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Routing plays an essential role in modern life. As our civilization grows

more reliant upon the efficient movement of goods and people, the mathemati-

cal problems underlying routing decisions also grow in complexity. Given their

structure, partitioning provides one option for solving routing problems more

quickly. This dissertation focuses on developing partitioning frameworks for

NP-hard routing problems. Specifically, different partitioning methods are ap-

plied to the traveling salesman problem (TSP), resource-constrained shortest

path problem (RCSPP), and other related problems. The TSP framework,

referred to as convex hull partitioning (CHP), builds on several existing parti-

tioning methods by using a new idea for forming subproblems. CHP relies on

the connection between an optimal tour and the convex hull boundary of the

input points. The hull points occur in the same order in both the convex hull

boundary and the optimal tour. Using this order, CHP forms a set of point
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partitions based around consecutive pairs of hull points. This allows Hamil-

tonian paths through each partition to be connected at shared hull points,

leading to a solution to the original TSP. A slightly modified framework uses

a similar technique to solve sequential ordering problems (SOP). Adding a

global resource constraint makes using a similar geometry-based partitioning

method more difficult. Therefore, partitioning when solving an RCSPP uses

the resource costs of paths to each node. When combined with an existing

dynamic programming algorithm, resource cost partitioning allows all non-

dominated paths from a single source to all other nodes to be found more

quickly. Computational experiments show the partitioning frameworks allow

both TSPs and RCSPPs to be solved more quickly with little to no decrease in

solution quality. These results demonstrate the benefits of using partitioning

to help solve TSPs and RCSPPs. Ideally, these partitioning techniques will

be extended to provide similar benefits when solving other difficult routing

problems.
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Chapter 1

Introduction

1.1 Overview

Modern life relies on efficient routing. Whether it is package delivery,

flying across the country, scheduling a ride-share, or relying on stocked gro-

cery store shelves, routing impacts everyone nearly every day. As the world

becomes ever more reliant upon efficient movement of goods and people, the

routing problems allowing for this movement become larger and more com-

plicated. Solution methods must continue to evolve to address increasingly

difficult problems. One common issue facing routing planners lies in solv-

ing problems quickly enough to take advantage of the solutions. Because the

computational effort required to solve routing problems typically grows very

quickly as the size of the network increases, solving several smaller problems

can be faster than solving a single large instance. For this reason, partitioning

can be an effective technique to solving routing problems more quickly. This

dissertation focuses on developing partitioning frameworks for several NP-hard

routing problems, including the Euclidean traveling salesman problem (TSP),

the sequential ordering problem (SOP), and resource-constrained shortest path

problem (RCSPP). Partitioning frameworks face three challenges. First, the

problem must be split into subproblems. Then, each subproblem needs to be
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solved. Finally, the subproblem solutions must be combined to form a solution

to the original problem. Each of these issues will be addressed, but the vast

majority of the work focuses on how to partition the original problem into

subproblems.

1.2 Contributions

Partitioning serves as the biggest underlying theme of the methods

presented in this dissertation. For the remainder of this work, partitioning

refers to dividing the input problem into subproblems. While the idea behind

the methods may differ, each attempts to take advantage of implicit divisions

of an input set. These divisions lead to an easier or smaller problem. The

solutions to these subproblems then combine to form a feasible solution to the

original problem. The crux of this work therefore lies in developing partitioning

methods that allow each problem to be solved more quickly while maintaining

high quality solutions. In some cases, it is possible to solve problems more

quickly and still achieve the optimal solution.

The main contribution of this dissertation lies in developing a geometric

partitioning framework for the Euclidean TSP. The TSP is an interesting and

relevant problem in its own right. It is also related to, or a direct subproblem

of, many other routing problems, such as the vehicle routing problem. As an

NP-complete problem, many heuristic methods for the TSP have been devel-

oped over the years. The framework developed in this dissertation is not the

first method to use partitioning to help solve the TSP more quickly. However,
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the method developed in this work, referred to as convex hull partitioning, uses

new techniques to form partitions. As the name implies, the convex hull of the

input points serves as the basis for groups of points. The relationship between

the convex hull and the optimal tour helps define a set of point partitions.

A Hamiltonian path is found through each of these groups. Two important

characteristics of the partitions are central to CHP. First, the partition paths

connect consecutive convex hull points. Second, the order in which partition

paths occur in the heuristic tour is determined by the convex hull points. This

solves some of the main issues of partitioning as using the convex hull as the

basis for partitions determines both the order in which subproblem solutions

occur and how to connect the subproblem solutions. Several extensions of CHP

were also developed. Two of these attempt to directly improve CHP. A final

extension modifies CHP to solve symmetric SOPs instead of the Euclidean

TSP.

Resource-constrained problems make partitioning even more difficult.

For that reason, a new method to solve the RCSPP takes an entirely different

approach to partitioning. Instead of grouping points based on their location in

the network, the groups are determined by the feasible and relevant resource

cost ranges of each node. Forming these groups limits the search required to

solve the RCSPP with dynamic programming. This methodology can poten-

tially be expanded to solve other resource-constrained problems, such as the

RCTSP or orienteering problem.
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1.2.1 Convex Hull Partitioning

By far the largest contribution in this dissertation comes from the con-

vex hull partitioning framework for the TSP. A slight modification of the frame-

work solves the SOP as well. Both frameworks form subsets such that their

subproblem solutions are combined in a known order. This first requires find-

ing a subset of points for which the order is known in the optimal solution.

Then, a partition is formed for each consecutive pair of points in that sub-

set. This allows for simple recombination of subproblem solutions by joining

them at their shared points. Fortunately, both the TSP and SOP have readily

available ordered subsets. In the TSP, the points in the convex hull boundary

of the TSP point set occur in the same order in both the optimal tour and

the convex hull. Thus, a known-order subset is implicit to the problem. The

SOP is not quite as simple. However, a known order subset can be formed by

solving a smaller SOP instance through only the points included in precedence

relationships. Besides providing the subproblem order, this also greatly sim-

plifies solving the problem. Because the precedence relationships only affect

the order of precedence points, a smaller SOP and several Hamiltonian path

problems replace the original SOP.

Most of the work on these frameworks focused on the TSP, with the

SOP being an extension of those techniques. To that end, the largest contribu-

tions include the overall convex hull partitioning framework, specific partition-

ing methods, and experiments demonstrating the efficacy of the new methods.

While the idea of using partitioning to solve TSPs is not new, the specific idea
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of using sequential partitions based around the convex hull boundary points

is, to the best of our knowledge, a novel method. In some cases, the presented

partitioning methods use existing ideas but apply them in a new way. Others

are entirely new and somewhat specific to the CHP framework. Two newly

developed extensions attempt to improve the framework. A recursive imple-

mentation aims to decrease the runtime by limiting subproblem size. A second

extension augments the convex hull points in order to increase the number of

partitions, again as an attempt to provide faster solutions. Finally, a slight

modification of the framework led to a new solution method for the SOP.

1.2.2 Resource Cost Partitioning

Behind geometric partitioning, the other area of contribution focuses on

dynamic programming algorithms for resource constrained problems. Specif-

ically, the developed partitioning methods divide problems based on the re-

source consumption of paths leading to each node. For the RCSPP, a group of

relevant points is formed for each feasible resource consumption value. What

it means to be relevant will be discussed in a later section, but essentially this

restricts the search to points that could reasonably occur next in the path be-

ing constructed. A dynamic programming method for the RCTSP attempts to

use the same ideas. However, because Hamiltonian paths must contain every

point, point relevance becomes much harder to define.

Similar to geometric partitioning, resource cost partitioning began with

an idea and application to a specific problem, in this case the RCSPP. For that
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reason, the biggest contribution from this research vein comes from the work

done developing methods for the RCSPP. Extensions of that work led to a

method for the RCTSP. The dynamic programming algorithm for the RCSPP

is not entirely new, instead it builds on existing methods and ideas. However,

both its application and the partitioning method used to limit its search are

novel. The resulting algorithm finds all non-dominated paths from a single

source to all other nodes in a network.

1.3 Outline

Chapter 2 contains background information on the relevant problems and

covers some existing solution methods. The bulk of the discussion focuses on

the Euclidean TSP, but constrained problems including the SOP, RCSPP, and

RCTSP are also outlined. Topics include the TSP in general, including some

interesting historical details, a formal mathematical description, and existing

optimal and heuristic solution methods. Sections 2.1.5 and 2.1.6 cover the

most relevant background information. Section 2.1.5 discusses the relationship

between the convex hull of a point set and the optimal Hamiltonian tour

through those points. Section 2.1.6 discusses some existing heuristics that

use partitioning to help solve the TSP. Some background on the RCSPP and

RCTSP are given in Section 2.2.

Chapter 3 describes convex hull partitioning (CHP), the framework devel-

oped for this dissertation. It begins with an outline of the general scheme
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being developed. Then, Section 3.3 presents conditions guaranteeing CHP

produces an optimal solution and arguing partitioning is the most important

phase of the framework. Section 3.4 describes the process of grouping points,

including partition initialization, two overarching partitioning schemes, and

several new methods for assigning points. Next, Section 3.5 covers the pro-

cess of going from a set of partitions to a final heuristic tour. This involves

discussion of both optimal and heuristic Hamiltonian path methods and how

to combine subproblem solutions into a tour. Finally, Section 3.6 builds on a

bound originally found for Karp partitioning.

Chapter 4 covers the computational experiments of CHP. The section be-

gins with a discussion of the overall testing procedure. Then, a description is

given of the national and VLSI TSP test instances used. In an attempt to find

a good CHP variant, testing was conducted to examine the effects of different

LKH solver and partitioning method parameter values. Then, insights from

this preliminary testing helped determine which CHP variants were tested on

the largest instances. Finally, the section concludes with a discussion of the

overall results and some areas for future work.

Chapter 5 describes the direct extensions of CHP including a recursive

implementation, augmented CHP, and the use of secondary improvement al-

gorithms on the output CHP tour. Experimental results of each extension are

also presented.
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Chapter 6 discusses partitioning methods for problems besides the TSP.

First, the idea behind CHP is applied to symmetric sequential ordering prob-

lems. Then, some issues in applying similar geometric partitioning techniques

to resource constrained problems are discussed. A new partitioning technique

is then presented and an algorithm for the RCSPP is described. The chapter

concludes with a discussion of areas for future work.

Chapter 7 contains overall concluding remarks.
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Chapter 2

Background

2.1 Traveling Salesman Problems

The Traveling Salesman Problem (TSP) consists of finding the shortest

path through a set of points such that each point is visited exactly once, and

the path starts and finishes at the same point. Solving the TSP and its variants

has served as the focus of many works; several books have been solely dedicated

to the topic [Applegate et al., 2007], [Cook, 2011], [Gutin et al., 2002].

2.1.1 Historical Anecdotes

Before it was widely studied academically, the TSP was informally

solved through the everyday work of people from who its name derives, trav-

eling salesmen. For example, a handbook from 1832, Von einem alten Commis-

Voyageur, provides general advice on route choice for salesmen traveling through

Germany and presents routes through different regions [Applegate et al., 2007],

[Cook, 2011]. Another example of the problem in practice lies in circuit-

traveling religious and government officials. As a circuit court judge in Illi-

nois, a young Abraham Lincoln routinely rode his entire circuit and his route

comes close to achieving minimal distance traveled [Applegate et al., 2007],

[Cook, 2011]. A final, more fun, example is Commercial Traveler, a board
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game from 1890 challenging players to build tours to navigate a rail system

[Cook, 2011].

A Eulerian walk consists of a closed walk traversing each edge exactly

once. Leonhard Euler studied both the Konigsberg bridge problem and the

knight’s tour through a chessboard in the 18th century [Cook, 2011]. A Hamil-

tonian tour consists of a closed walk visiting each node exactly once. Sir

William Rowan Hamilton studied ways to visits all 20 corners of a dodeca-

hedron. He was another pioneer of touring problems and found his work so

fascinating he created a children’s game of finding tours through a dodeca-

hedron’s points. When the game was criticized as being too easy, Hamilton

responded that finding the tours were not at all easy to him. Thus, two fun-

damentals of touring problems, Eulerian walks and Hamiltonian tours, both

have ties to board games.

If these brief anecdotes interest you, then you will surely find the TSP’s

entire storied past interesting as well. Unfortunately, the full mathematical

history of TSP variants is too long to be included in this work but has been

recorded in depth elsewhere [Applegate et al., 2007], [Cook, 2011].

2.1.2 Mathematical Description

Consider a graph G = (N,E) where N and E are sets of nodes and

edges, respectively. The TSP consists of finding the shortest length Hamilto-

nian tour of the nodes in N . This work focuses on symmetric, Euclidean TSPs;

edge costs consist of the Euclidean distances between nodes and these costs

10



are assumed to be the same in both directions. As an NP-complete problem,

no known method can solve large instances of the Euclidean TSP exactly in

polynomial time [Papadimitriou, 1977].

The most straightforward solution method lies in complete enumeration

of Hamiltonian tours through the graph. Unfortunately, the number of feasible

solutions increases quickly; consider a feasible tour as a permutation of the

nodes within a graph. Then, for |N | nodes, (|N | − 1)! possible permutations

exist [Held and Karp, 1962]. Other exact solution methods include integer

programming models and dynamic programming.

A similar routing concept to the TSP is that of Hamiltonian paths.

Instead of starting and ending at the same point, an origin and destination

are specified. Then, a path beginning at the origin, ending at the destination,

and visiting every point exactly once is a Hamiltonian path.

2.1.3 Optimal Methods

TSPs can be solved optimally using integer programming (IP). The

Dantzig-Fulkerson-Johnson IP representation of the TSP can be seen in Figure

2.1. Binary decision variables indicate an edge’s inclusion in the final tour.

The goal of a TSP lies in finding the minimum cost tour as represented by the

objective function (2.1.1). Constraint sets (2.1.2) and (2.1.3) ensure each node

has exactly one incoming and exactly one outgoing edge, respectively. These

two constraints force each node to have degree two but do nothing to prevent

subtours. Constraint set (2.1.4) prevents subtours in subsets of 2 to |N | - 1

11



G = (N,E) = complete graph
N = set of points, i ∈ N
H = set of points on the convex hull boundary of N , H ⊆ N
I = set of points not on the convex hull boundary, I = N \H
E = set of edges, (i, j) ∈ E
cij = cost of traveling on link (i, j)
xij = binary decision variable determining inclusion of edge (i, j)
X = vector of xij variables with one element for every edge (i, j) ∈ E
| · | = number of elements in a set, e.g. |T | = number of edges in T
· = total length of edges in a graph, e.g. T = length of tour T

Minimize
∑

(i,j)∈E

cijxij (2.1.1)

subject to:∑
i:(i,j)∈E

xij = 1 ∀j ∈ N (2.1.2)

∑
j:(i,j)∈E

xij = 1 ∀i ∈ N (2.1.3)

∑
(i,j)∈E,i∈S,j∈S

xij ≤ |S| − 1 ∀S ⊆ N : 2 ≤ |S| ≤ |N | − 2 (2.1.4)

xij ∈ {0, 1} ∀(i, j) ∈ E (2.1.5)

Figure 2.1: Dantzig-Fulkerson-Johnson TSP IP Formulation

points. Consider a subset S composed of |S| nodes. Then a subtour of S will

contain |S| edges. Constraint set (2.1.4) allows at most |S|−1 edges connecting

points within S, preventing a subtour from occurring. Finally, constraints in

(2.1.5) set the binary domain of the decision variables.

