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Automated intersections, when combined with the proliferation of au-

tonomous vehicles (AVs), allow for more precise and innovative methods to

control traffic at these integral choke points in the road system. In this dis-

sertation, I develop a refined, modular framework for autonomous intersection

management (AIM) simulation and implement it as a software library with

robust documentation and testing to support present and future research in

this field. Demonstrating this framework’s efficacy, I apply it to study two

topic areas in the AIM space: stochastic movement and priority auctions.

Stochastic AIM is introduced as an extension of traditional AIM that

permits probabilistic reservations of space and time in an intersection. Its use

case is motivated by the integration of human-driven vehicles into AIM us-

ing augmented reality guidance to behave more accurately to AV movement,

while still making some stochastic deviations from AV-identical trajectories.
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These deviations are quantified using experimental data from human drivers

in a driving simulator merged into a stochastic vehicle movement model. Ex-

perimental results suggest that, with this paradigm, AIM can decrease delay

significantly, even at low AV penetration levels (less than 20%).

Finally, I conceptualize intersection priority auctions into the newly

developed AIM framework as itself a modular framework that supports the

dispatch of multiple vehicles simultaneously from either separate lanes or a

single lane without relying on preset signal phases. This auction framework

further supports three payment formulas for the winner of the priority auction:

first-price, second-price, or a novel externality payment mechanism. Using ex-

periments implemented in the novel AIM simulator, my results demonstrate

significant reduction in value-weighted delay using the multiple dispatch con-

figuration and novel payment mechanism compared to other configurations,

with the novel formula incentivizing truthful reporting of valuations more than

its alternatives.
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Chapter 1

Introduction

1.1 What is an automated intersection?

Automated intersections, sometimes known as “autonomous” or “smart”

intersections, are computerized traffic intersections that can communicate with

vehicles in real time.

Autonomous (or automated) intersection management (AIM) is the

process of controlling these intersections, taking advantage of their ability to

process and respond to requests from vehicles to supplement or replace existing

stop signs or singalized intersections, which may account for up to 295 million

hours of delay in the United States alone [13]. First introduced by Kurt

Dresner and Peter Stone in 2004, AIM has been the next step in a rich history

of intersection control optimizations [20, 47, 48]. In virtual experiments, it’s

been shown to reduce delay by orders of magnitude compared to present-day

traffic signals by sharing information between the intersection and connected,

autonomous vehicles, allowing AIM to sequence movements together through

the intersection with minimal clearance, even if they’d be incompatible in

a standard signalized intersection [15]. The tight tolerances connected and

automated vehicles are capable of allow AIM to exhibit vehicle flow comparable
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to interlocking, flowing streams at high speed.

AIM (or at least the original variant pioneered by Dresner and Stone)

achieves this by using reservation-based controls, where vehicles approaching

the intersection transmit their intended path to the intersection manager, re-

questing permission to enter. Should the intersection find no conflict between

the requested trajectory and any already confirmed, AIM accepts the vehicle’s

request and saves its reservation of the time and space in the reservation con-

flict area to memory, ready to check it against the next vehicle’s request. This

process allows most vehicles to proceed through the intersection without stop-

ping or even slowing down, leading to the the improvements against signalized

control schemes where a majority of approaching vehicles need to brake to a

stop and wait for their phase of the turn signal.

AIM and its promise of full two-way communication between the control

mechanism and its participants enable the use and study of novel approaches

to traffic management, but we must first address its greatest limitation: human

drivers.

1.2 Accommodating human drivers

AIM promises substantial reductions in delay at intersections, but with

one major caveat: these gains only manifest when participating vehicles are

mostly or totally automated [14]. Although this fully automated future is on

the horizon, there’s still a long time before it comes to pass, requiring us to

either mothball the AIM concept for several decades or adjust it to better
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accommodate human drivers [33]. In the latter case, human drivers are often

included in AIM simulations by conceptually separating them from automated

vehicles (AVs), barring them from participating in the tightly-sequenced reser-

vation framework and only allowing them to move during traffic signal phases

that AVs need not abide by [38].

The difficulty of incorporating human-driven vehicles into the AIM

system comes from the assumption that they’re unable to follow the same

instructions as are issued to automated vehicles, and that they’re incapable of

communication with the intersection computer anyway. But both are nego-

tiable: although we’ll never be able to assume that human drivers can follow

directions as precisely as a computerized vehicle, they can be taught to mimic

them so long as we allow for some error, and the latter we may be able to

ameliorate.

Presently, many drivers already have access to guidance through in-

tersections in the form of navigation assistance on their smartphones or the

vehicle itself. A natural extension of this would be to use that connectivity to

communicate instructions from the driver and their vehicle to the intersection

and back. While a present-day mobile device or onboard computer might not

be capable of full level 5 autonomous driving, using an advanced user interface

like a heads-up display (HUD) or augmented reality (AR) eyewear, they can

provide trajectory and acceleration guidance to a human driver. This support

can help drivers approach the precision necessary to participate in AIM like

an AV with a larger margin of error.
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Then again, AIM’s performance also deteriorates dramatically as buffer

size increases. AVs can reasonably be expected to use close to all of the space

and time it reserves with its small buffer, but a human-driven vehicle and

its imprecision, even with trajectory guidance, will carve out a much larger

spread, much of which it won’t personally use despite making it more difficult

for other vehicles to pass through the intersection.

Enter stochastic reservations: instead of making spacetime reservations

all-or-nothing, as is the case in standard AIM frameworks, stochastic AIM

allows for partial reservation of spacetime units, so long as the probability

that multiple vehicles use the same unit (a.k.a. a crash) is lower than some

preset threshold derived from a user-set tolerable crash incidence rate. This

allows us to reclaim at least some of the efficiency lost to the larger reservations

required by human-driven, guided-trajectory vehicles while still ensuring low-

to-zero probability of collisions depending on the threshold set.

1.3 A note on collisions

Understandably, transportation agencies and government officials in

charge of funding research into AIM and potentially implementing it in the real

world have been reluctant to support research into stochastic vehicle behavior

because it implies a nonzero possibility of a collision, even if those probabilities

are deep into the tails of their distributions. Instead, agencies implicitly prefer

frameworks that are specifically engineered so that crashes are impossible in

simulation. However, the probability of a collision, even when engineered to
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be impossible, is never zero simply due to the nature of an intersection being

the crossing of two opposing streams of traffic. Current AIM models that deny

the possibility of a collision simply aren’t being honest about this potential

outcome. With stochastic AIM, we’ll now have the ability to not only simulate

and examine crashes, but also quantify the probability that they happen so we

can more accurately represent a potential future with AVs and human drivers

cooperating under AIM.

1.4 Exploring alternative measures of priority

The basic concept of connected, computerized intersections allows for

interesting and novel approaches to traffic management. No longer limited

by lack of dialogue between the control mechanism and its participants, AIM

makes possible priority schemas other than those imposed by the physical

limitation of vehicles blocking other vehicles from entering. Intersections can

now take into account participants’ value of time instead of treating every

participant’s time as equal.

Let’s motivate this use case with the example shown in Figure 1.1.

Suppose vehicle A, which has just reached this intersection, has an

urgent trip to make. Perhaps they’re rushing to the hospital, or late for their

Ph.D. thesis defense. Either way, they have a strong desire to leave first and are

willing to pay for it. Under present-day traffic control schemes, this wouldn’t

be possible as it would either have to wait for its light to turn green or all four

earlier arrivals move in the case of a stop sign.
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A

Figure 1.1: Several vehicles at an intersection, with their desired trajectories
marked.

If the intersection controller were value-aware, they would be able to

receive a signal and payment from vehicle A and prioritize the progress of that

vehicle and the one before it, getting it through the intersection as fast as

physically possible without ramping over the vehicle in front of it or driving

into oncoming traffic. Although this might seem far-fetched, we already have a

very limited form of value-aware intersections if you think of A as an emergency

vehicle with an effectively unlimited budget!

That edge case aside, this motivating scenario is complicated when the

other vehicles in the intersection have their own nonzero valuations as well.

So long as they’re able to efficiently communicate them as smart intersections
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with AVs do, a robust value-aware priority mechanism would be able to fully

distinguish between their different values. Doing so would preclude the use of

tolls, which can only make a binary distinction between vehicles willing to pay

and those that aren’t, leaving unbreakable ties within the two categories.

Enter auctions. Unlike fixed or even dynamic-value tolls, auctions can

be fully discriminatory because participants are reporting their valuations

themselves in the form of bids, making them the number one solution for

value-aware AIM with 100% connected vehicles. That said, there’s no one

way to run an auction, and the simplest mechanisms have many non-obvious

drawbacks. That makes the implementation of the intersection priority auc-

tion an open question, and worth exploring in this dissertation.

1.4.1 A note on equity

Changing intersections to consume value instead of simply allowing

free usage does raise significant ethical concerns. This would allow wealthy

drivers and passengers to pay their way through intersections using only a

small fraction of their total wealth, while forcing low income drivers to incur

major delays because they can’t allocate as much money to pay their way

through auctions. To some extent, this further incentivize carpooling as a

method of travel with low environmental impact and more wealth than each

member had individually, but transportation agencies and the general public

may regard intersection auctions with real money to be unpalatable due to

this inequality (although some surveys dispute this [5]).
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One solution is for auctions to avoid using dollars, but instead consume

an auction-specific, non-transferable currency issued by the state to individ-

ual drivers that refreshes periodically. This currency would be completely

removed from a driver’s personal wealth, allowing it to be equitable for all cit-

izens. Granted, this would require completely new infrastructure and general

mindset with how cities approach traffic, but so would implementing intersec-

tion priority auctions in the first place.

That said, the intent of this dissertation topic is not necessarily to

propose a fully workable and realizable mechanism for converting intersections

to value prioritization instead of arrival time. My intent is only to refine and

extend prior research on intersection priority auctions to better inform (but

not dictate) the likely long path to what smart intersections will look like in

the future. In doing so, this allows me to further explore the novel application

of auction theory to this unique problem and generate fresh ideas that can be

used even outside of traffic research.

1.5 A preview of this text

Now that the principles of this dissertation text have been sufficiently

motivated, I’ll summarize what you, the reader, can expect in the following

chapters.

Chapter 2 will detail the framework by which I define AIM, as well as the im-

plementation of the framework as the simulator that I use to run my

8



experiments.

Chapter 3 covers stochastic vehicle movement and stochastic reservations (real and

simulated) under the AIM framework as well as the experiments, real-

world (to some extent) and digital, that validate this new framework

extension.

Chapter 4 goes into the history of the research on intersection auctions before laying

out three auction mechanisms, the last of which is newly developed for

this dissertation, and the experiments conducted to compare them.

Chapter 5 closes by summarizing the key contributions of this dissertation and

detailing directions for future work.

Now let’s dive in.

9



Chapter 2

AIM Simulation

In this chapter I’ll detail and defend the framework and key assumptions

of AIM as I define it for the purposes of this dissertation. Furthermore, I

will describe the implementation of a new AIM simulation software, argue for

its raison d’etre compared to its predecessors, and explain how it will serve

experiments made for this dissertation and beyond.

2.1 Framework
2.1.1 Vehicles

I’ll begin by defining the vehicles and drivers participating in AIM,

which are treated as equivalent.

Vehicles are defined as rectangles with length l and width w that can

vary across individual vehicles. They spawn on a set approach lane with a

set movement they intend to make through the intersection (or an intended

destination endpoint, in the case of multiple intersection experiments). Their

position x⃗, heading θ, speed v, and acceleration a will change in real time as

they progress through the intersection.

Although vehicles can physically have variable maximum acceleration
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and deceleration capabilities, they are required to be able to achieve a min-

imum acceleration rate amin and minimum braking rate bmin (defined to be

negative) set by the roads and intersections in order to participate. We assume

all vehicles in the experiment are able to achieve these rates. Furthermore,

both roads and intersections require that the vehicles use only amin and bmin

rates of acceleration and braking in the experiment, which all vehicles are able

to do precisely on roads and do to the best of their ability in the intersection.

Vehicles also have as characteristics means and standard deviations

that characterize their lateral (µτ , στ ) and throttle (µh, σh) tracking abilities.

