 

CC9: Acceleration at 

80kph [m/s2] 
1.5 0.1 0.1 0.1 0.2 

Desired Velocity [m/s] 35.0 34.2 33.9 31.6 31.9 

 

  



 227 

The W99 representative parameter sets for the four homogeneous driver groups are 

shown in Table 8.6. The smallest standstill distance parameter value was associated with 

the default model parameters. The smallest calibrated standstill distance (CC0) was 

estimated for Cluster 2, which is comprised of divorced, married, and single drivers in their 

40s and 50s. The largest standstill distance was estimated for Cluster 3, which was 

comprised of widow(er) drivers. The largest spacing time (CC1) coefficient was associated 

with the default model parameters. The smallest spacing time (CC1) parameter was 

estimated for Cluster 4, which was comprised of single drivers in their 30s. The largest 

calibrated spacing time (CC1) coefficient was estimated for Cluster 3, which was 

comprised of widow(er) drivers. The default oscillation acceleration (CC7) parameter 

value was significantly smaller than the calibrated parameter values. The smallest 

oscillation acceleration (CC7) parameter value was estimated for Cluster 2, which is 

comprised of divorced, married, and single drivers in their 40s and 50s. The largest 

oscillation acceleration (CC7) coefficient was estimated for Cluster 1, which was 

comprised of single drivers under the age of 30 and unmarried partners. The default 

standstill acceleration (CC8) parameter value was larger than the calibrated values. The 

smallest standstill acceleration (CC8) parameter value was estimated for Cluster 1, while 

the largest value was estimated for Cluster 4. Finally, the default desired velocity parameter 

value is significantly higher than the calibrated values. The smallest desired velocity 

parameter value was calibrated for Cluster 3, while the largest value was estimated for 

Cluster 1. 

 

Microsimulation Model Development 

This dissertation uses a recommended simple weaving segment from the Sixth 

Edition of the Highway Capacity Manual (Transportation Research Board, 2010), which 
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includes four-lanes in one-direction with three on- and off-ramps, as shown in Figure 8.2. 

This network was built in PTV VISSIM 9.  

 

 

Figure 8.2 Simple Freeway Weaving Section Modeled in VISSIM (Hammit et al., 

2019) 

The Gipps and IDM driver behavior logic are not included in the PTV VISSIM 

software. Thus, to simulate vehicles following this logic, the External Driver Model 

Dynamic Linking Library (DLL) Interface of VISSIM was employed. The driving behavior 

logic of VISSIM can be overwritten using a DLL, written in C/C++, that is assigned to a 

vehicle type in the VISSIM software. For each timestep, VISSIM calls the DLL code for 

each vehicle whose type is assigned to the DLL. VISSIM passes the current state of the 

vehicle and its surrounding vehicles to the DLL; the available vehicle attributes that can be 

passed are noted in the C++ header file. The DLL computes the acceleration/deceleration 

and passes the updated state of the vehicle back to VISSIM for visualization. 

Three source codes are provided in the VISSIM installation package for DLL 

creation: 

• DriverModel.h, which is used to specify which attributes can be passed 

between the DLL and VISSIM. 

• DriverModel,cpp, which is the main source file of the DLL. This is where 

the external logic is coded. Each DriverModel.cpp code must contain and 

export three functions, which are called from VISSIM: 
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DriverModelSetValue, DriverModelGetValue, and 

DriverModelExecuteCommand. 

• DriverModel.vcxproj, which is the Visual C++ project file for the driver 

model DLL.  

The DriverModel.cpp file is what is edited to contain the external vehicle behavior 

logic. In the DriverModelSetValue function (see Figure 8.3), the modeler can determine 

which attributes they want to retrieve from VISSIM about the subject vehicle and its 

surrounding vehicles. The DriverModel.h file is helpful for determining which attributes 

(e.g., DRIVER_DATA_VEH_ID, DRIVER_DATA_VEH_VELOCITY, AND 

DRIVER_DATA_NVEH_REL_VELOCITY) are of interest to the modeler. The 

DriverModelSetValue function can retrieve up to a five-by-five matrix of information 

about surrounding vehicles. In this matrix, the current vehicle is vehicle [2][2]; thus, to 

obtain information about the leading vehicle, the modeler is interested in retrieving 

information about vehicle [2][3].  

The DriverModelGetValue function (see Figure 8.4) allows the modeler to pass 

manipulated information about the vehicle (i.e., computed desired acceleration using 

external logic) back to VISSIM. The attributes that can be passed back to VISSIM are 

defined in the DriverModel.h file. 

Finally, in the DriverModelExecuteCommand function (see Figure 8.5), the 

external driver behavior logic is programmed with the appropriate syntax. The 

ControlVehicle function (see Figure 8.6) within the DriverModelExecuteCommand 

function is where the vehicle control logic is housed. The logic featured in Figure 8.6 is the 

IDM car-following model. This logic was replaced with the Gipps and W99 car-following 

models according to the algorithms in Section 3.2.3 when developing the Gipps and W99 
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Driver Model DLLs. A separate DriverModel.cpp file was developed for every 

homogeneous driver group. 

 

 

Figure 8.3 Screen Capture of DriverModelSetValue Function 
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Figure 8.4 Screen Capture of DriverModelGetValue Function 
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Figure 8.5 Screen Capture of DriverModelExecuteCommand Function 
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Figure 8.6 Screen Capture of ControlVehicle Function featuring IDM Car-Following 

Model 

Data collection points were designated at five points throughout the network 

featured in Figure 8.2. The data is aggregated every 20s and converted to hourly flow rates. 

Using the fundamental relationship between space-mean speed, volume, and density, 

density is computed.  

The simulated traffic flow data for varying proportions of driver groups is shown 

on flow-density, speed-flow, and speed-density fundamental diagrams and discussed in the 
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next section. For the purpose of this case study, five sets of simulation runs were completed 

for each car-following model: 

• 100% of vehicle types assigned to Cluster 1; 

• 100% of vehicle types assigned to Cluster 2; 

• 100% of vehicle types assigned to Cluster 3; 

• 100% of vehicle types assigned to Cluster 4; and 

• Equal proportions (i.e., 25%) of all homogeneous driver groups. 

 

8.3. CASE STUDY RESULTS 

This section is separated by car-following model logic. The simulated Gipps results 

are shared in Figure 8.7, Figure 8.8, Figure 8.9, and Table 8.7. The simulated IDM results 

are shared in Figure 8.10, Figure 8.11, Figure 8.12, and Table 8.8. Finally, the simulated 

W99 results are documented in Figure 8.13, Figure 8.14, Figure 8.15, and Table 8.9. 

 

Gipps Car-Following Model Results 

The flow-density fundamental diagrams produced using the Gipps car-following 

model are shown in Figure 8.7. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. All fundamental diagrams produced 

with calibrated model parameters (i.e., Figure 8.7b–Figure 8.7f) produce evidence of the 

capacity drop phenomenon; this is not as strongly suggested by the fundamental diagram 

produced using the default Gipps parameters (i.e., Figure 8.7a). Moreover, Figure 8.7b, 

which was simulated with equal proportions of the four homogeneous driver groups, has 

features from the four fundamental diagrams simulated with 100% of each of the 
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homogeneous groups, independently (i.e., Figure 8.7c through Figure 8.7f); this suggests 

that by simulating proportions of driver groups, a modeler is able to better capture diverse 

driving behaviors. For all fundamental diagrams in Figure 8.7, there is a strong linear trend 

between volume and density in uncongested conditions, as evident by the colored squares 

on the left side of the graphs; however, in congested conditions, there is much more 

variation in the data with few obvious trends. Interestingly, Cluster 2’s fundamental 

diagram (Figure 8.7d) most closely resembles the trends observed in the fundamental 

diagram simulated with default parameters (Figure 8.7a); it is not immediately obvious 

what causes this similarity. Finally, the highest flow rate was observed at a relatively lower 

density with Cluster 1’s optimal parameters; this suggests a fast transition from 

uncongested to congested conditions occurred with the parameter set. 
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Figure 8.7 Flow-Density Fundamental Diagrams for Different Proportions of the Gipps 

Homogeneous Driver Groups 

The speed-flow fundamental diagrams produced using the Gipps car-following 

model are shown in Figure 8.8. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. All fundamental diagrams produced 

using the Gipps car-following model, shown in Figure 8.8b through Figure 8.8f, have a 

large number of observations of high-speed/low-volume and low-speed/moderate-volume 

conditions. Visual observations of traffic flow revealed that this is because traffic flow 

deteriorates very quickly from uncongested to congested conditions, without much of a 

transitional period. The fundamental diagrams produced using the default parameters, 

shown in Figure 8.8a, has better representation of the spectrum of speeds (i.e., from zero 
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to free-flow speed) compared to traffic simulated with the other calibrated parameter sets. 

This suggests that there is less instability in the flow of traffic using these model 

parameters, which is consistent with observations in Section 8.2; additionally, the 

maximum flow rate for this fundamental diagram was observed at the lowest speed, further 

supporting this hypothesis. The traffic flow produced using Cluster 2’s optimal parameter 

set, shown in Figure 8.8b, observed its maximum flow rate at a much higher speed 

compared to the other clusters; this is an indicator of more instability in queue discharge 

rates. 

 

Figure 8.8 Speed-Flow Fundamental Diagrams for Different Proportions of the Gipps 

Homogeneous Driver Groups 

The speed-density fundamental diagrams produced using the Gipps car-following 

model are shown in Figure 8.9. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 
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data points in that region of the fundamental diagram. Visual observation of Figure 8.9 

suggests that the Gipps model does not produce a linear relationship between speed and 

density. Instead, traffic flow deterioration appears to follow a negative exponential trend; 

this is consistent with Underwood’s hypothesis of the relationship between speed and 

density. 

The Gipps model tends to produce higher jam densities than the W99 and IDM 

models, for both the default and calibrated parameters (see Figure 8.9a through Figure 

8.9f). This is likely because the Gipps model, programmed using the External Driver Model 

Interface, was not fully collision free on a multilane facility. Gipps was the only model 

with a physical reaction time (i.e., the model stores a desired velocity until the reaction 

time passes and the driver can react to, now outdated, information). In cases of lane 

changes, it takes the driver the reaction time to realize that it is now following a different 

driver with a different velocity (i.e., in the case of Cluster 1, this took 13-time steps). This 

infrequently produced instances where the driver passed through the leading vehicle and 

likely resulted in overestimated jam density values. The default parameters produced the 

highest jam density (see Figure 8.9a). The second highest jam density was observed for 

Cluster 2 (see Figure 8.9d). It should be noted that these two parameter sets were observed 

to have the smallest minimum standstill distance. 

In accordance with Greenshield’s theory, linear regression models between speed 

and density were calculated for each of the fundamental diagrams. Cluster 1 was found to 

have the steepest slope (see Figure 8.9c); this suggests traffic deteriorates more quickly 

from free-flow speed to jam density. The default parameter set produced the most gradual 

slope. These observations are consistent with other default parameter fundamental diagram 

conclusions (see Figure 8.8). 
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The default parameters produced the smallest goodness-of-fit metric for the linear 

regression equation; this suggests the least agreement with Greenshield’s hypothesis of a 

linear relationship between speed and density. Cluster 3 produced the largest goodness-of-

fit metric, which assumes there exists a linear relationship between speed and density (see 

Figure 8.9e). 

 

 

Figure 8.9 Speed-Density Fundamental Diagrams for Different Proportions of the 

Gipps Homogeneous Driver Groups 

Finally, Table 8.7 shows the jam density and capacities of the network (see Figure 

8.2) simulated using the Gipps car-following behavior according to the different 

representative parameter sets for the four homogeneous driver groups. Traffic flow 

simulated with default parameter values achieve a significantly higher jam density. The 
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only parameter set that produced a comparable jam density is Cluster 2; as previously 

documented, these two parameter sets also share the smallest minimum standstill distance 

parameter. The smallest jam density was observed for Cluster 1. 

The capacity results are a bit mixed. All models produced reasonable estimates for 

capacity. The smallest capacity was produced by Cluster 1’s parameter set, while the 

largest capacity was produced by Cluster 2’s parameter set. There is significant variation 

in network capacity as a function of calibration parameter sets used across the five 

simulations conducted (i.e., a 900 veh/hr/ln difference), underscoring the importance of 

proper calibration (i.e., these parameters significantly impact the outputs of these models).  

 

Table 8.7 Variation in Jam Density and Capacity Across Model Parameters (Gipps) 

 
Jam 

Density 

(veh/h) 

Change from 

Default (%) 

Capacity 

(veh/mi) 

Change from 

Default (%) 

Gipps Default 

Parameters 
171 -- 2070 -- 

Gipps All Clusters 

(25% Split) 
121 -29% 1890 -9% 

Gipps Cluster 1 80 -53% 1395 -33% 

Gipps Cluster 2 165 -4% 2295 11% 

Gipps Cluster 3 128 -25% 2160 4% 

Gipps Cluster 4 116 -32% 1845 -11% 

 

Intelligent Driver Model Car-Following Model Results 

The flow-density fundamental diagrams produced using the IDM car-following 

model are shown in Figure 8.10. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. For all fundamental diagrams (Figure 
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8.10a through Figure 8.10f), there is a strong linear trend between volume and density in 

uncongested conditions, as evident by the colored squares on the left side of the graphs; 

however, in congested conditions, there is much more variation in the data with few 

obvious trends. The exception is for widow(er) drivers, which were represented by Cluster 

3’s fundamental diagram (see Figure 8.10c). Cluster 3’s parameters produced the most 

well-defined traffic flow patterns in congested conditions (i.e., the most colored squares, 

which indicates a higher frequency of points). Overall, the traffic flow deterioration trend 

produced by the IDM car-following model seems a bit less sporadic than what was 

produced by the Gipps car-following model. However, as evident in Figure 8.10a, the 

default parameter produced the most varied observations (i.e., the fewest colored squares) 

in congested conditions. 
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Figure 8.10 Flow-Density Fundamental Diagrams for Different Proportions of the IDM 

Homogeneous Driver Groups 

The speed-flow fundamental diagrams produced using the IDM car-following 

model are shown in Figure 8.11. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. As suggested in Figure 8.11, drivers 

following according to Cluster 2’s representative parameter coefficients were able to 

maintain their desired speed for longer; this is evident by the darker colored squares 

associated with higher speeds and higher volumes. Behaviorally speaking, this suggests 

drivers are less impacted by surrounding drivers because of these car-following model 

calibration coefficients.  
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The fundamental diagrams produced by the default parameter coefficients (see 

Figure 8.11a) and Cluster 3’s representative parameter coefficients (see Figure 8.11e) 

observe their maximum flow rates at relatively higher speeds; this indicates there is greater 

instability in the queue discharge (i.e., flow between under saturated and oversaturated 

conditions). This is visually evident in Figure 8.11 because of the gap in the data at 

moderate speeds observed for these two parameter sets, relative to other specifications. 

Patterns from the Cluster 1, Cluster 2, Cluster 3, and Cluster 4 fundamental 

diagrams (Figure 8.11c through Figure 8.11f) are all represented in the fundamental 

diagram constructed using equal proportions of clusters (Figure 8.11b); this suggests that 

by simulating proportions of driver groups, a modeler is able to better capture diverse 

driving behaviors. The flow breakdown from uncongested to congested flow is also more 

easily observable than when default parameters are used (i.e., no significant gaps in the 

data at moderate speeds). This underscores the value of using multiple parameter sets to 

simulate diverse driving behavior in naturalistic data. 
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Figure 8.11 Speed-Flow Fundamental Diagrams for Different Proportions of the IDM 

Homogeneous Driver Groups 

The speed-density fundamental diagrams produced using the IDM car-following 

model are shown in Figure 8.12. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. According to Figure 8.12, the largest 

jam density was observed when using the default parameter values to simulate the flow of 

traffic. The smallest jam density was observed when using Cluster 3’s parameter 

coefficients to simulate the flow of traffic; as a reminder, Cluster 3 represents widow(er) 

drivers.  
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The relationship between speed and density appears to be mostly linear, as evident 

by the relatively high goodness-of-fit metrics; this is consistent with Greenshield’s theory 

of a linear relationship between speed and density. 