A dynamic programming algorithm provides a method for solving a

TSP through n points with time complexity O(n22n) [Bellman, 1962]. This

is the lowest time complexity for an algorithm providing optimal TSP solu-
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tions. The algorithm, shown in Figure 1, solves a series of subproblems over

increasingly large subsets of points. Let S be a subset of points, point 0 be the

origin, point i be another point in S, and f(S, j) be the length of the shortest

Hamiltonian path through S starting at point 0 and ending at point j. To

solve the TSP, f(S, j) is defined as a function of solutions over smaller point

subsets. Subset size is incremented until a solution over the entire input set is

found.

Input: N : input set of points; |N | = n
Output: T ∗ = length of optimal tour
f(0, 0);
for s ∈ [1, n− 1] do

for S ⊆ N : |S| = s, 0 ∈ S do
f(S, 0) =∞;
for j ∈ S: j 6= 0 do

f(S, j) = min{f(S−{j}, i)+distance(i, j) : i ∈ S, i 6= j}
end

end

end

T ∗ = minj{f(N, j) + distance(j, 0)}
Algorithm 1: Bellman’s TSP dynamic programming algorithm

One of the most highly regarded optimal solvers for the TSP is Con-

corde [Mulder and Wunsch, 2003]. The solver was written by David Apple-

gate, Robert E. Bixby, Vašek Chvátal, and William J. Cook, in ANSI C and

is available online [Cook, a].
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2.1.4 Heuristic Methods

Because exact methods for the TSP often have a prohibitively long

runtime, heuristic methods are frequently used. Two general classes encompass

the majority of heuristic methods. Construction methods build a tour directly,

whereas improvement methods make changes to existing tours that lead to a

lower cost.

2.1.4.1 Construction Methods

Construction methods directly build a heuristic solution from scratch.

They can be simple methods able to find a solution quickly but not producing

reliably good solutions. The time complexity and maximum heuristic tour

length ratio for some common construction methods is summarized in Table

A.1. The greedy, or nearest neighbor, method simply adds the next closest

point to the end of the path. Beginning with any point as a starting point, the

next closest point is added to the end of the solution until no points remain.

Then, an edge connects the end of the path back to the starting point. This

greedy algorithm guarantees a solution no worse than (1
2
dlog(n)e + 1

2
)T ∗ and

only requires n2 computations [Rosenkrantz et al., 1974].

Insertion methods repeatedly insert points into subtours until a full tour

has been established. The initial subtour consists of a single, arbitrary point

and added to using an insertion rule. Some common rules include nearest,

cheapest, arbitrary, and farthest insertion [Rosenkrantz et al., 1974]. These

rules work in largely the same way, only differing in how they choose the next
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node to be inserted. First, a point is chosen for insertion. Then, the minimum

cost edge is found, and the node is inserted between its endpoints. Let w be

the next insertion point, then the minimum cost edge is the edge (u, v) such

that the cost(u,w) + cost(w, v)− cost(u, v) is less than that of any other edge.

Nearest insertion finds the point not already in the subtour that is closest to

any point in the subtour. Cheapest insertion directly searches for a point and

minimum cost edge pair to make the insertion. Arbitrary, or random, insertion

selects a random point to insert next. In farthest insertion, the point not in the

subtour furthest from any point in the subtour is chosen. Another possibility

when using insertion methods is to use the convex hull boundary as the initial

subtour, rather than starting from a random point [Golden et al., 1980].

The Christofides algorithm uses other network characteristics to find a

heuristic solution [Christofides, 1976]. It begins with the minimum spanning

tree (MST) of the input points. Then, a minimal weight perfect matching is

found over the subgraph of odd-degree nodes from the MST. Combining this

matching with the MST provides a Eulerian tour. Finally, replacing edges

leading to nodes with degree > 2 leads to the final tour [Christofides, 1976].

2.1.4.2 Improvement Methods

Starting from an initial tour, improvement algorithms make decreasing

cost edge swaps until no more improvement can be made [Golden et al., 1980].

An exchange of λ edges is known as a λ-change and a λ-opt procedure refers to

one using λ-changes to improve the tour. Once no more improvement can be
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made using a λ-change, the tour is said to be λ-optimal [Golden et al., 1980].

As the number of edges exchanged per move increases, the algorithm increases

in strength [Golden et al., 1980]. For example, a λ-optimal tour is also λ′-

optimal, for all values of λ′ less than or equal to λ [Helsgaun, 2000]. For

example, a 3-optimal solution is also 2-optimal and finds a solution of cost

no higher than that found by only a 2-opt algorithm. This improvement in

solution quality comes with an increase in time complexity; a λ-opt procedure

has complexity O(nλ). Additionally, because they converge to local optima,

finding the best solution may require multiple runs of a λ-opt algorithms, each

starting with different initial tours [Golden et al., 1980]. A tour of n points is

guaranteed to be optimal if and only if it is n-optimal [Helsgaun, 2000].

2- and 3-opt are simplest and most common exchange algorithms [Lin, 1965].

In each iteration of 2-opt, two edges are deleted from the incumbent tour and

replaced with to new edges, leading to a lower cost. In 3-opt, the iterations

consist of swapping three edges. The Lin-Kernighan algorithm provides a

more general approach to edge exchange by allowing exchanges of varying size

[Lin and Kernighan, 1973]. At each iteration, exchanges of increasing size are

checked until stopping criteria are satisfied, the incumbent tour is updated,

and the next iteration begins. The overall algorithm terminates when no im-

proving move is found.

The Lin-Kernighan-Helsgaun (LKH) algorithm, makes several improve-

ments to the original Lin-Kernighan procedure [Helsgaun, 2000]. The biggest

change lies in the basic move used in the two algorithms. Lin-Kernighan uses
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2- and 3-changes as the basis for exchanges. LKH instead uses 5-changes in

an attempt to achieve 2-, 3-, 4-, and 5-optimality. This increases the overall

runtime of the algorithm, but other changes reduce the search space within

each iteration, helping keep this increase small. In addition to the improve-

ment steps, LKH combines many other existing heuristics to form an initial

tour [Helsgaun, 2000].

2.1.5 Convex Hull and the TSP

Consider a set points N with |N | = n. The convex hull of N is the

smallest convex set that contains every point in N [de Berg et al., 2008]. A

set of points is convex if and only if the line segment connecting any pair of

points in that set is also completely contained by the set [de Berg et al., 2008].

As an intuitive explanation, imagine the points in N as nails; stretch a rubber

band around the nails, and let it go. The band will collapse around the nails

such that its perimeter is minimized, the area within the rubber band is the

convex hull, and the rubber band itself is the convex hull boundary. For the

remainder of this work, any point on the boundary of a convex hull is referred

to as a hull point, and any point not on this perimeter is called an interior

point.

Let n be the number of points in N and k be the number of hull

points. Using a two stage approach, the convex hull of N can be determined

in O(n log(k)) [Chan, 1996]. The first stage involves finding the convex hulls

of point subsets. Then, the second stage finds the overall convex hull more
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quickly by considering only the points on the boundary of these subset convex

hulls in its search. This approach requires another convex hull method to

find both the subset hulls and overall hull. Two methods are the Graham

scan and Jarvis march ([Graham, 1972], [Jarvis, 1973]). When considering

2-dimensional points, both methods begin by designating the point with the

smallest vertical coordinate value as the hull starting point. Call this point

h0. To find the convex hull, both Graham scan and Jarvis’s march find a

sequence of edges making right turns from the current point. In a Graham

scan, points are sorted based on the angle they make with h0 relative to the x-

axis. Finding the convex hull then consists of searching through this sorted list

until finding a sequence of edges making only right turns before returning to h0

[Graham, 1972]. For each hull point, a Jarvis scan requires iterating through

edges to every other point [Jarvis, 1973]. The edge forming the largest right

turn is added to the hull, and the process is repeated until returning to h0.

Let H and T ∗ be the boundary of the convex hull of the point set N and

minimum length Hamiltonian tour through N , respectively. It is important

to note that the convex hull discussed here is the geometric convex hull of the

input point set, not the convex hull of the set of feasible solutions. Note that

H ⊆ N while T ∗ is an ordering and therefore contains every point in N . One

fundamental relationship connects the order of hull points in the convex hull

and optimal tour.

Theorem 2.1.1. The order in which hull points appear in T ∗ is the same as

the order in which they appear in H [Eilon et al., 1971].
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Proof. See [Eilon et al., 1971].

Based on the definition of the convex hull and Theorem 2.1.1, T ∗ ≥ H.

If every point in N is also in H, then T ∗ = H because H is the minimum

distance order of all points in N . If not all points in N are hull points, then

T ∗ > H because T ∗ consists of sequences of interior points inserted between

hull points.

Theorem 2.1.1 allows some special cases of the TSP, notably the N -line,

convex-hull-and-line, and 2-convex-polygons cases, to be optimally solved in

polynomial time [Cutler, 1980], [Rote, 1992], [Deineko et al., 1994], [Garćıa and Tejel, 1997].

The most general of these cases, the N -line TSP, assumes the input points lie

on one of N parallel lines. In the 2-line TSP, points lie on two parallel lines.

Obviously, all points also lie on the convex hull boundary and thus the opti-

mal tour is the same as that boundary. For the general N -line case, dynamic

programming algorithms exist with time complexity O(nN) ([Cutler, 1980],

[Rote, 1992]). In the convex-hull-and-line TSP the input points consists of

hull points on the convex hull boundary and interior points on a single line

segment This is an evolution of the 3-line TSP in which the requirement

for parallel lines has been relaxed. Solving this special case can be done in

time complexity O(k(n − k)), where k is again the number of hull points

[Deineko et al., 1994]. The 2-convex-polygons TSP finds an optimal tour of

points lying on two nested polygons. This case is a generalization of the 4-line

case and solvable in O(k3(n− k)3) [Garćıa and Tejel, 1997].
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Several heuristic methods for solving the TSP rely upon the convex

hull of the input point set. The most straightforward example lies in using the

convex hull as an initialization for the insertion heuristics discussed in Section

2.1.4. Theorem 2.1.1 makes the convex hull a good starting point. Instead of

starting with a single, arbitrary point and building a tour around it, the convex

hull gives more reference points to build a tour around. For example, one al-

gorithm combines the convex hull and cheapest insertion [Golden et al., 1980].

Another example is convex layering, an extension of the N -line and 2-convex-

polygons cases. Instead of assuming some layout of the input points, convex

layering assigns points into nested convex polygons. Then, tour improvement

algorithms connect the polygons to form a tour [Liew, 2012].

2.1.6 Existing Partitioning Methods for the TSP

Partitioning takes the input points and splits them into groups. For the

TSP, this technique can be useful for dividing the original problem into smaller

subproblems; solving and then combining the solutions to these subproblems

then forms a solution to the original problem. Because the complexity of TSP

algorithms grows quickly as the number of points increases, using partitioning

to form smaller subproblems can lead to a significant decrease in total runtime.

However, the quality of these solutions depends on the exact method and

problem. Using a given method may lead to an optimal solution for some

instances but perform poorly for others.

In the context of the TSP, geometric partitioning consists of splitting
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the input point set into subsets based on points’ relative locations. This often

leads to points nearby one another being included in the same subset. Any

partitioning-based method consists of three main phases, partitioning, solving

subproblems, and combining partial solutions. Each step impacts the effec-

tiveness of the overall method. Partitioning can be performed in numerous

ways, including using problem specific methods or traditional cluster analysis

techniques. How points are partitioned affects both runtime improvement and

solution quality. For example, partitioning a problem with n points into two

subproblems, one with a single point and the other with n − 1 points, will

not lead to a significant time savings. However, dividing the original problem

into two subproblems of equal size could lead to a major time improvement.

Subproblems typically consist of solving smaller TSP or Hamiltonian path

problems. Obviously, using a heuristic solution for the subproblems cannot

guarantee an optimal solution to the original TSP. Some combination meth-

ods append subproblem solutions together to form the final solution; others

use partial solutions as a starting point from which to build the final tour.

Some heuristic methods propose partitioning points into subregions of

a specific shape. Let R be a square region containing the points ∈ N . The

spacefilling heuristic constructs a tour by forming a spacefilling curve through

R, assigning points to locations on the curve, and then ordering points based

on those positions [Platzman and Bartholdi, 1989]. The spacefilling curve is

formed by recursively dividing R into identical triangular subregions. Each

subregion is assigned a unique, sequential identifier. Two approaches can be
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used to determine a tour from this curve. First, R can be divided until each

subregion contains at most one point; then the points are ordered based on

their subregion identifiers [Platzman and Bartholdi, 1989]. Another method

divides R a preset number of times, allowing for subregions to contain more

than one point. For any subregion containing multiple points, a partial so-

lution is found. Then, the points or partial solutions are ordered based on

the identifier of their subregion to form a tour. A similar approach divides

R into a grid of evenly sized squares; partitions then consist of points lying

in each square [Campbell, 2006]. The spacefilling heuristic, using square sub-

regions instead of triangles, constructs an initial tour before edge exchange

algorithms find the final tour [Campbell, 2006]. Strip-partitioning divides R

into
√

n
3

vertical strips [Platzman and Bartholdi, 1989]. Points within each

strip are ordered vertically, and these sequences are traversed in alternating

directions, either top-to-bottom or bottom-to-top. This type of method makes

sense when the input has some underlying geometry. For example, using a grid

to form partitions makes sense when points are uniformly distributed within

R but may lead to difficulties for input point sets with changing density across

R. For an input of roughly vertical, well-separated lines of points, forming and

snaking through strips may work well. However, if points form horizontally-

oriented lines, then horizontal strips will work better. For general instances,

other partitioning methods seem favorable over partitions with a uniform size

and shape.

Other partitioning methods do not require partitions of a specific shape
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and instead specify the number of partitions or the maximum partition size.

As the name implies, fast recursive partitioning (FRP) recursively divides the

input point set into smaller groups until none of the partitions exceed an input

maximum size [Bentley, 1992]. Then, the nearest neighbor heuristic finds a

subtour for each partition. A final tour is found by connecting the closest

points in successive partitions. While similar to FRP, Karp partitioning uses

optimal subtours to find better heuristic solutions at a higher computational

cost. Karp partitioning begins by dividing R into rectangles such that the

number of points within any rectangle does not exceed an input maximum

size [Karp, 1977]. Two variants of Karp partitioning use different strategies

based on the rectangular subregions. The first requires each rectangle to share

a point with at least one other rectangle, and optimal tours are found within

each rectangle. Because of the points shared between rectangles, the optimal

subtours are connected together, forming a spanning walk. A spanning walk

occurs when each point has an even degree of at least two [Karp, 1977]. Clearly,

any Hamiltonian tour is also a spanning walk, and any spanning walk can be

transformed into a tour by removing or replacing edges. Furthermore, there

exists a Hamiltonian tour with shorter distance than the spanning walk. To

reduce a walk into a tour, begin by removing any loops. Then, for each

point with degree greater than two, two of its incoming edges are replaced

with a single, shorter edge connecting the other endpoints. For example, if

point v is reached by edges (u, v) and (w, v), then those edges are replaced by

the edge (u,w). The work outlines these procedures in general but offers no
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implementation details.

Unlike most other partitioning heuristics, Karp partitioning offers a

known bound on the difference between the heuristic solution and optimal

tour. For each rectangle, the difference between its subtour and portion of

the overall optimal tour is bounded. This leads to a bound on the length

difference between the spanning walk of connected subtours and the optimal

tour. Finally, because the walk can be reduced to a shorter distance tour, that

tour satisfies the same bound. Let Yj for j = 1, ..., k be rectangles formed in

Karp partitioning. Then the final tour T satisfies T − T ∗ ≤ 3
2

k∑
j=1

Yj.