Their lateral tracking score characterizes their mean and likely breadth of

deviation perpendicular to the provided trajectories through the intersection

at the midpoint of the trajectory. The throttle tracking score does the same for

their ability to accelerate precisely so that the vehicle can exit the intersection

at the time it’s instructed to. Automated vehicles are assumed to be perfectly

precise and have all their µ and σ values set to 0; only human-driven, AR-

assisted vehicles will have non-zero lateral and throttle tracking scores.

For experiments requiring valuations (i.e., auctions), each individual

vehicle has a fixed value of time ν, but this ν can vary across vehicles. Vehicles

are assumed to be wholly self-interested, behaving greedily moment-to-moment

without regard for prior or future interactions.

As for their behavior, vehicles are assumed to always be accelerating

to the road or intersection’s speed limit vmax , unless:

11



v, a

ab

ν µτ , στ

µh, σh

Figure 2.1: A vehicle

1. the vehicle needs to brake to maintain its buffer with the preceding

vehicle,

2. the vehicle needs to brake to stop before the intersection line of an in-

tersection it does not have permission to enter, or

3. the vehicle is already at vmax and must neither brake nor accelerate to

maintain speed.

Braking and accelerating will be set to precisely amin and bmin on roads for all

vehicles, but they can be varied according to its throttle score when any part

of the vehicle is an intersection.

2.1.2 Trajectories

Trajectories are a continuous curve segment between two points f(p).

Progress along the curve is defined proportionally by p ∈ [0, 1], and each point

on the curve must return both a physical 2D position in real coordinates x⃗

12



and a direction (“heading”) θ so vehicles along the trajectory can be mapped

to both a location and a direction of travel.

2.1.3 Lanes

Lanes are the basic building block of this AIM framework. A lane is

defined by a trajectory and holds an ordered list of vehicles currently traversing

itself. Vehicles are divided into three sections that are treated as individual

points: front, center, and rear, with the center tracking the reference position

of the vehicle and front and rear tracking the front and rear edges of the

vehicle by length scaled up by a buffer factor of β identical for all vehicles in

the simulation. (As an example, if β = .1, “front” would be .6 vehicle lengths

ahead of the center of the vehicle, and vice versa for “rear”). The progress of

each section along the lane is tracked individually but updated using the same

vehicle v and a for all three sections.

As vehicles transition between key parts of the AIM simulation, e.g.,

from a road into the next intersection, they may occupy more than one lane

at a time, but each section of the vehicle may only occupy one facility at any

given moment.

2.1.4 Roads

Roads are groups of parallel lanes with identical width and length that

connect intersections to each other, vehicle spawners, and removers (more on

these in the next section). Although they’re parallel, these lanes’ start and

13



Figure 2.2: Example road

endpoints can be offset from each other at an angle as in Figure 2.2.

Roads are divided into three regions with borders defined at certain

progressions across the road:

1. the entrance region (i.e., entering from the last spawner or intersection)

2. the lane-changing region

3. the approach region (i.e., approaching the next intersection or remover)

The entrance region prevents collisions during vehicle transitions by

dictating per lane whether the road can accept new vehicles in time from the

object upstream from it and checking if there’s a vehicle currently present in

itself.

The upstream object is either a vehicle spawner or an intersection. If a

spawner, it would prevent a spawned vehicle from entering the road (simulating

backed-up traffic). If an intersection, that same presence would prevent the

intersection from allowing vehicles to secure a reservation ending in this lane

until the entrance region of that road lane is cleared. Both of these cases make

it vital for the entrance region (and thus each road) to be substantially longer

than the longest vehicle permitted in the experiment.
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As the name might indicate, the lane-changing region follows the ap-

proach region and allows for vehicles to switch road lanes before approaching

the next intersection. Lane-changing has API hooks in the implementation of

this AIM framework (to be discussed later), but will not be supported as it’s

not considered in scope for this dissertation, so I won’t discuss it further here.

Finally, the approach region is the last road section ahead of the in-

tersection, and could be considered part of the intersection. Lane-changing

is forbidden in this section, and only vehicles in the approach region may

communicate to the intersection to try and secure a reservation.

2.1.5 Vehicle spawners

Vehicle spawners decide when to create new vehicles, what characteris-

tics they should have, and where to place them into the simulation on road the

spawner is attached to. Vehicle spawners are provided at initialization with an

expected rate of vehicle spawns λ and a pool of vehicle characteristics to draw

from randomly including length, destination/intended movement through the

intersection, and so on. Vehicles are spawned according to a Poisson process

such that the probability of spawning in each timestep is equivalent to λ.

Vehicles may still spawn even if there is no room for them on the road the

spawner is connected to; when this is the case, spawned vehicles are held in a

virtual queue (simulating backed-up traffic) to be spawned in order on the first

timestep with available space. Priority is dictated by how many timesteps back

the vehicle spawned, and only one vehicle may enter the road per timestep.
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2.1.6 Vehicle removers

As the name implies, vehicle removers remove vehicles from the simu-

lation and log their characteristics and traversal time for later study.

2.1.7 Intersection

An intersection connects a set of incoming road lanes with a set of

outgoing road lanes, using and managing the area between the incoming and

outgoing lanes that we call the “conflict area”. Vehicles enter from their in-

coming lane and must cross the conflict area to reach their desired outgoing

lane.

Incoming and outgoing lanes are assumed to be static across their en-

tire length, e.g., lanes don’t split or combine in the intersection approach or

exiting an intersection. This makes left and right turn pockets ineligible for

AIM modeling under this framework unless the intersection’s approach area is

defined only starting at the beginning of the shortest turn pocket.

Incoming road lanes are connected to outgoing lanes by intersection

lanes, which are predefined trajectories through the conflict area. Incoming

lanes may be connected to multiple outgoing lanes, and vice versa, (e.g., right

turns and through movements from the same lane), but not all incoming lanes

are connected to every outgoing lane. Exactly which ones are connected is an

intersection parameter.

To control the movement through the conflict area, each intersection
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Figure 2.3: An example intersection

has its own tiling and manager. The tiling divides the conflict area into discrete

spacetime units that can be reserved in part or in full, and the manager controls

which vehicles will be able to attain reservations through the intersection.

More on these below:

2.1.7.1 Tilings

The tiling dictates how movements through the intersection are inter-

preted into discrete timespace tiles that can individually be reserved by one or

more vehicles. Tilings also handle the storage and updating of this reservation

data.

Tilings hold layers of tiles, with each layer mapping to a future timestep
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and each tile mapping to an area or point in in the intersection. Each tile

tracks the reservation(s) confirmed on it. Proposed reservations, or “requests”,

are checked against each tile; if any one tile finds the proposed trajectory

incompatible with those already confirmed on it, the entire request is rejected

as incompatible.

The request trajectory checking procedure that translates a proposed

vehicle movement into tiles used is worth elaborating on. When a reservation

request is submitted to the tiling for checking, it starts a nested simulation from

the time of proposing vehicle’s soonest entrance time from road to intersection

at its projected velocity. The entrance time and velocity are knowable and

deterministic because vehicle behavior, as defined in this framework, is itself

deterministic as described in Section 2.1.1. (See A for the derivation of the

soonest entrance/exit time and velocity (or, at least, the interesting parts).

Starting from the soonest exit (i.e., the exit of the front section of the

vehicle), a copy of the requesting vehicle or vehicles is placed with its front

bumper just entering the edge of the intersection. From here, the tiling runs the

nested simulation of the vehicle’s path through the intersection lane, marking

any and all tiles that the vehicle uses according to its physical dimensions,

heading, and buffer size. (Both stochastic reservations and auctions involve

additional calculations for accommodating probabilistic tile usage and grouped

requests, respectively. These will be detailed in their own Chapters 3 and 4.)

The tiling adds one time unit of temporal padding to the reservation

at the beginning of the movement, where the vehicle enters the intersection,
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in order to accommodate rounding errors in the soonest exit calculation. The

tiling also adds a variable time length buffer of tiles when and where the

vehicle is scheduled to exit the intersection in order to prevent collisions from

happening just outside of the intersection where it no longer has visibility,

based on Diana Toader’s patch to a Dresner et al. AIM variant [41]. So long as

any tile the tiling associates with a request rejects the request as incompatible

with its confirmed reservations (if any), the entire request is discarded as

invalid. Combined with the requirement that vehicles aren’t allowed to change

lanes or wait for the next intersection in the entrance region of a road, the post-

movement buffer ensures that there will be sufficient spacing between the last

vehicle that exited the intersection and this one.

If none of the tiles used by the reservation request are disqualified, the

request is eligible for approval by the intersection manager, but it need not do

so. More on this in Chapter 4.

The tiling’s record of confirmed reservations only applies to future steps

of the simulation. As time elapses in the simulation, the tiling deletes the layer

of tiles associated with the timestep that’s just passed (if there is one) to avoid

a memory leak. New layers of the tiling are added as vehicles make requests,

so the tiling could be very deep if a faraway vehicle makes an exceptionally

slow request, or as shallow as 0 if there are no vehicles in the simulation.

Presently, the only tiling used in this dissertation is the square tiling,

which divides the conflict area into grid squares of equal size determined by

an input parameter. The grids are extended to cover the entire area of the
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intersection as defined by its minimum and maximum x and y values, regardless

of if the conflict area is rectangular or oblong.

Alternative tilings could include hexagonal tiles, or tiles placed only at

or around points of conflict between intersection trajectories instead of covering

the entire area.

2.1.7.2 The manager

The manager is the logical component of the intersection, essentially

acting as the automation in AIM. To that end, you could call this the policy

the intersection implements to decide which vehicles can request and secure

movements through the intersection.

Policies implemented for this dissertation include:

Stop signs. All vehicles must come to a complete stop before entering the

intersection. Only a single vehicle is allowed in the conflict area at a times.

Which vehicle receiving priority through the intersection is decided based on

when they arrived.

First come first served (FCFS). As vehicles approach the intersection,

they call forward to the intersection with the soonest time and associated

velocity at which they can reach the intersection, along with their desired

movement. The intersection simulates their movement, checking if it’s incom-

patible with already confirmed reservations. Vehicles can make requests as
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soon as they enter the approach region of the incoming lane, and can continue

to do so continuously until it receives a reservation (thus the FCFS).

Auctions. These will be detailed in Chapter 4.

2.1.7.3 The reservation process

The reservation process works as follows:

1. The manager determines which lanes are eligible to request a reservation.

Note that the manager queries lanes instead of vehicles because leading

vehicles in each lane securing a reservation is a necessary prerequisite for

all following vehicles to secure their own reservations.

2. The manager polls eligible lanes for their reservation requests and sub-

mits them to the tiling for validation. These reservation requests come

from the first vehicle (or vehicles, depending on the policy) in the lane

that do not yet have permission to enter the intersection.

3. The tiling does a nested simulation of each request to check if they’re

in conflict with already confirmed reservations (or each other, again de-

pending on the policy). See Section 2.1.7.1 for more information.

4. The manager chooses some subset of compatible requests and confirms

them with the tiling, which issues the vehicles permission to enter the

intersection.
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5. Depending on the policy, the process either ends here and waits for

a certain condition before running again (e.g., the next timestep for

FCFS or when the conflict area clears for auctions, more on this later)

or continues to loop back to the beginning until no lanes are eligible.

There are certain classes of managers and policies that work a little differently

from the process described above should they be implemented (e.g., traffic

signals), but the general pattern is very similar.

2.2 Introducing NAAIMS

Not Another Autonomous Intersection Management Simulator, or NAAIMS,

is a modular library for automated intersection management simulation im-

plementing the framework described in the prior section, so named due to the

propensity for every researcher studying in this field to implement their own

simulator. This section details the implementation of the discrete timestep

simulation loop, and contrasts NAAIMS with both its predecessor, Dresner’s

AIM [14,15], and alternative optimization-based AIM simulators to justify its

creation.

NAAIMS is open-source, licensed under GPL-3.0, and freely available

for cloning and modification on GitHub at https://github.com/spartalab/

naaims.
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Figure 2.4: A screenshot from a NAAIMS instance

2.2.1 Simulation loop

Following the initiation of all road features as described in the previ-

ous section, NAAIMS iterates through timesteps until a preset end time. By

default timesteps are set to 60 per simulated second, but this can be reduced
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for more efficiency.