The fundamental diagram produced using Cluster 3’s parameter coefficients was 

the only one to not have speed observations at or above 70 mph; this is consistent with the 

significantly lower estimate for desired velocity for widow(er) drivers. 

The linear regression model constructed using the traffic flow data collected by 

simulating Cluster 1’s representative parameter set, has the steepest slope (i.e., steepest 

decline from free-flow speed to jam density). This indicates that traffic flow deteriorates 

more quickly with the parameter set representing single and divorced drivers. The default 

parameters produced the most gradual slope; this is consistent with what was observed for 

the Gipps default parameters. Moreover, the goodness-of-fit metric for the linear regression 

trendline was highest for the default parameters; this suggests the strongest agreement with 

Greenshield’s theory and is the opposite of what was observed for the Gipps model results 

(see Figure 8.9). 
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Figure 8.12 Speed-Density Fundamental Diagrams for Different Proportions of the IDM 

Homogeneous Driver Groups 

Finally, Table 8.8 shows the jam densities and capacities of the network (see Figure 

8.2) simulated using the IDM car-following behavior according to the different 

representative parameter sets for the four homogeneous driver groups. The traffic flow 

simulated with default parameter coefficients produced a significantly higher jam density 

than the calibrated values. However, the jam densities produced using the calibrated 

parameters were remarkably similar. 

Cluster 3’s representative parameter set simulated traffic with the smallest capacity; 

Cluster 3 represented widow(er) drivers. The remaining calibrated parameters produced 

higher simulated capacities than what was observed for the default parameters. The highest 

capacity was observed using Cluster 1’s representative parameter set, which represented 
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single and divorced drivers. Despite similarities in jam density, there is significant variation 

in capacities as a function of calibration parameter sets used across the five simulations 

conducted (i.e., a 810 veh/hr/ln difference), which is consistent with what was observed 

for the Gipps model and underscores the importance of proper calibration (i.e., these 

parameters significantly impact the outputs of these models).  

 

Table 8.8 Variation in Jam Density and Capacity Across Model Parameters (IDM) 

 
Jam 

Density 

(veh/h) 

Change from 

Default (%) 

Capacity 

(veh/mi) 

Change from 

Default (%) 

IDM Default 

Parameters 
105 -- 1845 -- 

IDM All Clusters 

(25% Split) 
73 -30% 1980 7% 

IDM Cluster 1 70 -33% 2385 29% 

IDM Cluster 2 72 -31% 2285 24% 

IDM Cluster 3 63 -40% 1575 -15% 

IDM Cluster 4 73 -30% 2285 24% 

 

Wiedemann 99 Car-Following Model Results 

The flow-density fundamental diagrams produced using the W99 car-following 

model are shown in Figure 8.13. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. For all fundamental diagrams 

produced with the W99 car-following model, there is a clear linear relationship between 

volume and density in the uncongested regime. There are not strong relationships of density 

and volume in the congested regime. However, there is more dispersion of data points in 

the congested flow regime using the default parameters (see Figure 8.13a). This suggests 
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that there is less uniformity in simulated traffic flow compared to traffic simulated with 

calibrated parameters. The capacity of the fundamental diagram (see Figure 8.13a) 

simulated with default parameters also appears to be considerably higher than when 

calibrated parameters are used to simulate traffic flow (see Figure 8.13b through Figure 

8.13f). 

 

Figure 8.13 Flow-Density Fundamental Diagrams for Different Proportions of the W99 

Homogeneous Driver Groups 

The speed-flow fundamental diagrams produced using the W99 car-following 

model are shown in Figure 8.14. It should be noted that darker squares represent a high 

frequency of observed data points; the lighter the squares, the lesser the number of observed 

data points in that region of the fundamental diagram. According to Figure 8.14, when 

using default parameters, drivers can maintain their desired speeds for longer; this is 
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evident by darker squares at higher speeds and volumes. Behaviorally speaking, this 

suggests that drivers simulated with default parameters are less sensitive to surrounding 

drivers because of the interaction of the parameter coefficients.  

More clear patterns in the deterioration of traffic flow are observed when using 

calibrated model parameters than when using default parameters; this is consistent with 

observations from Figure 8.13. Additionally, the flow breakdown from uncongested to 

congested flow is also more easily observable than when default parameters are used (i.e., 

no significant gaps in the data at moderate speeds). 

Patterns from the Cluster 1, Cluster 2, Cluster 3, and Cluster 4 fundamental 

diagrams (Figure 8.14c through Figure 8.14f) are all represented in the fundamental 

diagram constructed using equal proportions of clusters (Figure 8.14b). This underscores 

the value of using multiple parameter sets to simulate diverse driving behavior in 

naturalistic data. 
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Figure 8.14 Speed-Flow Fundamental Diagrams for Different Proportions of the W99 

Homogeneous Driver Groups 

The speed-density fundamental diagrams produced using the W99 car-following 

model to simulate traffic are shown in Figure 8.15. It should be noted that darker squares 

represent a high frequency of observed data points; the lighter the squares, the lesser the 

number of observed data points in that region of the fundamental diagram. As shown in 

Figure 8.15a, the default parameters produced the largest jam density. The smallest jam 

density was obtained using Cluster 1’s and Cluster 3’s calibrated parameter coefficients. 

The calibrated jam density values were remarkably similar, excluding Cluster 2’s results 

(see Figure 8.15 and Table 8.9).  

The linear regression model with the steepest slope, which suggests a quicker traffic 

deterioration into unstable flow, was observed for Cluster 3’s representative parameter 
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coefficients (see Figure 8.15e). As with the IDM (see Figure 8.9) and Gipps (see Figure 

8.12) fundamental diagrams, the default calibration parameters produced the most gradual 

slope. 

The default parameters produced the highest goodness-of-fit metric, suggesting 

more consistency with Greenshield’s theory of speed-density relationships (see Figure 

8.15a). This is consistent with what was observed with the IDM model results in Figure 

8.12. The smallest goodness-of-fit metric was observed for Cluster 2 (see Figure 8.15d).  

Finally, there is a higher concentration of data points simulated using the calibrated 

parameters compared to the traffic flow simulated with default parameters. This suggests 

more uniform flow of traffic and is consistent with observations about Figure 8.13. 
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Figure 8.15 Speed-Density Fundamental Diagrams for Different Proportions of the W99 

Homogeneous Driver Groups 

Table 8.9 shows the jam densities and capacities of the network (see Figure 8.2) 

simulated using the W99 car-following behavior according to the different representative 

parameter sets for the four homogeneous driver groups. The jam density is significantly 

lower when using calibrated parameters compared to default parameters. There is a higher 

degree of variation of jam densities when using the W99 model to simulate traffic 

compared to what was observed for the Gipps and IDM models. 

The smallest jam density was observed using Cluster 1’s and Cluster 3’s parameter 

coefficients to simulate traffic. The largest jam density, obtained using calibrated parameter 

coefficients, was observed using Cluster 2’s parameters. The capacity is significantly lower 

when using calibrated parameters compared to default parameters. The smallest capacity 
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was observed when using Cluster 3’s calibrated parameters to simulate traffic. The largest 

capacity was obtained when using Cluster 2’s calibrated parameters to simulate traffic. It 

should be noted that there is significantly less variation in capacities compared to the Gipps 

and IDM results.  

 

Table 8.9 Variation in Jam Density and Capacity Across Model Parameters (W99) 

 

Jam 

Density 

(veh/h) 

Change from 

Default (%) 

Capacity 

(veh/mi) 

Change from 

Default (%) 

W99 Default 

Parameters 97 -- 2495 -- 

W99 All Clusters 

(25% Split) 69 -29% 1944 -22% 

W99 Cluster 1 66 -32% 1980 -21% 

W99 Cluster 2 95 -2% 2070 -17% 

W99 Cluster 3 66 -32% 1845 -26% 

W99 Cluster 4 73 -25% 1980 -21% 

 

8.4. CONCLUSIONS AND FUTURE RESEARCH  

In this chapter, a new framework for calibrating car-following models was 

explored. This framework takes advantage of existing large-scale trajectory-level datasets, 

such as the SHRP2 NDS, to shift the calibration burden toward the back-end of the effort, 

significantly increasing the practicality of accounting for inter-driver differences in 

microsimulation models. The proposed framework for using census-level data in the 

calibration process is shown in Figure 8.1.  

The proposed framework builds off concepts developed as part of this 

dissertation—leveraging the homogeneous driver groups, developed in Section 5.3, and the 

calibration methods for collections of trajectories, developed in Chapter 7.  
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In practice, the next step would be to define the proportions of driver groups 

expected to traverse the study area. This step is more art than science, as it is highly 

improbable to identify the exact drivers traversing a roadway without connected vehicle 

technology. Thus, given that ‘the art of the deal is the compromise’ this dissertation 

proposes that, in practice, a modeler could use the most recent census of the study area to 

identify the most probable percentages of different homogeneous driver groups expected 

to traverse an area.  

The challenge with Chapter 8 is validating the accuracy of the proposed framework, 

as the network used for simulation is fictitious and no ground truth validation data is 

available. Thus, to illustrate the benefit of the proposed framework, this dissertation 

simulated traffic flow in VISSIM and showed that different proportions of driver groups 

produce reasonable microsimulation performance metrics (e.g., capacity, jam density). 

Data was collected and aggregated at small intervals and forecasted to hourly flow rates to 

construct fundamental diagrams describing the network.  

Through this case study, several notable observations were made: 

• For the Gipps and the IDM car-following models, there is significant 

variation in capacity results as a function of calibration parameter sets used 

across the five simulations conducted, underscoring the importance of 

proper calibration (i.e., these parameters significantly impact the outputs of 

these models). For the W99 model, the capacities were considerably more 

similar, but the jam densities had increased variation. 

• For the simulations involving 100% of a homogeneous driver group, there 

were often more observable trends in congested conditions than when 

default parameters were used. Moreover, results obtained simulating the 

heterogeneous model, which include representation from all four 
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homogeneous driver groups, contained the trends from each of the 

homogeneous model runs. This suggests that the heterogeneous model is 

better capable of capturing the diverse driving behavior in the NDS. This 

truly underscores the value of this research effort. 

• Greenshield’s model, or a linear relationship between speed and density, is 

known to be an oversimplification of traffic flow theory. The simulated 

traffic flow using the W99 and IDM default parameters produced the 

highest goodness-of-fit metrics with the linear regression trendline. This 

may suggest that the default parameters are not representative of naturalistic 

driver behavior. 

• Finally, it was observed that the Gipps, IDM, and W99 default parameters 

produced the most gradual transition from free-flow speed to jam density, 

according to the slope of the line of best fit obtained for the speed-density 

fundamental diagrams. This may suggest that the default parameters were 

selected for stability and smoothness of traffic flow (i.e., idealized flow) 

rather than based on real data.  

Although ground truth verification of the framework is not possible at this stage of 

the research, there is considerable evidence provided in this chapter that changing the 

proportions of homogeneous driver groups represented in the simulation does impact the 

key performance metrics of interest as outputs of microsimulation models. Thus, this 

chapter supports further exploration and verification of the calibration framework in future 

studies, which are planned but outside of the scope of the current dissertation. 
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Chapter 9:  New Method to Capture Diverse Driving Behavior Heterogeneity – An 

Ensemble Car-Following Model (Task 5) 

9.1. MOTIVATION 

As discussed in the literature review, it is well documented that individual 

preferences in driving behavior (e.g., speed, reaction time) are highly variable between and 

within drivers. Both intra-driver heterogeneity—defined as the same driver changing their 

behavior as a function of the changing driving environment—and inter-driver 

heterogeneity—or different drivers behaving differently despite similarities in the driving 

environment—have been observed in empirical data. Examples of intra-driver 

heterogeneity include a driver changing their behavior between clear and adverse weather 

conditions (Hammit et al., 2019) or through the different elements of a work zone (A. L. 

Berthaume et al., 2018). Examples of inter-driver heterogeneity include different drivers 

exhibiting different following behaviors on the same stretch of roadway, such as 

documented differences in the headway selected by passenger car and heavy vehicle 

drivers (Durrani et al., 2016).  

In Chapter 6 of this dissertation, it was shown that different models can capture 

some drivers’ behaviors better than others. That is, there is no one best car-following model 

to predict the behavior of all drivers and for all scenarios. In the field of data science, 

selecting the best model to answer a question is a well-known problem. To overcome the 

limitation of classical methods there exists a suite of methods—called ensemble methods—

that use elements from multiple classical methods to ultimately create a more predictive 

method. This motivates the question explored in this chapter: can microsimulation model 

accuracy be improved by using multiple car-following models to capture the diverse 

driving behavior evident in naturalistic data? This dissertation hypothesizes that the 

combination of multiple car-following models will be able to better capture the inter-driver 
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heterogeneity within the data compared against the original car-following models, used 

independently. 

The remainder of this chapter is organized as follows. Section 9.2 briefly describes 

the methodology applied to develop the ensemble car-following model. Section 9.3 

highlights important results. Finally, conclusions, limitations, and future research are 

discussed in Section 9.4. 

It should be noted that this chapter is not able to determine the accuracy of using 

this framework for car-following model calibration, compared against traditional methods 

of car-following model calibration, as the simulation network is hypothetical and ground-

truth verification data is not available. However, this chapter does show that different 

proportions of driver groups do produce considerably different key performance metrics of 

a microsimulation model (e.g., capacity), which could impact the results of an alternatives 

assessment and ultimately influence which projects are selected for funding. At a 

minimum, this chapter successfully provides evidence suggesting that the influence of 

inter-driver differences on key transportation performance metrics are worthy of additional 

analysis. 

 

9.2. METHODOLOGY 

This chapter describes the creation of the ensemble car-following model. This 

includes the selection of car-following models, the identification of representative 

parameter sets, and the development of the microsimulation case study. 

 

 

 



 258 

Obtaining Trip-Specific Calibration Coefficients 

This methodology requires trip-specific calibration coefficients as inputs. In order 

to obtain these coefficients, high-resolution trajectory data must be available. This chapter 

makes use of a sample of the second Strategic Highway Research Program (SHRP2) 

Naturalistic Driving Study dataset obtained by the Wyoming Department of 

Transportation; for additional details on this dataset, please see Section 3.1.3. Next, the 

trajectory data must be processed to identify constrained driving, or car-following, states. 

For details on the procedure used as part of this dissertation, see Section 3.2.2. Finally, 

optimal car-following model calibration coefficients are identified for each trip by solving 

a mathematical model of the car-following process with a heuristic; for details on the 

defined nonlinear optimization problem and the genetic algorithm applied as part of this 

dissertation, see Section 0. It should be noted that for this dissertation the Gipps, Intelligent 

Driver Model (IDM), and Wiedemann 99 (W99) car-following models were selected for 

analysis; the model specifications are detailed in Section 3.2.3. 

 

Segmenting the Data 

In Chapter 6, it was shown that some models can capture the driving behavior of 

certain drivers better than others. This chapter will apply the attribute driver mileage last 

year, collected as part of the SHRP2 NDS, dataset to segment the data. The car-following 

model that achieved the lowest median score for a subcategory of the driver mileage last 

year attribute is used to construct the ensemble car-following model. For ease of reference, 

the breakdown of data subcategories and selected model is summarized below: 

• 0–5k | Modeled using W99; 

• 6–9k | Modeled using IDM; 

• 10–12k | Modeled using W99; 
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• 13–15k | Modeled using IDM; 

• 16–19k | Modeled using Gipps; 

• 20–23k | Modeled using W99; and 

• 25k+ | Modeled using Gipps. 