Fast Wedge Insertion (FWI) combines partitioning with insertion heuris-

tics for the TSP. Instead of splitting based on subregions, FWI assigns points

to one of four groups based on their proximity to the edges of the bitmap

closest rectangle [Xiang et al., 2015]. The method begins by identifying the

corner points and points are iteratively assigned to groups representing the

line segments connecting these corners. After this initial assignment, points

within each group are reordered using an improvement heuristic.

To help form an initial tour, LKH allows for use of a variety of exist-

ing partitioning or clustering methods. There are no specific implementation

details, but Karp, k-means, Delauney, Sierpinski, and Rohe partitioning can

be used to form subproblems from the original problem [Helsgaun, b]. This

integration of partitioning algorithms within LKH will be discussed further in

Section 4.9.
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2.2 Constrained Routing Problems

Including constraints in routing problems add another dimension of

difficulty to the problem but may lead to a more realistic model. Several types

of constraints can be added including a resource constraint over the whole

tour, capacity constraints on the edges, time windows for visiting each point,

or precedence constraints between points. If the unconstrained problem is

NP-hard, the constrained version is too. Additionally, adding constraints may

make a problem NP-hard, even if the unconstrained version can be solved in

polynomial time. Thus, again heuristics are often used when an exact solution

takes too long.

2.2.1 Sequential Ordering Problems

The sequential ordering problem (SOP), or precedence constrained TSP

(PCTSP), is the problem of solving a traditional TSP through a set of points

with some additional constraints specifying the order of certain points [Bianco et al., 1994].

For example, consider a four-point set {1, 2, 3, 4} with an optimal tour of

[1, 2, 3, 4, 1]. If an additional constraint specifies that points 3 must be visited

before point 2, then the original optimal tour becomes infeasible.

The SOP arises in many real-world applications, especially in the con-

text of routing. For example, consider the case of pick-up and delivery. Clearly,

a pick-up must occur before its corresponding delivery, and this establishes an

obvious precedence relationship.

Precedence relationships specify an order between a pair of points.
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∑
i∈S−{0}

∑
N−S

xij ≥ 1 ∀S ⊆ N : 0, q ∈ S, r /∈ S;∀(q ≺ r) ∈ PC (2.2.1)

Figure 2.2: Integer Programming Precedence Constraint

Points can be included in multiple precedence relationships, and it is assumed

that there are no conflicting relationships [Reinelt, 1995]. For example, again

consider the four point set {1, 2, 3, 4} with precedence relationships 3 ≺ 2

and 4 ≺ 3. This would lead to the tour [1, 4, 3, 2, 1]. However, including

the relationship 2 ≺ 4 makes the problem infeasible because it implies 2 ≺ 3

which contradicts 3 ≺ 2. It is also assumed that the origin is not included in

any precedence constraints. For the remainder of this dissertation, the term

precedence points refers to any points specified in a precedence relationship.

The integer programming model for the SOP is the same as that of the

basic TSP with additional constraints to maintain the specified precedence

relationships. Let PC be a set of precedence constraints such that (q ≺ r) ∈

PC [Kubo and Kasugai, 1991]. Figure 2.2 shows the additional precedence

constraints.

2.2.2 Resource Constrained Shortest Path Problem

A resource constrained shortest path problem (RCSPP), sometimes re-

ferred to as delay constrained, seeks to find the lowest cost sequence of edges

between a given origin and destination such that additional knapsack con-

straints are satisfied. Figure 2.3 shows an example network and shows shortest
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Knapsack constraint: Total cost ≤ β
β < 3→ Infeasible

β = 3→ P ∗ = [s, 3, 2, t], P = 4
β = 4→ P ∗ = [s, 3, 4, t], P = 3
β ≥ 5→ P ∗ = [s, 1, 2, t], P = 2

Figure 2.3: Optimal Paths from s to t at increasing resource constraints

paths satisfying incremental knapsack bound values. In the example network,

edges’ associated distances and costs are shown in parentheses, with distance

appearing first, followed by cost. As demonstrated in Figure 2.3, if the cost

threshold is too low, then the problem becomes infeasible. On the other hand,

above the cost of the unconstrained minimum distance path, increasing the

cost bound offers no benefit.
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For a more formal definition, consider a graph G = (N,E) where N

and E are sets of nodes and edges, respectively. Assume an edge (i, j) in E

connects nodes i and j and contains two attributes, distance and a resource

cost. Additionally, assume positive edge distances and costs. Let s and t

be a designated origin and destination, respectively. Then the RCSPP is the

problem of finding the path from s to t with the shortest total distance and

a total cost less than a specified budget β. Similar to the output of a TSP,

the output path is a sequence of nodes to visit in order between s and t. The

RCSPP is an NP-hard problem, leading to heuristic solution methods often

being used [Zheng Wang and Crowcroft, 1996].

The IP formulation of the RCSPP is shown in Figure 2.4 [Pugliese and Guerriero, 2013].

The objective of the RCSPP (2.2.2) minimizes the cumulative distance of the

path from s to t. A feasible path must satisfy the constraints defined by the

expressions in (2.2.3), (2.2.4), and (2.2.5). The flow-balance constraints (2.2.3)

are shared with the traditional shortest path problem and ensure a continu-

ous path from the origin to the destination. The knapsack constraint (2.2.4)

places an upper bound on the cumulative cost of the path. For this constraint

to make sense, the cost of an edge must differ from its distance. Otherwise

(2.2.4) would be redundant or a feasibility check. Finally, the inclusion of an

edge in the final path is a binary decision, which is enforced by the constraint

set (2.2.5).
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E = set of edges, (i, j) ∈ E
N = set of nodes, i ∈ N
cij = cost of edge (i, j) ∈ E
dij = distance of edge (i, j) ∈ E
s = origin of path
t = destination of path
β = upper bound on the total cost of feasible paths
xij = indicator decision variable if edge (i, j) used in the path

Minimize
∑

(i,j)∈E

dijxij (2.2.2)

subject to:

∑
j∈N

xij −
∑
j∈N

xji =


1 if i == s

−1 if i == t

0 otherwise

∀i ∈ N (2.2.3)

∑
(i,j)∈E

cijxij ≤ β (2.2.4)

xij ∈ {0, 1} ∀(i, j) ∈ E (2.2.5)

Figure 2.4: RCSPP IP Formulation

2.2.3 Dynamic Programming Algorithms for the RCSPP

There have been several methods employed to solve the RCSPP ex-

actly. These include Lagrangian relaxation, branch and bound, and dynamic

programming [Pugliese and Guerriero, 2013]. For this dissertation, work into

dynamic programming is the most relevant, and thus is the focus of the review.

Appendix A.2.2 contains additional information focusing on using Lagrangian

relaxation techniques to solve RCSPPs.
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One prominent type of RCSPP dynamic programming algorithm is la-

bel setting, or label correcting, algorithms ([Aneja et al., 1983], [Desrochers and Soumis, 1988],

[Feillet et al., 2004], [Boland et al., 2006], [Righini and Salani, 2006], [Tilk et al., 2017]).

These algorithms build and store labels defining paths from the origin to an-

other point. Labels contain information about paths that differentiate them

from one another. This includes the distance, resource consumption, and final

node. How this information is tracked varies based on the specific algorithm.

Additionally, these basic labels may be augmented by storing additional infor-

mation ([Boland et al., 2006],[Righini and Salani, 2006], [Tilk et al., 2017]). One

example of this for the elementary RCSPP, is the generalized state space aug-

menting algorithm, which tracks which nodes have been previously added to

the class [Boland et al., 2006]. Clearly, this prevents violations of the elemen-

tary constraint.

The simplest label setting example is appropriately referred to as the

general label setting algorithm (GLSA) ([Desrochers and Soumis, 1988], [Boland et al., 2006]).

In any label setting algorithm, labels store information describing a path. The

GLSA stores a set of labels for each node, and each label contains the distance

and resource cost of a path to that node. Index sets track finalized labels and

those still requiring work. In the context of label setting algorithms, finalized

labels are called treated labels; this means untreated labels still require work.

Treatment refers to extending the path defined by a label to all successors of

that path’s final node. The algorithm begins with a single, trivial label includ-

ing only the origin. Obviously, the distance and cost are both 0 in the initial

30



label. Labels are extended through the other nodes in the network. As more

nodes are visited, the number of labels grows quickly. Every time a label is

treated, a new label will then be created for each of the final node’s successors.

To prevent maintaining and extending a large number of labels, domination

tests eliminate labels that cannot be included in the final path.

The domination criteria are what allow dynamic programming algo-

rithms to be tractable for the RCSPP. Consider simple labels containing only

the distance and resource consumption of a path. Let L1 = (d1, c1) and

L2 = (d2, c2), where d and c are the distance and cost of the paths, respec-

tively. Then, L1 dominates L2 if and only if c1 ≤ c2, d1 ≤ d2, and at least one

inequality is strict [Boland et al., 2006]. If a path is not dominated by any

other path, it is referred to as efficient or non-dominated.

By default, label setting algorithms find non-dominated paths to all

destinations, thus solving the ADRCSPP [Feillet et al., 2004]. However, much

of the focus has been on solving RCSPPs from a single origin to a single

destination. To that end, bidirectional dynamic programming algorithms si-

multaneously extend paths forward from the origin and backwards from the

destination ([Righini and Salani, 2006], [Tilk et al., 2017]). The most preva-

lent bidirectional label setting algorithm limits the resource consumption of

any subpath to be half of the constraint limit [Righini and Salani, 2006]. The

idea is to limit to number of labels created because as the path represented by

a label gets longer, more labels had to be created and checked for domination.

The premise is that two subpaths of the same length produces fewer overall
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labels than one short and one long subpath. By limiting resource consump-

tion to half of the feasible value in both the forward and reverse direction,

the goal is that each subpath will reach the limit in roughly the same number

of edges. To expand on this idea, a more recent method proposes to update

the limit on any subpath’s resource consumption as the algorithm progresses

[Tilk et al., 2017]. This again helps to reduce the number of labels being gen-

erated and handled by the algorithm. For example, consider a network where

the resource consumption on edges near the origin is much greater than that

of edges near the destination. Subpaths from the destination would therefore

search many more nodes and edges before reaching the halfway limit. Clearly,

if resource costs are spread relatively evenly across a network’s edges, then the

rationale behind the halfway limit makes sense. However, if the resource costs

are unevenly spread, then adjusting the limit as the algorithm progresses may

make more sense.

Another type of dynamic programming algorithm finds the shortest

distance path at incremental resource consumption until the constraint value is

reached. The dynamic scaling algorithm (DSA) and DAD are two examples of

this type of algorithm ([Goel et al., 2001], [Chen et al., 2008]). DSA tracks the

constrained shortest path length from the origin node to all other points and

allows for cost ε above the knapsack bound [Goel et al., 2001]. The method

consists of two levels of iteration. First, a multiplier is used to scale the

edge costs and determine a new knapsack bound value to use in the inner

iterations. Once the edge costs have been scaled, an inner loop iterates through
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increasing cost values from 0 to the scaled bound. For each of these resource

costs, the shortest distance path from the origin to each point is determined

by comparing the path length from the previous cost and the path lengths

through feasible incoming edges. With these paths determined, the cost values

are compared to the original knapsack bound; if any exceed this value, then

the scaling factor of the outer iteration is increased and the process repeats.

The steps are outlined in Algorithm 2.

The DAD algorithm finds paths for the inner iterations of DSA; it can

also be used as an independent algorithm. Figure 3 outlines the process for

finding these paths. Because the algorithm relies on two arrays to track path

length, the bound values tracked must be finite, in this case being non-negative

integers. If either the edge costs or bound was real-valued, an infinite number

of bound values could result. Additionally, calculating paths for the next

bound value relies looking back at previously calculated values based on the

cost of the edge being compared. Thus, non-integer costs could point back to

a bound value that does not exist in the array. If either the bound or costs are

non-integer, rounding must be performed. In this case, all values are rounded

to the nearest integer below [Goel et al., 2001]. Figure A.1 shows the contents

of the length and predecessor tables at various iterations of the algorithm.

Other rounding rules, such as round-to-floor (RTF), round-to-ceiling

(RTC), and rounding-randomly (RR), can be integrated into DSA [Chen et al., 2008].

The first two are self-explanatory, but the idea behind random rounding lies

in cancelling out the rounding errors from each edge. Each rounded edge cost
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Input: N : set of nodes, E: set of edges, β: upper limit on
resource consumption, ε: error tolerance

Output: Minimum distance path with cost less than β(1 + ε)
τ = τ0 << β;
C(n) =∞, ∀n ∈ N, n 6= s;
while ∃n ∈ N : C(n) > β(1 + ε) do

cτ = Round− to− Floor(c, τ, β);
DAD(N,E, τ);
C(n) =

∑
(i,j)∈P (n,t)

cτij;

τ = 2τ ;

end

Algorithm 2: Delay Scaling Algorithm

Input: N : set of nodes, E: set of edges, β: upper limit on
resource consumption

Output: L: map of non-dominated path lengths,P : map previous
nodes

L(s, 0) = 0, P (s, 0) = −1;
L(v, 0) =∞, P (n, 0) = −1, ∀n ∈ N, n 6= s;
t = 0;
while t <= β do

for n ∈ N do
L(n, t) =
min{L(n, t−1),minu:(u,n)∈E and cun<=t{L(u, t−cun)+dun}};

Track P (n, t);
t+ = 1;

end

end

Algorithm 3: DAD
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contributes to the total path error. Because the path error is cumulative,

rounding some costs up and some down may lead to the positive and negative

errors cancelling each other out. Random rounding led to faster runtimes than

the original DSA, which rounds values down [Chen et al., 2008]. Interestingly,

the tests also showed the last iteration of the algorithm dominated the runtime

[Chen et al., 2008]. This means the initial scaling iterations do not contribute

much to runtime, but they do also not lead to satisfactory solutions.

DSA uses the costs of incoming edges to choose the best path to a

point [Goel et al., 2001]. An alternative algorithm uses the cumulative cost

of the whole path through each incoming edge when choosing the best path

to a node. This method still requires rounding, but instead of rounding the

value at each edge, the whole path cost is rounded [Chen et al., 2008]. This is

again an attempt to reduce the error introduced to the solution from rounding;

rounding the path cost will lead to less error than rounding each edge. Aside

from that change, the mechanics of the algorithm remain the same.

2.2.4 Resource Constrained TSP

The resource constrained TSP (RCTSP) is the problem of finding the

shortest Hamiltonian tour through a set of points such that an additional

resource constraint is satisfied. The mathematical formulation of the RCTSP

is the same as that of the basic TSP with the addition of two things. First, each

edge must have an additional cost attribute representing resource consumption

for traversing it. The second is the constraint itself. It specifies that the total

35



resource consumption of all the edges in the final tour is within a specified

budget. The applications, either as a standalone model or subproblems of a

larger method, can be easily seen. Consider a resource constrained TSP in

which travel time is minimized subject to a cost budget. This could apply to

a traveler moving between cities with options of varying cost and travel time.

How should the traveler spend their budget? When does it make sense to pay

for a lower travel time?