Each timestep of the simulation proceeds as follows:

• Update vehicle acceleration, then speed

• Update vehicle positions

• Transfer exiting vehicle sections between key objects (roads, intersec-

tions, spawners, removers)

• Update intersection logic and schedule new reservations

2.2.2 Differences from Dresner’s AIM simulator

NAAIMS most directly inherits from Dresner’s AIM simulator and its

inheritors designed by Stone, Au, Sharon, and many others [3, 14, 15, 38], and

shares the same general approach to discrete time simulation of automated

intersections. If a reader is familiar with any one of Dresner’s AIM or its

descendants like AIM4 and H-AIM, most of their knowledge of their operation,

strengths, and weaknesses will apply similarly to NAAIMS. Because of this,

it’s worthwhile for us to focus specifically on where NAAIMS differs from

Dresner’s AIM.

The first and most obvious distinction is that NAAIMS is a completely

new implementation written in Python 3 with the goal of being a modern, ap-

proachable, and extendable discrete time AIM simulation platform that will be

easily usable for research even outside of that of the author. To this end, there
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is a strong focus on the development of documentation and tests alongside

development of the base simulation software.

Furthermore, there are a few significant differences in the way NAAIMS

and the AIM simulation framework it implements set up the problem and

handles the actual process of reservation requests and vehicle movement.

Intersections have perfect knowledge of all vehicle characteristics,

in particular, their position and speed at all times. Consequently, the inter-

section need only test reservations for the first vehicle in a lane instead of

every vehicle. This is in contrast to Dresner’s AIM which asks for vehicles to

self-report their best guess time at which they’ll reach the intersection from

their current lane. These self-reported values may be faulty due to drivers’ in-

complete knowledge of what vehicles lie ahead of them and their future plans,

which the intersection has access to in the form of reservations.

Given the present day proliferation of high-quality cameras and ob-

ject identification algorithms, the assumption of vehicle connectivity, sensing

technology, as well as the pace of progress up until the time when automated

intersections will reach physical implementation, I’m confident that this is not

as much of a reach in assumptions as it might have been in 2006. And, in gen-

eral, Dresner’s framework targeted potential real-world application of AIM,

e.g., in this experiment where a physical vehicle was controlled by a simulated

automated intersection manager [35], requiring the simulator to be generous

when estimating sensing error. In contrast, NAAIMS takes approaches this
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question from more of a traffic engineering approach compared to an electrical

engineering one, still adhering to physical behavior as much as possible but

abstracting away sensing errors and non-compliant behavior where convenient

to simplify the pursuit of examining new traffic control mechanisms.

Reservation requests only check maximum acceleration trajectories

when predicting a vehicle’s potential trajectory through an intersection. Dres-

ner’s AIM also considered fixed velocity trajectories, which NAAIMS does

not, and we can imagine an ideal simulator checking every possible acceler-

ation profile to make a request possible. This is a reasonable assumption to

the author, as it enforces an easily defensible preference for spending as lit-

tle time in the intersection conflict area as possible over potentially getting a

reservation more quickly.

General approach. Dresner’s AIM targeted real-world applications of AIM,

e.g., with this mixed reality simulation of what autonomous intersections, but

the implementation of the NAAIMS framework is also somewhat different from

Dresner’s.

Vehicle movement is modeled by the lane it’s in, not individual driver

agents. Vehicles no longer need to “think for themselves” anymore, centralizing

computation to the road and intersection and reducing the number of calcu-

lations necessary. This is primarily an implementation decision for smoother
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simulation with less computational resources, as in principle of course vehi-

cles are controlled by themselves and not the intersection, but in general the

framework implemented by NAAIMS assumes a greater degree of direct con-

trol over vehicles by the intersection than Dresner’s AIM does, reflecting a

prioritization of simulating ideal traffic compared to the original’s focus on

encouraging compliance through mechanism design.

Abstraction of intersection management policies. While ad hoc mod-

ifications to Dresner’s AIM made comparing intersection policies outside of

traffic signals and FCFS possible, NAAIMS and its framework have this mod-

ularization of intersection management policies built in from the beginning,

making it easier than ever to compare different policies like auctions to FCFS

and traffic signals in an apples-to-apples way, without caveats for different

implementation frameworks and assumptions.

Intersection geometry isn’t limited to just right angles. Road and

intersection geometry have been abstracted into connected incoming and out-

going lanes instead of being rigidly locked to a grid, allowing us to potentially

simulate real road networks outside of midtown Manhattan.

Abstraction of intersection conflict area discretization. Although both

Dresner’s AIM and the current version of NAAIMS only implement square grid

tiles in the conflict area, NAAIMS can easily swap between different discretiza-

tion methods such as conflict points, hexagonal tiles, and so on.
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There are also several features NAAIMS adds to the feature list to

support the studies relevant to this dissertation

• stochastic tile reservations

• auction management policies (basic, Carlino, sequenced, etc.)

• multi-vehicle reservations (for sequenced auctions)

These will be elaborated on in the following chapters.

Finally, there are several features at least partially supported by the

API but that will not be completed for this dissertation as they are not in

scope for its topics of study, including:

• Trajectories other than Bezier curves (e.g., circular arcs, more efficient

straight lines)

• Lane-changing on roads between intersections

• Multi-intersection simulations and support structures (e.g., routing)

• Non-square intersection tilings

• Traffic signal intersection manager

2.2.3 Direct simulation vs. optimization functions

To the best of my knowledge, Dresner’s AIM, its derivatives, and NAAIMS

are the only discrete time AIM simulators in use in the automated intersection
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study community [9]. Most research in this field utilizes optimization frame-

works to study traffic through intersections, setting up systems of equations

and constraints reflecting certain interpretations of what intersection traffic is

like.

Optimization methods need to balance the demand of optimizing over

a large enough time horizon to be useful, while still constraining the prob-

lem enough to be computationally tractable in real time [27, 28]. That said,

discrete time methods can also be criticized for having weaknesses as well.

The standard policy used by discrete time AIM, FCFS, can be demonstra-

bly sub-optimal compared to traffic signals [26] and in general under heavy

traffic [50].

Broadening the umbrella, related research characterizes these intersec-

tion control mechanisms as either “signalized”, using methods reminiscent of

modern-day traffic signals but with more reactivity [16, 17, 19, 23, 30, 49], or

“signal-free”, which analyze the trajectories of vehicles directly without the ab-

straction of signal phases [10]. “Signal-free” includes both rule and reservation-

based control schemes like AIM FCFS as well as optimization methods [2], in

one case even drawing from similar problems in the study of aircraft rout-

ing [28]. These control mechanisms aren’t limited to a single intersection,

as one example, Lin et al., have extended their concept of rhythm control,

which blends cyclic phases with responsive optimization, to networks of inter-

sections [31].

I believe that there is room for discrete time simulations in this field
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of research. Broadly, AIM experiments based on optimization functions, even

time-windowed ones, rely on much stronger assumptions on intersection con-

figurations and vehicle behavior than discrete time simulators do. Even slight

changes in the numerical setup dramatically changing their results [50], which

is significant given the quantity of analyses formulating their problems as

mixed integer or something similar [27, 28, 32].

In contrast, the basics of discrete time AIM simulation require even

fewer assumptions than what I’ve implemented in this dissertation. Provided

the user is alright with observing crashes, even our strict vehicle behavior

model can be loosened to reflect broader traffic patterns since there isn’t a

rigidly defined optimization problem that has to have a valid solution. Given

how little concrete information we have on what real automated intersections

will look like, I think that a policy-based framework like this discrete time

simulator makes more sense when it comes to exploring the possibilities avail-

able to AIM, and it requires fewer real-time computational resources than

constantly updating optimization time windows (generally speaking; many op-

timization studies of AIM do intentionally design their optimization approach

to be quick enough for real time).

I hope that NAAIMS’s intended accessibility will make it easier and

more common for frameworks to be built on it and allow for more clear com-

parisons between the variety of approaches we’ve seen in this field of research.
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2.2.4 A note on acceleration parameters

As defined by the framework, accelerations in NAAIMS are effectively

ternary: vehicles are either accelerating at a fixed value a, decelerating at a

fixed value b, or holding constant with 0 acceleration.

Exactly what these a and b values should be is a potential point of

contention. Low values ought to be more tolerable to the median passenger but

there is a distinct negative relationship between more comfortable acceleration

values and intersection throughput.

Dresner’s AIM used as default a value of around 4g, which meant very

short stopping distances but relatively high g-forces; this is unlikely to be

comfortable for most passengers and would probably be higher than if a global

acceleration were enforced.

There are surprisingly few papers available on comfortable accelera-

tions, and what little there is emphasizes that it’s not necessarily the accel-

eration that causes passenger discomfort but jerk, or the rate of change in

acceleration. That said, modeling the fourth derivative of distance is more de-

tail than I intend to explore with NAAIMS, so I’ll rely on a survey written for

the Department of Transportation in 1976 [21]. In it, it explains that 0.3g or

0.266g on the high end of comfortable if all passengers are seated properly and

facing forward or backward and the source in the survey. If we accommodate

passengers sitting sideways as well, this might be as low as 0.16g.

By default NAAIMS sets a to 3 m/s2 or about 0.3g and b to −2.6 m/s2
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or 0.266g based on the above findings. Of course, changing these values re-

quires only a one-line alteration to the configuration file, so exploring the

impact of higher or lower acceleration values is simple.

2.2.5 Default experimental setup

Chapters 3 and 2 rely on experiments in NAAIMS to illustrate the

efficacy (or lack thereof) of different concepts they introduce. This subsection

describes those experiments’ default parameters; any deviations from these

parameters are noted in the experiment descriptions in that section.

The intersection configuration used is a symmetric 4-way, 3-lane inter-

section with approaches 50m long. Lanes are specified to be 4 meters wide,

and the square tiling is also set to 4 meter tiles to align with the lane widths

for a total of 8 tiles in each direction.

By default, vehicles are automated (with no stochastic movement) and

sized to be 3 m wide and 4.5 m long. In-lane, vehicles are treated as being 0.1x

longer than they actually are to avoid collisions, and when calculating the tiles

they are incident with, their vehicle outlines are extended outward by 0.1 m

in each direction. As stated in the prior subsection, the global acceleration

rate is set to 3 m/s2, the braking rate to −2.6 m/s2, and the speed limit to

15 m/s.

Vehicles spawn at a rate of 10 vehicles per minute per approach, equiv-

alent to an hourly demand of 2,600 vehicles across the entire intersection.

Turning rates are identical across all four approaches, with 10% each turning
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right and left and the remaining 80% making through movements.

2.3 Future work

Given that NAAIMS is purpose-built as a modular simulation package,

it’d be strange if there weren’t several extensions to the model already in the

planning stages. Broadly, they can be divided into two categories: features to

bring forward from Dresner et al.’s AIM4 implementation, and new tools to

support novel studies into AIM’s potential like the modules implemented for

Chapters 3 and 4.

Although nearly all of the basic functionality of Dresner et al.’s AIM4

is in NAAIMS, the main missing feature is support for multiple connected

intersections. This was an intentional decision in order to focus the analysis

on comparing intersection control mechanisms; allowing multiple intersection

requires a suite of supporting features like routing or lane-changing between

intersections that could draw scarce development time away from implement-

ing alternative control schemes. That said, illustrating how managers work

in a network of intersections would give us a richer picture of AIM’s efficacy.

Support for multiple intersections is already planned for within the NAAIMS

framework and simulation classes, pending only the implementation of the

routing and lane-changing support features before we can start running exper-

iments.

Another feature planned for inheritance from the Dresner line of sim-

ulators is traffic signal and FCFS-signal managers [14, 38]. These would be
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a drop-in replacement for FCFS or auctions using the abstract manager class

in NAAIMS, but the challenge here is in how differently traffic signals oper-

ate compared to FCFS-like managers because they rely on temporal phases

instead of reservations.

As for new features, the abstraction of the tiling space allows for re-

placing square tiles with other options, such as triangular or hexagonal tiles

or even inconsistently shaped tiles like conflict points. Given that tiles in a

square tiling are used with uneven frequency, placing tiles only where trajec-

tories intersect or run closely together may be much more efficient than the

status quo.
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Chapter 3

Stochastic AIM

Most AIM models to date have assumed that vehicles follow their tra-

jectories precisely with no adaptive variance values, accounting for the margin

of error by simply drawing out a wider swath than the actual footprint of the

vehicle to account for margins of error, and by default NAAIMS is no excep-

tion. On roads, this isn’t as much of an issue because there are no conflicts,

but being able to model stochasticity in intersections is much more important

for realistically representing the caution vehicles need to execute to avoid col-

lisions with others whose ability to follow precise directions they may not be

as sure of.