 

Obtaining Representative Car-Following Model Parameter Set 

In Chapter 7, different methods were applied to identify the best procedure for 

obtaining a representative parameter set from a collection of trajectories (i.e., the collection 

of all trajectories that belong to all drivers that belong in a subcategory of reported miles 

driven last year). For additional details on this study, the reader is referred to Chapter 7. 

From this project, it was identified that taking the mean of each independent parameter 

works best for the IDM and Gipps models, while taking the median of each independent 

parameter works best for the W99 model. 

The optimal parameters for the Gipps, IDM, and W99 models are shown in Table 

9.1, Table 9.2, and Table 9.3, respectively. 
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Table 9.1 Optimal Parameter Values for the 16–19k and 25k+ Subcategories 

Model Parameters Default 16–19k 25k+ 

G
ip

p
s 

Desired Velocity [m/s] 35.0 33.8 34.4 

Desired Acceleration 

[m/s2] 
2.0 1.3 1.2 

Reaction Time [s] 0.7 0.7 0.5 

Desired Deceleration 

[m/s2] 
-3.0 -2.8 -3.0 

Predicted Maximum 

Deceleration of Lead 

Vehicle [m/s2] 

-3.5 -2.6 -2.9 

Minimum Standstill 

Distance [m] 
1.0 4.6 3.9 

 

Table 9.2 Optimal Parameter Values for the 6–9k and 13–15k Subcategories 

Model Parameters Default 6–9k 13–15k 

In
te

ll
ig

en
t 

D
ri

v
er

 M
o
d

e
l 

Desired Velocity [m/s] 35.0 30.4 32.6 

Free Acceleration 

Component 
4.0 35.8 54.8 

Desired Time Gap [s] 1.5 1.2 0.8 

Jam Distance [m] 2.0 3.2 3.7 

Desired Acceleration 

[m/s2] 
1.4 0.6 0.9 

Desired Deceleration 

[m/s2] 
2.0 2.1 2.2 
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Table 9.3 Optimal Parameter Values for the 0–5k, 10–12k, and 20–24k Subcategories 

Model Parameters Default 0–5k 10–12k 20–24k 
W

9
9
 

CC0: Standstill Distance 

[m] 
1.5 4.0 4.3 3.7 

CC1: Spacing Time [s] 1.3 0.7 1.0 0.6 

CC2: Following Variation, 

Max Drift [m] 
4.0 12.8 11.8 12.5 

CC3: Threshold for 

Entering Following [s] 
-12 -24.0 -23.9 -23.4 

CC4: Negative Following 

Threshold [m/s] 
-0.25 0.0 -0.1 -0.1 

CC5: Positive Following 

Threshold [m/s] 
0.35 0.95 1.2 0.95 

CC6: Speed Dependency 

of Oscillation [10-4 rad/s] 
0.0006 1.8 1.3 2.4 

CC7: Oscillation 

Acceleration [m/s2] 
0.25 1.0 0.9 0.7 

CC8: Standstill 

Acceleration [m/s2] 
2.0 1.25 1.4 1.3 

CC9: Acceleration at 

80kph [m/s2] 
1.5 0.2 0.1 0.2 

Desired Velocity [m/s] 35.0 31.6 31.8 30.9 

 

Microsimulation Analysis 

This case study is very similar to the case study conducted in Chapter 8. This 

dissertation uses a recommended simple weaving segment from the Sixth Edition of the 

Highway Capacity Manual (Transportation Research Board, 2010), which includes four-
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lanes in one-direction with three on- and off-ramps, as shown in Figure 8.2. As with 

Chapter 8, VISSIM 9 was used to simulate the driver behavior. 

The Gipps and IDM car-following model logic are not included in the VISSIM 

software. Thus, to develop the ensemble car-following model, the External Driver Model 

Dynamic Linking Library (DLL) Interface of VISSIM was employed. This allows 

modelers to apply their own driver behavior models into the VISSIM simulation using 

C/C++ code. For a detailed overview of the VISSIM External Driver Model interface and 

an example of the IDM car-following model code, please see Section 8.2.  

Data collection points were set up at five locations across the network. Data was 

aggregated at 20 s intervals and forecasted to hourly flow rates. The volume and speed 

collected via VISSIM were used to obtain traffic density through the fundamental 

relationship of traffic flow. This allowed for fundamental diagrams to be developed. For 

the purpose of this case study, eight sets of simulation runs were completed for each car-

following model: 

• 100% of vehicles assigned to the 0–5k representative car-following model; 

• 100% of vehicles assigned to the 6–9k representative car-following model; 

• 100% of vehicles assigned to the 10–12k representative car-following 

model; 

• 100% of vehicles assigned to the 13–15k representative car-following 

model; 

• 100% of vehicles assigned to the 16–19k representative car-following 

model; 

• 100% of vehicles assigned to the 20–24k representative car-following 

model; 



 263 

• 100% of vehicles assigned to the 25k+ representative car-following model; 

and 

• The Ensemble car-following model, with equal proportions of the 

previously listed car-following models. 

 

9.3. RESULTS 

The flow-density fundamental diagrams are pictured in Figure 9.1. It should be 

noted that darker squares represent a high frequency of observed data points; the lighter 

the squares, the lesser the number of observed data points in that region of the fundamental 

diagram. For all fundamental diagrams in Figure 9.1, there is a clear linear relationship 

between volume and density in the uncongested regime. There are not strong relationships 

between density and volume in the congested regime. However, there are clear differences 

between the trends of how traffic flow deteriorates between the three different car-

following models: Gipps (Figure 9.1e and Figure 9.1g), IDM (Figure 9.1b and Figure 9.1d), 

and W99 (Figure 9.1a, Figure 9.1c, and Figure 9.1f). 
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Figure 9.1 Flow-Density Fundamental Diagrams 

The speed-flow fundamental diagrams are picture in Figure 9.2. It should be noted 

that darker squares represent a high frequency of observed data points; the lighter the 

squares, the lesser the number of observed data points in that region of the fundamental 

diagram. The 16–19k (Figure 9.2e) and 25k+ (Figure 9.2g) subcategories have the least 

clear traffic flow trends in uncongested conditions (i.e., fewer dark squares at high speeds 

and low volumes). The absence of data at moderate speeds suggests that the traffic flow 

transitions very quickly from under saturated to oversaturated conditions, as the transitional 

period is not captured in the data. Moreover, the 16–19k and 25k+ subcategories observed 

their highest flow rates at relatively higher speeds; this suggest that there is greater 

instability in queue discharge, which is supported by other observations about the 

fundamental diagrams.  
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As shown in Figure 9.2a, Figure 9.2c, and Figure 9.2f, drivers described by the 

W99 model were able to travel at their desired speeds for longer than when IDM or Gipps 

were used to simulate traffic flow. This suggests that these drivers are less sensitive to the 

drivers around them. 

Finally, and perhaps most importantly, the Ensemble car-following model (Figure 

9.2h) captures traffic flow trends evident in the fundamental diagrams for the individual 

subcategories (Figure 9.2a through Figure 9.2g). This suggests that the Ensemble model 

can better capture the diverse driving behaviors compared against any individual car-

following model on its own.  

 

 

Figure 9.2 Speed-Flow Fundamental Diagrams 
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The speed-density fundamental diagrams are pictured in Figure 9.3. It should be 

noted that darker squares represent a high frequency of observed data points; the lighter 

the squares, the lesser the number of observed data points in that region of the fundamental 

diagram. The 13–15k subcategory was found to have the steepest slope for the linear 

regression trendline; this suggests that traffic flow rapidly deteriorates from uncongested 

to congested conditions.  

The 16–19k and 25k+ subcategories were found to have the most gradual slopes, 

but this is due to the large number of observations at higher densities. Moreover, the 16–

19k and 25k+ categories have significantly larger jam densities than the other categories. 

These categories were simulated using the Gipps model; this is consistent with Chapter 8 

observations about the simulated Gipps traffic. This is interpreted as an artifact of the 

performance of the Gipps car-following model in the VISSIM External Driver Model 

interface, rather than an observation about drivers that belong in this subcategory of data. 

The Ensemble model (see Figure 9.3h) had the highest goodness-of-fit metric. This 

is likely attributable to the ability of the Ensemble model to produce speed-density points 

along the spectrum of values from free-flow speed to jam density, unlike the other 

subcategories, where the data was more concentrated at various points of the line. As 

observed with Figure 9.2, the Ensemble model captures driving behavior across the 

complete spectrum of speeds. This suggests that the Ensemble model is better able to 

capture the diverse driving behavior compared to any individual car-following model.  
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Figure 9.3 Speed-Density Fundamental Diagrams 

Finally, the jam densities and capacities of each network are shown in Table 9.4. The jam 

densities produced by the W99 and IDM car-following models are remarkably close in 

magnitude. The jam densities produced by the Gipps model are significantly higher than 

those produced by other car-following models. As discussed in Chapter 8, this is likely 

because the Gipps model, applied through the External Driver Model interface, is not 

completely collision free; the Gipps model has an explicit reaction time, where the driver 

is acting upon information from the time step that is their reaction time in the past. Thus, 

when the vehicle changes lanes, the driver is not appropriately reacting to their new leading 

vehicle until a reaction time later and some collisions ensue.  

However, the capacities are very different across the different driver groups. 

Although there is only a five veh/mi/ln difference in jam densities across the different 
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groups modeled by the W99 and IDM models, there is an 855 veh/hr/ln difference in 

capacities. Upon inspection of the simulation, these differences seem to be related to how 

traffic transitions from uncongested to congested conditions. It is a known problem in 

microsimulation modeling that the car-following model calibration solution may not be 

unique (i.e., different combinations of parameter values may produce a similar calibration 

score). Moreover, different sets of calibration parameter coefficients produce similar 

outputs of microsimulation models (see the results for the 0–5k and 20–24k subcategories 

of drivers in Table 9.4). However, visual inspection of the simulation and fundamental 

diagrams confirms that there are differences in how the traffic flow deteriorates attributable 

to different car-following model functional forms. Although outside of the scope of this 

dissertation, this concept of exploring the nuanced differences in the deterioration of traffic 

flow in the congested regime may help to provide insights into uniquely optimal calibration 

of simulation models.  

 

Table 9.4 Variation in Jam Density and Capacity Across Model Parameters 

 Model 

Jam 

Density 

(veh/m/ln) 

Capacity 

(veh/h/ln) 

0-5k W99 73 1980 

6-9k IDM 71 1620 

10-12k W99 72 2016 

13-15k IDM 68 2475 

16-19k Gipps 132 1890 

20-24k W99 72 1935 

25k Gipps 138 2295 

Ensemble All 95 1800 
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9.4. CONCLUSIONS AND FUTURE RESEARCH 

This chapter explores the idea of an ensemble car-following model, or a model that 

makes use of multiple car-following models to best describe the collective behavior of a 

diverse set of drivers.  

Key insights of this chapter include the following: 

• As evident in Figure 9.2, the Ensemble car-following model captures traffic 

flow trends evident in the fundamental diagrams for the individual 

subcategories. This may suggest that the Ensemble model can better capture 

the diverse driving behaviors better than any individual car-following 

model, independently. 

• As evident in Figure 9.3, the Ensemble model captures driving behavior 

across the complete spectrum of speeds. This suggests that the Ensemble 

model is better able to capture the diverse driving behavior compared to any 

individual car-following model. 

• Although some of the jam densities were very similar, the models and 

estimated parameter values produced very different fundamental diagrams 

and capacities. This suggests that the deterioration of traffic flow is different 

with different car-following models. Although outside of the scope of this 

dissertation, the study of the deterioration of traffic flow into the congested 

regime may help to provide insights into uniquely optimal calibration of 

simulation models. 

Unfortunately, this chapter was not able to validate the ensemble model, as there is 

no ground truth data available about the fictitious network used for simulation. Instead, this 

chapter was intended to show that the different models and optimal parameter coefficients 

produce different key performance metrics of microsimulation models, which may 
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ultimately have an impact on the assessment of transportation alternatives and project 

selection. 

Future research will explore the concept of the Ensemble car-following model on a 

real-world network, where ground truth verification data can be collected and the validity 

of the model can be assessed  
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Chapter 10:  Final Conclusions and Recommendations 

In August 2018, the author attended and presented some preliminary results of this 

dissertation at the Seventh International Symposium on Naturalistic Driving Research, in 

Blacksburg, VA. This two-day conference was dominated by research completed using the 

second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) 

dataset. The research questions and results presented were predominately safety-oriented. 

However, as one conference attendee pointedly stated, the majority of the SHRP2 NDS 

dataset is not made up of crashes or safety critical events: it is boring, baseline driving data 

that is not of significant value to safety researchers.  

However, this boring, baseline data is exactly what is needed in the operations 

discipline. Further analysis of the SHRP2 NDS holds opportunities to explore additional 

sources of both inter- and intra-driver heterogeneity. Possible future research questions 

include, but are not limited to: 

• Intra- and inter-driver differences attributable to varying levels of congestion 

(e.g., level-of-service (LOS) A, LOS C, LOS F). 

• Intra- and inter-driver differences attributable to facility type (e.g., arterials, 

freeways). 

• Intra- and inter-driver differences attributable to segment categorization (e.g., 

basic, weaving, merging). 

• Intra- and inter-driver differences attributable to operational conditions (e.g., 

narrow lanes, work zones). 

• Intra- and inter-driver differences attributable to time of travel (e.g., weekday, 

weekend day, peak period, off-peak period). 
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This dissertation has only begun to scratch the surface of the value in the SHRP2 

NDS dataset for operations-focused analysis, modeling, and simulation tools development. 

It explored the inter-driver differences attributable to driver specific attributes. This 

dissertation has made three primary contributions to the literature.  

First, it identifies the presence of homogeneous driver groups evident in naturalistic 

data; these groups were identified through the clustering of surrogate measures for driving 

behavior and validated via classification algorithms that were able to correctly assign 

drivers to their behavioral groups without information about their driving style.  

Secondly, this dissertation introduces a new framework for calibrating the 

behavioral component of microsimulation models by adjusting the proportions of 

homogeneous driver groups represented in the population; although this framework was 

not fully validated, this dissertation was able to illustrate that when different proportions 

are assumed, it impacts the performance metrics of interest and could influence project 

selection.  

Finally, this dissertation develops an ensemble car-following model, which uses 

three well-documented and accepted car-following models to capture the diverse driving 

behavior in naturalistic data.  

To provide these three contributions to the transportation community, this 

dissertation was divided into five tasks: 

• Task 1: Evaluate the presence of heterogeneity in the SHRP2 NDS dataset and 

determine if existing car-following models in the literature are suitable for 

capturing this heterogeneity at a trip-level.  

• Task 2: Characterize the inter-driver heterogeneity evident in the SHRP2 NDS as a 

function of driver specific attributes (e.g., age, gender). 
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• Task 3: Identify method(s) to capture the collective behavior of homogeneous 

driver groups in microsimulation models. 

• Task 4: Evaluate the utility of accounting for driver attributes in microsimulation. 

• Task 5: Evaluate a new method for capturing inter-driver heterogeneity: an 

“empirical” driver model. 

Through the completion of these five tasks, this dissertation explored eight research 

questions. The next section provides parting thoughts on these questions.  

 

10.1. REFLECTIONS ON RESEARCH QUESTIONS 

As defined in Chapter 1, this dissertation aimed to provide insight into eight specific 

research questions. Final thoughts on the questions and the insights derived through this 

dissertation research are provided herein.  

 

Research Question 1: Is there evidence of driving behavior heterogeneity in the SHRP2 

NDS time-series data?  

In Chapter 4, this dissertation analyzed the distributions of trip statistics and 

calibration parameter values across the 665-trip sample of the SHRP2 NDS used in this 

dissertation. This Chapter illustrated that there is significant variation across estimated 

calibration parameter coefficient distributions, even when controlling for facility type and 

weather conditions. The trip summary statistics are mostly normally distributed. The model 

calibration parameter coefficients are not normally distributed, aside from the desired 

velocity parameter. This motivated the use of Kruskal-Wallis one-way analysis of variance 

(ANOVA) tests to assess the statistical differences in parameter values and model 

calibration scores.  
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Research Question 2: Can existing car-following models appropriately capture the diverse 

driving behavior of different drivers in the sample of SHRP2 NDS? 