Let cij be the resource cost of using the edge connecting points i and j

and β be the cost budget of the edges in the final tour. As of now, it is assumed

the resource costs are additive, that is the total resource consumption of a tour

is simply the sum of the resource cost of its component edges. In this work,

the resource consumption knapsack constraint in the RCTSP is the same as

that added for the RCSPP. This constraint is defined by Equation 2.2.4 in

Figure 2.4.

One generalization of this problem is to allow multiple resource con-

straints. This could then be modelled as an IP using multiple knapsack con-

straints, with one for each resource being limited. Another generalization

could use a different type of cost function. For example, the total resource

cost could be defined as the product of the component edge costs. However,

at this point, only the case of a single additive resource cost is considered.
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Chapter 3

Convex Hull Partitioning Framework

Convex hull partitioning (CHP) uses the convex hull boundary as the

basis for determining partitions of the input points. Based on both its theoret-

ical foundations and strong empirical results, CHP is an effective partitioning

framework for solving TSPs, especially large instances. As outlined in Algo-

rithm 4, CHP consists of three major parts: using the convex hull to initialize

partitions, assigning points to partitions, and deriving a tour from the parti-

tions. As a reminder, the convex hull used in CHP is the geometric convex

hull of the input point set, not the hull of the set of feasible solutions.

Input: N : input set of points
Output: T : heuristic tour
H = convex hull boundary of N ;
Q0 = initialize partitions for each pair of consecutive hull points;
Q = assign interior points to partition in Q0;
for partition q ∈ Q do

Solve a Hamiltonian path problem through q;
end
T = join Hamiltonian paths at hull points;

Algorithm 4: Convex Hull Partitioning

The crux of CHP lies in its use of the convex hull boundary as the basis

for partitions of the input point set. The method relies on the relationship
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between the convex hull boundary and optimal tour. The order in which hull

points occur H is the same order in which hull points occur in the optimal

Hamiltonian tour. Because of this shared order, TSPs can be thought of as

a sequence of minimum cost Hamiltonian paths connecting consecutive hull

points. This idea inspired CHP.

3.1 Illustrative Example

In an attempt to remove any confusion about the general procedure

through which CHP solves TSPs, an illustrative example is presented in this

section. The various stages of CHP are shown in Figure 3.1. Consider the TSP

through the input point set shown in 3.1a. Going through the steps outlined

in Algorithm 4, CHP begins with finding the convex hull boundary of the

input points. Figure 3.1b shows the same input point set, this time with its

convex hull boundary outlined by the solid lines connecting the problem’s hull

points. After finding the hull points, partitions must be initialized. This step

is shown in Figure 3.1c. The empty partitions are represented by the dashed

triangles connecting each pair of consecutive hull points. Next, interior points

are assigned to a partition, as shown in Figure 3.1d. Now, points lying within

the region encompassed by dashed lines connecting two hull points fall within

the partition defined by those hull points. The last significant step is to find

a Hamiltonian path through each partition. The paths must start and end at

the two hull points defining the partition. To determine which is the origin

and which is the destination, look at their order in the convex hull boundary.

38



The preceding point in the convex hull serves as the origin of the Hamiltonian

path. This way, the order of those hull points is preserved in the final tour.

Figure 3.1e shows the Hamiltonian paths within their respective partitions.

Finally, joining these paths at their shared hull points gives the final tour. For

this example, the final CHP tour is shown in Figure 3.1f.
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(a) Input points (b) Find convex hull boundary

(c) Initialize partitions (d) Assign points to partitions

(e) Find partition Hamiltonian paths (f) Final CHP tour

Figure 3.1: Illustrative Example of CHP
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3.2 Time Complexity

Before describing each phase of CHP in detail, a discussion of its time

complexity is warranted. The whole purpose of this partitioning framework

is to divide and conquer the original TSP, leading to a faster solution time.

To that end, the time complexity of CHP depends largely on the Hamiltonian

path method. Given a set of k partitions Q = {Q1, Q2, · · ·, Qk}, solving sub-

problems and forming a tour has overall time complexity
k∑
i=1

O(HP (s, t, |Qi|)),

where O(HP (·)) is the complexity of the Hamiltonian path method. Because

the computation time of solving a TSP or Hamiltonian path grows quickly as

the number of points increases, solving the subproblem for the largest partition

dominates the overall complexity. As a quick example, consider solving a TSP

through n = 100 points using Bellman’s dynamic programming algorithm,

which has complexity O(n22n). This would require roughly 10022100 = 1034 op-

erations. Now consider using CHP. Assume points are split into 10 equal parti-

tions of 10 points each. Then using the same dynamic programming algorithm

to optimally solve the subproblems leads to approximately 103210 = 1024000

operations. As evidenced from this example, using a partitioning approach

can greatly improve the expected solution time of a TSP. It is important to

note, however, that as the size of the original TSP increases, the partition size

will also increase and the corresponding subproblems can themselves require

a long runtime.

Faster solution time is only one aspect of a successful heuristic. The

other is solution quality. In the case of the TSP, that means finding a heuristic
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tour with length close to optimal. In this case, solution quality depends on

two factors: how the points are partitioned and the subproblem method. To

examine the relative importance of each of these factors, optimality conditions

for the CHP framework are discussed in the next section.

3.3 Optimality Requirements

With a few conditions, CHP is guaranteed to reproduce an optimal

tour. Lemma 3.3.1 gives the conditions for finding an optimal solution and

proves it is guaranteed for the case when that solution is uniquely optimal. The

next step is a Theorem that generalizes this idea by removing the requirement

for a unique optimal tour. Both of these results assume subproblems are solved

optimally.

Lemma 3.3.1. Assume T ∗ is the unique optimal Hamiltonian tour through

N . Let H ⊆ N = {h1, h2, · · ·, hk} be the convex hull boundary of the input set,

let |H| = k points, and Q = {Q1, Q2, · · ·, Qk : Qi ⊆ N} be a set of subsets of

N . Additionally, define HP (s, t, P ) as the optimal Hamiltonian path from s

to t through points in P .

If H and Q satisfy:

1. hi, hi+1 ∈ Qi, ∀i ∈ {1, 2, · · ·, k − 1} and hk, h1 ∈ Qk

2. j ∈ Qi ⇐⇒ j lies between hi and hi+1 in T ∗

then the optimal tour T ∗ is formed by joining HP (hi, hi+1, Qi) for all i. That
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is, T = HP (h1, h2, Q1)+HP (h2, h3, Q2)+···+HP (hk−1, hk, Qk−1)+HP (hk, h1, Qk) =

T ∗.

Proof. Let T be the tour formed in the above procedure and satisfying the two

criteria given. Assume there is a unique optimal and let T ∗ be that optimal

tour. Additionally, suppose T ∗ < T , implying T is suboptimal. Based on

Theorem 2.1.1 and the tour construction procedure described in the Lemma,

the points {h1, ···, hm} occur in the same order in both T and T ∗. Additionally,

the points in Qi lie between points hi and hi+1 for all i ∈ {1, · · ·,m} in both T

and T ∗. In order for T ∗ < T , there is at least one i such that HP (hi, hi+1, Qi)

in T ∗ with strictly lower distance than HP (hi, hi+1, Qi) in T . This provides a

contradiction, because HP (hi, hi+1, Qi) is defined as the optimal Hamiltonian

path through Qi in T . Therefore, T ∗ ≥ T . Because T ∗ is defined as the

uniquely optimal tour, T = T ∗, and T = T ∗. Thus, the tour construction

procedure outlined using point partitions satisfying the two criteria will find

the uniquely optimal tour.

Lemma 3.3.1 assumes a unique optimal tour and proves this tour is re-

produced if the partitions satisfy two criteria. Clearly, the procedure outlined

in this Lemma mirrors CHP in both partition formation and tour construction

using Hamiltonian paths. The only difference is the condition on the compo-

nent points of each partition. This result is important because it proves that if

given some knowledge of the optimal tour, CHP always recreates the optimal

tour as its solution. Clearly, if CHP could not reproduce the optimal tour
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given the information provided in Lemma 3.3.1, then it would not be a viable

method. Additionally, while the given information on the optimal tour is gen-

erous, it is not perfect knowledge. In practice, the first criterion is guaranteed

due to the procedure CHP uses to construct tours. The second criterion is

not guaranteed without knowing the optimal tour. In spite of this, the result

supports the idea that how points are partitioned determines the quality of

the final solution. In fact, it is the sole factor affecting solution quality when

subproblems are solved to optimality. Thus, much of the effort of developing

CHP lies in devising good ways to group points with the correct hull points.

Lemma 3.3.1 assumes the TSP being solved has a unique optimal tour.

To generalize the result, the uniqueness assumption is removed. There are

two ways optimal tours could differ from one another. First, points may lie

between different pairs of consecutive hull points in different optimal tours.

Second, the subsets between consecutive hull points remains the same but

at least one subproblem has a non-unique optimal solution. Corollary 3.3.2

shows optimality is reached for the case of non-unique subproblem Hamiltonian

paths. The desired final result is a Theorem for the general case. That is, a

result giving optimality requirements for a TSP with multiple optimal tours.

Corollary 3.3.2. If a Hamiltonian path subproblem has a more than one

optimal solution, then using any of the optimal solutions to construct a tour

will lead to same final tour length.

Proof. T =
∑

Qi∈QHP (hi, hi+1, Qi), where HP (s, t, P ) is the optimal length
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of a Hamiltonian path from s to t through points in P . Assume p∗1 and

p∗2 are two optimal solutions to HP (hk, hk+1, Qk). Because they are both

optimal, p∗1 = p∗1 = HP (hk, hk+1, Qk). Then, either p∗1 or p∗2 will lead to

the same tour length: T =
∑

Qi∈Q/Qk
HP (hi, hi+1, Qi) + HP (hk, hk+1, Qk) =∑

Qi∈Q/Qk
HP (hi, hi+1, Qi) + p∗1 =

∑
Qi∈Q/Qk

HP (hi, hi+1, Qi) + p∗2. Clearly,

the same argument could be made for any number of paths with length

HP (hk, hk+1, Qk). Therefore, using any optimal solution of a subproblem leads

to the same final tour length. Additionally, this result is easily extended for

the case when multiple subproblems have more than one optimal solution.

Theorem 3.3.3. Assume T ∗ is the optimal Hamiltonian tour length through

N . Let T̂ be any optimal tour with length T ∗, H ⊆ N = {h1, h2, · · ·, hk}

be the convex hull boundary of the input set, let |H| = k points, and Q =

{Q1, Q2, · · ·, Qk : Qi ⊆ N} be a set of subsets of N . Additionally, define

HP (s, t, P ) as the optimal Hamiltonian path from s to t through points in P .

If H and Q satisfy:

1. hi, hi+1 ∈ Qi, ∀i ∈ {1, 2, · · ·, k − 1} and hk, h1 ∈ Qk

2. j ∈ Qi ⇐⇒ j lies between hi and hi+1 in T̂

then an optimal length tour is formed by joining HP (hi, hi+1, Qi) for all i.

That is, T = HP (h1, h2, Q1) + HP (h2, h3, Q2) + · · · + HP (hk−1, hk, Qk−1) +

HP (hk, h1, Qk), and T = T ∗.
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Proof. To show that T = T ∗, it is enough to show that T = T̂ . There are two

cases for the subproblems through the partitions in Q. Either every subprob-

lem has a unique solution or at least one has non-unique optimal Hamiltonian

paths. If every subproblem solution is uniquely optimal, then T = T̂ and

clearly, T = T̂ . When at least one subproblem has multiple optimal solutions,

Corollary 3.3.2 shows that T = T̂ . Therefore, in either case, T = T ∗.

There are several takeaways from these results. First, they highlight

the benefits of the specific way partitions are formed around hull points. The

overlap of partitions at the hull points allows the subpaths to be combined in

a very straightforward way. It also determines the order in which to combine

subpaths without any additional work. Finally, the hull points provide an

obvious origin and destination for the Hamiltonian path within each group. If

partitions were not built around hull points, extra work would be required to

choose partition order and subpath end points.

The second takeaway is the importance of partitioning on the output

tour. These results assume perfect partitions, where points are contained in

the partition defined by their surrounding pair of hull points in an optimal

length tour. Unfortunately, correctly forming groups of points meeting this

criterion is more difficult than simply stating the conditions. Consider the

two requirements of Theorem 3.3.3. The first is guaranteed through partition

initialization in CHP, but the second is impractical to guarantee, primarily

because validation requires knowing the optimal tour in advance. With an
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optimal Hamiltonian path solver, any error in the final solution is a result of

partitioning the points incorrectly. Even when a heuristic subproblem method

is used, poorly grouping points drives much of the error. For this reason,

much of the effort of this work lies in finding partitioning methods that get

close enough to perfect partitions to form good final tours.

3.4 Forming Partitions

Partitioning points in CHP differs from traditional cluster analysis.

While clustering is often used as an early, purely exploratory step in data

analysis, it is the definitive step of CHP as partitions determine the quality of

the final solution. Another difference lies in using consecutive hull points as

partition bases. From the beginning, two points belonging to each partition are

known and immutable. Finally, the partitions in CHP are not disjoint subsets.

Instead, they share a point with two other groups. These differences require

entirely new partitioning methods or modification of existing algorithms.

The basis of each partition must be two consecutive hull points but

beyond that, interior points can be assigned in many ways. The simplest ex-

ample lies in initializing the partitions and then randomly assigning points.

Two overarching categories exist for partitioning methods: iteratively assign-

ing points to groups and splitting heuristic tours at hull points. Iterative

point assignment begins with groups containing only two hull points and as-

signs points based on some criteria. Tour splitting an initial heuristic solution

forms partitions consisting of points lying between hull points in the initial
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tour. The latter approach depends on the quality of the first TSP heuristic. If

a bad heuristic tour is used to form partitions, then the final tour is also likely

to be bad. For either approach, consecutive pairs of hull points serve as the

basis of the partitions. Thus, initializing the partitions with two hull points is

the first step in either case.

3.4.1 Partition Initialization

The algorithm begins with the convex hull, H ⊆ N . Let hull points be

the points in H, interior points be points not in H, and |H| be the number

of points in H. Assume H is ordered {h1, h2, · · ·, h|H|} and this is also the

order of hull points in the optimal tour. Then, |H| clusters are initialized,

each initially containing only a pair of consecutive hull points. Clearly, each

hull point is contained in exactly two clusters; this serves the important role

of connecting the partitions together. The shared hull points dictate how and

in what order to combine the subproblem solutions into a tour. Algorithm 5

outlines the steps of the initialization step.

Input: N : set of points
Output: Q0: set of initialized convex hull partitions, I: set of

interior points
H = ConvexHull(N);
for i ∈ [0, |H| − 1] do

Add cluster {H[i], H[i+ 1]} to Q0;
end
Add cluster {H[−1], H[0]} to Q0;
Return Q0 and I = N \H;

Algorithm 5: Initialize Partitions
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3.4.2 Insertion Partitioning

Insertion partitioning methods use many of the same ideas as insertion

construction heuristics for the TSP, as described in Section 2.1.4. After ini-

tializing clusters to contain the requisite two hull points, an insertion criterion

determines which group to assign each interior point. Algorithm 6 outlines

the general format for any insertion partitioning method.