Recall from section 1.2 that the original motivation for stochastic reser-

vations is to incorporate human drivers using AR guidance into AIM like AVs

but with inconsistent movement. Allowing multiple vehicles to use portions

of same tile without their requests getting rejected will allow us to get tighter

tolerances and more flow with the same vehicle assumptions despite impre-

cise driver behavior. This analysis is also a two-way street: using stochastic

AIM, we can examine how much the AV to human guided vehicle split de-

teriorates performance–or doesn’t–and give recommendations for how human
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drivers should be informed to make the most out of automated intersections.

Observing how well simulated human drivers perform in an automated inter-

section using parameters derived from real human driving simulator experi-

ments will give us insight into whether prioritizing turning radius or throttle

control in the AR system will be most important for maximizing throughput

and safety in stochastic AIM.

Furthermore, although this model is originally intended for to human

drivers with guidance systems, extending stochastic reservations to automated

vehicles will in effect accommodate the margin of error sensor systems can

have, allowing us to be more honest about the true, never-nonzero likelihood

of crashes in AIM systems.

To the best of my knowledge, this dissertation is the first time stochastic

reservations have been applied to autonomous intersection management, at

least those with discrete time tiling-based reservation systems.

In this chapter, I’ll illustrate how stochastic reservations work, detail

the stochastic movement model used for experiments in this chapter and how

the human driving simulator experiments by our collaborators at the Univer-

sity of Washington inform it, and close by recounting the results of the virtual

experiments in NAAIMS using the stochastic movement model and reserva-

tions.
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3.1 Probabilistic reservations

Given a probability p that a reservation request uses any specific times-

pace tile, that tile must decide whether it can accept or reject the reservation.

(How to find p is a question for the next section.)

In the deterministic setting, this decision would be simple: if there is

already a confirmed reservation registered to this tile, reject the request so

long as p > 0. (If p = 0 the tile shouldn’t have been asked in the first place.)

This is, in fact, exactly what stochastic tiles do so long as there have not yet

been any reservations registered to the tile, i.e., the first request made to the

tile is automatically eligible to confirm, pending the confirmation of all the

other tiles used in the reservation request.

The behavior differs when the tile already has confirmed reservations.

While the deterministic tile would reject all other reservations outright, the

stochastic tile calculates the probability that more than one reservation, in-

cluding the incoming request, will use the new tile. If this probability exceeds

some predefined threshold p (i.e., the tile has tolerance for p probability of a

collision), reject, otherwise approve the request as eligible to accept. To do

so, the framework assumes that the probability that each reservation uses a

tile is independent, which is justifiable as, in simulation, the probability dis-

tributions the realized deviations are drawn from are independent, and, in a

real-world approximation, different vehicles are controlled by different agents

who are not communicating with each other, only the intersection.
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More formally, define for a specific stochastic tile

• p as the maximum acceptable likelihood of a conflict

• n as the number of reservations already confirmed with pi, i ∈ 1, . . . , n

• pn+1 as the probability that an incoming reservation request uses the tile

Given a request with probability pn+1 that it will use a specific tile

1. if no reservations have been confirmed yet, return eligible

2. else if the probability that more than one reservation (including the new

request) uses the tile is less than p, return eligible

1−
n+1∏
i=1

(1− pi)−
n+1∑
i=1

pi

n∏
j=1
j ̸=i

(1− pj) ≤ p

3. else reject

3.1.1 Setting a crash incidence threshold

p can be related to a real-world value as it approximates the likelihood

of a crash over a small amount of time and area. In traffic engineering, crash

incidence is measured in crashes per million entering vehicles (MEV); we can

use a reference value and divide it across the tiles in an intersection to find a

reasonable p. Surveying the field, the 0.58 crashes per MEV observed by the

New York State Department of Transportation on signalized 4-legged inter-

sections is one of the lowest and suitable to adapt for this purpose, and can
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be further lowered by a safety factor to set the stochastic intersection to be

safer than a normal signalized intersection [34].

To find p, first convert crashed per MEV to crashes per time unit using

the intersection’s expected demand in vehicles per time unit. This is roughly

equivalent to the probability of a crash per time unit, i.e., across an entire tile

layer, ρ, and needs to be divided across all tiles in the layer. Given ntiles tiles

of equal size and distributing probability evenly and independently,

p = 1− (1− ρ)
1

ntiles

For sufficiently small ρ or sufficiently large ntiles, a first order Taylor series

approximation is very accurate, more numerically stable, and simply

p =
ρ

ntiles

3.1.2 Soft- and hard-edged stochastic reservations

At the beginning of this section, I detailed a method to allow for

stochastic reservations with variable probability of usage, drawing the dis-

tinction between a deterministic AIM paradigm where vehicles fully reserve

every tile they use so long as p > 0. But, given a probability threshold p,

we can implement a new variant of deterministic reservations compatible with

stochastic movement such that p > p is cast to a full 100% probability of usage

and p < p is cast to 0. In effect, this makes the “soft-edged” reservations at

the start of this section that record mostly infinitesimal probabilities of usage
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at every tile in the intersection hard-edged and, in theory if p is implemented

as intended, do so with a similar crash rate and by using less memory.

At the very least, this should provide a competent counterpoint to

determine if the additional memory consumption of soft-edged reservations

justifies their larger memory footprint.

3.2 Stochastic vehicle movement

To demonstrate the utility of stochastic reservations, given a vehicle,

we need to be able to provide a reasonable probability of usage for each tile.

In this section, I’ll describe a relatively simple model of stochastic vehicle

movement primarily to illustrate the effectiveness of stochastic AIM.

For this stochastic vehicle movement model, we can divide it into two

components: the lateral deviation and the throttle deviation, illustrated in Fig-

ure 3.1. The throttle deviation describes the difference between the vehicle’s

ideal/instructed movement along the axis of the intersection lane trajectory it’s

following, whereas the lateral deviation describes the difference perpendicular

to that axis.

The distributions for lateral and throttle distributions may be defined

separately as independent normal distributions N(µl, σl) and N(µh, σh) re-

spectively, or together as a multivariate Gaussian, although this will require

finding correlation values between lateral and throttle tracking, or assuming

that the correlation is 0. For the purposes of this simplified model the two are
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Figure 3.1: Throttle and tracking scores

treated as independent, but you can imagine that they would have significant

correlation in practice.

3.2.1 Virtual reality experiments with human drivers

To examine how well human drivers would be able to perform in an

automated intersection given route guidance and inform how we quantified

stochastic vehicle movement by human drivers, we collaborated with behav-

ioral experts at the University of Washington, Professor Linda Boyle and Jundi

Liu, on the design and conduct of virtual reality driving simulator experiments

based on their prior research with human drivers [22, 24, 29, 40].

In these experiments, we surveyed humans from a variety of demo-

graphics about their driving experience before sitting them into a virtual re-

ality driving simulator emulating an urban environment. After being given a

few minutes to familiarize themselves with the virtual reality environment and

driving controls, they were instructed to begin the experiments by following a

lead vehicle in the simulation by making left and right turns as well as through

movements over a series of intersections. These included situations
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Figure 3.2: The driving simulator

• with the lead vehicle moving at 30 and 40 mph, and

• with and without potentially conflicting traffic in the intersection.

The position, heading, and speed of the lead vehicle (i.e., the ideal

trajectory the human driver was instructed to follow) and the driver’s vehicle

(i.e., their actual exhibited trajectory) were collected in the experiments for a

sample of about 30 drivers, with selected results, aggregated from both speed

limit scenarios but without traffic.

From these virtual reality experimental results, I converted the times-

tamped location for each human-driven vehicle and automated vehicle, nor-

malized them to the time and location of the human-driven vehicle’s entry

into the intersection, and examined the lateral and throttle deviation distri-
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Figure 3.3: Left and right turn trajectories for human drivers (gray) and the
provided reference trajectories (red)

Figure 3.4: Through trajectories for human drivers (gray) and the provided
reference trajectories (red)

butions. This requires the tacit assumption that human-driven vehicles always

enter the intersection at precisely the right time, which wasn’t reflected in the

data we collected, but this assumption matches the behavior of the NAAIMS

simulator and can likely be engendered in drivers using a more sophisticated

trajectory information model. The simple one of a “ghost” pace vehicle used in

the driving simulator was far from ideal for our use case, but it was necessary

due to the limitations in the driving simulator software.

As seen in Figure 3.3, when it comes to lateral deviation, human drivers
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tended to oversteer on left turns, which are longer, and understeer on right

turns, which are shorter. They’re most precise as they’re entering an intersec-

tion, but their lateral deviation blooms as they move through the intersection.

Figure 3.4 shows the same isn’t true of through movements, as human drivers

were able to follow the given trajectory so precisely that it’s difficult to display

in a figure with a true-to-life aspect ratio.

Throttle deviations aren’t quite as easy to depict in a graph, but the

general trend comparing human driver timestamps to their automated coun-

terpart is that human driven vehicles tend to move through the intersection

about 8% faster than instructed, albeit with a wide distribution that has a

small fraction of drivers moving slower than instructed.

Using the normalized trajectories, for each vehicle I approximated the

distribution of

1. the lateral deviation at the exact center of the trajectory normalized by

the length of the trajectory, and

2. the throttle deviation by way of time elapsed between intersection entry

and exit relative to the entry and exit time of the pace vehicle

(More on why these values in the next subsection.) Using these observations,

I approximated the distribution of a typical driver’s lateral and throttle devi-

ation as a normal distribution, which allowed me to give my stochastic AIM

experiments firmer empirical footing.
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There is a caveat here in that due to the limitations of the driving

simulator software, participants could not be reasonably instructed to exactly

follow the lead vehicle’s trajectory, but rather to stay within 200 to 400 feet

because humans aren’t capable of significantly higher degrees of precision.

Based on their judgement of participants, it seemed to have not been a concern.

3.2.2 Incorporating the stochastic movement model into NAAIMS
3.2.2.1 Projection and realization

In NAAIMS, the lateral and throttle deviation models are each used at

least twice per vehicle: once to project their movement and again to realize

their movement.

The former occurs when the tiling is doing its nested simulation of a

vehicle’s reservation request to identify which tiles its reservation will use and

to what extent. Their deviation values are based on their lateral and throttle

tracking scores as converted into a normal distribution, µτ , στ , µh, and σh

as defined in Section 2.1.1. Distributions are used to find the probability p

that a vehicle’s reservation uses a specific tile when checking its request. Since

we’re defining the throttle and tracking distributions as independent for the

purposes of this model, p is just the product of the individual pτ and ph from

the throttle and tracking distributions, respectively.

The realized values come into play when the probabilistic movement

of the vehicle collapses into a realized value when it enters the intersection

according to its probabilistic reservation.
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3.2.2.2 Lateral deviation

The lateral deviation of the movement model is constrained by one

of the physical assumptions of NAAIMS that has some basis in reality. In

NAAIMS, autonomous or not, vehicles are assumed to behave precisely and

accurately between intersections, never deviating from the centerline laterally

(except during lane changes) or from the exact vehicle behavior specified in

section 2.1.1.

This constraint, combined with the results observed from our human

driving simulator experiments, informs the stochastic vehicle movement model

used by NAAIMS. Because vehicles must enter and exit the intersection at

precise lateral points (but not necessarily times), that limits the variety of

lateral deviation profiles vehicles can exhibit in the simulator. As such, a

vehicle’s lateral deviation is modeled based on its lateral deviation at the center

of the intersection lane it’s following through the intersection (by length). This

value is made unitless by normalizing by the length of the trajectory, so the

same lateral deviation score will represent a smaller actual deviation on a short

right turn than on a longer left turn. By convention, a deviation toward the

left of the trajectory is considered negative and right considered positive.

From the driving simulator experiments, I observed the normalized

lateral deviation at center distribution to have a mean µτ of -0.0888 with a

standard deviation στ of 0.0631, for turns only. In NAAIMS, new sample

values are pulled from a Gaussian distribution with these settings unless the

movement is a through movement, in which case the simulator assumes that
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the vehicle will follow the centerline with perfect accuracy.