Yes. Chapter 3 details the joint effort to develop a protocol for processing the 

SHRP2 NDS to identify the optimal parameter coefficients for three different car-following 

models in the literature. The calibration procedure identified the set of car-following model 

parameter coefficients that minimized the root mean square error (RMSE) between the 

predicted and observed following distance between two vehicles across a trajectory using 

a genetic algorithm. The genetic algorithm used to solve the nonlinear optimization 

problem produced reasonable RMSE results, suggesting sufficient model fit. The three car-

following models used in this dissertation are substantially different in intuition and 

functional form. However, there are five model calibration parameters that have similar 

physical interpretations. Aside from the minimum inter-vehicle spacing parameter, which 

potentially suffers from data incompleteness, these parameters are remarkably similar in 

measures of central tendency (e.g., mean, median, mode) and distribution shape (e.g., 

skewness, kurtosis). This provides support in the validity and accuracy of the calibration 

procedure, which was optimized using a heuristic instead of an exact solution method. 

 

Research Question 3: Which model(s) best capture the diverse driving behavior recorded 

in trajectory-level data? 

As my adviser would say, it depends! In Chapter 6, Kruskal-Wallis ANOVA tests 

were applied to assess the differences in calibration score across difference subgroups of 

drivers, segmented by driver attributes. Different models were able to better capture the 

driving behavior of certain groups of drivers better than others. As shown in Chapter 6, 

there is no one car-following model that is the best performing for all drivers and all 

scenarios. This further supports previously documented observations that in order to 
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adequately capture the heterogeneity in naturalistic driving data, different sets of optimal 

calibration parameters and different car-following models may be required. The variation 

in calibration score was statistically significant across all driver attribute subcategories, 

except those that comprise the gender attribute. This provides support that different 

subcategories of driver attributes should be modeled differently. 

 

Research Question 4: Do different hypothesized groups of drivers exhibit statistically 

significant differences in driving behavior? 

Yes. In Section 5.1, Kruskal-Wallis ANOVA tests were conducted to assess the 

statistical differences in model parameter magnitude across different subcategories of 

drivers segmented by driver attributes. Section 5.1 provides significant evidence that there 

are statistically significant differences in driver behavior (i.e., calibrated car-following 

model parameter estimates) between different subcategories (e.g., male, female) of driver 

attributes (e.g., gender). Segmenting the data across some attributes, such as driver age and 

marital status, produced more conclusive trends than other attributes, such as gender and 

driver mileage last year. 

 

Research Question 5: Do different subgroups of drivers behave sufficiently similarly to be 

considered one homogeneous group of drivers (i.e., do homogeneous driver groups exist 

in trajectory-level data?) 

Yes. In Section 5.2, clustering and classification algorithms in Weka were applied 

to show the existence of homogeneous driver groups in the SHRP2 NDS. The successful 

application of the Expectations Maximization clustering algorithm illustrates that there is 

evidence in naturalistic data that some drivers behave sufficiently similar to one another 

(and sufficiently different from drivers belonging to a different group) to be considered a 
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homogeneous group of drivers. To confirm these homogeneous driver groups can be 

identified via driver attributes, classification algorithms (i.e., ZeroR, OneR, PART Decision 

Rule and J48 Decision Tree algorithms) were utilized. To improve model fit, an attribute 

selection algorithm, CfsSubsetEval, was applied to identify the most predictive attributes 

about a driver. Age and marital status were the most commonly selected attributes, while 

gender, race, and educational attainment were the least commonly selected attributes. 

Although the improvements varied depending on the model parameter used for clustering, 

results indicate that clusters of homogeneous car-following model parameters are 

correlated with driver attributes (i.e., age). Put succinctly, some drivers drive sufficiently 

alike to form a cluster of similar behavior. Moreover, driver specific attributes can be 

carefully utilized to classify drivers into these homogeneous driver groups. 

 

Research Question 6: What methods should be used to obtain a representative set of 

calibration coefficients for a group of drivers?  

In Chapter 7, this dissertation evaluated eight viable methods for obtaining 

representative sets of calibration parameters. The methods are grouped into three 

behavioral categories: (i) average behavior, (ii) most frequently observed behavior, or (iii) 

randomly sampled behavior; moreover, these methods are designed to evaluate the 

importance of preserving possible correlations between calibration parameters. A 100-trip 

sample of the SHRP2 NDS was applied to calibrate four common car-following models. A 

robust validation strategy from the data science literature, 10-fold cross-validation, was 

implemented to evaluate the performance of the eight methods.  

The research findings show that the method that captured the average behavior 

while preserving correlations between the calibrated model parameters performed the best 

across all four models; this illustrates the importance of accounting for the underlying 
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relationships between model parameters. However, methods that adequately captured the 

average behavior while relaxing the assumption of underlying parameter correlations 

performed better than all other methods. In other words, although the more computationally 

burdensome methods produce optimal results, simply taking the mean or median of the 

distribution of individual parameter coefficients offers a practical approach for generating 

a representative parameter set. For all models, these methods demonstrated significantly 

better performance than the default parameter sets. For the Gipps and IDM calibration 

coefficients, simply taking the average of each independent calibration parameter for the 

collection of trajectories proved practical and sufficiently accurate; for the W99 calibration 

coefficients, taking the median of the calibration parameters for the collection of 

trajectories was found to work best from a practical perspective. 

 

Research Question 7: Can census-level (i.e., driver demographics) data be used alongside 

the anticipated proportions of driver subgroups to calibrate the car-following behavior of 

microsimulation models, effectively moving the calibration process to the back-end? 

To assess this research question, homogeneous driver groups were identified in the 

SHRP2 NDS dataset using the framework developed in Chapter 5.2 of this dissertation. 

The most practical, but accurate, method for each of the car-following models, as identified 

in Chapter 7 of this dissertation, was applied to identify the representative parameter sets 

for the homogeneous driver groups. The External Driver Model Dynamic Linking Library 

(DLL) Interface of VISSIM was used to simulate different assumed proportions of the 

homogeneous driver groups in the driving population. Key performance metrics, such as 

flow and speed, were collected to assess differences in network performance as a function 

of the assumed proportions of homogeneous driver groups.  



 278 

This case study found that when the Gipps and the IDM car-following models were 

applied, there is significant variation in capacity results as a function of calibration 

parameter sets used across the five simulations, underscoring the importance of proper 

calibration (i.e., these parameters significantly impact the outputs of these models). For the 

W99 model, the capacities were considerably more similar, but the jam densities had 

increased variation.  

For the simulations involving 100% of a homogeneous driver group, there were 

often more observable trends in congested conditions than when default parameters were 

used. Moreover, results obtained simulating the heterogeneous model, which include 

representation from all four homogeneous driver groups, contained the trends from each of 

the homogeneous model runs. This suggests that the heterogeneous model is better capable 

of capturing the diverse driving behavior in the NDS. This truly underscores the value of 

this research effort.  

Finally, it was observed that the Gipps, IDM, and W99 default parameters produced 

the most gradual transition from free-flow speed to jam density, according to the slope of 

the line of best fit obtained for the speed-density fundamental diagrams. This may suggest 

that the default parameters were selected for stability and smoothness of traffic flow (i.e., 

idealized flow) rather than based on real data. Although ground truth verification of the 

framework is not possible at this stage of the research, there is considerable evidence 

provided in this dissertation that changing the proportion of homogeneous driver groups 

represented in the simulation does impact the key performance metrics of interest as 

outputs of microsimulation models. Thus, this supports further exploration and verification 

of the calibration frameworks in future studies, which are planned but outside of the scope 

of this dissertation. 
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Research Question 8: Does the diverse driving behavior observed in trajectory-level data 

require the application of multiple car-following models to more adequately capture the 

apparent heterogeneity in driving styles? 

To assess this research question, the data was segmented by the attribute miles 

driven last year to create subgroups of drivers. The best method for each of the car-

following models, as identified in Chapter 7 of this dissertation, was applied to identify the 

representative parameter sets for the subgroups of drivers separated by their reported 

attribute miles driven last year. The External Driver Model DLL Interface of VISSIM was 

used to simulate different assumed proportions of the driver subgroups in the driving 

population.  

As illustrated in Chapter 9, the Ensemble car-following model captures traffic flow 

trends evident in the fundamental diagrams for the individual subcategories. This may 

suggest that the Ensemble model can better capture the diverse driving behaviors better 

than any individual car-following model, independently. Moreover, the Ensemble model 

captures driving behavior across the complete spectrum of speeds. This suggests that the 

Ensemble model is better able to capture the diverse driving behavior compared to any 

individual car-following model.  

Although some of the jam densities were very similar, the models and optimal 

parameter values produced very different fundamental diagrams and capacities. This 

suggests that the deterioration of traffic flow is different with different car-following 

models. Although outside of the scope of this dissertation, the study of the deterioration of 

traffic flow into the congested regime may help to provide insights into uniquely optimal 

calibration of simulation models. 

Unfortunately, this chapter was not able to validate the ensemble model, as there is 

no ground truth data available about the fictitious network used for simulation. Instead, this 
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chapter was intended to show that the different models and optimal parameter coefficients 

produce different key performance metrics of microsimulation models, which may 

ultimately have an impact on the assessment of transportation alternatives and project 

selection. 

 

10.2. OPPORTUNITIES FOR FUTURE RESEARCH 

The original goal of this dissertation was to develop a calibration procedure that 

could be used to improve the state-of-practice of microsimulation modeling. Although the 

calibration procedure developed as part of this dissertation was successful, there is a lot of 

room to improve and increase the practicality of the procedure. First, it is recommended to 

more deeply explore the uniqueness of the calibration solution. This dissertation observed 

that different calibrated parameter sets obtain highly similar calibration scores. Thus, as 

discussed in Chapter 9, studying the deterioration of traffic flow may provide additional 

support behind the selection of one set of calibration parameters over another. 

Moreover, part of the challenge of scaling up the calibration of car-following 

models with trajectory-level data for application in practice is the computation time 

required for the calibration procedure, particularly with models with a higher number of 

calibration coefficients. Later in this research, a literature review revealed methods to 

minimize the number of calibrated coefficients through the idea of variance-based 

sensitivity analysis for the IDM (Punzo et al., 2015). Thus, it is recommended to explore 

this concept on the W99 car-following model, which was the model that took the longest 

to calibrate. 

Finally, prior to calibration, data should be observed for completeness of all traffic 

conditions (Treiber & Kesting, 2013b). In hindsight, this should have been conducted for 
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the 665-trip sample used in this dissertation and would have likely reduced the number of 

parameters required for calibration (i.e., the minimum standstill distance parameter likely 

lacked sufficient data in most trips for calibration given the nature of the data).  

The second area of recommended future research is validating the census-level data 

calibration framework and the ensemble car-following model. This dissertation used a 

fictitious network, as described in the Highway Capacity Manual, where validation data 

(i.e., ground truth capacity) was not available. In future research, it is recommended that 

this framework and the ensemble car-following model be applied to a real-world network, 

where the performance can be validated with ground truth data. 

Finally, future research recommends continued exploration of the SHRP2 NDS for 

operations-related questions. This dissertation made use of a 665-trip sample of the larger 

5.5 million trip file SHRP2 NDS dataset. This dataset offers an unprecedented opportunity 

to explore other sources of heterogeneity (e.g., level of congestion) and other driver 

behaviors (e.g., lane changing). The SHRP2 NDS should be more heavily used in 

operations-related research before the data expiration date, where all original data must be 

disposed of per Institutional Research Board requirements. 

 

10.3. CONCLUDING REMARKS 

The aging Eisenhower Interstate System and the further diminishing purchasing 

power of the Federal Gas Tax has created a significant challenge for transportation 

professionals. Toward the proper stewardship of public funds, the 2015 Fixing America’s 

Surface Transportation (FAST) Act mandates that new transportation projects using federal 

funding will employ analysis, modeling, and simulation tools to ensure funded alternatives 

will have positive implications for the network (e.g., reduced congestion, improved safety).  
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However, simulation models have significant limitations. One of the largest 

limitations is the availability of appropriate data for model development and calibration. 

Until recent history, the data available was macroscopic in nature (e.g., x-minute 

aggregated traffic counts, speed, and travel time). However, high-resolution data collection 

efforts, such as the SHRP2 NDS and the Next Generation SIMulation (NGSIM) datasets, 

are providing an unprecedented opportunity to produce more robust funding 

recommendations through the proper calibration of the underlying model. This dissertation, 

if nothing else, provides significant evidence of the necessity to more adequately capture 

behavioral heterogeneity in microsimulation models.   
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Appendix A: Numerical Results Supporting Section 5.2 

Table A.1: Mean Acceleration Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.07 0.14 0.10

M 261 0.05 0.10 0.05

a: 20-24 71 0.01 0.15 -0.01

b: 25-29 209 0.10 0.14 0.13

c: 30-34 61 0.05 0.12 0.08

d: 35-39 80 0.07 0.09 0.08

e: 40-44 66 0.01 0.08 0.02

f: 45-59* 47 0.05 0.12 0.04

g: 60-69* 71 0.07 0.09 0.07

h: 70+* 56 0.04 0.18 0.04

Caucasian 453 0.07 0.14 0.08

Not Caucasian 205 0.05 0.10 0.03

a: No college degree 191 0.12 0.13 0.15

b: College degree 338 0.05 0.11 0.06

c: Graduate Degree 131 -0.01 0.13 0.01

a: single 219 0.02 0.14 0.02

b: unmarried partners 49 0.02 0.03 0.02

c: married 282 0.09 0.13 0.12

d: divorced 89 0.08 0.08 0.10

e: widow(er) 19 0.08 0.21 0.09

a: Under 39k* 93 0.02 0.18 0.02

b: 40-49k 103 0.03 0.12 0.02

c: 50-69k 170 0.15 0.10 0.17

d: 70-99k 97 0.06 0.10 0.06

e: 100-149k 92 0.02 0.10 0.03

f: 150k+ 44 -0.07 0.11 -0.05

a: 1 229 0.04 0.13 0.06

b: 2 151 0.04 0.13 0.06

c: 3 191 0.11 0.13 0.14

d: 4 or more 89 0.03 0.11 0.02

a: 0-5k* 40 0.02 0.11 0.00

b: 6-9k* 41 0.10 0.17 0.09

c: 10-12k* 141 0.04 0.13 0.07

d: 13-15k* 48 0.00 0.12 0.03

e: 16-19k* 45 0.03 0.20 0.07

f: 20-23k* 104 0.06 0.08 0.07

g: 25k+ 170 0.12 0.10 0.14

Trip Statistic - Mean(Following Vehicle Acceleration) [m/s
2
]

Gender 0.018 0.002

Age 0.000 0.000

Race 0.045 0.002

Education 0.00 0.00

Marital Status 0.00 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage 

Last Year
0.000 0.000
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Table A.2: Minimum Acceleration Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 -0.88 0.32 -0.84