Input: N : set of points
Output: Q: set of final partitions
Q, I = initialize partitions;
for p ∈ I do

Assign p to cluster in Q;
end
Return Q;

Algorithm 6: Insertion Partitioning

The specific insertion scheme determines the difficulty and effectiveness

of partitioning. As mentioned earlier, the insertion criteria for partitioning can

be the same as those used to form heuristic solutions to a TSP. These include

nearest, cheapest, furthest, and random. Because the goal lies in assigning in-

terior points to the cluster containing their preceding and succeeding hull point

from the final tour, only the nearest and cheapest insertion schemes seem to

make sense for CHP. Nearest and cheapest partitioning rely on the same ideas

as the construction heuristics bearing the same names. Nearest partitioning

adds points to the group containing the minimum distance (and previously

assigned) point. Similarly, cheapest partitioning uses the same idea as the

cheapest insertion heuristic, which relies on finding the lowest cost insertion
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of each new point. Cheapest insertion searches for the lowest cost insertion

between pairs of consecutive points in the existing tour. Cheapest partitioning

conducts a larger search by considering every pair of points already assigned

to each group. Thus, the number of comparisons in cheapest partitioning is

much higher than that of cheapest insertion. This leads to better solutions

at the cost of a longer runtime, especially as the number of points grows.

In an attempt to further balance solution quality and runtime, cheapest-m

partitioning searches the m nearest points within each group. If groups do

not contain m points, then cheapest-m partitioning acts exactly the same as

cheapest partitioning for that group. Algorithms 7, 8, 9 contain details of the

nearest, cheapest, and cheapest-m partitioning subroutines, respectively.

Input: i: interior point, i ∈ I; Q: set of partitions
k∗ = −1;
minDist =∞;
for k ∈ [0, |Q|] do

for p ∈ Qk do
if distance(i, p) < minDist then

minDist = distance(i, p);
k∗ = k;

end

end

end
Add i to Qk∗

Algorithm 7: Nearest Insertion Subroutine

In addition to more traditional insertion schemes, hull insertion is an-

other approach to grouping points. Cheapest, cheapest-m, and nearest inser-

tion rely on comparisons between partition interior points. Hull insertion, on
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Input: i: interior point, i ∈ I; Q: set of partitions
k∗ = −1;
minCost =∞;
for k ∈ [0, |Q|] do

for index ∈ {−1, 0, · · ·, |Qk| − 1} do
h = Qk[index];
j = Qk[index+ 1];
curCost = distance(h, i) + distance(i, j)− distance(h, j);
if curCost < minCost then

minCost = curCost;
k∗ = k;

end

end

end
Add i to Qk∗

Algorithm 8: Cheapest Insertion Subroutine

Input: i: interior point, i ∈ I; Q: set of partitions; m: number of
comparison points

k∗ = −1;
minCost =∞;
for k ∈ [0, |Q|] do

Qm = min{10, |Qk|} closest points to i in Qk;
for index ∈ {−1, 0, · · ·, |Qk| − 1} do

h = Qk[index];
j = Qk[index+ 1];
curCost = distance(h, i) + distance(i, j)− distance(h, j);
if curCost < minCost then

minCost = curCost;
k∗ = k;

end

end

end
Add i to Qk∗

Algorithm 9: Cheapest-m Insertion Subroutine
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the other hand, attempts to use the relationship between the convex hull and

optimal tour even more. Hull insertion attempts to find partitions such that

the sum of the partition convex hull perimeters is minimized. An outline of the

hull insertion scheme is shown in 10. Let the partition perimeter be the sum

of the perimeter of the convex hull of each group,
k∑
j=1

H(Yj). The partition

convex hulls decompose into two portions, an edge of the overall convex hull

and edges through interior points. Let HI(Y ) be the latter portion of partition

Y ’s convex hull. Then, HI(Y ) ⊂ H(Y ) and
k∑
j=1

H(Yj) =
k∑
j=1

HI(Yj) +H. The

idea is that minimizing this sum leads to more compact partitions, which in

turn leads to a shorter heuristic solution.

Input: i: interior point, i ∈ I; Q: set of partitions
k∗ = −1;
minIncrease =∞;
for k ∈ [0, |Q|] do

if (H(Qk + i)−H(Qk) < minIncrease) then
k∗ = k;

minIncrease = H(Qk + i)−H(Qk);

end

end
Add i to Qk∗

Algorithm 10: Hull Insertion Subroutine

Finally, a hybrid partitioning method was developed. It attempts to

combine the best features of cheapest-m and hull insertion to give better final

partitions. The first step to assigning a new point is to determine if it lies

within the convex hull of any partition. If it is within a single convex hull,

assign it to that partition. If it is within the convex hulls of multiple groups,
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run cheapest-m through just the encompassing partitions. If the new point

lies outside every partition convex hull, use hull insertion to determine the

minimum increase hull perimeter, and assign it to that group. The rationale

behind hybrid insertion is that if a point being newly inserted lies within an

existing partition hull, then that partition will trivially give the minimum hull

perimeter increase. Given the nature of the insertion methods, it is possible

that some hull perimeters may overlap. In this case, multiple partitions give

the minimum perimeter increase, and cheapest-m is used to choose between

them. For clarity when using hybrid partitioning with different m values, let

hybrid-m partitioning be hybrid partitioning using cheapest-m as one of its

sub-methods. For example, hybrid-5 combines hull and cheapest-5 partition-

ing.

Input: i: interior point, i ∈ I; Q: set of partitions; m: number of
comparison points

if i is outside all hulls then
Run hull partitioning;

else
Q1 = set of partitions with hulls encompassing i;
Run cheapest-m partitioning on Q1;

end

Algorithm 11: Hybrid-m Insertion Subroutine

Another dimension of insertion partitioning is the order in which points

are added to groups. Clearly, this order can greatly impact the final partitions.

There are many ways to sort the input points prior to insertion. In this case,

sorting is based on proximity to hull points. Three ordering schemes are used
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to sort points before adding them to partitions. Two are based on ascending

and descending order of distance to the nearest hull point. The third sorting

method finds the same descending order but shifts it such that the median

distance point is added first, followed by points in descending distance order

until the closest point, and finishing with the rest of the points in descending

order back towards the median. This is referred to as shifted ordering. For an

example of the proximity-based orders, consider the points {1, 3, 5, 7, 9}, where

the point name also indicates its distance to the nearest hull point. Then, the

ascending, descending, and shifted orders are {1, 3, 5, 7, 9}, {9, 7, 5, 3, 1}, and

{5, 3, 1, 9, 7}, respectively. There are many other sorting methods that could

be used. For example, points can be ordered randomly, or the points can be

inserted in the order in which they appear in the input file. However, only

ascending, descending, and shifted are included in CHP experiments at this

time. The effects of these insertion orders on CHP as a whole will be discussed

in a later section. To combat the variation from different ordering methods,

another option lies in iterating the insertion method. Iterative insertion re-

peatedly runs an insertion method on the input points until the partitions

stabilize.

As discussed earlier, most of the solution time is likely to be spent solv-

ing Hamiltonian path subproblems. However, forming partitions can still be a

time intensive process, especially on larger problems. The contributing factors

to computational cost of insertion partitioning remain consistent across the

different subroutines. Finding the minimum hull point distance takes time
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O(|I| ∗ |A|), with |I| = |A| = |N |
2

in the worst case. Sorting with heapsort adds

time O(|I| log(|I|)). The nearest insertion scheme contributes time O(n2
I).

Thus, nearest insertion partitioning takes time O(|I||A| + |I| log(|I|) + n2
I) =

O(n2
I). When used for partitioning, cheapest insertion checks every combina-

tion of two points within each partition leading to O(
(
n
2

)
) comparisons. Using

cheapest-m limits this to at most
(
m
2

)
for each partition. Thus cheapest-m

requires O(k
(
m
2

)
) comparisons for each point and has overall time complex-

ity O(kn
(
m
2

)
). As a reminder, k = |H|, n = |N |, and m is the number of

comparison points.

3.4.3 Heuristic Tour Splitting

The second general approach to forming partitions lies in splitting a

heuristic tour for the original TSP. Algorithm 12 shows the steps for this

approach in more detail. Similar to insertion partitioning, tour splitting begins

by initializing clusters with consecutive hull points. Then a TSP heuristic finds

an initial tour, T0. For each partition q, the indices of the two defining hull

points in T0 are found. Then, replace the initial q with the portion of the tour

between the two indices. Both hull points need to be included in the final

partition. Depending on the implementation, this may require adjusting the

indexing selection from T0.

Tour splitting can obtain its initial tour from any TSP heuristic. How-

ever, some methods make more sense than others. Factors to consider when

choosing a heuristic method for initialization include speed and performance.
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Input: N : set of points
Output: Q: set of final partitions
Q, I = initialize partitions;
T0 = heuristic tour;
Rearrange T0;
for k ∈ [0, |Q|] do

start = where(T0 == Qk[0]);
end = where(T0 == Qk[1]);
Qk = T0[start, end] (Make sure to include end points) Qk);

end
Return Q;

Algorithm 12: Heuristic Tour Splitting

Because it serves as only an initialization method, faster methods make more

sense. On the other hand, a bad initial solution can have a very negative

impact on the final solution. After partitioning, interior points do not shift

between groups. Thus, if splitting leads to many points in the wrong parti-

tions, the final solution will be bad. At the other end of the spectrum, if all

interior points fall between the correct pair of hull points, an optimal final so-

lution will be found, assuming an exact subproblem method is also used. One

very important implementation requirement for heuristic splitting is ensuring

hull points occur in the correct order in the heuristic solution. Because most

heuristics do not force an order of hull points in their solution, it is possible

that they may be out of order. One potential method of handling this is flip-

ping portions of the tour until the hull points occur in the correct order, but

such a method is not addressed in this work.
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3.5 Hamiltonian Path Tours

The second phase of CHP consists of finding and connecting Hamilto-

nian paths through each partition. After finding these paths, reconstructing

a solution to the original TSP requires simply connecting paths at the hull

points. Because each hull point belongs to two groups and each group contains

a consecutive pair, joining the incoming and outgoing paths of each hull point

leads to a feasible tour. Algorithm 13 shows an outline of this path connection

procedure. It consists of solving a minimum Hamiltonian path subproblem

through the points in each partition and then appending the solution to the

final solution.

Input: Q: set of partitions, H: set of hull points
Output: T : heuristic tour
tour T = [ ];
for Consecutive pair (h1, h2) ∈ H do

Pq = points in cluster q = Q[h1, h2];
T .append(HP (Pq, h1, h2);

end
Return T ;

Algorithm 13: Hamiltonian Path Tour

To solve the subproblems, many TSP methods can be modified to solve

for Hamiltonian paths instead with only small modifications. For example, the

heuristic LKH or the optimal solver Concorde can be used to find Hamiltonian

paths by forcing the edge connecting the desired start and end points to be

included in the output tour. Fortunately, the file format used as input for

both Concorde and LKH allow for fixed edges to be easily specified. More
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straightforward methods can also typically be modified. Insertion heuristics

simply add points to an initial tour list. To find a tour, the initial list starts

and ends with the origin. Therefore, to find a Hamiltonian path, the initial

list would need to start with the origin and end with the destination.

Using an exact subproblem method leads to the best possible solu-

tion given a set of partitions. Because an optimal solution gives the best path

through a group’s points, no additional improvement can be made by rearrang-

ing points within a partition. In this case, any difference between the CHP

tour T and T ∗ comes from points belonging to incorrect partitions. Three pos-

sible exact methods include integer programming, a modification of Bellman’s

dynamic programming algorithm, or Concorde [Bellman, 1962], [Cook, a]. Be-

cause of its acceptance as one of the premier optimal solvers, Concorde is the

logical choice of exact subproblem solver.

For many TSPs, achieving a significant runtime improvement through

CHP still requires using a heuristic method to solve the Hamiltonian path

subproblems. Again, there seems to be an obvious choice, this time in the

form of LKH. It is also widely regarded as one of the best solvers, even though

it does not guarantee optimality. For many of the National TSP test set, the

optimal solution is attributed to LKH [Cook, b],[Cook, c]. Beyond LKH, other

TSP heuristics can, such as insertion heuristics or the Christofides algorithm,

can also be used.

By modifying the optimality conditions discussed earlier, an upper

bound on CHP with a heuristic subproblem method can be established. In-
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stead of an exact subproblem method, now assume the heuristic method used

produces tours with a known upper bound on the ratio of its length to the

optimal length. That is, there is a known bound on the ratio of the heuristic

Hamiltonian path length to the optimal length. Then, Corollary 3.5.1 provides

a bound on the ratio of the CHP tour length to the optimal tour length.

Corollary 3.5.1. If a heuristic Hamiltonian path method producing paths

HP (s, t, P ) with a known bound HP (s, t, P ) ≤ αHP ∗(s, t, P ) is used to solve

subproblems in CHP, then the final tour T found has the same bound. That

is, T ≤ αT ∗.

Proof. Assume Q is a set of partitions satisfying the conditions in Theorem

3.3.3: each contains a pair of consecutive convex hull points and the interior

points lying between them in an optimal tour. Then, the given information

and the procedure for constructing a tour from partition subtours leads to the

tour bound. This begins by finding the length of T by adding the lengths of the

heuristic Hamiltonian paths, T =
∑

Qi∈QHP (hi, hi+1, Qi). Using the heuristic

bound, the heuristic lengths can be replaced with an inequality with the opti-

mal path lengths, giving T ≤
∑

Qi∈Q αHP
∗(hi, hi+1, Qi). Finally, rearranging

gives the final bound of T ≤ αT ∗.

3.6 Worst-Case CHP Tour Length

The quality of the final solution depends on both partitioning and sub-

problem methods. Clearly, using a method giving optimal paths through par-
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titions leads to the best possible solution. However, using a faster subproblem

heuristic may lead to a further improvement in runtime with only a small

decrease in tour quality.

For exact subproblem methods, deriving a bound on the worst-case

performance closely follows the process used for the Karp partitioning bound

[Karp, 1977]. First, Theorem 3.6.1 defines a bound on the length difference

between subproblem solutions and the optimal tour portions intersecting each

partition. Then, Theorem 3.6.2 bounds the difference between the heuristic

solution length and that of the optimal tour.

The proofs for Theorems 3.6.1 and 3.6.2 closely follow that written by

Karp [Karp, 1977]. One major difference in the results here is the use of con-

vex hull perimeters versus Karp’s use of rectangular perimeters. Additionally,

partition subproblem solutions, T (Y ), differ. Karp partitioning uses subtours

through grouped points and CHP uses a Hamiltonian path connecting hull

points. One final important difference in Theorem 3.6.2 is the known rela-

tionship between W and T . Karp partitioning shows a shorter distance tour

exists but does not define a specific difference. However, in CHP, W = T +H.

This allows an additional term, H, to be subtracted from the left-hand side,

improving the bound.

Let Y be a partition, H(Y ) be the convex hull of Y , and T ∗ ∩ Y be

the intersection of the optimal tour and Y . Furthermore, let hs and ht be

the two consecutive hull points in Y with HP (Y ) as the Hamiltonian path

through Y connecting hs and ht. Finally, let T (Y ) be the tour consisting
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of the Hamiltonian path between hs and ht along with the convex hull edge

connecting ht to hs, T (Y ) = [HP (Y ), hths]. Then, the difference between

the length of the partition tour, T (Y ), and the length of the intersection of

the optimal tour and the partition, T ∗ ∩ Y , is at most 3
2

the perimeter of the

partition. That is,

Theorem 3.6.1. T (Y )− T ∗ ∩ Y ≤ 3
2
·H(Y ).