During reservation projection, tiles’ pτ are found by first calculating

the component of tiles’ distance to the center of the vehicle perpendicular

to the vehicle’s heading, i.e., its lateral deviation. Given this distance, the

width of the vehicle, and the length of the tile along the axis perpendicular to

the vehicle, the probability of usage of this tile is the area under the normal

distribution defined by N(µτ , στ ) overlapped by the width of the vehicle plus

the incidence length of the tile at that distance.

When realizing a vehicle’s lateral deviation after it’s secured a reserva-

tion, as soon as the vehicle breaks the intersection boundary, the intersection

lane simulates its realized stochastic movement by drawing a value from the

N(µτ , στ ) distribution. This represents the vehicle’s maximum lateral devia-

tion, which as modeled increases linearly from 0 at entrance to the full amount

at the center of the trajectory before decreasing back to 0 as it reaches the

end of the intersection.

3.2.2.3 Throttle deviation

Unlike with lateral deviation, NAAIMS has no requirement for vehicles

to exit the intersection at any specific time. The primary constraint on throttle

deviation is the requirement that vehicles do not exceed the given speed limit,

which makes it so that the stochastic vehicle tile distribution is most evident

in congested scenarios where the acceleration profile can vary.

The throttle deviation is measured in relative time units, with a more
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complex recipe than for lateral deviation. First, divide the observed or realized

time to exit for the human driven vehicle by the reference time to exit of the

intended acceleration profile to make it unitless. Given this, take the difference

between this ratio and 1 such that positive values indicate a tendency to over-

accelerate and exit the intersection faster than intended, and negative values,

which under-accelerate and take too long to exit.

From the driving simulator experiments, this came out to an average

µh of 0.0752 with a standard deviation σh of 0.1402.

Unlike the lateral deviation, which was measured in distance units, the

throttle deviation being measured in time units makes it more challenging to

convert into the distribution of lateral deviation distances necessary to find

the probability of usage of a tile according to the throttle ph. To do so,

NAAIMS runs a small Monte Carlo simulation with 30 trials for each vehicle

being projected, and defines the throttle distribution at each timestep as the

distribution N(µ′
h, σ

′
h) of the component of the distance between the vehicle’s

stochastic-projected location and actual-projected location along the vehicle’s

heading. This is converted into a probability of usage ph for each tile using a

similar process to the lateral deviation pτ using the vehicle’s length and the

tile’s incident length along the vehicle’s heading.

3.3 Experimental results

To demonstrate the efficacy of stochastic reservations (or lack thereof),

I ran a series of experiments to examine the throughput of stochastic AIM
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Figure 3.5: An example stochastic reservation in NAAIMS

compared to other options. The experiments designed in this section focus

on the use case of stochastic reservations as applied to human-driven, guided-

trajectory vehicles in the AIM environment. Automated vehicles are modeled

as having perfect accuracy, with only the simulated “human”-driven vehicles

exhibiting any kind of deviation, lateral or throttle.

For reference, the default experimental settings can be found in subsec-

tion 2.2.5, with only deviations from this setup remarked upon in this section.

3.3.1 Stochastic AIM performance as demand increases

Hypothesis: Guided “human” drivers with stochastic reservations perform

better than both traditional signalized traffic managers and simply carving

out large buffered reservations for human drivers.
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Experiment: To test this, I compared 30 trials each of three different de-

mand levels and four manager variants: soft-edged stochastic reservations with

stochastic vehicles, hard-edged deterministic reservations (i.e., deterministic

reservations with nonzero probability of multiple vehicles using the same tile

under a low tolerance) with stochastic movement, deterministic reservations

with deterministic vehicle movement, and a traditional singalized intersection

timed using 4 cycles (one per approach) and Webster’s formula [46].

Results: As seen in Figure 3.6, both FCFS variants with stochastic move-

ment perform much more akin to fully autonomous FCFS than a traditional

signalized intersection. Furthermore, soft-edged, stochastic reservations ap-

pears perform slightly better than large, hard-edged, deterministic reserva-

tions, especially at high demand.

3.3.2 Average delay as a function of AV penetration

Prior research shows that FCFS only starts to show significant perfor-

mance increases as AVs approach 100% of the population. One of the main

motivations for stochastic AIM is to decrease the percentage at which FCFS

begins to take effect by tightening the spread of human-driven, guided vehicles.

Table 3.7 suggests that, not only does 100% “human” vehicles driv-

ing under stochastic AIM start at a much better delay value than under a

signalized intersection, the performance improvement as the scenario’s AV

percentage increases is much smoother as well. Instead of performance gains
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Figure 3.6: Delay as a function of demand under several FCFS scenarios

being most sharp near 100% AVs, the drop in delay is almost linear, even after

accounting for the margins of error.

If these results hold, we may be able to experience most of the benefits

of automated intersections much earlier as it’s no longer contingent on full

level 5 autonomy for all vehicles on the road, but instead only the rollout of

guidance systems in connected but human-driven vehicles.

3.3.3 Impact of lateral versus longitudinal tracking

Lateral and throttle tracking abilities have disparate impacts on through-

put. Consider Table 3.1, which summarizes the results of a trial with 100%
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Figure 3.7: Delay as a function of AV proportion

human guided vehicles at a demand level of 3,600 vehicles per hour where

throttle or lateral tracking were alternately reduced to 0. (100% human guided

vehicle and 100% AV scenarios are also shown for comparison.)

Table 3.1: Lateral vs. longitudinal tracking delay (s)

Mean SD
Both 1.774 0.936

Throttle deviation only 1.069 0.355
Lateral deviation only 0.683 0.145

Neither 0.478 0.357

Cursory inspection and a difference in means hypothesis test with the
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null hypothesis of no difference in traversal time quickly demonstrate that

reducing throttle deviation is likely to have a much stronger impact on inter-

section throughput than reducing tracking deviation.

That said, this is likely to be an emergent feature of our demand sce-

nario’s 80% through movement demand, combined with the assumption that

even human-driven vehicles move with perfect lateral accuracy on a straight

line. Granted, this is based on driving simulator data which I could argue

further reinforces the hypothesis that teaching drivers to control their throttle

more accurately will have much more return on investment than on improving

turns when they make up a comparatively smaller percentage of intersection

movements.

3.3.4 Varying crash tolerance and p

Hypothesis: Decreasing the crash tolerance—which, in turn, decreases the

p parameter in the tiling—increases average delay at the intersection.

Experiment: For this experiment, I varied the crash tolerance logarithmi-

cally above and below the default value of 0.05 crashes per MEV, which itself

was lowered one order of magnitude from the incidence rate found by the New

York State Department of Transportation [34]. This value, C, is related to the

p through a series of unit conversions as follows:

p =
C crashes
106 vehicles × 1 vehicles

min × 1 min
60 sec × s timesteps

sec × 1

ntiles
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Figure 3.8: Tolerable crashes per MEV versus delay

where s is 15 timesteps per second in the default experimental parameters and

ntiles is 8× 8 = 64.

Results: Figure 3.8 shows that the hypothesis is generally true. Although

the relationship is somewhat ambiguous near the default value, tolerable crashes

per MEV much greater than 0.05 does indeed appear to be associated with

lower delay, and vice versa, although the effect seems to plateau at extreme

values. Future real-world implementations of stochastic AIM will need to take

this relationship into account when deciding on their p and tolerable crash

rates.
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3.4 Future work

Stochastic reservations, because they require fine calculations of usage

probability per tile, likely benefit from a denser discretization of the intersec-

tion compared to the fully autonomous paradigm. I suspect tailoring this more

closely to reflect stochastic reservations’ imprecision will improve performance.

Furthermore, our movement model will also stand to benefit from the

implementation of a more sophisticated conceptualization of stochastic vehicle

movement that, among other things, quantifies the correlation between lateral

and longitudinal deviation.

For additional rounds of human driving simulator experiments, my ob-

servations while preparing this report suggest that observing how drivers can

follow an acceleration profile will be very valuable to refining our stochastic

movement model, considering how important throttle deviation is to through-

put. Likewise, given drivers’ tendency to oversteer on left turns and understeer

on right turns, providing drivers with a static reference of how hard or soft

they should turn may markedly improve their tracking performance at minimal

cost.
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Chapter 4

Priority Auctions

At an intersection, individual vehicles have the self-interested goal of

moving through the intersection as quickly as possible. They’re prevented

from doing so by the vehicles in front of them in their lane, as well as by

vehicles approaching the intersection with conflicting movements. In the AIM

paradigm, the intersection decides which of these vehicles gets priority, in this

case by way of repeated auctions for scarce space and time in the intersection

conflict area. All vehicles in the intersection are competing for use of this area

as soon as possible.

This chapter will detail how other authors have approached competi-

tions for intersection access before detailing a framework for priority auctions–

including bidding and win condition, followed by the specifics of three payment

mechanisms, a description of how auctions are implemented in the NAAIMS

package, and experimental results before concluding with directions for future

work in the priority auction space.

The key novel contributions of this chapter are

• describing a consistent framework for per-vehicle intersection auctions
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• incorporating multiple dispatch (vehicles from multiple lanes) into the

auction mechanism

• incorporating sequencing (multiple vehicles from a single lane) into the

auction mechanism

• introducing a new, externality-based payment mechanism for priority

auctions

4.1 Related work

Intersection priority auctions find their roots in Beckmann et al., who

proposed that network-wide tolls can encourage drivers to minimize total travel

time instead of acting in their own self interest [6].

Applying timespace auctions to AIM was first introduced by Schepperle

and Böhm in 2007 and 2008 [36,37], who found that auctioning off priority by

way of intersection time-slots was able to reduce value consumed and increase

driver satisfaction. Their work was expanded upon by Vasirani and Ossowski

as well as Carlino et al.; both applied similar auction mechanisms to networks

of intersections for an improvement in weighted delay, although Vasirani and

Ossowski relied on reserve prices for routes between intersections in addition

to auctions at intersections [8, 44].

Since then, there’s been considerable interest in the potential of in-

tersection auctions and their real-world applicability. As referenced in prior

sections, transportation engineers like Levin et al. have worked to incorpo-
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rate intersection auctions into their study of dynamic traffic flow models [25],

while economists, Zakharenko in particular, has been working on refining the

theory behind intersection priority auctions to create provably optimal and

incentive-compatible mechanisms [51].

Some authors have even explored how receptive the general public

might be to auction-based control schema [5, 7] and how to apply auctions

to present-day traffic signals using micro-auctions through cell phones [4]. Yet

more have considered how auctions could work with both autonomous and

human-driven vehicles [1], echoing some of the sentiments in the prior chapter

of this dissertation. Some members of this dissertation committee have even

been contacted by the patent holder of routing bids and transfers to gauge

interest in collaborating based on this and past research [43].

4.1.1 Desiderata for an ideal mechanism

Based on my review of existing literature combined with knowledge of

intersections and driver priorities, an ideal intersection priority auction mech-

anism would have the following traits:

1. supports intersections of any configuration and any turn restrictions

2. supports vehicles with heterogeneous characteristics

3. supports realistic vehicle kinematics

4. be incentive compatible
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5. be strategy-proof

6. be computationally tractable in real-time

7. be fair for all participants, which can have many meanings, but I’ll define

it as not advantaging specific vehicles based on the results of factors

outside of cooperating vehicles’ control, such as the prior auction

This said, achieving all of these with a single mechanism may be impossible,

like in Arrow’s possibility theorem. No prior author has achieved all of the

above, although Zakharenko comes closest, but only for the most restrictive

case of a zipper merge [51]. At best, an auction mechanism may only be able

to address most but not all of these desired traits, which is what this chapter

attempts with extensions of prior mechanisms.

4.2 The intersection priority auction framework
4.2.1 Key assumptions

For the sake of a consistent auction model, I make the following as-

sumptions that may differ from prior research:

Auctions only occur when an intersection is completely clear of

reservations. To ensure fairness for all participants, the next intersection

auction only triggers once the intersection conflict area is empty and no tiles

are spoken for. If this limitation wasn’t set, vehicles coming from the same

lane as the winner of the last auction would be unfairly advantaged because by
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nature of the intersection geometry they can’t have an incompatible movement

with the already confirmed movement.

The intersection auctioneer is benevolent and doesn’t care about its

own revenue. I assume that its only goal is to order vehicles to pass through the

intersection in such a way as to minimize their value-weighted delay, including

any payments made to the intersection auction manager.