M 261 -0.75 0.28 -0.70

a: 20-24 71 -0.99 0.32 -0.91

b: 25-29 209 -0.90 0.28 -0.84

c: 30-34 61 -0.86 0.28 -0.81

d: 35-39 80 -0.77 0.27 -0.71

e: 40-44 66 -0.74 0.24 -0.68

f: 45-59* 47 -0.79 0.38 -0.71

g: 60-69* 71 -0.78 0.32 -0.78

h: 70+* 56 -0.64 0.37 -0.58

Caucasian 453 -0.83 0.33 -0.79

Not Caucasian 205 -0.84 0.27 -0.79

a: No college degree 191 -0.79 0.31 -0.76

b: College degree 338 -0.85 0.31 -0.82

c: Graduate Degree 131 -0.85 0.32 -0.77

a: single 219 -0.94 0.30 -0.89

b: unmarried partners 49 -0.72 0.21 -0.67

c: married 282 -0.81 0.30 -0.77

d: divorced 89 -0.76 0.31 -0.72

e: widow(er) 19 -0.58 0.35 -0.55

a: Under 39k* 93 -0.96 0.39 -0.93

b: 40-49k 103 -0.86 0.27 -0.83

c: 50-69k 170 -0.80 0.27 -0.76

d: 70-99k 97 -0.85 0.36 -0.85

e: 100-149k 92 -0.76 0.27 -0.68

f: 150k+ 44 -0.89 0.28 -0.86

a: 1 229 -0.84 0.32 -0.83

b: 2 151 -0.85 0.36 -0.80

c: 3 191 -0.85 0.29 -0.80

d: 4 or more 89 -0.75 0.23 -0.69

a: 0-5k* 40 -0.98 0.32 -0.96

b: 6-9k* 41 -0.69 0.34 -0.68

c: 10-12k* 141 -0.84 0.32 -0.81

d: 13-15k* 48 -0.80 0.30 -0.73

e: 16-19k* 45 -0.97 0.37 -0.85

f: 20-23k* 104 -0.81 0.33 -0.76

g: 25k+ 170 -0.78 0.26 -0.71

Trip Statistic -Min(Following Vehicle Acceleration) - [m/s
2
]

Gender 0.000 0.000

Age 0.000 0.000

Race 0.821 0.494

Education 0.071 0.053

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.054 0.011

Driver Mileage 

Last Year
0.000 0.000
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Table A.3: Maximum Acceleration Segmented by Driver Attributes 

 

 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.90 0.27 0.92

M 261 0.77 0.21 0.74

a: 20-24 71 0.87 0.30 0.84

b: 25-29 209 0.97 0.24 0.98

c: 30-34 61 0.82 0.21 0.81

d: 35-39 80 0.81 0.23 0.75

e: 40-44 66 0.72 0.12 0.71

f: 45-59* 47 0.81 0.25 0.81

g: 60-69* 71 0.85 0.26 0.83

h: 70+* 56 0.65 0.24 0.67

Caucasian 453 0.86 0.27 0.84

Not Caucasian 205 0.84 0.22 0.81

a: No college degree 191 0.92 0.25 0.95

b: College degree 338 0.84 0.24 0.82

c: Graduate Degree 131 0.77 0.28 0.72

a: single 219 0.87 0.29 0.83

b: unmarried partners 49 0.74 0.12 0.72

c: married 282 0.88 0.26 0.90

d: divorced 89 0.80 0.19 0.77

e: widow(er) 19 0.72 0.27 0.72

a: Under 39k* 93 0.87 0.33 0.82

b: 40-49k 103 0.84 0.26 0.82

c: 50-69k 170 0.97 0.20 0.99

d: 70-99k 97 0.84 0.24 0.84

e: 100-149k 92 0.75 0.20 0.72

f: 150k+ 44 0.69 0.28 0.68

a: 1 229 0.82 0.26 0.78

b: 2 151 0.82 0.28 0.80

c: 3 191 0.95 0.21 0.96

d: 4 or more 89 0.76 0.21 0.72

a: 0-5k* 40 0.92 0.29 0.89

b: 6-9k* 41 0.84 0.31 0.77

c: 10-12k* 141 0.80 0.27 0.80

d: 13-15k* 48 0.70 0.17 0.70

e: 16-19k* 45 0.93 0.37 0.87

f: 20-23k* 104 0.80 0.20 0.75

g: 25k+ 170 0.92 0.21 0.95

Trip Statistic - Max(Following Vehicle Acceleration) - [m/s2]

Gender 0.000 0.000

Age 0.000 0.000

Race 0.397 0.310

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage 

Last Year
0.000 0.000
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Table A.4: Mean Relative Velocity Segmented by Driver Attributes 

 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.66 0.97 0.69

M 260 0.93 1.17 0.86

a: 20-24 71 0.60 0.80 0.41

b: 25-29 209 1.04 0.68 0.99

c: 30-34 61 0.17 0.53 0.12

d: 35-39 80 0.87 0.86 0.78

e: 40-44 65 1.84 0.88 2.11

f: 45-59* 47 0.35 0.92 0.48

g: 60-69* 71 0.43 1.18 0.45

h: 70+* 56 -0.02 1.75 0.11

Caucasian 453 0.63 1.05 0.68

Not Caucasian 204 1.07 1.00 0.95

a: No college degree 191 0.61 1.17 0.79

b: College degree 338 0.63 0.85 0.57

c: Graduate Degree 130 1.35 1.18 1.47

a: single 219 0.73 0.79 0.65

b: unmarried partners 48 2.21 0.58 2.27

c: married 282 0.71 1.00 0.72

d: divorced 89 0.75 0.85 0.78

e: widow(er) 19 -1.51 1.53 -1.47

a: Under 39k* 93 0.45 1.49 0.65

b: 40-49k 103 0.63 0.69 0.67

c: 50-69k 170 0.83 0.83 0.87

d: 70-99k 97 0.59 0.89 0.51

e: 100-149k 91 1.41 1.23 1.72

f: 150k+ 44 0.52 1.23 0.37

a: 1 229 0.58 1.14 0.78

b: 2 151 0.59 1.04 0.44

c: 3 191 0.81 0.77 0.80

d: 4 or more 88 1.46 1.14 1.74

a: 0-5k* 40 0.85 0.93 0.58

b: 6-9k* 41 -0.46 1.61 0.01

c: 10-12k* 141 0.37 0.90 0.25

d: 13-15k* 48 0.60 0.91 0.64

e: 16-19k* 45 1.14 1.20 1.10

f: 20-23k* 104 0.67 0.88 0.73

g: 25k+ 169 1.25 0.91 1.12

Trip Statistic - Mean(Relative Velocity)[m/s]

Gender 0.002 0.005

Age 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage 

Last Year
0.000 0.000
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Table A.5: Mean Relative Following Distance Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 49.88 16.23 46.60

M 261 58.65 15.69 57.90

a: 20-24 71 48.33 13.43 46.79

b: 25-29 209 44.53 13.13 42.20

c: 30-34 61 48.48 10.20 48.06

d: 35-39 80 53.52 13.58 53.53

e: 40-44 66 56.14 10.48 55.67

f: 45-59* 47 67.79 13.04 67.01

g: 60-69* 71 58.05 16.18 58.64

h: 70+* 56 76.24 18.13 74.42

Caucasian 453 55.08 17.48 53.58

Not Caucasian 205 49.34 13.48 48.41

a: No college degree 191 54.51 18.90 51.28

b: College degree 338 52.61 16.08 50.06

c: Graduate Degree 131 53.39 14.03 53.93

a: single 219 45.77 13.79 42.91

b: unmarried partners 49 55.93 7.05 57.00

c: married 282 54.59 16.30 53.54

d: divorced 89 59.72 16.42 57.76

e: widow(er) 19 83.77 15.05 83.00

a: Under 39k* 93 54.00 19.95 49.73

b: 40-49k 103 46.86 17.40 41.15

c: 50-69k 170 49.92 13.82 47.92

d: 70-99k 97 56.23 18.42 55.16

e: 100-149k 92 56.91 12.21 57.26

f: 150k+ 44 60.17 16.65 56.79

a: 1 229 53.83 19.03 50.84

b: 2 151 57.15 17.10 55.37

c: 3 191 49.47 13.47 47.76

d: 4 or more 89 53.75 13.04 54.28

a: 0-5k* 40 47.85 13.14 45.89

b: 6-9k* 41 66.83 24.27 71.03

c: 10-12k* 141 56.14 17.38 51.59

d: 13-15k* 48 58.86 14.75 58.70

e: 16-19k* 45 50.82 16.61 52.95

f: 20-23k* 104 57.39 14.86 55.83

g: 25k+ 170 51.06 13.60 52.07

Trip Statistic - Mean(Following Distance) [m]

Gender 0.000 0.000

Age 0.000 0.000

Race 0.000 0.000

Education 0.450 0.507

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage 

Last Year
0.000 0.000
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Table A.6: Mean Headway Segmented by Driver Attributes 

 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 1.98 0.76 1.78

M 261 2.06 0.63 1.89

a: 20-24 71 2.16 0.67 2.03

b: 25-29 209 1.65 0.56 1.55

c: 30-34 61 1.84 0.47 1.70

d: 35-39 80 1.89 0.50 1.78

e: 40-44 66 1.78 0.35 1.70

f: 45-59* 47 2.59 0.59 2.47

g: 60-69* 71 2.34 0.74 2.32

h: 70+* 56 2.89 0.85 2.87

Caucasian 453 2.02 0.73 1.87

Not Caucasian 205 1.98 0.67 1.77

a: No college degree 191 1.95 0.80 1.77

b: College degree 338 2.11 0.69 1.99

c: Graduate Degree 131 1.84 0.59 1.72

a: single 219 1.93 0.67 1.78

b: unmarried partners 49 1.72 0.21 1.70

c: married 282 1.96 0.70 1.80

d: divorced 89 2.20 0.62 2.10

e: widow(er) 19 3.45 0.82 3.16

a: Under 39k* 93 2.21 0.89 1.98

b: 40-49k 103 1.92 0.70 1.67

c: 50-69k 170 1.81 0.63 1.71

d: 70-99k 97 2.27 0.76 2.19

e: 110-149k 92 1.92 0.59 1.79

f: 150k+ 44 2.20 0.72 1.90

a: 1 229 2.14 0.82 1.94

b: 2 151 2.16 0.70 2.09

c: 3 191 1.83 0.62 1.75

d: 4 or more 89 1.82 0.46 1.76

a: 0-5k* 40 1.88 0.62 1.76

b: 6-9k* 41 2.71 0.98 2.65

c: 10-12k* 141 2.15 0.68 2.03

d: 13-15k* 48 2.19 0.55 2.13

e: 16-19k* 45 1.87 0.74 1.81

f: 20-23k* 104 2.19 0.70 2.06

g: 25k+ 170 1.67 0.47 1.64

Trip Statistic - Mean(Headway) [s]

Gender 0.160 0.004

Age 0.000 0.000

Race 0.481 0.325

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage 

Last Year
0.000 0.000
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Table A.7: Estimated Wiedemann 99 Standstill Distance (cc0) Coefficient Segmented by 

Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 4.52 2.47 4.50

M 261 4.22 2.47 3.80

a: 20-24 71 4.52 2.29 4.50

b: 25-29 209 4.20 2.33 4.10

c: 30-34 61 5.43 2.59 5.00

d: 35-39 80 3.86 2.21 3.60

e: 40-44 66 4.94 2.64 4.75

f: 45-59* 47 4.23 2.74 4.00

g: 60-69* 71 4.19 2.53 3.80

h: 70+* 56 4.43 2.68 4.20

Caucasian 453 3.89 2.33 3.70

Not Caucasian 205 5.49 2.43 5.50

a: No college degree 191 3.87 2.33 3.60

b: College degree 338 4.72 2.51 4.60

c: Graduate Degree 131 4.39 2.47 4.20

a: single 219 5.11 2.36 5.00

b: unmarried partners 49 5.17 2.40 4.90

c: married 282 3.80 2.39 3.55

d: divorced 89 4.08 2.48 3.70

e: widow(er) 19 4.91 2.52 5.30

a: Under 39k* 93 4.11 2.25 4.20

b: 40-49k 103 5.65 2.29 5.50

c: 50-69k 170 3.77 2.49 3.40

d: 70-99k 97 4.65 2.40 4.40

e: 100-149k 92 4.60 2.53 4.45

f: 150k+ 44 4.58 2.36 4.25

a: 1 229 4.64 2.44 4.60

b: 2 151 4.40 2.60 4.10

c: 3 191 3.89 2.32 3.80

d: 4 or more 89 4.92 2.49 4.80

a: 0-5k* 40 4.20 2.17 4.00

b: 6-9k* 41 4.16 2.51 4.20

c: 10-12k* 141 4.31 2.50 4.30

d: 13-15k* 48 4.55 2.83 4.35

e: 16-19k* 45 4.56 2.53 4.20

f: 20-23k* 104 4.10 2.47 3.65

g: 25k+ 170 4.04 2.32 3.85

Wiedemann 99 - Standstill Distance [m] - cc0

Gender 0.118 0.079

Age 0.005 0.010

Race 0.000 0.000

Education 0.001 0.001

Marital 

Status
0.000 0.000

Income 0.000 0.000

HHSize 0.003 0.002

Driver 

Mileage 

Last Year

0.802 0.859
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Table A.8: Estimated Wiedemann 99 Spacing Time (cc1) Coefficient Segmented by 

Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.84 0.56 0.65

M 261 0.81 0.55 0.60

a: 20-24 71 0.88 0.39 0.80

b: 25-29 209 0.58 0.27 0.50

c: 30-34 61 1.06 0.39 1.00

d: 35-39 80 0.60 0.31 0.50

e: 40-44 66 0.68 0.35 0.60

f: 45-59* 47 1.08 0.51 1.00

g: 60-69* 71 1.03 0.64 0.90

h: 70+* 56 1.44 1.09 1.25

Caucasian 453 0.84 0.59 0.60

Not Caucasian 205 0.78 0.45 0.60

a: No college degree 191 0.85 0.74 0.60

b: College degree 338 0.85 0.45 0.80

c: Graduate Degree 131 0.72 0.47 0.60

a: single 219 0.78 0.42 0.70

b: unmarried partners 49 0.63 0.36 0.60

c: married 282 0.84 0.53 0.65

d: divorced 89 0.72 0.49 0.50

e: widow(er) 19 2.16 1.12 1.80

a: Under 39k* 93 0.99 0.82 0.80

b: 40-49k 103 0.91 0.62 0.70

c: 50-69k 170 0.68 0.33 0.60

d: 70-99k 97 0.88 0.53 0.80

e: 100-149k 92 0.80 0.50 0.60

f: 150k+ 44 1.13 0.57 1.00

a: 1 229 0.82 0.69 0.60

b: 2 151 1.00 0.58 0.90

c: 3 191 0.71 0.32 0.60

d: 4 or more 89 0.77 0.46 0.60

a: 0-5k* 40 0.73 0.44 0.70

b: 6-9k* 41 1.54 1.03 1.30

c: 10-12k* 141 1.06 0.51 1.00

d: 13-15k* 48 0.99 0.64 0.80

e: 16-19k* 45 0.62 0.46 0.50

f: 20-23k* 104 0.76 0.49 0.60

g: 25k+ 170 0.63 0.32 0.60

Wiedemann 99 - Spacing Time [s] - cc1

Gender 0.456 0.295

Age 0.000 0.000

Race 0.251 0.646

Education 0.073 0.001

Marital 

Status
0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver 

Mileage 

Last Year

0.000 0.000
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Table A.9: Estimated Wiedemann 99 Following Variation, Maximum Drift (cc2) 

Coefficient Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 10.45 4.88 12.65