Proof. Consider Y where T ∗ ∩ Y consists of m curves, {c1, c2, · · ·, cm}. De-

fine the 2m endpoints of these curves on H(Y ) as {y1, y2, y3, · · ·, y2m−1, y2m}, in

clockwise order aroundH(Y ). Clearly, H(Y ) = {y1y2, y2y3, y3y4, ···, y2m−1y2m, y2my1}.

Without loss of generality, assume y1y2 +y3y4 + · · ·+y2m−1y2m ≤ y2y3 +y4y5 +

· · · + y2my1. Let W (Y ) be the spanning walk through Y consisting of H(Y ),

T ∗ ∩ Y , and H(Y ) \ T ∗ ∩ Y . Then, W (Y ) contains two instances of edges

{y2y3, y4y5, · · ·, y2my1}, a single instance of edges {y1y2, y3y4, · · ·, y2m−1y2m},

and the curves {c1, c2, ···, cm}. Adding length of these portions gives the length

of the walk overall, W (Y ) = 2 · (y2y3 + y4y5 + · · ·y2my1) + (y1y2 + y3y4 + · ·

·y2m−1y2m) +
m∑
j=1

ci. Replacing the known lengths, the length of the walk is

W (Y ) = T ∗ ∩ Y + H(Y ) + (y2y3 + y4y5 + · · ·y2my1). Based on its definition,

(y2y3+y4y5+ · · ·y2my1) ≤ 1
2
H(Y ). Additionally, the tour through the partition

is shorter than the described walk. Thus, T (Y )− T ∗ ∩ Y ≤ 3
2
·H(Y ).

Using Theorem 3.6.1 as a bound for each partition, a bound on the

difference between the final heuristic and optimal tours can be derived. Be-

cause of the way each partition tour was defined, joining these tours at the
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hull points leads to a walk consisting of the overall convex hull boundary and

a tour through the interior points. Thus, removing the edges forming the

hull boundary results in the heuristic solution to the TSP. This procedure for

forming a tour helps improve the bound as well. The difference in the length

of the heuristic and optimal tours is at most 3
2

times the sum of the partition

convex hull perimeters minus the overall convex hull boundary length,

Theorem 3.6.2. T − T ∗ ≤ 3
2

k∑
j=1

H(Yj)−H,

where T is the heuristic tour, T ∗ is the optimal tour, H(Yj) is the convex hull

of partition Yj, and H is the overall convex hull of the original problem.

Proof. Let walk W consist of union of the partition Hamiltonian tours. The

Hamiltonian tour T (Y ) through partition Y of points has two parts. The

first is the edge from overall convex hull connecting the two hull points in Y .

The second part is the Hamiltonian path starting and ending at the same two

hull points. Clearly, this forms a tour as the Hamiltonian path visits every

point in the partition, and the convex hull edge connects the start and end

points of the path. This means W =
k⋃
j=1

T (Yj) and W =
k∑
j=1

T (Yj). Using

the results from Theorem 3.6.1, W ≤
k∑
j=1

T ∗ + 3
2

k∑
j=1

H(Yj). Finally, the CHP

tour T can be found by removing edges of the overall convex hull from the

walk W . The length of the CHP tour can then be defined in terms of W and

H: T = W − H. Therefore, T + H ≤ T ∗ + 3
2

k∑
j=1

H(Yj), and rearranging,

T − T ∗ ≤ 3
2

k∑
j=1

H(Yj)−H.
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Using tour splitting to form partitions also leads to performance bounds.

Let T and T ∗ be defined as before, with T being a tour found through CHP

and T ∗ being the optimal tour. Additionally, let T0 be another heuristic tour

used to form partitions through tour splitting. Then the length of T is no

more than that of T0.

Lemma 3.6.3. When partitions are formed using tour splitting of initial tour

T0, the tour resulting from CHP, T , has length no longer than that of T0. That

is, T ≤ T0.

Proof. The partitions used to form T come from T0. The only changes from

T0 to T is rearranging interior points, not changing which hull points they

come between. Assuming CHP uses an exact Hamiltonian path method for

subproblems, any rearranging of interior points either improves or maintains

the solution.

Additionally, if a bound on T0
T ∗ exists, then it can be improved for T

T ∗ .

Theorem 3.6.4. Assume the length of the heuristic tour T0 is at most α times

the length of the optimal tour. Then, when partitions are formed by splitting

T0 at the hull points, the ratio of the length of the CHP and optimal tours is

at most α times the ratio of T and T0, T
T ∗ ≤ α T

T0
.

Proof. Because T0 ≤ αT ∗, T
T ∗ ≤ α T

T0
. The bound on the ratio between the

initial tour and optimal lengths is α. From Lemma 3.6.3, the length of the
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CHP tour is less than that of the original heuristic tour, T ≤ T0. Therefore,

if T is shorter than T0, the bound on the ratio T
T ∗ is strictly less than α.

A good example of the use of Theorem 3.6.4 is splitting the Christofides

tour, Tc, to form partitions. Then, Tc
T ∗ ≤ 3

2
. After running CHP, this bound

can be improved to T
T ∗ ≤ 3

2
T
Tc

. Thus, Theorem 3.6.4 improves a bound on the

optimal tour using information found in the running of CHP.

The results in this section assume CHP with an optimal subproblem

method. In practice, a heuristic subproblem method may be used and these

bounds are no longer be guaranteed. However, empirical results show many

CHP variants produce tours well within these bounds. The experimental re-

sults also show partitioning plays a bigger role than subproblem method in

determining the length of the final tour, assuming a good TSP heuristic is

used.
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Chapter 4

CHP Experiments

The purpose of this work is developing a partitioning framework ca-

pable of producing good solutions for TSPs in a reasonable time. The first

step in that development process is the CHP framework explained in the pre-

vious chapter. However, that was only the one piece. CHP consists of two

main stages, partitioning and solving subproblems. Several partitioning meth-

ods and insertion orders were presented in Section 3.4. Each combination of

partitioning and order potentially leads to different point groups. CHP also

relies on a subproblem solver to create the subpaths of the final tour before

combining them. Again, several potential subproblem solvers were discussed.

In summary, CHP can consist of many combinations of partitioning method,

point order, and subproblem solver. Given that fact, a series of experiments

attempts to find the best CHP variant.

The first phase of testing consisted of running many CHP variants on

a large number of small problems to immediately identify poorly performing

combinations to disregard in future testing. Through this testing, LKH was

identified as the best subproblem solver. However, limitations in its default

settings became apparent. This led to testing of LKH using different param-
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eter sets. Specifically, varying the LKH time limit shows how CHP and LKH

progress over time. Next, different point insertion orders were tested to limit

those included in later tests. In general, partitioning methods were devel-

oped to incorporate as few input parameters as possible. The exceptions are

cheapest−m and hybrid−m, which require the specification of an m value. To

that end, testing attempts to identify m values balancing runtime and solu-

tion quality. The final experiments use promising CHP variants to solve all

national and VLSI instances.

4.1 Test Problems

In total, 118 TSP instances were tested from the national and VLSI test

sets [Cook, b], [Cook, d]. The problem sizes were between 29 and 35000 points.

These two test sets were chosen for their accessibility and well documented

optimal, or best-known, tour lengths. This provides easy benchmarks for

comparison of several CHP variants.

The included national TSP test problems consist of 26 problems ranging

from 29 to 33708 points and are derived from cities or towns in a variety of

countries [Cook, b]. In general, national TSP instances do not follow any

regular shape as their points mirror the shape of their corresponding country.

For example, the points and optimal tour for the TSP instance for Finland,

fi10639, are shown in Figures 4.1a and 4.1b, respectively. This irregularity

allows for comparison with the more regular instances of the VLSI test set,

which all share a rectangular outline.
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(a) Finland fi10639 Point Set (b) Finland fi10639 Optimal Tour

r

(c) xmc10150 VLSI Point Set

Figure 4.1: Example National and VLSI TSPs
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The included VLSI TSP problems consist of 92 problems with between

131 and 35000 points [Cook, d]. VLSI stands for very-large-scale integration

and refers the process of creating an integrated circuit. In general, VLSI in-

stances conform to a more regular shape than national problems. This is due

to their origin in circuit planning. For that reason, they all have a rectan-

gular outline. For comparison, Figure 4.1c shows VLSI instance xmc10150,

which consists of 10150 points. This is the closest size to the Finland national

instance, which has 10639 points. The difference in their layout is obvious.

Because of the rectangular shape of their convex hull boundaries, different vari-

ants of CHP may perform better or worse for VLSI instances versus national

instances.

4.2 Test Metrics

The metrics of interest for CHP are the length of the heuristic tour, the

total runtime of the algorithm, and how these values compare to some bench-

mark. The optimal tour length is known for the majority of test problems.

For those without a known optimal tour length, the best-known value is used.

Thus, the optimal value serves as one benchmark of solution quality. Specif-

ically, the ratio of heuristic tour length to the optimal value shows relative

performance of a heuristic method. Let T and T ∗ be a heuristic tour length

and the optimal tour length, respectively. Then the ratio of these two values,

T
T ∗ , is referred to as the tour length ratio or ratio to optimal. This ratio serves

as one of the main metrics used to judge the performance of different CHP
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variants.

Because the TSP is an NP-hard problem, finding optimal solutions can

be very time consuming. Additionally, CHP does not guarantee optimal solu-

tions in general. It therefore makes sense to compare CHP to other heuristics,

and the LKH heuristic serves as the primary heuristic benchmark, both in

terms of solution accuracy and runtime. More details on LKH’s performance

is discussed in the next section. The following tests attempt to show the ca-

pability of the CHP framework overall and determine specific variants that

perform well relative to these benchmarks.

4.3 LKH Parameter Testing

LKH itself uses many parameters affecting both runtime and solution

quality [Helsgaun, b]. Much of the initial testing done on CHP used the default

settings of LKH. However, changing some LKH settings causes the algorithm

to terminate more quickly. Specifically, the settings controlling the number of

runs and time limit on each run can force a faster runtime. By default, LKH

performs 10 runs and returns the lowest distance tour. Any difference in these

ten tours occurs due to randomness in construction of the initial tour or in

selection of edges to swap throughout the improvement phase. LKH prioritizes

solution accuracy over runtime in its default settings. The time limit of each

run is set to the maximum double value; this essentially places no limit on

the runtime of each iteration of LKH. Based on the parameters presented in

the LKH user guide, the number of runs and time limit are the best ways to
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control the runtime of the algorithm as a whole. Because CHP is a heuristic,

both its accuracy and runtime are important and need to be tested. LKH

finds tours with length very near optimal length, making it a good heuristic

benchmark for solution quality. By setting its parameters to terminate more

quickly, it also provides a speed benchmark.

One of the biggest factors determining the runtime of LKH is the time

limit parameter. Consequently, the time limit also affects the runtime of CHP,

as each subproblem is solved with a separate instance of LKH. Because the

current implementation solves subproblems sequentially, the time limit param-

eter affects CHP differently than LKH. The effective time limit in CHP is the

LKH time limit parameter multiplied by the number of partitions (number of

hull points). However, the LKH time limit parameter has no effect on this

portion of CHP runtime spent partitioning points. To gain a better under-

standing of how the time limit affects the solutions from both LKH and CHP,

two parameter sets were tested on TSP instances with less than 1000 points.

First, LKH was run using its default parameters to set a baseline. The same

problems were then solved with LKH using only a single run and a time limit

of 1 second. Because this parameter set was intended to produce a solution as

fast as possible, it is referred to as fast LKH in the results.

The results of the default and fast LKH parameter tests are shown

in Figure 4.2. In these charts, the blue circles and orange x markers show

results for the default and fast parameter sets, respectively. The runtime of

default LKH, represented by the blue circles in Figure 4.2b, increases much
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more quickly than that of fast LKH. On the other hand, the tour length ratio

increases changes only very slightly between the two parameter sets. For an

extreme example, consider the instance lu980, which has 980 points. Fast

LKH solves the problem within 0.3% of optimal in 1.84 seconds. Default LKH

solves it optimally but takes around 450 seconds. Not every instance is this

extreme, but the general trend is the same. Default LKH produces a slightly

shorter distance tour but takes much longer than fast LKH, especially as the

size of the problem grows.

Another factor when choosing LKH parameters is their impact on CHP.

Figure 4.3 shows the results of solving TSP instances with less than 1000 points

using three CHP variants, cheapest-15, hull, and hybrid-15 partitioning. Each

variant solves the TSPs using both default and fast LKH to solve subproblems.

As above, blue and orange markers represent default and fast LKH, respec-

tively. Additionally, different markers indicate different partitioning methods

used by CHP. These tests attempt to demonstrate the impact of the LKH

parameter sets relative to one another, rather than the capability of the CHP

variant itself. As seen in Figure 4.3b, using default LKH to solve subproblems

greatly increases the runtime of CHP. On the other hand, Figure 4.3a, which

shows the tour length ratios from the tests, seems to indicate that any differ-

ence in solution quality between the two parameter sets is small, if any exists

at all.

Using fast LKH leads to significant runtime improvements in both LKH

and CHP subproblems. More importantly, it leads to only slightly worse tours.
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(a) LKH Tour Length

(b) LKH Runtime

Figure 4.2: Comparison of Fast and Default LKH Parameters
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(a) CHP Tour Length

(b) CHP Runtime

Figure 4.3: Comparison of LKH Subproblem Parameters
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For these two reasons, fast LKH is used as the heuristic benchmark and as the

subproblem solver in CHP for the remainder of the tests.

4.4 Algorithm Progress Over Time

To further examine each algorithm’s progress as over time, the TSP

instances bm33708 and bby34656 were solved using CHP and LKH at increas-

ing time limit values. These instances were chosen because they are two of

the largest included instances at just under 35000 points each. Additionally,

one each belongs to the national and VLSI test sets. The results are shown

in Figure 4.4. The time limit parameter is the only obvious way to end LKH

before its internal termination criteria are met. According to the LKH user

guide, the time limit parameter ”specifies a time limit in seconds for each run”

[Helsgaun, b]. The parameter works slightly differently in CHP because a sep-

arate instance of LKH solves each subproblem. This means that the effective

time limit is the input value multiplied by the number of subproblems. In

Figure 4.4, runtime is shown on the x-axes, with the tour length ratio shown

on the y-axes. Points in each series show the results for increasing time limit

values. The charts show the results from time limit values of 1, 2, 5, 10, 30,

and 60 seconds. Although increasing the time limit does typically increase the

runtime, the actual runtimes were much longer than the input parameter. This

is especially true for LKH. The CHP tests exhibit more noticeable changes as

the parameter value increases, as runtime increases are compounded by multi-

ple subproblems. The longer runtimes also lead to tours closer to the optimal
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length. It appears the time limit parameter does not solely determine the al-

gorithm’s runtime. Instead, it seems as though some portion of the algorithm

is unaffected by the time limit parameter. There appears to be a minimum

runtime regardless of time limit value. This makes sense for CHP because

partitioning the points contributes to the overall runtime. On the other hand,

LKH is called directly using an input point file and there is no obvious external

runtime contributor.