Vehicles report their valuations truthfully. Although some of the mech-

anisms outlined in this chapter will include provisions to incentive truthful re-

porting, these considerations are not provably strategy-proof. Ultimately I’m

assuming that vehicles are telling the truth about their values of time (VOTs),

although I do run experiments to quantify to what extent vehicles can benefit

from misreporting their VOTs.

Vehicles would always prefer for vehicles ahead of them in lane to

move sooner. One of the implicit assumptions when designing this auction

model is that a trailing vehicle always benefits from vehicles ahead of them

in their lane moving before vehicles in competing lanes. Although this makes

sense intuitively–vehicles need the vehicles in front of them to move before they

can move themselves–this is not always true; more on this in section 4.6.1.
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4.2.2 Sets eligible to win the auction

As a result of several of my assumptions coming together, at its sim-

plest, only vehicles leading an incoming lane are eligible to win an auction and

complete their desired movement through the intersection. We can broaden

our definition of a “winner” to include all vehicles who benefit from the win-

ning movement, i.e., all vehicles trailing the winning lane-leading vehicle in an

incoming road lane. Under this paradigm, we conceptualize a winner not as

an individual vehicle, but as an entire incoming road lane and the vehicles on

that lane (or the null set, if no lanes contain vehicles).

We can increase the auction manager’s throughput to more closely fol-

low the free-flowing movement of FCFS by permitting multiple vehicles to

move in a single auction. This can take one of two forms (or both can be

combined):

• multiple dispatch, allowing vehicles from more than one incoming lane

to move at a time

• sequencing, allowing more than one vehicle from a single lane to move

in a single auction

Sequencing follows naturally from the idea that lanes not vehicles win

an auction, so we’ll leave this topic for now and expand upon it in subsection

4.2.6, but multiple dispatch adds complexity to the eligible winning sets.

Ideally, we’d let every lane with vehicles on it through together, but the

point of an intersection manager is to avoid collisions, so this isn’t tenable. We
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can use the core idea of having multiple lanes be eligible to win, and add the

condition that their lane leading movements don’t conflict (similar to traffic

signal phases, but without fixed patterns).

To wit, under multiple dispatch, eligible winning sets consist of incom-

ing road lanes with non-conflicting lane-leading movements.

There is significant additional complexity to multiple dispatch, as de-

ciding which movements are compatible if the intersection configuration is

arbitrary and variable vehicle approach speeds increases the computational

power required to resolve auctions, but doing so will allow for freer flowing

movement more akin to present day signalized intersections. By allowing mul-

tiple lanes’ leaders to move at once, we can make more efficient use of the

limited time available in the conflict region.

4.2.3 Calculating bids

If we’re focused on the movement of a lane-leading vehicle as the poten-

tial winner of an auction, a natural first guess would be for the bid associated

with it to be the value of time ν of the vehicle making the movement applied

to the time the movement uses in the intersection tm. This design, however,

misses two key points:

• winning is not necessarily about wanting to use time in the intersection

alone, but primarily to prevent competitors from doing so before you

• the lane-leading vehicle isn’t the only one that stands to gain from its
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own movement winning

I’ll motivate each point using an example.

Suppose we have a vehicle A with a value of time of $100 per second

and a short, one-second movement competing with vehicle B with a much

lower VOT of $1 per second but a much longer movement of 200 seconds. A

would bid $100 to B’s $200 and lose, forcing them to wait 200 seconds at a

cost of $20,000 to itself. They would’ve preferred instead to bid their VOT

against the time consumed by B, or the longest intersection time consumed by

any lane movement eligible to win, which we can simplify to simply bidding a

rate instead of a fixed value.

Second, consider the example illustrated in Figure 4.1. Let A have a

VOT of $1, C $, and B $100. If only lane leaders were allowed to bid, A

would lose to C and leave B stuck behind A for the entire duration of C’s

movement, despite having more than enough value to outbid everyone in the

auction combined.

Given the above points, the bid for an individual lane ℓ and its lane-

leading movement is defined as

bℓ = νℓ =
∑
i∈ℓ

νi,

where νi is the VOT of vehicle i. This method ensures that every vehicle that

stands to benefit from a movement gets to contribute to the bid, and that

their bid quantifies how much they value avoiding delay rather than being

dependent on a specific time length.
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A
B

C

Figure 4.1: One vehicle versus two

In the multiple dispatch case, the effective bid for a set of lanes is simply

the sum of the νℓ of the set.

4.2.4 Deciding the winner

Quite simply, the winner of the auction is the set with the highest bid

b. This can be the null set if there are no vehicles in the intersection, a single

lane in the default case, and one or more lanes under multiple dispatch.

This can be made more complex when we consider where the intersec-

tion can put its thumb on the scale: some might apply subsidies for equities

sake, e.g., to prevent a high-flow lane from constantly dominating a low-flow

lane by sheer volume [8], or to account for expected future arrivals who would

also benefit from winning this auction but who haven’t yet entered the inter-
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section area. For the purposes of this framework, the intersection manager

does not intervene as the focus is on designing a clear mechanism and not

necessarily equity concerns.

4.2.5 Payment calculation

After deciding the winning and losing sets, the mechanism must finally

determine how much each vehicle pays. The payment may not be directly

related to what they bid–in fact, decoupling these as much as possible would

further disincentive vehicles from misreporting their VOT–and must be trans-

lated from a rate to a fixed value by applying the movement time of the

winning set. A few key values used by some of the payment mechanisms being

described:

• bΩ, the bid of the winning set.

• tΩ, the time consumed by the winning movement. In the multiple dis-

patch case, this will be defined as the time of the longest or latest-exiting

movement in the set.

• bE, the second-highest bid.

• tE, the time of the movement of the second-highest bidder. Same rules

as above in the multiple dispatch case.

Designing a good payment mechanism is tricky because this is the main

way an auction mechanism incentivizes truthful reporting of VOTs. The pri-

mary contribution of this chapter, in addition to formulating this auction
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framework, is to introduce a new payment mechanism that improves upon

prior mechanisms. I’ll go into full detail on the both predecessor and the new

payment mechanism in the next section.

4.2.6 Resolving sequences

Auctions with sequencing allow consecutive vehicles in a single lane

to move together. This is beneficial for both the trailing vehicles in a se-

quence and total system delay because sequenced vehicles use less total inter-

section time than having a vehicle wait for the preceding vehicle to clear the

intersection before they can move themselves does. The challenge of incor-

porating sequencing into auction mechanisms is its computational complexity

outside of predetermined signal phases and it being detrimental to most other

self-interested vehicles. Overcoming these to implement a sequenced auction

mechanism is one of the key contributions of this chapter.

The key point to keep in mind when thinking about sequenced auctions

is that allowing a n-length sequence to win is strictly worse for losing lanes

because a sequence takes up strictly more time in the intersection that an

(n− 1)-length sequence.

To accommodate this, this framework requires that the (n− 1)-length

sequences win the auction before additional sequence lengths can be consid-

ered. Two consequences of this requirement are

1. sequenced auctions must be designed as separate auctions that run after
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the (n− 1)-length auction that each trailing vehicle in a sequence must

win to confirm their sequence

2. leading vehicles in a sequence have no incentive to contribute to the win

of trailing vehicles in their sequence

Given these premises, let’s describe the framework of a sequenced auc-

tion. For the rest of this discussion on sequenced auctions, I’ll restrict the con-

versation to a single winning lane only. Conceptually, describing sequenced

auctions with multiple dispatch is difficult because of possibility the winning

and first losing sets containing the same lane, complicating the clarity of the

sequencing mechanism, but this simpler sequenced mechanism can be applied

to the multiple dispatch case with a few adjustments.

4.2.6.1 Sets eligible to win the auction

Because sequenced auctions are only run after the original auction win-

ner has been decided, the sequenced auction’s eligible winners are either the

one winning lane seeking to extend the sequence of the winning lane(s), or the

null set, ending the sequence and readying for the next auction.

The vehicles that benefit from the sequence winning are the trailing

vehicle(s) vying to add to the sequence, and all vehicles behind them in their

lane (but not the vehicles in the sequence that are already confirmed). The

vehicles that benefit from the sequence ending early are those in the highest

value eligible set that doesn’t include the road lane of the sequence vying for
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extension.

4.2.6.2 Calculating bids

The vehicles that contribute to the sequences’ eligible set bids are the

vehicles that stand to benefit. The vehicle vying to have its movement se-

quenced and the vehicles behind it bid for the sequence to win, while the

vehicles in the highest bidding set without the winning lane bid for the se-

quence to end early.

Relative to the bid of the entire winning lane, as you progress down the

lane, the ith vehicle in a sequence has a supporting VOT from trailing vehicles

of

bi =

nℓ∑
i

νi

Notice that b1 > b2 > . . . ; in other words, the longer a sequence, the lower its

effective bid, making it easier for the competing set to end the sequence.

4.2.6.3 Deciding the winner

Unsurprisingly, the winner is the sequence extension if their bid is

higher, or the null set ending the sequence if the second highest eligible set

wins.

4.2.6.4 Payment calculation

Sequenced auctions utilize the same payment mechanisms as the origi-

nal auction by lane, with one slight adjustment to the key time lengths:
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• tΩ becomes the marginal additional intersection time consumed by the

vehicle vying to be sequenced

• tE is the difference between when the movement of the second highest

bidding lane would have ended compared to when the movement of the

(n−1)-length winner ended, with a minimum of 0 to represent how much

additional time past what’s already been reserved the alternate winner

needs to complete its movement and pay for itself.

These times serve to compare the winning sequence against the counterfactual

of “what if the second highest bidding lane had won instead.” More on payment

mechanisms in the next section.

4.3 Payment mechanisms

As mentioned earlier, the payment mechanism is the primary way pri-

ority auctions have to incentivize vehicles to truthfully report their VOTs. For

this chapter, I’ve formulated three payment mechanisms to compare which one

is empirically the most equitable, effective, and truth-incentivizing.

4.3.1 First price

This mechanism design is based on the most basic payment mechanism

in general, first-price auctions. (As an aside, the payment mechanisms de-

scribed here are usually described as auction mechanisms in literature outside

of this dissertation, but this framework adjusts these mechanisms to have iden-
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tical steps prior to payment.) The version used in this dissertation is based on

the mechanism Levin used in a study examining the throughput of auction-

based control in dynamic traffic assignment [25], with some modifications to

match the NAAIMS auction framework. For example, in order to conform

to our fairness requirement, the next auction is only run when the last vehi-

cle has cleared the intersection, compared with Levin’s implementation where

auctions can run at all times, so long as there are vehicles that are stopped at

the intersection boundary.

Put simply, in the first price auction, the winning bid bΩ is applied to

the time used by the winning set tΩ and extracted from each vehicle that bid

for it.

p1st = bΩtΩ

Each vehicle i in the winning lane(s) pays its reported VOT νi times the time

of the winning set.

pi1st = νitΩ

4.3.1.1 Potential flaws

Although very simple and easy to compute, all first-price auctions share

a fundamental flaw: bidders are incentivized to under-report their true valua-

tions as what they report is directly tied to what they pay if they win. Instead,

they’d prefer to bid just high enough to beat the valuation of the second high-

est bidder, but no more, to avoid the “winner’s curse” of overpaying [39].

Furthermore, this auction mechanism also fails to account for the threat
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B

C
A

Figure 4.2: First-price example

of new arrivals in the participants’ behavior. Consider the example illustrated

in Figure 4.2. Reducing VOTs and bids to fixed values for clarity, let

νC > νA, νB

νC < νA + νB − δ

0 < δ < min{νA, νB}

νnew = 100νA

Suppose A wins this auction and as they make their movement one

hundred new vehicles arrive behind B. In the next auction B and the new

arrivals bid νB + νnew ≫ νC . Now C has to wait for the other lane to clear

up before it can leave. C would have preferred to overbid in the first auction

than wait this long, illustrating the need to factor in the threat of new arrivals

into the bidding process.
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4.3.2 Second price

As far as this author knows, the idea of single-intersection auctions

originated from Carlino’s work in 2013 [8]. The mechanism proposed was a

second-price auction, so used because this type of auction in general encourages

bidders to reveal their true valuation when bidding instead of the low-balling

behavior discussed in the prior section because they don’t need to pay their

bid if they win, only the amount the second highest bidder (or “first loser”)

bid.