M 261 10.41 4.85 12.70

a: 20-24 71 10.85 4.42 13.50

b: 25-29 209 10.70 4.92 13.30

c: 30-34 61 10.88 4.38 12.80

d: 35-39 80 9.80 5.53 12.60

e: 40-44 66 11.04 4.46 13.05

f: 45-59* 47 8.13 5.33 6.60

g: 60-69* 71 10.27 4.92 12.50

h: 70+* 56 10.76 4.22 11.75

Caucasian 453 9.95 5.03 12.00

Not Caucasian 205 11.60 4.21 13.80

a: No college degree 191 9.99 5.04 11.90

b: College degree 338 10.38 4.90 12.80

c: Graduate Degree 131 11.28 4.35 13.20

a: single 219 11.17 4.40 13.50

b: unmarried partners 49 11.46 4.32 13.50

c: married 282 10.10 4.99 12.10

d: divorced 89 9.00 5.46 10.20

e: widow(er) 19 11.22 4.51 13.40

a: Under 39k* 93 10.67 4.45 12.20

b: 40-49k 103 11.86 4.00 13.80

c: 50-69k 170 9.95 5.26 12.45

d: 70-99k 97 9.53 5.06 11.20

e: 100-149k 92 10.52 4.79 12.75

f: 150k+ 44 11.77 3.75 13.25

a: 1 229 10.63 4.85 13.00

b: 2 151 10.28 4.86 12.40

c: 3 191 10.15 4.93 12.10

d: 4 or more 89 10.90 4.72 13.50

a: 0-5k* 40 10.88 4.62 12.75

b: 6-9k* 41 11.84 3.90 13.60

c: 10-12k* 141 10.21 4.78 11.80

d: 13-15k* 48 9.38 4.76 11.10

e: 16-19k* 45 10.58 4.53 11.60

f: 20-23k* 104 9.60 5.40 12.45

g: 25k+ 170 9.95 5.21 12.10

Wiedemann 99 - Following Variation, Max Drift [m] - cc2

Gender 0.932 0.599

Age 0.036 0.179

Race 0.000 0.000

Education 0.061 0.690

Marital 

Status
0.002 0.012

Income 0.003 0.018

HHSize 0.573 0.463

Driver 

Mileage 

Last Year

0.188 0.339
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Table A.10: Estimated Wiedemann 99 Threshold for Entering 'Following' (cc3) 

Coefficient Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 -22.58 5.18 -25.00

M 261 -21.21 6.25 -23.60

a: 20-24 71 -22.95 5.19 -25.70

b: 25-29 209 -23.15 4.83 -25.30

c: 30-34 61 -22.34 4.89 -23.80

d: 35-39 80 -20.32 5.97 -21.85

e: 40-44 66 -22.54 6.03 -25.60

f: 45-59* 47 -19.98 6.96 -21.00

g: 60-69* 71 -21.40 5.99 -23.90

h: 70+* 56 -20.80 6.33 -23.00

Caucasian 453 -21.64 5.88 -24.10

Not Caucasian 205 -22.92 5.09 -25.10

a: No college degree 191 -22.31 5.28 -24.60

b: College degree 338 -21.79 5.97 -24.30

c: Graduate Degree 131 -22.29 5.42 -24.60

a: single 219 -22.83 5.20 -25.10

b: unmarried partners 49 -22.21 6.32 -25.60

c: married 282 -21.88 5.57 -24.30

d: divorced 89 -20.72 6.50 -23.40

e: widow(er) 19 -20.59 5.54 -20.20

a: Under 39k* 93 -21.71 5.55 -23.90

b: 40-49k 103 -22.95 5.22 -25.00

c: 50-69k 170 -23.01 4.77 -25.10

d: 70-99k 97 -20.49 6.71 -22.80

e: 100-149k 92 -22.01 5.90 -24.75

f: 150k+ 44 -22.38 5.63 -24.50

a: 1 229 -22.16 5.46 -24.30

b: 2 151 -21.38 6.13 -23.80

c: 3 191 -22.55 5.30 -24.90

d: 4 or more 89 -21.76 6.13 -24.90

a: 0-5k* 40 -21.99 5.30 -23.95

b: 6-9k* 41 -21.67 5.57 -24.20

c: 10-12k* 141 -21.27 6.18 -23.90

d: 13-15k* 48 -21.09 6.25 -23.65

e: 16-19k* 45 -23.55 3.93 -25.00

f: 20-23k* 104 -21.05 6.06 -23.35

g: 25k+ 170 -22.28 5.75 -24.95

Wiedemann 99 - Threshold for Entering 'Following' [s] - cc3

Gender 0.002 0.015

Age 0.000 0.000

Race 0.007 0.022

Education 0.510 0.770

Marital 

Status
0.032 0.046

Income 0.009 0.020

HHSize 0.273 0.457

Driver 

Mileage 

Last Year

0.179 0.122
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Table A.11: Estimated Wiedemann 99 Negative Following Threshold (cc4) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 -0.54 1.10 0.00

M 261 -0.81 1.34 -0.10

a: 20-24 71 -0.46 1.08 0.00

b: 25-29 209 -0.44 0.96 0.00

c: 30-34 61 -0.57 1.17 0.00

d: 35-39 80 -0.77 1.31 -0.10

e: 40-44 66 -0.32 0.71 0.00

f: 45-59* 47 -1.09 1.55 -0.30

g: 60-69* 71 -0.74 1.21 -0.10

h: 70+* 56 -1.52 1.66 -0.75

Caucasian 453 -0.76 1.31 -0.10

Not Caucasian 205 -0.39 0.84 0.00

a: No college degree 191 -0.77 1.39 -0.10

b: College degree 338 -0.66 1.18 -0.10

c: Graduate Degree 131 -0.46 0.97 0.00

a: single 219 -0.42 0.95 0.00

b: unmarried partners 49 -0.25 0.52 0.00

c: married 282 -0.77 1.34 -0.10

d: divorced 89 -0.80 1.23 -0.20

e: widow(er) 19 -1.74 1.84 -1.10

a: Under 39k* 93 -0.76 1.30 -0.10

b: 40-49k 103 -0.44 1.00 0.00

c: 50-69k 170 -0.60 1.25 -0.10

d: 70-99k 97 -0.64 1.03 -0.10

e: 100-149k 92 -0.66 1.31 0.00

f: 150k+ 44 -0.82 1.38 0.00

a: 1 229 -0.74 1.24 -0.10

b: 2 151 -0.64 1.19 -0.10

c: 3 191 -0.62 1.20 -0.10

d: 4 or more 89 -0.51 1.18 0.00

a: 0-5k* 40 -0.40 0.95 0.00

b: 6-9k* 41 -1.03 1.53 -0.20

c: 10-12k* 141 -0.87 1.42 -0.10

d: 13-15k* 48 -0.84 1.49 -0.10

e: 16-19k* 45 -0.56 1.18 0.00

f: 20-23k* 104 -0.77 1.21 -0.10

g: 25k+ 170 -0.49 1.01 -0.10

Wiedemann 99 - Negative Following Threshold [m/s] - cc4

Gender 0.005 0.006

Age 0.000 0.000

Race 0.000 0.000

Education 0.074 0.133

Marital 

Status
0.000 0.000

Income 0.406 0.088

HHSize 0.470 0.419

Driver 

Mileage 

Last Year

0.031 0.248
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Table A.12: Estimated Wiedemann 99 Positive Following Threshold (cc5) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 1.31 1.27 0.80

M 261 1.34 1.33 0.90

a: 20-24 71 1.15 1.15 0.80

b: 25-29 209 1.03 1.02 0.70

c: 30-34 61 1.58 1.36 1.10

d: 35-39 80 1.34 1.20 1.00

e: 40-44 66 1.09 1.18 0.60

f: 45-59* 47 2.00 1.61 1.50

g: 60-69* 71 1.55 1.60 0.80

h: 70+* 56 1.72 1.46 1.45

Caucasian 453 1.39 1.32 1.00

Not Caucasian 205 1.16 1.21 0.70

a: No college degree 191 1.40 1.35 0.90

b: College degree 338 1.35 1.33 0.90

c: Graduate Degree 131 1.13 1.08 0.80

a: single 219 1.17 1.17 0.80

b: unmarried partners 49 0.95 1.09 0.60

c: married 282 1.42 1.35 1.00

d: divorced 89 1.41 1.37 0.90

e: widow(er) 19 2.05 1.47 1.80

a: Under 39k* 93 1.29 1.31 0.80

b: 40-49k 103 1.40 1.33 0.90

c: 50-69k 170 1.20 1.16 0.70

d: 70-99k 97 1.41 1.42 0.90

e: 100-149k 92 1.37 1.41 0.80

f: 150k+ 44 1.51 1.32 1.05

a: 1 229 1.21 1.24 0.80

b: 2 151 1.64 1.45 1.10

c: 3 191 1.22 1.20 0.70

d: 4 or more 89 1.26 1.25 0.80

a: 0-5k* 40 1.46 1.40 0.95

b: 6-9k* 41 1.36 1.26 1.00

c: 10-12k* 141 1.62 1.45 1.20

d: 13-15k* 48 1.69 1.54 1.05

e: 16-19k* 45 1.02 1.05 0.70

f: 20-23k* 104 1.37 1.34 0.95

g: 25k+ 170 1.14 1.15 0.70

Wiedemann 99 - Positive Following Threshold [m/s] - cc5

Gender 0.734 0.970

Age 0.000 0.001

Race 0.040 0.070

Education 0.149 0.390

Marital 

Status
0.004 0.015

Income 0.644 0.486

HHSize 0.006 0.021

Driver 

Mileage 

Last Year

0.012 0.040
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Table A.13: Estimated Wiedemann 99 Speed Dependency of Oscillation (cc6) 

Coefficient Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis p-

value

F 400 2.24 2.19 1.60

M 261 2.69 2.48 2.00

a: 20-24 71 1.74 1.91 1.10

b: 25-29 209 2.31 2.01 1.90

c: 30-34 61 1.83 2.23 1.10

d: 35-39 80 3.32 2.87 2.70

e: 40-44 66 2.14 1.55 2.00

f: 45-59* 47 2.28 2.11 2.00

g: 60-69* 71 2.80 2.75 1.90

h: 70+* 56 2.99 2.89 2.00

Caucasian 453 2.59 2.46 1.90

Not Caucasian 205 2.03 1.92 1.60

a: No college degree 191 2.61 2.38 2.00

b: College degree 338 2.34 2.41 1.55

c: Graduate Degree 131 2.34 1.94 2.00

a: single 219 2.02 1.98 1.40

b: unmarried partners 49 2.17 1.55 2.00

c: married 282 2.50 2.39 2.00

d: divorced 89 3.35 2.90 2.40

e: widow(er) 19 2.24 2.50 1.50

a: Under 39k* 93 2.29 2.21 1.50

b: 40-49k 103 1.96 2.16 1.30

c: 50-69k 170 2.34 2.19 1.90

d: 70-99k 97 2.61 2.39 2.00

e: 100-149k 92 2.37 1.99 2.10

f: 150k+ 44 1.88 1.96 1.40

a: 1 229 2.64 2.51 1.90

b: 2 151 2.55 2.63 1.60

c: 3 191 2.19 2.05 1.80

d: 4 or more 89 2.13 1.64 1.90

a: 0-5k* 40 2.68 2.61 1.80

b: 6-9k* 41 2.03 2.00 1.40

c: 10-12k* 141 2.34 2.53 1.30

d: 13-15k* 48 2.56 2.66 1.85

e: 16-19k* 45 2.15 1.77 1.70

f: 20-23k* 104 3.13 2.89 2.35

g: 25k+ 170 2.36 1.86 2.10

HHSize 0.121 0.596

Driver 

Mileage Last 

Year

0.075 0.131

Marital 

Status
0.000 0.002

Income 0.281 0.092

Race 0.004 0.028

Education 0.389 0.075

Wiedemann 99 - Speed Dependency of Oscillation [10-4 rad/s] - cc6

Gender 0.016 0.014

Age 0.000 0.001
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Table A.14: Estimated Wiedemann 99 Oscillatory Acceleration (cc7) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis p-

value

F 400 1.71 1.89 1.10

M 261 1.46 1.91 0.70

a: 20-24 71 1.56 1.50 1.10

b: 25-29 209 1.77 1.89 1.20

c: 30-34 61 2.11 2.14 1.10

d: 35-39 80 1.55 2.04 0.70

e: 40-44 66 1.83 1.83 1.10

f: 45-59* 47 0.62 0.80 0.30

g: 60-69* 71 1.42 1.89 0.70

h: 70+* 56 1.43 2.32 0.30

Caucasian 453 1.46 1.93 0.70

Not Caucasian 205 1.96 1.78 1.40

a: No college degree 191 1.61 2.17 0.60

b: College degree 338 1.59 1.78 1.10

c: Graduate Degree 131 1.69 1.78 1.00

a: single 219 1.73 1.67 1.30

b: unmarried partners 49 1.95 1.83 1.60

c: married 282 1.49 1.96 0.70

d: divorced 89 1.48 1.95 0.50

e: widow(er) 19 1.98 3.00 0.30

a: Under 39k* 93 1.31 1.64 0.80

b: 40-49k 103 2.13 1.97 1.40

c: 50-69k 170 1.69 2.04 0.80

d: 70-99k 97 1.30 1.65 0.90

e: 100-149k 92 1.67 1.87 1.00

f: 150k+ 44 1.56 1.77 1.00

a: 1 229 1.56 1.86 1.10

b: 2 151 1.58 1.96 0.80

c: 3 191 1.66 1.96 0.90

d: 4 or more 89 1.71 1.77 1.10

a: 0-5k* 40 1.66 1.96 1.00

b: 6-9k* 41 1.99 2.43 0.80

c: 10-12k* 141 1.49 1.83 0.90

d: 13-15k* 48 1.02 1.42 0.70

e: 16-19k* 45 1.39 1.70 0.70

f: 20-23k* 104 1.50 1.94 0.70

g: 25k+ 170 1.73 2.05 0.80

HHSize 0.894 0.509

Driver 

Mileage Last 

Year

0.251 0.685

Marital 

Status
0.332 0.000

Income 0.019 0.001

Race 0.002 0.000

Education 0.873 0.024

Wiedemann 99 - Oscillation Acceleration [m/s2] - cc7

Gender 0.107 0.001

Age 0.004 0.000
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Table A.15: Estimated Wiedemann 99 Standstill Acceleration (cc8) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis p-

value

F 400 2.09 1.88 1.40

M 261 2.26 1.91 1.50

a: 20-24 71 1.82 1.65 1.40

b: 25-29 209 2.27 2.04 1.60

c: 30-34 61 2.19 1.85 1.40

d: 35-39 80 2.22 1.80 1.85

e: 40-44 66 2.41 1.96 1.85

f: 45-59* 47 2.64 1.99 2.40

g: 60-69* 71 1.87 1.82 1.10

h: 70+* 56 1.68 1.67 0.95

Caucasian 453 2.23 1.91 1.60

Not Caucasian 205 1.99 1.88 1.30

a: No college degree 191 2.22 1.95 1.60

b: College degree 338 2.02 1.82 1.35

c: Graduate Degree 131 2.41 1.99 1.80

a: single 219 2.05 1.88 1.40

b: unmarried partners 49 2.27 1.85 1.80

c: married 282 2.33 1.98 1.70

d: divorced 89 1.95 1.78 1.30

e: widow(er) 19 1.51 1.39 0.70

a: Under 39k* 93 2.20 1.95 1.60

b: 40-49k 103 1.87 1.78 1.10

c: 50-69k 170 2.33 1.98 1.70

d: 70-99k 97 2.19 1.94 1.30

e: 100-149k 92 2.22 1.85 1.65

f: 150k+ 44 1.93 1.93 1.30

a: 1 229 1.97 1.84 1.20

b: 2 151 2.23 2.01 1.40

c: 3 191 2.21 1.87 1.70

d: 4 or more 89 2.37 1.89 1.80

a: 0-5k* 40 2.37 2.11 1.25

b: 6-9k* 41 2.18 1.90 1.80

c: 10-12k* 141 2.09 1.85 1.40

d: 13-15k* 48 2.56 2.00 2.05

e: 16-19k* 45 2.40 2.10 1.70

f: 20-23k* 104 2.00 1.80 1.30

g: 25k+ 170 2.32 1.95 1.75

HHSize 0.308 0.185

Driver 

Mileage Last 

Year

0.586 0.616

Marital 

Status
0.163 0.151

Income 0.493 0.568

Race 0.130 0.105

Education 0.112 0.130

Wiedemann 99 - Standstill Acceleration [m/s2] - cc8

Gender 0.246 0.180

Age 0.084 0.058
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Table A.16: Estimated Wiedemann 99 Acceleration at 80 kph (cc9) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis p-