Too see these trends, consider Figure 4.4b. The orange markers show

the results of solving bby34656 CHP with hull partitioning. No time limit

provides a runtime less than approximately 600 seconds. For small time limits,

the overall runtime fluctuates around this apparent minimum time. When the

time limit increases to 30 and 60 seconds, the overall runtime increases by

around 100 and 200 seconds, respectively. This larger increase demonstrates

the time limit compounding due to multiple subproblems. Again, the seeming

minimum time for CHP can be explained by partitioning the points, as this

is not affected by the LKH time limit in any way. Now consider the yellow

markers showing the LKH tests on bby34656. Again, there seems to be a

minimum time; for LKH it is much higher. No time limit restricts LKH to a

runtime less than around 1700 seconds. Increasing the parameter value does

lead to longer solution time, but the compounding exhibited by CHP is not

seen in the LKH tests. The reason for the consistent minimum time is less clear

in this case. LKH constructs a tour from an input point set read directly from

a TSP file. One potential explanation is the time limit only restricting the time
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spent on tour improvement and not on the initial construction procedure. This

would explain the consistency of the minimum time and why tours improve

with a higher time limit. LKH was also run with 3600 second and the default

time limits. For both tested TSP instances, the 3600 second time limit led

to an overall runtime of approximately 5200 seconds. LKH using the default

setting ran for 10 hours without terminating.

These tests further show the efficacy of CHP in solving TSPs quickly.

Again, the time limit parameter is the only obvious way to terminate LKH

early. The time limit does not restrict the runtime of CHP and LKH in exactly

the same manner; it is less restrictive for CHP because it only limits each sub-

problem instead of the overall algorithm. Despite this, CHP runs significantly

faster than LKH for the same time limit value. Even when using the largest

tested time limit, CHP ends well before the fastest LKH test completes.

4.5 Insertion Order Testing

As mentioned in Section 3.4.2, the order in which insertion partitioning

assigns points impacts both the runtime and solution quality of CHP. For this

reason, three different insertion orders were tested. The insertion orders de-

scribed in Section 3.4.2 include interior points in ascending order of proximity

to their nearest hull point, descending order of proximity to their nearest hull

point, and a shifted descending order. These orders are aptly referred to as

ascending, descending, and shifted in the test results. To assess the effects of

each ordering method, tested variants consist of combinations of each inser-
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(a) bm33708

(b) bby34656

Figure 4.4: CHP and LKH Algorithm Progress Over Time
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tion order with different partitioning methods. Due to the long runtimes seen

during testing and the number of CHP variants being tested, the tests include

only national and VLSI instances with less than 20000 points. The results of

the insertion order testing are shown in Figures 4.5 and 4.6. More extensive

summary statistics of tour quality using the different orders are shown in Table

4.2.

Ascending and descending ordering were tested on national TSP prob-

lems using cheapest-5, cheapest-10, hull, and hybrid-5 partitioning. A sum-

mary of these test results is shown in Figure 4.5a. From the figure and Table

4.2, it is difficult to determine which insertion order leads to the best overall

solutions. The worst-case performance is worse when using a descending order,

which leads to a higher average performance as well. This is especially true for

hull and hybrid-5 partitioning. Aside from the worst cases, a descending order

seems to lead to better solutions. The median and 75th percentile values are

better for all but hull partitioning. However, both ascending and descending

insertion orders lead to tours with length within 4.2% in at least half of the

tested instances, regardless of partitioning method.

In addition to ascending and descending orders, a shifted descending

order was tested on the VLSI TSPs. This means that in total, 3 insertion

orders and 4 partitioning methods were used. In the end, 11 CHP variants were

tested, as shifted order insertion was not tested with cheapest-5 partitioning.

Summarized solution quality results are shown in Figure 4.5b. To some degree,

the results of the VLSI instance testing highlight the difference between the
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two test sets. For example, hull partitioning using ascending order was one of

the best performing methods for national TSPs, but, for VLSI problems, it is

the worst method across every recorded summary statistic. Hull partitioning

in general does not seem effective for solving VLSI instances. On the other

hand, the cheapest−m and hybrid−m partitioning methods seem to perform

better on VLSI instances. The mean and median tour lengths are less than

4% of optimal for any m value and insertion order. With the exception of

hull partitioning, the shifted insertion order seems to be the worst performing

insertion order. Ascending and descending had roughly the same mean and

median tour length ratios for cheapest-5, cheapest-10, and hybrid-5.

The performance test results do not show a clear distinction between

ascending and descending insertion orders. The runtimes for the national and

VLSI TSP insertion order tests are shown in Figure 4.6. The figure shows the

runtime of CHP variants as problem size grows for both national and VLSI in-

stances. The partitioning methods are represented with different markers and

insertion orders are shown in different colors, with blue, orange, and green in-

dicating ascending, descending, and shifted orders, respectively. For example,

the orange x in the top right corner of Figure 4.6 represents hull partitioning

using descending order.

Ascending and descending orders were tested on all TSP instances with

less than 20000 points. In addition to ascending and descending orders, a

shifted order was also tested for VLSI instances. For instances with less than

5000 nodes, no clear distinction is shown in the chart. However, as problem size
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(a) National TSPs

(b) VLSI TSPs

Figure 4.5: Insertion Order Tour Length Ratio Summary
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Figure 4.6: Runtime of CHP with Different Insertion Orders

grows, runtime trends become evident. Descending order variants take much

longer than those using the same partitioning method with ascending order.

A pattern is evident for shifted order variants as well. For a given instance

and partitioning method, using a shifted insertion order typically leads to

a runtime faster than descending order but slower than ascending order. For

example, look at the vertical row of symbols near 17000 points. These represent

different variants tested on the same instance. For each partitioning method,

the runtime of the shifted order variant (green) is higher than the ascending

order method (blue) and lower than that using a descending order (orange).

Based on these tests, the remaining experiments test CHP using only
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an ascending insertion order. In general, using a shifted order takes more time

and seems to produce worse results. A descending insertion order typically

produces as good, if not better, tours. However, it led to runtimes significantly

higher than using ascending order. The likely reason behind this is points

being assigned to a fewer number of partitions, leading to larger subproblems.

As a reminder, assigning points in a descending order means the furthest

points are placed into partitions first. This immediately leads to partitions

encompassing large areas of the point set but being defined by a few points.

This differs from ascending order, in which partitions are built outwards and

have boundaries that grow more slowly. The developed partitioning methods

assign points based on their proximity to previously inserted points. When

assigning points to one of a few partitions with large areas but few points, the

partitioning methods have fewer reference points in each partition. This leads

to points distributed to partitions differently than when using an ascending

order. With a descending insertion order, partitions tend to be more variable

in size, some being very large and others containing a relatively few number

of points. These large groups lead to large subproblems, which could explain

the longer runtimes.

4.6 Cheapest−m Testing

Cheapest−m and hybrid−m partitioning require an input parameter,

m. Because hybrid partitioning is essentially a wrapper that uses cheapest−m

partitioning for some points, the parameter functions similarly in both meth-
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ods. The value of the m parameter sets the number of points within each

partition checked to determine where to assign a new point. For example, if

m is set to 5, then combinations of the 5 nearest points in each partition are

checked for the minimum cost insertion. Then, the group with the global mini-

mum insertion is chosen to add the point. To test the effects of the parameter,

instances with less than from 5000 nodes from both the national and VLSI

problem sets were tested with m values of 2, 3, 5, 10, 15, and 25 points. In

theory, increasing the m value leads to a better final tour because the likelihood

of finding a lower cost insertion. However, increasing the number of compari-

son points increases the runtime of the algorithm, as more combinations must

be checked. To examine the effectiveness of cheapest−m CHP variants, both

the ratio of heuristic to optimal tour lengths and a comparison of runtimes are

considered.

As mentioned earlier, problems from the two test sets exhibit different

general characteristics. To recap, national TSPs do not have the same shape

outline, in general. They are instead shaped like the countries from which

the problems are derived. Additionally, they tend to have more varied points

densities, with some very dense regions, while other regions are very sparsely

populated with points. In contrast, VLSI problems have a rectangular outline

and tend to be densely packed with points throughout. Because of these

differences in general structure, different methods may be more or less effective

on problems of different types. Knowing and understanding these differences

may allow for recommendations of a specific CHP variant based on the layout
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of the input point set.

Figure 4.7 and Table 4.1 show summaries of the ratio of CHP tour

length to optimal tour length broken down by test set. The results show

subtle differences in performance between the two problem types. The tested

cheapest−m variants have better best-case performance for the national TSPs.

This can be seen in Figure 4.7a, as the minimum ratios are lower and more

consistent across the different m values. On the other hand, the mean and

median ratios were lower and more consistent for VLSI instances. As shown

in Figure 4.7b, at least half of test problems were solved to within 3.5% of

optimal for cheapest-5, 10, 15, and 25; the average optimality gap across all

VLSI instances was also around 4% for the same m values. Cheapest-10, 15,

and 25 are only slightly less consistent for the national TSPs. However, the

median and mean ratios were above 4% for all m values.

Solution quality is only on factor in heuristic performance; the other is

runtime. Figure 4.8 shows the solution time for the cheapest−m variants as the

number of points increases. Each cheapest-m variant is shown with a different

color and marker, with the colors corresponding to the box plots in Figure

4.7. While the previous discussion of solution quality focused on aggregate

performance, these results examine how the runtime of cheapest−m grows for

each instance. As seen in Figure 4.8, all cheapest−m variants follow the same

general trend. The linear nature of the runtime increase makes sense given the

time complexity of cheapest−m partitioning when m << |N |, O(|H||N |
(
m
2

)
).

In general, |H| << |N |, and the complexity becomes O(|N |
(
m
2

)
). At the two
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(a) National TSPs

(b) VLSI TSPs

Figure 4.7: Cheapest−m Tour Length Ratio Summary
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extremes, the time complexity of cheapest-2 and cheapest-25 are O(|N |) and

O(300|N |), respectively. This represents only a portion of the total time as

much of CHP’s overall runtime consists of time spent solving Hamiltonian path

subproblems. Figure 4.8 shows how each variant impacts the overall runtime

of CHP. Therefore, the absolute difference in runtime between cheapest−m

variants may not clearly reflect the magnitude of their respective time com-

plexities. Instead, the figure shows how they impact the runtime from start

to finish of CHP, which makes more sense when determining the overall effec-

tiveness of each cheapest−m variant.

Cheapest-25 is noticeably the most time-consuming variant, especially

for the largest test problems. Similarly, cheapest-2 and cheapest-3 are the

least time consuming for most instances. Cheapest-5, 10, and 15 tend to be

grouped closely together. Looking back at the summary of tour length ratios

shown in Figure 4.7, this grouping makes sense. The summary shows that, for

the tested problems, m values of 5, 10, and 15 usually find solutions of nearly

the same length. This in turn indicates similar, if not the same, partitions

formed from cheapest-5, 10, and 15. Because solving subproblems requires a

significant portion of the total runtime, it makes sense that variants finding

similar partitions are grouped together in Figure 4.8.

Based on these tests, 10 and 15 appear to be the best of the tested

m values. Cheapest-2, 3, and 5 do not as reliably lead to high quality tours.

While cheapest-25 offers similar quality solutions in general, it does so at a

consistently higher runtime. In summary, cheapest-10 and cheapest-15 seem
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Figure 4.8: Cheapest−m Runtime as Problem Size Increases
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to balance runtime and solution quality. Therefore, m values of 10 and 15 are

used in the majority of the remaining cheapest−m and hybrid−m testing.

4.7 Large Instance Testing

After performing exploratory tests of relevant parameters, a somewhat

more limited set of tests were conducted on the remainder of the large national

and VLSI instances. For national instances, cheapest-5, cheapest-10, cheapest-

15, hull, hybrid-5, hybrid-10, and hybrid-15 partitioning were tested. Because

it contains more TSP instances, testing on the VLSI problem set included only

cheapest-10, cheapest-15, hybrid-10, and hybrid-15 partitioning. The results

from testing insertion orders show hull partitioning does not work as well for

VLSI instances, and thus it was not included for those tests. Additionally,

all partitioning assigned points in ascending order. As a reminder, fast LKH

solved subproblems for all the following test results.

The results presented here resemble those from previous sections. Again,

both an examination of tour length ratio summary statistics and runtimes al-

low for an assessment of CHP performance. In addition to comparing CHP

variants with one another, the comparison includes LKH results as a bench-

mark. National TSP results are covered first, followed by the VLSI results.

Two types of charts are discussed in the following sections. As seen previously,

box plots summarize the tour length ratio results for the different methods.

Additionally, scatter plots show tour length ratio and runtime as problems

grow in size. In both cases, different methods are shown in different colors. In
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the scatter plots, different markers also help differentiate the various methods.

4.7.1 National TSPs

Figure 4.9 shows summary statistics for the ratio of CHP tour length

to the optimal (or best-known) tour length for national TSP instances. As

before, the box plots show the median, upper and lower quartiles, and overall

range of the tour length ratios. Figure 4.9a shows these values when calculated

across all 26 instances tested. The same statistics when only instances with

at least 10000 points are shown in Figure 4.9b. These two charts allow for

some insights into how CHP’s performance scales as problem size grows. More

detailed statistics are shown in Table 4.3. Across all instances, hull partitioning

exhibits the best mean and median performance, with both values around 3.5%

above the optimal tour length. When aggregated over only instances with at

least 10000 points, every tested CHP variant sees an improvement in their

aggregated tour length ratios. For these larger instances, hull partitioning

again shows the most consistency in average and median ratios. However,

three other variants seem to perform nearly as well as hull partitioning on

larger problems. Cheapest-15, hybrid-10, and hybrid-15 all exhibit very similar

mean and median ratios. On average, they find tours just under 3% above

optimal. At least half of the larger instances were solved to within 2.5% of

the optimal length for all three variants. This is only slightly higher than the

median optimality gap of hull partitioning, which was just under 2.3%. Given

these results, hull partitioning appears to produce tours with length closest to
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optimal for national TSPs.

As expected, LKH finds very good tours. Overall, at least half of tested

instances were solved to within 0.2% of the optimal length. Additionally, LKH

found the optimal tour for several instances with less than 10000 points. While

LKH still finds tours well within 1% of optimal for most national TSP instances

larger than 10000 points, the summary statistics show a slight decrease in per-

formance. Based on Table 4.3, the worst-case for LKH comes from a problem

with more than 10000 points, which may cause the higher average and median

values.

The charts in Figure 4.10 show runtime and tour length ratios for each

national TSP instance. The two plots allow trends to be identified as problems

grow larger. The top chart shows tour length ratio as problem size increases;

the bottom shows runtimes. By examining the results in this way, two trends

become clear. First, as problem size increases CHP finds tours increasingly

close to the optimal length. Second, the difference between CHP and LKH

runtime increases as problems grow larger. For problems much smaller than

10000 points, the runtime improvement may not make up for a higher length

tour produced by CHP. However, as problems grow large, significant time

savings are experienced by CHP. A comparison of CHP runtimes to LKH

runtimes is shown in Table 4.4. The table contains the ratio of CHP time to

LKH time, again split into all instances versus only instances with more than

10000 points. Many of the CHP variants have similar runtime improvements.

It is hard to judge the fastest CHP variant based on these results. However,
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(a) All Instances

(b) Instances with ≥ 10000 points

Figure 4.9: National TSP Tour Length Ratio Summary
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they all run much more quickly than LKH. Except for cheapest-15 and hybrid-

15, all of the tested variants solve at least 75% of the large national instances

in less than a quarter of the time as LKH. When considering runtime, CHP

also performs well in the worst-case, as no CHP variant takes more than 30%

of the LKH time to solve any instance.

Based on Figures 4.9 and Tables 4.3 and 4.4, hull partitioning appears

to be the best of the tested CHP variants for solving national TSP instances.

It solved most large problems more than 4 times faster than LKH and typically

found tours with length about 2.4% above optimal, on average. In general, the

tested CHP variants run in around the same time as LKH for smaller instances.