The second-highest bid bE is applied to the time length of the winning

movement and extracted proportionally from each vehicle that bid for the

winner.

p2nd = bEtΩ

Each vehicle i in the winning lane(s) pays its fraction of the second-highest bid

proportional to how much it contributed to the winning it using its reported

VOT νi times the time of the winning set.

pi2nd =
νi
bΩ

bEtΩ

4.3.2.1 Potential flaws

In the case of a single winning vehicle, νi
bΩ

= 1, this mechanism fully

decouples their payment from how much they bid (excluding the victory condi-

tion), removing the incentive to under-report their true value. This decoupling

is only partial in case of multiple vehicles, as calculating winners’ payments
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based on the proportion of the winning total they bid introduces its own prob-

lem.

Consider again the example illustrated in Figure 4.1, reusing the same

bids and valuations from the example in Section 4.3.1.1.

Suppose B and C bid truthfully, while A bids bA > νA − δ. Under the

second-price auction, A and B win and must together pay νC . If A bid νA,

they would pay νC
νA

νA+νB
, but if A had lied and under-reported their valuation,

bidding νA − δ, they would have only had to pay

νC
(νA − δ)

(νA − δ) + νB

The second-price auction eliminated one reason for vehicles to under-

report their true value only to replace it with another, and it’s still vulnerable

to the threat of new arrivals described in subsection 4.3.1.1. To avoid this, the

winner’s payment must not be directly dependent on their bid in any way and

quantify the latter threat.

4.3.3 Externality

To determine an individual vehicle’s payment for an individual auction,

we approximate the externality of its victory–how much it harms other partici-

pants by winning–as in Vickrey-Clarke-Groves (VCG) auctions [11,18,45], and

make that its payment for winning the auction. This serves to better avoid

incentivizing unintended behavior and encourage truthful reporting from ve-

hicles of their value of time. This payment mechanism is newly developed for
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this dissertation and attempts to extend Zakharenko’s mechanism to arbitrary

intersection configurations.

The externality of a winning vehicle i is the difference between the total

value across all vehicles of the current scenario and if i wasn’t in the auction.

To find this, we consider 3 sets of lanes:

• the actual winners Ω;

• the first losers E, the lanes that would have won had i not been in the

auction; and

• everyone else L \ (E ∪ Ω); the lanes that lose the auction either way.

An example is illustrated in Figure 4.3.

Recall from Chapter 2 that we’ve assumed for each lane ℓ, new arrivals

1. enter at an average rate per time unit of λℓ and

2. have an average VOT µν .

By winning, i

1. forces every first loser in E to wait the winning movement time tΩ and

suffer new bidders,

2. benefits every actual winner Ω by saving them the first loser’s movement

time tE and from the arrival of new bidders, and
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Figure 4.3: Winner (Ω), first loser (E), and everyone else (L\) example

75



3. causes every other lane L \ (E ∪Ω) to wait the difference tω − tE longer

(or skip this time, if the difference is negative).

Note that this tE is defined slightly differently from subsection 4.2.5.

Thus the estimated externality χi of vehicle i is

χi =
∑
ϵ∈E

(
νϵ + νϵµϵ

tΩ
2

)
tΩ −

∑
ω∈Ω\i

(
νω + νωµω

tE
2

)
tE

+
∑

ℓ∈L\(E∪Ω)

(
νℓ + µℓ

νλℓ
|tΩ − tE|

2

)
(tΩ − tE)

Two special cases to note are

1. if removing the study vehicle doesn’t change the winning set, tω− tE = 0

and the vehicle has 0 externality. This applies even if every vehicle in

the winning set has a VOT too small to individually affect the outcome,

making the total payment across all vehicles 0.

2. χi can be negative if tΩ < tE because vehicles aside from the first losers

benefit if a short movement wins instead of a long one.

The second case can cause unintended consequences, as we don’t want

vehicles to be able to get paid by winning a priority auction or this would

incentivize a lot of induced vehicle trips aiming to farm the system for payouts.

On the other hand, discarding negative externalities would effectively raise the

cost of longer movements in relative terms.
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To approximately reconcile these competing priorities, the externality

mechanism only collects payments after the vehicle has experienced every auc-

tion it’ll experience in the intersection and exited. At this point, we’ll sum its

payments across all its auctions and then floor them so i pays

pi = max
{
0,
∑
α∈A

χα
i

}

where A is the set of all auctions i won and χα
i the externality of i winning

auction α. This aggregation reduces the skew of flooring on the auction mech-

anism.

Although this mechanism borrows concepts from VCG, to be clear, this

auction framework is not a proper VCG auction. The externality calculation

we use is an estimate, as it requires removing a winning vehicle and rerunning

the auction without it. This isn’t realistic due to the physical configuration of

an intersection, but it suffices for the purposes of our mechanism.

This auction mechanism is inspired by that of Zhakarenko [51]. Un-

like most other studies on the topic that are mostly done by computer sci-

entists and transportation engineers, Zhakarenko approaches this problem as

an economist, deriving the most theoretically sound value-aware ordering of

vehicles through a choke point. However, his findings were limited to only a

two-to-one-lane zipper merge, limiting the utility of his mechanism design for

modeling intersection traffic.

This payment mechanism takes the principles of Zhakarenko’s mech-

anism and applies them to an intersection as closely as possible, discarding
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provable strategy-proofness for general applicability. The design of this mech-

anism is intended to directly address the flaws identified in the first- and

second-price auctions and, while it doesn’t fully and provably prevent them,

the mechanism caveats here are intended to ameliorate their exploitability.

4.4 Implementing auctions in NAAIMS

Although the first- and second-price auctions are relatively simple to

implement, being limited to the intersection manager, the particulars of the

sequenced auction require extensions to the tiling and the way NAAIMS pro-

cesses reservation requests. Normally, checking if a request is possible is de-

pendent solely on the request being checked, since vehicles from different lanes

aren’t moving together. However, because sequenced auctions allow us to dis-

patch vehicles from multiple incoming lanes at once, the intersection also needs

to check if requests competing in a sequenced auction are compatible with each

other, instead of only already confirmed reservations.

This is an additional feature added to the intersection tiling in the

form of the potential reservation marking system. When checking a vehicle’s

trajectory for a sequenced auction, the tiling is also instructed to mark tiles

encountered with the potential reservation of that vehicle, like with confirma-

tions except with the ability to register multiple potential reservation systems

onto a single tile (stochastic reservations excepted). So long as requests share

at least one tile with each other, then they’re incompatible and cannot be

included in the same winning set. Collecting these incompatibility lists from
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every tile used across all potential reservations in an auction will allow the

intersection to determine every possible set of winning movements and cal-

culate their bids accordingly. Optimization is possible given that if a pair of

reservations is incompatible, then sets containing that pair and other lanes

are also incompatible, but the general problem of identifying the highest value

set of compatible reservations given pairs that are incompatible reduce to the

NP-complete Boolean satisfiability problem [12].

Another modification to accommodate sequenced auctions is to allow

the reservation request of one vehicle to depend on another, i.e., for a trailing

vehicle’s reservation request to depend on the request of the vehicle in front of

it. That way, if the request of a vehicle leading or in the middle of a vehicle

sequence finds that their reservation is incompatible with a confirmed reser-

vation or, more likely, only the front of the sequence is part of a winning set,

the requests middle and all the way down the sequence can be automatically

rejected without disrupting the front of the sequence. It also assists with the

request marking system, as with this in place only the request of the leading

vehicle needs to be marked on a tile; if that’s already present, it’s implied that

the request of trailing vehicles is also dependent on that tile and they’re of

course never incompatible with the request of the leading vehicle, so there’s no

need to mark the tile with the request of the trailing vehicle. (This comes into

play if the vehicle buffer in the intersection is larger than the vehicle length

buffer when traveling along lanes, and with the edge tile buffers that extend

forward and backward into time further than the vehicle is actually expected
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to use physically.)

However, simulating conflicts is very computationally expensive, so we

limit sequences to consecutive vehicles in the same lane with the same move-

ment, so we don’t need to simulate mix and matched sequences of movements

with different start times.

4.5 Experiments

Several experiments are necessary to confirm the base efficacy of these

auction formulations. The sequenced auction is designed and intended to be

a strict improvement of the first- and second-price auctions, but confounding

emergent behavior may make it perform worse than intended.

4.5.1 Comparison experiments

The most basic set of experiments are self-explanatory: create several

traffic profiles using a random generator from given average flow λℓ and VOT

µℓ
ν for each lane ℓ, and send them through each of the mechanisms listed above.

Each simulation collects payments made at the intersection as well as vehicle

VOT and entry and exit times, from which we can calculate the time each

vehicle spends in the intersection and how much that time cost the vehicle.

Together, these costs (as well as delay experienced by vehicles without factor-

ing in VOT) can be averaged across all vehicles in each simulation instance,

giving a single number measuring the value consumed that can be compared

apple-to-apples across all simulations.
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Hypothesis: The average traversal time (including payments converted to

time) per payment mechanism will decrease consistently from first price to

second price to the externality payment mechanism. Along the other axis, the

single lane, single vehicle auction will perform the worst, followed by sequenc-

ing setup, with multiple dispatch performing the best.

Experimental setup: For these experiments, taking a cue from Carlino

2013 [8], vehicles’ VOTs ν are drawn from a uniform distribution between 0

and 1 value units per second and the sample size is upped to 100 compared to

the standard experimental setup described in subsection 2.2.5.

The following payment mechanisms are compared

• First-price

• Second-price

• Externality

using the following eligible winning set configurations

• single lane dispatch, single vehicle per lane

• multiple lane dispatch, single vehicle per lane

• single lane dispatch, multiple consecutive vehicles with the same move-

ment per lane
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Results: The relative performance of each model is as expected, with a few

slightly surprising results reported in Table 4.1. The auction setups that only

allow one lane to win at a time perform substantially worse than multiple

dispatch, although sequencing does slightly better than the fully single setup,

as expected of a setup intended to allow slightly more than one vehicle through

instead of being comparable to a stop sign.

The surprise might be in just how much better multiple dispatch per-

forms compared to the other two, especially since unlike FCFS or traffic signals

it doesn’t allow more than one vehicle per lane through at a time. Granted,

it’s still two orders of magnitude worse than FCFS even after accounting for

the fact that FCFS doesn’t prioritize VOTs (0.089 average incurred cost).

Table 4.1: Incurred cost sample mean (and standard deviation) under various
auction configurations (n = 100)

Mechanism Single Sequence Multiple
1st price 74.889 69.233 10.087

(5.946) (6.333) (2.838)
2nd price 73.767 68.191 9.303

(6.006) (6.381) (2.842)
Externality 82.087 77.765 5.701

(12.595) (12.188) (2.272)

As for payment mechanisms, as expected, the second price auction

outperforms the first price auction slightly. Counterintuitively, in the single

lane winner setups, the externality payment mechanism performs substantially

worse than the alternatives, but it shows its true potential in the multiple dis-

patch setup, markedly outperforming both first and second price mechanisms
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for the lowest average time consumed across all configurations. This may be

attributable to multiple dispatch being the only setup that can express a sig-

nificant distinction between the winning, first losing, and everyone else lane

sets that form the crux of the externality payment mechanism.

4.5.2 One bad actor experiments

As a supplement to the baseline comparison experiments, I conducted

a set of experiments where one vehicle lies about its valuation to see if the

features intended to encourage truthful reporting are working as intended.

Hypothesis: Vehicles in first price payment mechanism will show the most

benefit from under-reporting their VOTs, followed by the second price pay-

ment, and finally the externality payment mechanism.

Experimental setup: The same settings from the experiments in the last

subsection apply, with two additional adjustments.

First, because of the substantially better performance in the multiple

dispatch auction, I focus this experiment set on that setup only.

Second, in this experiment, one vehicle in a traffic profile is chosen

and its true VOT scaled down to some proportion of its original value to

create its reported VOT. The NAAIMS instance is then run twice: once with

the original VOT, and once with the downscaled VOT, with all else held

identical (including the arrival times and characteristics of other vehicles in
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Figure 4.4: Reported VOT as a proportion of true VOT versus the ratio
between the cost incurred in the misreporting case and the true case.

the simulation instance). The cost incurred by the chosen vehicle is compared

across the two instances as a ratio to see to what extent misreporting its true

VOT benefited it, if at all. Smaller values are better for the misreporting

vehicle and worse for the payment mechanism, especially if less than 1 as that

implies that the vehicle experiences less cost when misreporting their VOT

than when reporting their true VOT.