value

F 400 0.60 1.40 0.10

M 261 0.81 1.75 0.10

a: 20-24 71 0.56 1.19 0.10

b: 25-29 209 0.53 1.20 0.10

c: 30-34 61 0.84 1.96 0.10

d: 35-39 80 0.96 2.00 0.20

e: 40-44 66 0.52 1.19 0.10

f: 45-59* 47 1.03 1.93 0.10

g: 60-69* 71 0.61 1.64 0.10

h: 70+* 56 0.84 1.75 0.10

Caucasian 453 0.77 1.67 0.10

Not Caucasian 205 0.49 1.24 0.10

a: No college degree 191 0.70 1.59 0.10

b: College degree 338 0.69 1.59 0.10

c: Graduate Degree 131 0.65 1.39 0.20

a: single 219 0.57 1.27 0.10

b: unmarried partners 49 0.47 1.18 0.10

c: married 282 0.81 1.74 0.10

d: divorced 89 0.66 1.64 0.10

e: widow(er) 19 0.94 1.92 0.20

a: Under 39k* 93 0.60 1.21 0.10

b: 40-49k 103 0.66 1.55 0.10

c: 50-69k 170 0.59 1.31 0.10

d: 70-99k 97 0.80 1.74 0.10

e: 100-149k 92 0.69 1.69 0.10

f: 150k+ 44 0.76 1.78 0.10

a: 1 229 0.64 1.54 0.10

b: 2 151 0.79 1.70 0.10

c: 3 191 0.64 1.42 0.10

d: 4 or more 89 0.73 1.62 0.10

a: 0-5k* 40 0.89 1.91 0.20

b: 6-9k* 41 0.95 1.85 0.20

c: 10-12k* 141 0.78 1.76 0.10

d: 13-15k* 48 0.89 1.67 0.10

e: 16-19k* 45 0.78 1.62 0.20

f: 20-23k* 104 0.82 1.82 0.15

g: 25k+ 170 0.49 1.19 0.10

HHSize 0.774 0.813

Driver 

Mileage Last 

Year

0.431 0.524

Marital 

Status
0.349 0.736

Income 0.899 0.968

Race 0.033 0.084

Education 0.965 0.363

Wiedemann 99 - Acceleration at 80kph [m/s2] - cc9

Gender 0.091 0.163

Age 0.230 0.481
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Table A.17: Estimated Wiedemann 99 Desired Velocity (v_des) Coefficient Segmented 

by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 32.65 3.16 33.30

M 261 31.90 2.72 31.50

a: 20-24 71 31.98 2.56 31.80

b: 25-29 209 33.55 2.69 34.10

c: 30-34 61 33.42 2.07 33.40

d: 35-39 80 31.41 1.85 31.20

e: 40-44 66 34.67 1.87 35.35

f: 45-59* 47 29.79 2.86 29.60

g: 60-69* 71 30.67 2.84 31.10

h: 70+* 56 30.07 3.66 30.30

Caucasian 453 31.83 2.98 31.80

Not Caucasian 205 33.51 2.76 34.10

a: No college degree 191 32.23 3.15 32.80

b: College degree 338 31.86 2.79 31.80

c: Graduate Degree 131 33.79 2.96 34.90

a: single 219 33.00 2.92 33.50

b: unmarried partners 49 35.29 1.49 35.50

c: married 282 32.12 2.89 32.35

d: divorced 89 30.81 1.89 31.00

e: widow(er) 19 27.98 3.94 26.90

a: Under 39k* 93 31.40 3.75 31.80

b: 40-49k 103 33.27 2.80 33.90

c: 50-69k 170 32.87 2.58 33.20

d: 70-99k 97 30.69 3.05 30.90

e: 100-149k 92 33.83 2.77 35.05

f: 150k+ 44 32.36 2.79 32.40

a: 1 229 31.94 3.27 31.70

b: 2 151 31.39 3.06 31.80

c: 3 191 33.02 2.34 33.20

d: 4 or more 89 33.61 2.86 34.90

a: 0-5k* 40 31.36 2.25 31.55

b: 6-9k* 41 29.05 3.43 29.00

c: 10-12k* 141 31.69 2.54 31.80

d: 13-15k* 48 31.90 3.70 32.45

e: 16-19k* 45 33.81 2.93 34.80

f: 20-23k* 104 30.59 2.41 30.90

g: 25k+ 170 34.05 2.25 34.50

Wiedemann 99 - Desired Travel Speed [m/s] - vdes

Gender 0.002 0.000

Age 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage Last Year 0.000 0.000



 300 

Table A.18: Estimated Gipps Desired Acceleration (a_des) Coefficient Segmented by 

Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 1.42 0.90 1.30

M 261 1.26 1.00 1.00

a: 20-24 71 1.42 0.74 1.40

b: 25-29 209 1.44 0.90 1.30

c: 30-34 61 1.61 1.18 1.20

d: 35-39 80 1.37 1.03 1.00

e: 40-44 66 1.27 0.74 1.10

f: 45-59* 47 1.05 0.75 0.90

g: 60-69* 71 1.41 1.07 1.20

h: 70+* 56 0.93 0.95 0.60

Caucasian 453 1.19 0.90 1.00

Not Caucasian 205 1.71 0.92 1.60

a: No college degree 191 1.09 0.84 0.90

b: College degree 338 1.52 0.97 1.40

c: Graduate Degree 131 1.31 0.92 1.10

a: single 219 1.63 0.95 1.50

b: unmarried partners 49 1.28 0.68 1.10

c: married 282 1.20 0.93 1.00

d: divorced 89 1.39 0.97 1.10

e: widow(er) 19 0.62 0.55 0.40

a: Under 39k* 93 1.18 0.77 1.10

b: 40-49k 103 1.79 1.08 1.70

c: 50-69k 170 1.19 0.84 1.00

d: 70-99k 97 1.51 0.98 1.40

e: 100-149k 92 1.32 0.92 1.10

f: 150k+ 44 1.32 0.94 1.25

a: 1 229 1.48 1.01 1.30

b: 2 151 1.36 1.07 1.10

c: 3 191 1.21 0.78 1.10

d: 4 or more 89 1.34 0.79 1.30

a: 0-5k* 40 1.38 1.06 1.15

b: 6-9k* 41 1.06 0.97 0.80

c: 10-12k* 141 1.28 0.99 1.00

d: 13-15k* 48 1.40 1.04 1.40

e: 16-19k* 45 1.33 1.02 1.00

f: 20-23k* 104 1.38 0.93 1.10

g: 25k+ 170 1.15 0.73 1.00

HHSize 0.037 0.068

Driver Mileage Last Year 0.217 0.238

Marital Status 0.000 0.000

Income 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Gipps - Desired Acceleration [m/s2] - a_des

Gender 0.032 0.001

Age 0.001 0.000
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Table A.19: Estimated Gipps Desired Deceleration (d_des) Coefficient Segmented by 

Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 -2.54 0.91 -2.60

M 261 -2.87 0.94 -3.10

a: 20-24 71 -2.62 0.79 -2.60

b: 25-29 209 -2.70 0.86 -2.80

c: 30-34 61 -2.23 0.86 -2.20

d: 35-39 80 -2.92 0.86 -3.10

e: 40-44 66 -3.30 0.73 -3.50

f: 45-59* 47 -2.54 0.92 -2.50

g: 60-69* 71 -2.48 1.04 -2.60

h: 70+* 56 -2.39 1.16 -2.50

Caucasian 453 -2.72 0.92 -2.90

Not Caucasian 205 -2.55 0.94 -2.60

a: No college degree 191 -2.77 0.92 -2.90

b: College degree 338 -2.49 0.92 -2.50

c: Graduate Degree 131 -2.99 0.88 -3.20

a: single 219 -2.49 0.88 -2.40

b: unmarried partners 49 -3.46 0.54 -3.60

c: married 282 -2.71 0.88 -2.80

d: divorced 89 -2.73 1.02 -3.00

e: widow(er) 19 -1.85 1.21 -1.60

a: Under 39k* 93 -2.61 1.03 -2.90

b: 40-49k 103 -2.32 0.87 -2.30

c: 50-69k 170 -2.78 0.81 -2.90

d: 70-99k 97 -2.48 1.04 -2.40

e: 100-149k 92 -3.09 0.83 -3.30

f: 150k+ 44 -2.47 0.85 -2.40

a: 1 229 -2.54 1.01 -2.70

b: 2 151 -2.53 0.93 -2.60

c: 3 191 -2.74 0.83 -2.80

d: 4 or more 89 -3.10 0.79 -3.30

a: 0-5k* 40 -2.94 0.82 -2.80

b: 6-9k* 41 -2.15 1.07 -2.00

c: 10-12k* 141 -2.45 0.96 -2.40

d: 13-15k* 48 -2.55 1.00 -2.65

e: 16-19k* 45 -2.80 0.92 -3.00

f: 20-23k* 104 -2.65 1.01 -2.90

g: 25k+ 170 -3.02 0.77 -3.20

HHSize 0.000 0.000

Driver Mileage Last Year 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

Race 0.024 0.025

Education 0.000 0.000

Gipps - Desired Deceleration  [m/s2] - d_des

Gender 0.000 0.000

Age 0.000 0.000
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Table A.20: Estimated Gipps Following Vehicle Perception of Leading Vehicle Desired 

Deceleration (d_lead) Coefficient Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 -2.44 0.93 -2.40

M 261 -2.64 0.95 -2.80

a: 20-24 71 -2.51 0.88 -2.50

b: 25-29 209 -2.61 0.90 -2.70

c: 30-34 61 -2.13 0.89 -2.00

d: 35-39 80 -2.79 0.85 -2.85

e: 40-44 66 -3.04 0.81 -3.20

f: 45-59* 47 -2.32 0.88 -2.20

g: 60-69* 71 -2.29 0.97 -2.20

h: 70+* 56 -2.10 1.10 -2.05

Caucasian 453 -2.60 0.95 -2.70

Not Caucasian 205 -2.35 0.91 -2.30

a: No college degree 191 -2.66 0.95 -2.80

b: College degree 338 -2.35 0.94 -2.30

c: Graduate Degree 131 -2.75 0.87 -2.90

a: single 219 -2.32 0.90 -2.30

b: unmarried partners 49 -3.09 0.67 -3.20

c: married 282 -2.59 0.92 -2.70

d: divorced 89 -2.60 1.01 -2.70

e: widow(er) 19 -1.75 1.09 -1.70

a: Under 39k* 93 -2.46 1.02 -2.40

b: 40-49k 103 -2.14 0.89 -2.10

c: 50-69k 170 -2.77 0.88 -2.80

d: 70-99k 97 -2.21 0.90 -2.20

e: 100-149k 92 -2.78 0.91 -3.00

f: 150k+ 44 -2.41 0.86 -2.50

a: 1 229 -2.35 0.97 -2.30

b: 2 151 -2.35 0.95 -2.40

c: 3 191 -2.70 0.90 -2.80

d: 4 or more 89 -2.85 0.80 -3.00

a: 0-5k* 40 -2.72 0.73 -2.80

b: 6-9k* 41 -2.07 1.04 -1.90

c: 10-12k* 141 -2.30 0.98 -2.20

d: 13-15k* 48 -2.31 1.05 -2.30

e: 16-19k* 45 -2.62 0.93 -2.80

f: 20-23k* 104 -2.55 1.00 -2.70

g: 25k+ 170 -2.89 0.82 -3.00

Gipps - Perception of Leading Vehicle Desired Deceleration  [m/s2] - d_lead

Gender 0.007 0.003

Age 0.000 0.000

Race 0.001 0.001

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage Last Year 0.000 0.000
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Table A.21: Estimated Minimum Desired Gap at a Stop (g_min) Coefficient Segmented 

by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 4.22 2.93 3.85

M 261 4.29 3.31 3.60

a: 20-24 71 4.53 2.75 4.00

b: 25-29 209 3.75 2.76 3.50

c: 30-34 61 4.20 3.08 3.20

d: 35-39 80 3.18 3.21 2.15

e: 40-44 66 4.77 3.34 4.25

f: 45-59* 47 4.51 3.05 4.60

g: 60-69* 71 5.16 3.11 5.00

h: 70+* 56 5.34 3.45 4.75

Caucasian 453 3.90 3.14 3.20

Not Caucasian 205 4.98 2.83 4.80

a: No college degree 191 4.02 3.18 3.30

b: College degree 338 4.30 2.95 4.00

c: Graduate Degree 131 4.48 3.26 4.00

a: single 219 4.60 2.74 4.20

b: unmarried partners 49 5.19 3.26 5.10

c: married 282 3.88 3.10 3.20

d: divorced 89 3.69 3.29 2.70

e: widow(er) 19 5.90 3.64 5.00

a: Under 39k* 93 4.55 3.13 3.90

b: 40-49k 103 4.80 2.60 4.70

c: 50-69k 170 3.64 3.08 3.00

d: 70-99k 97 4.65 3.07 4.00

e: 100-149k 92 4.76 3.23 4.85

f: 150k+ 44 4.11 3.20 3.10

a: 1 229 4.49 3.05 4.20

b: 2 151 4.29 3.11 3.60

c: 3 191 3.79 3.05 3.10

d: 4 or more 89 4.58 3.12 4.30

a: 0-5k* 40 3.61 3.00 3.00

b: 6-9k* 41 4.73 3.31 4.00

c: 10-12k* 141 4.26 3.08 3.40

d: 13-15k* 48 4.44 3.09 3.50

e: 16-19k* 45 4.64 3.20 4.20

f: 20-23k* 104 3.93 3.27 3.25

g: 25k+ 170 3.92 3.17 3.40

Gipps - Minimum Gap at a Stop  [m] - g_min

Gender 0.801 0.865

Age 0.000 0.000

Race 0.000 0.000

Education 0.387 0.319

Marital Status 0.000 0.000

Income 0.012 0.004

HHSize 0.079 0.050

Driver Mileage Last Year 0.468 0.373
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Table A.22: Estimated Gipps Driver Reaction Time (t_rxn) Coefficient Segmented by 

Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.69 0.52 0.50

M 261 0.70 0.52 0.50

a: 20-24 71 0.76 0.50 0.50

b: 25-29 209 0.53 0.41 0.40

c: 30-34 61 0.97 0.57 1.00

d: 35-39 80 0.61 0.47 0.50

e: 40-44 66 0.62 0.47 0.50

f: 45-59* 47 0.90 0.61 0.80

g: 60-69* 71 0.75 0.52 0.60

h: 70+* 56 0.90 0.61 0.85

Caucasian 453 0.66 0.52 0.50

Not Caucasian 205 0.77 0.51 0.80

a: No college degree 191 0.54 0.49 0.40

b: College degree 338 0.77 0.52 0.80

c: Graduate Degree 131 0.73 0.49 0.70

a: single 219 0.80 0.50 0.80

b: unmarried partners 49 0.67 0.47 0.50

c: married 282 0.63 0.52 0.50

d: divorced 89 0.61 0.48 0.50

e: widow(er) 19 0.98 0.64 1.10

a: Under 39k* 93 0.81 0.53 0.80

b: 40-49k 103 0.85 0.49 0.90

c: 50-69k 170 0.46 0.39 0.40

d: 70-99k 97 0.86 0.57 0.80

e: 100-149k 92 0.71 0.51 0.50

f: 150k+ 44 0.92 0.60 0.90

a: 1 229 0.74 0.52 0.70

b: 2 151 0.82 0.52 0.80

c: 3 191 0.53 0.47 0.40

d: 4 or more 89 0.72 0.50 0.70

a: 0-5k* 40 0.68 0.48 0.50

b: 6-9k* 41 0.83 0.55 0.80

c: 10-12k* 141 0.89 0.55 0.90

d: 13-15k* 48 0.83 0.62 0.80

e: 16-19k* 45 0.72 0.42 0.70

f: 20-23k* 104 0.62 0.49 0.50

g: 25k+ 170 0.51 0.47 0.40

HHSize 0.000 0.000

Driver Mileage Last Year 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

Race 0.006 0.002

Education 0.000 0.000

Gipps - Reaction Time [s] - t_rxn

Gender 0.904 0.934

Age 0.000 0.000
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Table A.23: Estimated Gipps Desired Velocity (v_des) Coefficient Segmented by Driver 

Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 32.95 3.31 33.40

M 261 31.68 3.76 31.50

a: 20-24 71 31.94 2.64 31.60

b: 25-29 209 33.84 3.05 34.10

c: 30-34 61 33.67 2.06 33.70

d: 35-39 80 31.18 3.37 31.30

e: 40-44 66 34.62 2.78 35.15

f: 45-59* 47 30.15 2.88 30.30

g: 60-69* 71 30.49 4.42 31.40

h: 70+* 56 30.21 3.64 30.85

Caucasian 453 32.03 3.80 31.90

Not Caucasian 205 33.41 2.68 33.90

a: No college degree 191 32.46 4.19 33.00

b: College degree 338 31.91 3.01 31.95

c: Graduate Degree 131 33.83 3.48 34.90

a: single 219 33.01 2.95 33.50

b: unmarried partners 49 34.95 2.77 35.40

c: married 282 32.32 4.03 32.70

d: divorced 89 31.00 1.73 31.20

e: widow(er) 19 28.11 4.07 28.20

a: Under 39k* 93 31.79 3.90 31.70

b: 40-49k 103 33.04 2.83 33.70

c: 50-69k 170 33.26 3.87 33.40

d: 70-99k 97 30.57 3.69 30.90

e: 100-149k 92 33.69 3.29 34.90

f: 150k+ 44 32.64 3.20 32.65

a: 1 229 32.06 3.18 31.90

b: 2 151 31.37 4.02 31.90

c: 3 191 33.46 2.79 33.30

d: 4 or more 89 33.12 4.34 34.70

a: 0-5k* 40 31.83 2.97 31.65

b: 6-9k* 41 28.97 3.45 29.40

c: 10-12k* 141 32.01 2.83 32.00

d: 13-15k* 48 31.93 3.91 32.70

e: 16-19k* 45 33.83 3.01 34.30

f: 20-23k* 104 30.34 4.25 31.15

g: 25k+ 170 34.35 2.83 34.90

Gipps - Desired Travel Speed [m/s] - v_des

Gender 0.000 0.000

Age 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.000 0.000

Driver Mileage Last Year 0.000 0.000
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Table A.24: Estimated Intelligent Driver Model Maximum Desired Acceleration (a) 

Coefficient Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.98 0.73 0.8

M 261 0.86 0.97 0.5

a: 20-24 71 1.08 0.59 1

b: 25-29 209 0.95 0.72 0.7

c: 30-34 61 0.92 0.64 0.8

d: 35-39 80 1.02 1.06 0.6

e: 40-44 66 0.88 0.96 0.5

f: 45-59* 47 0.68 0.63 0.5

g: 60-69* 71 1.03 0.98 0.8

h: 70+* 56 0.73 1.02 0.3

Caucasian 453 0.78 0.80 0.5

Not Caucasian 205 1.28 0.81 1.3

a: No college degree 191 0.66 0.71 0.4

b: College degree 338 1.11 0.83 1

c: Graduate Degree 131 0.89 0.90 0.5

a: single 219 1.20 0.70 1.2

b: unmarried partners 49 0.93 0.99 0.5

c: married 282 0.76 0.80 0.5

d: divorced 89 0.98 0.99 0.6

e: widow(er) 19 0.32 0.32 0.2

a: Under 39k* 93 0.82 0.61 0.7

b: 40-49k 103 1.39 0.87 1.4

c: 50-69k 170 0.67 0.57 0.5

d: 70-99k 97 1.11 0.92 0.9

e: 100-149k 92 0.97 1.01 0.5

f: 150k+ 44 0.91 0.87 0.65

a: 1 229 1.08 0.86 0.9

b: 2 151 0.94 0.90 0.6

c: 3 191 0.73 0.63 0.5

d: 4 or more 89 1.00 0.96 0.6

a: 0-5k* 40 0.98 0.93 0.7

b: 6-9k* 41 0.59 0.60 0.3

c: 10-12k* 141 0.91 0.79 0.7

d: 13-15k* 48 0.92 0.97 0.55

e: 16-19k* 45 0.97 0.84 0.7

f: 20-23k* 104 1.00 0.95 0.7

g: 25k+ 170 0.68 0.69 0.5

HHSize 0.000 0.002

Driver Mileage 

Last Year
0.006 0.001

Marital Status 0.000 0.000

Income 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Intelligent Driver Model - Maximum Desired Acceleraton  [m/s2] - a

Gender 0.070 0.000

Age 0.095 0.000
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Table A.25: Estimated Intelligent Driver Model Maximum Desired Deceleration (b) 

Coefficient Segmented by Driver Attributes 

 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 2.07 1.43 1.8

M 261 2.82 1.33 3.5

a: 20-24 71 1.78 1.24 1.4

b: 25-29 209 2.24 1.44 2.2

c: 30-34 61 1.71 1.29 1.3

d: 35-39 80 3.01 1.32 4

e: 40-44 66 3.16 1.11 3.9

f: 45-59* 47 2.21 1.46 2

g: 60-69* 71 2.31 1.54 2.1

h: 70+* 56 2.60 1.45 2.9

Caucasian 453 2.66 1.36 3.1

Not Caucasian 205 1.70 1.39 1.1

a: No college degree 191 2.82 1.27 3.2

b: College degree 338 1.94 1.45 1.4

c: Graduate Degree 131 2.80 1.34 3.2

a: single 219 1.62 1.31 1.1

b: unmarried partners 49 3.18 1.07 3.9

c: married 282 2.65 1.35 3.05

d: divorced 89 2.82 1.43 3.6

e: widow(er) 19 2.36 1.59 2.5

a: Under 39k* 93 2.13 1.43 1.8

b: 40-49k 103 1.41 1.23 0.9

c: 50-69k 170 2.60 1.32 2.9

d: 70-99k 97 2.16 1.54 2

e: 100-149k 92 2.85 1.34 3.5

f: 150k+ 44 2.40 1.38 2.35

a: 1 229 2.14 1.55 1.8

b: 2 151 2.31 1.44 2.3

c: 3 191 2.53 1.30 2.6

d: 4 or more 89 2.70 1.37 3.2

a: 0-5k* 40 2.92 1.20 3.3

b: 6-9k* 41 2.10 1.46 2

c: 10-12k* 141 2.09 1.39 1.7

d: 13-15k* 48 2.24 1.54 1.85

e: 16-19k* 45 2.35 1.40 2.4

f: 20-23k* 104 2.65 1.54 3.55

g: 25k+ 170 2.96 1.16 3.4

HHSize 0.004 0.005

Driver Mileage Last Year 0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Intelligent Driver Model - Maximum Desired Deceleraton  [m/s2] - b

Gender 0.000 0.000

Age 0.000 0.000
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Table A.26: Estimated Intelligent Driver Model Free Acceleration (𝛿) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 45.97 38.76 31

M 261 43.80 38.06 27

a: 20-24 71 50.69 41.57 42

b: 25-29 209 42.52 37.19 26

c: 30-34 61 47.64 38.15 29

d: 35-39 80 54.30 39.16 58

e: 40-44 66 40.79 33.33 28.5

f: 45-59* 47 39.72 37.47 25

g: 60-69* 71 43.97 41.65 27

h: 70+* 56 42.88 39.90 26

Caucasian 453 40.65 37.90 22

Not Caucasian 205 54.42 37.99 50

a: No college degree 191 33.82 34.66 18

b: College degree 338 51.21 39.67 44.5

c: Graduate Degree 131 46.11 37.17 36

a: single 219 52.25 39.38 46

b: unmarried partners 49 45.63 34.28 38

c: married 282 36.71 35.74 19.5

d: divorced 89 59.43 40.94 71

e: widow(er) 19 24.63 28.57 18

a: Under 39k* 93 42.48 38.67 22

b: 40-49k 103 54.26 37.49 49

c: 50-69k 170 36.12 36.34 17.5

d: 70-99k 97 50.08 39.13 42

e: 100-149k 92 43.38 36.72 29

f: 150k+ 44 43.07 39.43 25.5

a: 1 229 54.30 40.58 53

b: 2 151 40.91 37.62 23

c: 3 191 38.61 36.25 21

d: 4 or more 89 42.94 34.95 30

a: 0-5k* 40 34.85 35.56 20

b: 6-9k* 41 35.83 35.95 24

c: 10-12k* 141 41.72 38.34 22

d: 13-15k* 48 54.83 40.75 59.5

e: 16-19k* 45 43.67 40.58 20

f: 20-23k* 104 52.05 39.99 41.5

g: 25k+ 170 39.14 35.75 22.5

Intelligent Driver Model - Free Acceleration Component [unitless] - delta

Gender 0.479 0.360

Age 0.233 0.261

Race 0.000 0.000

Education 0.000 0.000

Marital Status 0.000 0.000

Income 0.003 0.004

HHSize 0.000 0.004

Driver Mileage Last Year 0.016 0.022



 309 

Table A.27: Estimated Intelligent Driver Model Desired Time Gap (t_gap) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 0.73 0.57 0.6

M 261 0.62 0.47 0.5

a: 20-24 71 0.75 0.40 0.7

b: 25-29 209 0.49 0.20 0.5

c: 30-34 61 1.01 0.38 1

d: 35-39 80 0.54 0.42 0.4

e: 40-44 66 0.56 0.39 0.5

f: 45-59* 47 0.84 0.53 0.8

g: 60-69* 71 0.79 0.65 0.7

h: 70+* 56 1.06 1.12 0.75

Caucasian 453 0.67 0.56 0.6

Not Caucasian 205 0.70 0.47 0.6

a: No college degree 191 0.65 0.67 0.5

b: College degree 338 0.74 0.45 0.6

c: Graduate Degree 131 0.60 0.50 0.5

a: single 219 0.68 0.39 0.6

b: unmarried partners 49 0.52 0.39 0.5

c: married 282 0.67 0.45 0.6

d: divorced 89 0.62 0.56 0.4

e: widow(er) 19 1.73 1.52 1.5

a: Under 39k* 93 0.86 0.88 0.6

b: 40-49k 103 0.77 0.43 0.7

c: 50-69k 170 0.54 0.25 0.5

d: 70-99k 97 0.76 0.59 0.7

e: 100-149k 92 0.64 0.49 0.5

f: 150k+ 44 0.94 0.61 0.9

a: 1 229 0.69 0.70 0.5

b: 2 151 0.77 0.46 0.8

c: 3 191 0.61 0.32 0.6

d: 4 or more 89 0.66 0.52 0.5

a: 0-5k* 40 0.57 0.42 0.45

b: 6-9k* 41 1.20 1.21 0.7

c: 10-12k* 141 0.90 0.48 0.9

d: 13-15k* 48 0.78 0.58 0.6

e: 16-19k* 45 0.47 0.35 0.4

f: 20-23k* 104 0.66 0.52 0.5

g: 25k+ 170 0.51 0.26 0.5

Intelligent Driver Model - Desired Time Gap  [s] - t_gap

Gender 0.007 0.001

Age 0.000 0.000

Race 0.475 0.103

Education 0.025 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

HHSize 0.049 0.000

Driver Mileage Last Year 0.000 0.000
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Table A.28: Estimated Intelligent Driver Model Jam Distance (g_min) Coefficient 

Segmented by Driver Attributes 

 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 3.91 3.03 3.4

M 261 3.80 3.44 2.4

a: 20-24 71 4.08 3.03 3.6

b: 25-29 209 3.42 2.75 3

c: 30-34 61 4.53 3.34 3.6

d: 35-39 80 3.52 3.19 2.6

e: 40-44 66 4.66 3.57 4.3

f: 45-59* 47 4.64 3.49 4.5

g: 60-69* 71 3.48 3.34 2.6

h: 70+* 56 4.00 3.64 2.1

Caucasian 453 3.53 3.26 2.5

Not Caucasian 205 4.56 2.92 4.2

a: No college degree 191 3.41 3.20 2.3

b: College degree 338 4.07 3.11 3.65

c: Graduate Degree 131 4.00 3.38 2.8

a: single 219 4.33 2.89 3.9

b: unmarried partners 49 5.28 3.42 6.1

c: married 282 3.41 3.22 2.35

d: divorced 89 3.23 3.16 2.1

e: widow(er) 19 4.04 3.86 2.2

a: Under 39k* 93 4.10 3.37 3.3

b: 40-49k 103 4.63 2.72 4.2

c: 50-69k 170 3.25 3.02 2.4

d: 70-99k 97 3.87 3.32 2.8

e: 100-149k 92 4.40 3.39 3.75

f: 150k+ 44 3.38 3.45 1.65

a: 1 229 3.94 3.09 3.6

b: 2 151 4.07 3.43 3.1

c: 3 191 3.37 3.03 2.6

d: 4 or more 89 4.37 3.33 3

a: 0-5k* 40 3.34 3.13 2.55

b: 6-9k* 41 3.20 3.40 2

c: 10-12k* 141 3.99 3.38 3.3

d: 13-15k* 48 3.67 3.28 2.5

e: 16-19k* 45 3.87 3.35 2.8

f: 20-23k* 104 3.75 3.32 2.8

g: 25k+ 170 3.96 3.26 3

HHSize 0.054 0.078

Driver Mileage Last Year 0.792 0.718

Marital Status 0.000 0.000

Income 0.006 0.001

Race 0.000 0.000

Education 0.068 0.033

Intelligent Driver Model - Jam Distance  [m] - g_min

Gender 0.659 0.188

Age 0.025 0.049



 311 

Table A.29: Estimated Intelligent Driver Model Desired Velocity (v_des) Coefficient 

Segmented by Driver Attributes 

 

Attributes Categories N Mean Std. Dev
ANOVA 

p-value
Median

Kruskal Wallis 

p-value

F 400 33.70 3.68 34.1

M 261 32.84 3.36 32.1

a: 20-24 71 33.05 3.06 32.5

b: 25-29 209 34.68 3.59 34.9

c: 30-34 61 34.56 2.42 34.3

d: 35-39 80 32.02 2.35 31.5

e: 40-44 66 35.47 2.81 35.85

f: 45-59* 47 30.57 3.35 30.5

g: 60-69* 71 31.74 3.32 31.7

h: 70+* 56 31.32 3.95 31

Caucasian 453 32.93 3.73 32.5

Not Caucasian 205 34.35 2.99 34.6

a: No college degree 191 33.54 3.68 33.9

b: College degree 338 32.66 3.29 32.5

c: Graduate Degree 131 34.91 3.67 35.7

a: single 219 33.81 3.53 34.2

b: unmarried partners 49 35.78 2.86 36

c: married 282 33.43 3.65 33.4

d: divorced 89 31.51 2.11 31.4

e: widow(er) 19 29.37 3.86 29.7

a: Under 39k* 93 32.68 4.05 32.5

b: 40-49k 103 33.65 3.67 34.3

c: 50-69k 170 34.33 3.26 34.3

d: 70-99k 97 31.63 3.41 31.4

e: 100-149k 92 34.95 3.40 35.7

f: 150k+ 44 33.41 3.64 33.05

a: 1 229 32.87 3.48 32.3

b: 2 151 32.22 3.90 32.4

c: 3 191 34.37 3.01 34.2

d: 4 or more 89 34.39 3.60 35.7

a: 0-5k* 40 32.52 3.23 32.1

b: 6-9k* 41 30.43 4.08 29.7

c: 10-12k* 141 32.71 3.02 32.8

d: 13-15k* 48 32.56 5.28 33.15

e: 16-19k* 45 34.91 3.38 35.3

f: 20-23k* 104 31.32 2.68 31.3

g: 25k+ 170 35.26 2.92 35.7

HHSize 0.000 0.000

Driver Mileage 

Last Year
0.000 0.000

Marital Status 0.000 0.000

Income 0.000 0.000

Race 0.000 0.000

Education 0.000 0.000

Intelligent Driver Model - Desired Velocity  [m/s] - v_des

Gender 0.002 0.000

Age 0.000 0.000
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