Results: As you can see in Figure 4.4, we observe that vehicles don’t bene-

fit from misreporting their VOT under any payment mechanism regardless of

whether they under-report or over-report. That said, they experience stronger

penalties for misreporting with second price payments than first price pay-

ments, as we expect, and much more with externality payments than second
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price. Although these results should be taken with a large grain of salt due

to the wide margins of error and the fact that these results don’t consider a

strategizing equilibrium, this along with the results from the direct comparison

experiments are a good indicator that the externality payment mechanism is

an improvement on the first and second price payment mechanisms.

4.6 Desiderata achieved and remaining challenges

This mechanisms described in this chapter addresses most, but not

all of the desiderata listed in subsection 4.1.1, and does so more comprehen-

sively than the previously defined first- and second-price auctions. Specifically,

it incorporates some additional features designed to make it more optimal,

strategy-proof, and fair, correcting some issues with the other auctions, but

it does not do so in a way meant to be mathematically provable. In short, it

compromises on desiderata 4 and 5 and possibly 6, but less so than its pre-

decessors, in order to achieve throughput closer to intersection policies not

considering valuations.

4.6.1 Aside: the exposure problem

Consider again the example setup in Figure 4.1, where all movement

times are identical, there are no new arrivals (realized or expected) to consider,

and νC > νA > νB > 0 but νA + νB > νC .

If B chose to lie and report a VOT of 0, C would win the first auction,

followed by the movements of A and then B, making B move third.
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If B truthfully reported it VOT for bidding, A and B both contribute

to a winning bid that allows A to move before C. Under the sequenced auction

setup, in the next step B would be lose to C and be forced to move third, just

the same as before. The sequenced auction paradigm is strictly worse for B

in this scenario, as they’ve subsidized the bid of A for no improvement in its

delay.

Resolving this issue seems likely to require a fundamental redesign of

our mechanisms and is thus considered out of scope for this chapter, but a

good suggestion for future work.

4.6.2 Future work

Fully addressing the exposure problem will likely require a completely

new auction design that directly bundles several auctions together instead of

treating them mostly separately, with a floor at exit. This may go hand-

in-hand with the creation of a provably optimal, incentive-compatible, and

strategy proof mechanism for intersection auctions instead of the heuristic

patchwork the first-, second-, and externality-price mechanisms described in

this chapter.

On the front of the tools created for this dissertation, future work in-

cludes exploring the impacts of the auction mechanism on different intersec-

tion configurations. If extending the mechanism to further close the gap in

throughput between FCFS and auctions, it’d be necessary to combine both

multiple dispatch and externality into a single mechanism, as well as incor-
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porating some additional streamlining of the auction simulation codebase to

reduce runtime.
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Chapter 5

Conclusion

Since the concept of AIM first came out in the early 2000s, autonomous

intersection management has achieved some fame, maturing into a deep area

of study at the crossroads of computer science and transportation engineering

that I’m proud to contribute to with my dissertation.

In this thesis, I’ve developed a next-generation AIM simulation frame-

work and implementation, NAAIMS, with compatibility, ease of development,

and modularity as its foci. Using this simulation framework, I’ve developed a

new AIM variant, stochastic automated intersection management, and further

formalized an AIM subfield, intersection priority auctions, as both key contri-

butions to the research field in their own rights and to demonstrate the utility

and capability of NAAIMS.

Under the umbrella of stochastic AIM, this dissertation has developed

the base framework for stochastic reservations and tilings, extended the con-

cept of maximum tolerable crash incidence rate to both stochastic tiles and

deterministic tile reservations, and sketched the viability of stochastic AIM

as a topic for future research using simulated experiments. These empirical

studies in NAAIMS use purpose-built model of stochastic vehicle movement
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informed by results from real human driving simulator experiments to show

that guided, human-driven vehicles have the potential to bridge the gap be-

tween the status quo and the fully autonomous vehicle paradigm necessary for

full realization of AIM’s potential for maximizing throughput.

In the auction realm, I’ve formalized intersection priority auctions for

individual vehicles into a consistent framework and refined first price and sec-

ond price auction mechanisms to accommodate value of time bids and my

new developments. Specifically, these refer to priority auctions that support

dispatching from multiple lanes and sequences of vehicles in the same auction

without the need for pre-planned signal phases, and modular payment mecha-

nisms that allow for a new mechanism, externality payments, to improve upon

the demonstrably flawed first- and second-price auctions and payment mech-

anisms. These auction configurations are tested for average value-weighted

delay and incentive for misreporting, again using NAAIMS, further demon-

strating the advantages of the new, modular strategy for simulating a wide

scope of automated intersections.

5.1 Future Work

Given that the main focus of this dissertation was to implement a mod-

ular automated intersection management simulator to facilitate future study,

there’s a wide breadth of extendable research topics, much of which was al-

ready detailed in earlier chapters of this thesis.

Key avenues of future work in priority auctions come in the form of
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developing a more refined theoretical auction mechanism that is closer to prov-

ably optimal, strategy-proof, and incentive compatible that can avoid the ex-

posure problem described in section 4.6.1. This new auction mechanism will

likely be a stark departure from the framework detailed in Chapter 4 as it

will need to bundle together sequences much more tightly than the externality

payment mechanism does.

For auction research more directly tied to the configurations described

in this dissertation, one marginal improvement would be to combine the mul-

tiple dispatch and sequenced auctions in order to reap the benefits in delay

reduction from both approaches.

In the stochastic arena, the movement model described in Chapter 3,

with its assumption of independence between, is intended only to be first sketch

to demonstrate that stochastic reservations are potentially viable. They’ll need

a more realized movement model that incorporates information like correlated

latitudinal and longitudinal deviation in order to fully characterize their ben-

efits compared to traffic signals.

Our collaborators at the University of Washington are already prepar-

ing for a second round of driving simulator experiments informed by the results

we’ve seen doing analysis for our NAAIMS experiments. Our feedback includes

testing human drivers on a larger variety of acceleration profiles, and providing

concrete guidance for lateral movement in addition to a pace car.

Finally, there are several research topics to explore within the NAAIMS
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framework itself, many of which already have their own API hooks in the

NAAIMS codebase. A few key topics are bringing forward features from Dres-

ner and Stone’s AIM4 simulator into NAAIMS, such as support for multiple

connected intersections, semi-autonomous vehicles, and traffic signals.

These goals are supplemented by extensions to the NAAIMS feature set

that target more realistic kinematics, especially on turns and curves, exploring

different intersection configurations and tiling shapes, applying AIM concepts

to lane-changing between intersections.

The name of the game is to create the most fully featured AIM simulator

for comprehensive study of a future for automated intersections’ that’s simply

not the same.
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Appendix A

Soonest exit

The soonest exit problem involves finding the lowest time t and corre-

sponding exit velocity v of a vehicle from a road lane. The base soonest exit

scenario is quite simple, as it only involves accelerating to the speed limit and

then staying there as it approaches the intersection, so the only question is

whether the vehicle reaches the speed limit vmax before it reaches the end of

the intersection.

Complications arise when the vehicle we’re calculating the soonest exit

for is not the first vehicle in its lane. Then, we need to know the exit time and

velocity of the preceding vehicle before we can find the soonest exit time and

velocity of our study vehicle. If the preceding vehicle is slower than the study

vehicle, now the actions it might take are no longer limited to accelerating and

staying at constant speed, but might also include braking as well.

Let x(t, tb) be the distance covered by the the study vehicle in time t,

of which tb is spent braking (with the rest spent either accelerating or at the

speed limit), and xp(t) be the same for the preceding vehicle. tcrit will be the

time at which the preceding vehicle reaches vmax .

Because of this, NAAIMS approaches the problem like this:
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1. Find the fastest exit x(t, 0) and check if it’s the soonest exit, returning

if x(tcrit, 0) <= xp(tcrit).

2. Find the slowest reasonable exit x(t, tmax ) (i.e., that doesn’t require brak-

ing to 0 velocity and waiting) and check if it’s still too fast and causes

a collision by checking if x(tcrit) is greater than xp(tcrit). If so, return

invalid as the study vehicle cannot not collide with the preceding vehicle

(something has gone wrong if this is the case). A.1

3. Binary search x(tcrit, tb) over tb with direction indicated by xp(tcrit) −

x(tcrit, b). Return the soonest exit found with error up to the length of

a simulated timestep.

Most of the math required to find the soonest exit is trivial (simply

accelerate and clip to the speed limit), but the exits that require any braking

are complex enough to show the derivation of.

To do so, I’ll summarize the relevant parameters before diving into the

explanations. Note that I’ve slightly redefined x to be the fixed distance the

study vehicle needs to cover to reach the intersection instead of a function of

time, as we’re finding these exits to compare with the preceding exit in the
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binary search.

v0 starting velocity
ve exit velocity
a acceleration
b braking rate (defined to be negative)
tb time spent braking
ta time spent accelerating
t total time to reach the intersection ta + tb
xa distance spent accelerating
xb distance spent braking
x distance to cover xa + xb

A.1 Slowest exit (lower bound)

The slowest eligible exit accelerates to (and potentially stays at) the

speed limit, before braking as much as it needs to just come to a complete

stop at the intersection line.

Fix ve = 0 and find ta (and consequently tb) w.r.t. t.

v0 + ata + b(t− ta) = ve

v0 + ata + bt− bta = 0

(a− b)ta = −bt− v0

ta = bt+
v0

b− a
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Next, setup the distance equation and solve for t.

xa = v0ta +
1

2
at2a

xb = (v0 + ata)(t− ta) +
1

2
b(t− ta)

2

x = xa + xb

= v0ta +
1

2
at2a + (v0 + ata)(t− ta) +

1

2
b(t− ta)

2

= atta −
1

2
at2a +

1

2
b(t− ta)

2 + tv0

= at
bt+ v0
b− a

− 1

2
a

(
bt+ v0
b− a

)2

+
1

2
b

(
t− bt+ v0

b− a

)2

+ tv0

2(b− a)x = abt2 + 2btv0 + v20

0 = (ab)t2 + (2bv0)t+ (v20 − 2(b− a)x)

t =
−bv0 −

√
2b(b− a)(ax+ 1

2
v20)

ab

A.2 Fixed tb, free exit velocity

The other potential soonest exits that use braking are those on the

slower side of the binary search, close to the slowest exit. They still accel-

erate/stay at the speed limit and then slow down, but they don’t come to a

complete stop before the intersection.

Much the setup is like before, but the target variable is redefined w.r.t.

tb and ve isn’t set to 0. Instead, ve is solely dependent on t and the given

values so we can proceed straight to the distance functions.

Start by finding t using the same formulas as last time redefined w.r.t.
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the known tb.

xa = v0(t− tb) +
1

2
a(t− tb)

2

xb = (v0 + a(t− tb))tb +
1

2
bt2b

x = xa + xb

= v0(t− tb) +
1

2
a(t− tb)

2 + (v0 + a(t− tb))tb +
1

2
bt2b

=
1

2
at2 − 1

2
at2b +

1

2
bt2b + tv0

t =
−v0 +

√
a2t2b − abt2b + 2ax+ v20

a

Now let’s find ve in terms of t using the substitution pattern from the

last subsection.

v0 + a(t− tb) + btb = ve

v0 + at− atb + btb = ve

ve = v0 + at+ (b− a)tb
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Appendix B

Stochastic deviations

The movement model takes the original time spent in the intersection

and pumps it up or down by adjusting the time taken to accelerate to the

speed limit.

B.1 Reach vmax before exit

Given the starting velocity, speed limit, distance to cover, and time

to cover that distance in, find the time the vehicle needs to spend at the

speed limit, the time the vehicle needs to spend accelerating, and at what

acceleration value.
v0 starting velocity
ve exit velocity
aa acceleration
ta time spent accelerating
te time to exit in
xe distance to exit
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xe = v0ta +
aa
2
t2a + vmax (te − ta)

vmax = v0 + aata

aa =
vmax − v0

ta

xe = v0ta +
vmax − v0

2ta
t2a + vmax (te − ta)

xe = v0ta +
vmax − v0

2
ta + vmax te − vmax ta

xe = (v0 +
vmax − v0

2
− vmax )ta + vmax te

ta =
xe − vmax te

v0 + vmax −v0
2

− vmax

aa =
vmax − v0

ta
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