As problems grow in size, CHP becomes a more attractive alternative. It finds

tours with length closer to optimal and solves TSPs upwards of 4 times faster

than LKH. For these reasons, CHP makes the most sense for large national

TSP instances, specifically those with more than 10000 points in this case.

4.7.2 VLSI TSPs

Following the format of the national TSP results, the discussion of

overall VLSI testing first focuses on the ratio of the CHP tour length to optimal

tour length. Then, the solution quality and runtime of the CHP variants are

compared to one another and that of LKH as problems grow in size.

The box plots in Figure 4.11 show summary statistics on the ratio

between the heuristic and optimal tour lengths for each CHP variant and

LKH. Additional statistics are also shown in Table 4.5. In both the figure
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Figure 4.10: National TSP Results
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and table, the values are split into two groups. One aggregates the results

of tests across every VLSI instance. The other only considers instances with

more than 20000 points.

The top chart, Figure4.11a, shows summary statistics aggregated from

all VLSI instances. Figure 4.11b shows the same metrics when aggregated over

only instances with at least 20000 points. As expected, LKH finds very good

tours, with lengths typically within 0.5% of the optimal length, regardless of

problem size. However, unlike the national TSP tests, the difference in CHP

performance is very clear. CHP finds tours much closer to optimal when used

to solve larger VLSI instances.

Based on the results of tests for insertion order, cheapest−m, and

smaller VLSI instances, only cheapest-15, hybrid-10, and hybrid-15 were used

to solve VLSI instances over 20000 points. Therefore, the discussion of sum-

mary statistics focuses on those three CHP methods. The most notable im-

provement is in worst-case performance. When aggregating across all in-

stances, each variant demonstrated a worst-case of between 8.5% and 10%.

However, when only instances with at least 20000 points are considered, the

maximum optimality gaps are all less than 2.4%. In both cases, cheapest-15

has the highest of the maximum ratio to optimal length, and hybrid-10 has

the lowest.

For instances with at least 20000 points, Cheapest-15 has the highest

mean but the lowest median ratio to optimal length. This seems to show that

while it finds good tours in many cases, it may find longer tours than the
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other variants for some instances. The two hybrid−m variants perform very

similarly. The only real way to differentiate the two is by the ranges of their

results. Hybrid-15 has an overall higher range, with both higher minimum

and maximum ratios. This means that it does not find solutions as good as

those found through hybrid-10 in the best case and finds worse solutions in the

worst case. However, hybrid-15 produces ratios with a smaller interquartile

range. Both hybrid-10 and hybrid-15 produce tours with length within 1.5%

of optimal for most large VLSI instances, and their summary statistics do not

indicate one being clearly better than the other.

Looking at the LKH statistics, an opposite trend can be seen. While

it still performs very well in all instances, both the average and median opti-

mality gap increase when only considering larger instances. Additionally, the

maximum ratio remains the same, indicating this was found on one of the

larger instances. These results show that while the tours found through CHP

seem to generally improve on larger instances, LKH seems to perform slightly

worse. That said, LKH still finds better tours than any of the CHP variants.

However, when considering only larger problems, the difference in performance

between CHP and LKH decreases.

The length ratios and runtimes of the CHP variants and LKH for the

VLSI test set are shown in Figure 4.12. The two charts on the left were again

included to show overarching trends in performance and runtime as problem

size increases. Interestingly, around 5000 nodes seems to be where the trend

in both solution quality and runtime noticeably change to be more favorable
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(a) All Instances

(b) Instances with ≥ 20000 points

Figure 4.11: VLSI TSP Tour Length Ratio Summary
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for CHP. Below 5000 nodes, using CHP probably does not save enough time

to justify the decrease in solution quality. However, as instances get larger,

the CHP variants run much faster than LKH. Again, the discussion focuses

on cheapest-15, hybrid-10, and hybrid-15. Summary statistics for the ratio

of CHP time to LKH time are shown in Table 4.6. Across all instances, the

runtime improvements do not seem that great. Over half of the VLSI instances

are less than 5000 nodes, which skews the overall statistics.

For instances larger than 20000 points, the CHP variants run 2-4 times

faster than LKH. Of the three CHP variants, cheapest-15 is generally the

slowest, hybrid-15 is generally the fastest, and hybrid-10 falls somewhere in

the middle. All CHP variants run much faster than LKH. In the worst case,

each variant runs about twice as fast as LKH. In the best case, they all run

between 4 and 5 times faster. Finally, one of the best results is the 75th

percentiles for hybrid-10 and hybrid-15, which show that for at least 75% of

instances with more than 20000 nodes, these CHP methods run in less than

40% of the time taken by LKH. Cheapest-15 is only slightly slower, as it solves

most instances in less than 46% of the LKH runtime.

Looking at Figure 4.13, the performance and runtime of CHP and LKH

are shown for only VLSI instances with at least 20000 nodes. The general

trends remain the same, although maybe less pronounced. As expected from

the aggregated results, Cheapest-15 produces the most variable tour length

ratios, with hybrid-10 and hybrid-15 being more consistent across the tests.

Additionally, the time chart shows that all three CHP variants run much
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(a) Tour Length Ratio

(b) Runtime

Figure 4.12: Results for all VLSI Instances
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faster than LKH and match the expectations from the summarized results.

Cheapest-15 and hybrid-15 usually have the slowest and fastest runtime, re-

spectively.

Based on the VLSI tour length ratio and runtime results, CHP performs

well relative to the two outlined benchmarks, the best-known lengths and LKH.

This is especially true as problem size grows. When looking at instances with

at least 20000 points, the runtime improvement may justify the slight decrease

in solution quality. Especially for large instances, solving a problem 2-3 times

faster can be a significant amount of absolute time. Consider the largest VLSI

instance tested. From Figure 4.13b, the LKH runtime is around 1750 seconds

and the CHP variants solve the problem in around 750 seconds. The LKH

tour has an optimality gap of just under 0.5% and the CHP variants find

tours around 1.2% longer than the optimal tour. This means CHP found a

solution less than 1% worse than LKH and took 1000 seconds, or roughly 16

minutes, less. Depending on the application, LKH may be the better tool,

especially when trying to find the absolute best tour. However, if runtime is

of any concern, these results make an argument for considering CHP.

4.8 Discussion

To recap the results, preliminary tests were conducted to examine the

effects of LKH parameter values on both LKH and CHP, different insertion or-

ders, and cheapest−m (and hybrid−m) parameter values. Insights from these

tests limited the number of tests for the largest instances. Testing included
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(a) Tour Length Ratio

(b) Runtime

Figure 4.13: Results for VLSI Instances with more than 20000 Points
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both national and VLSI instances, ranging in size from 29 to just under 35000

points. Based on LKH parameter testing, all further testing used fast LKH.

After testing cheapest−m variants, cheapest−m or hybrid−m used m values

of 5, 10, and 15 in any later test. Finally, partitioning methods used an ascend-

ing insertion order. Using a descending produced better tours in some cases

but led to a prohibitively long runtime. These results helped determine which

CHP variants to test on larger problems. Because there are fewer national

TSP instances, cheapest-5, cheapest-10, cheapest-15, hull, hybrid-5, hybrid-

10, and hybrid-15 partitioning were tested. The same set of CHP variants

were used for VLSI instances with less than 20000 points. The VLSI test set

contains many more large instances. For that reason, tests on instances with

more than 20000 points included only cheapest-15, hybrid-10, and hybrid-15

partitioning. Again, all CHP variants used an ascending insertion order and

fast LKH to solve subproblems in the final testing stage.

Several CHP variants performed very well relative to both the best-

known tour lengths and LKH, especially for large problems. For the tested

national TSPs, hull partitioning seems to perform the best. For VLSI in-

stances, cheapest-15, hybrid-10, and hybrid-15 all seem to produce very good

solutions. The difference in the best methods between the two problem sets

is likely due to the difference in the shape of their convex hull. Unexpectedly,

hull partitioning appears to lead to better solutions when the convex hull of

a TSP’s point set is more irregular, such as in national TSPs. This may be

caused by the large areas of low point density seen in many national problems.
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Without very many points, the proximity-based assignment methods do not

have as many nearby points for comparison. The opposite effect may be seen

for the VLSI instances, which typically consist of very densely packed points.

In this type of problem, cheapest−m and hybrid−m perform better.

As noted in the recaps of national and VLSI testing, CHP performs well

relative to both benchmarks, especially on large problems. For problems with

more than 20000 points, CHP seems to find better tours for VLSI instances

rather than national problems. However, there were not as many large na-

tional instances, which may affect this conclusion. As noted when discussing

both problem sets, two trends are seen in CHP performance as problem size

increases. First, CHP produces tours closer to the optimal (or best-known)

length. Second, the difference between LKH and CHP runtime grows. This

means that CHP becomes a more effective alternative to LKH as problems

grow large. These trends are most likely because the number of partitions

does not grow proportionally to the number of points. This means partitions

contain more points. When points are distributed to fewer partitions, they

are more likely to be assigned to the correct one. Because LKH is used to

solve subproblems, they are solved to a high degree of accuracy. With many

points assigned to the correct partition and an accurate subproblem solver,

CHP produces a high-quality final tour. One downside of larger subproblems

is that they take longer to solve. However, because the runtime of LKH grows

very quickly with the number of points, solving several moderately large sub-

problems is still faster than a single much larger problem.
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4.9 Limitations and Future Work

The bulk of the CHP framework is implemented in Python 3.6.2. The

LKH and Concorde solvers used to solve subproblems are written in C, with

binaries available online through the authors’ websites [Cook, a],[Helsgaun, a].

The interplay between the Python and C portions exists as a major limitation

of this implementation but building an integrated C program was beyond the

scope of this work. As it stands, all partitioning functionality is implemented

in Python. For each partition, a TSP file containing that partition’s points is

saved and used as input for one of the solvers. An instance of the solver runs

for each partition TSP file, producing the subproblem Hamiltonian paths. The

solver saves these paths as output files before to be read by Python, appended

together, and returned as a final tour. A runtime breakdown of each portion

of CHP using hybrid-10 partitioning is shown in Figure 4.14. The charts show

the total CHP time (solid line), fast LKH time (dashed line), and time taken

by different stages of CHP (columns) for different size instances. The different

columns show the time taken for each portion of CHP. Subproblem solution

refers to the time taken to solve subproblems using LKH. Partitioning refers

to the time taken to initialize and assign points to groups. Finally, transition

is the time required for saving and writing files to use with LKH. As shown

in the figure, most of the time is taken by solving subproblems. The next

biggest contributor is partitioning. Transition time is not a significant portion

of the total solution time of CHP. However, any additional time required to

move between Python and C is time not spent actively moving towards a
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solution. Additionally, Python code runs more slowly than programs written

and compiled in C. The speed difference between Python and C and the time

spent on file input and output seem to be low-hanging fruit in terms of runtime

improvement. While it was beyond the scope of this dissertation, a more

integrated implementation of CHP and LKH all written in C would lead to

further runtime improvements. Given the partitioning heuristics already built

into LKH, integrating CHP seems like a good avenue for future work.

Beyond making it more integrated, a more efficient implementation of

CHP could probably be written. The current version performs well when

compared to existing heuristics, but further improving the implementation

could only help performance. Another implementation-based area of future

work lies in a parallel version of CHP. Because they do not rely on results from

one another, the subproblems can be solved in parallel before combining them

to find a final tour. Again, programming CHP as efficiently and effectively

as possible was not the primary focus, and therefore, making implementation

improvements exists as another major area of future work.

Another factor limiting the runtime improvement seen through using

CHP is the number of partitions and its dependence on the size of the convex

hull boundary of a given problem. As problems grow larger, the number of

interior points typically grows much more quickly than the number of hull

points. To better demonstrate this, a chart of the number of hull points as

problem size increases is shown in Figure 4.15. In this chart, blue circles and

orange x markers represent national and VLSI TSPs, respectively. Clearly, the
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(a) National TSPs

(b) VLSI TSPs

Figure 4.14: CHP Runtime Breakdown

105



number of hull points does not scale with the number of points overall. Ad-

ditionally, national TSPs tend to have more hull points than VLSI instances.

This trend could be another factor leading to national TSPs being generally

faster to solve with CHP than VLSI instances. CHP forms the same number of

partitions as the number of hull points. This means that larger TSP instances

have more points in each partition. For example, consider the TSP instances

dj38, ar9152, and bm33708 which consist of 38, 9152, and 33708 nodes, re-

spectively. Similarly, dj38 has 8 hull points, ar9152 has 18, and bm33708 has

22. If points were evenly distributed across their partitions, dj38 would have

partitions containing either 4 or 5 points and bm33708 would have partitions

containing around 1532 points. Scaling the number of partitions more closely

with the number of points in a TSP instance would lead to smaller partitions,

faster subproblem solutions, and a lower overall runtime. However, as CHP is

based on using the convex hull points as the basis for partitions, it does not

provide an obvious way to increase the number of groups. Thus, extending

CHP to generate more partitions is another potential area for future research.

The premise of any such extension is to determine a larger set of points than

the convex hull boundary that still has the benefit of a known order in the

final tour. Augmented CHP, described in Chapter 5, attempts to increase the

number of partitions, but the results were mixed and more work remains to

be done.

More work could also be done developing other partitioning methods

for use with CHP. These could include more traditional clustering methods,
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Figure 4.15: Convex Hull Size as Problem Size Increases
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such as k-means or DBSCAN [Tan et al., 2019]. In early testing, CHP using

k-means did not perform as well as with other partitioning methods. For that

reason, it was not tested further. DBSCAN uses several ambiguous param-

eters, which are difficult to choose without running several iterations of the

algorithm. Additionally, the results of DBSCAN parameters may vary widely

across different problem instances. This work focuses on finding methods that

worked reasonably well across many TSP instances; for that reason, testing

DBSCAN was not pursued. However, partitioning methods other than those

presented in this work may lead to a better final tour. As was shown through

the results in Section 3.3, partitioning plays an incredibly important role in

determining the quality of the output tour. Developing partitioning methods

that get increasingly close to assigning points to the correct groups will lead

to increasingly better tours.

One final area of potential work lies in extending CHP to other TSP

variants. As implemented, CHP only solves Euclidean TSPs. Ideally, this

could be extended to include asymmetric TSPs or TSPs through incomplete

networks. The current implementation requires input point coordinates and

calculates distance between each pair of points. Modifying CHP to use an

input distance matrix would allow for asymmetric distances. To accommodate

incomplete graphs, place-holder values could be used to indicate edges that do

not exist.
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4.10 Results Tables

The tables in this section contain the results of testing on the CHP ex-

tensions described in Chapter 4. The tables come in two forms, one containing

summary statistics and another containing all test results.

The summary statistic tables aggregate the tour length ratios of the

tests up to the relevant level. For example, Table 4.3 groups the tests by prob-

lem set and partitioning method before aggregating the results. This allows

examination of the effectiveness of each partitioning method for different in-

stance types. The summary statistics recorded include count, mean, standard

deviation, minimum, 25th percentile, median, 75th percentile, and maximum

value of the tour length ratio.

The second table type contains raw test results, with each row repre-

senting an individual test. Each column represents either a characteristic of

the CHP variant used in the test or a metric used to examine the results.

Type Partitioning Method Mean Std Dev Minimum 25% Median 75% Maximum

National

Cheapest-2 1.091189 0.038198 1.035063 1.063331 1.079214 1.115424 1.155091
Cheapest-3 1.068462 0.038369 1.004963 1.043802 1.081011 1.085916 1.14349
Cheapest-5 1.058122 0.031802 1.004963 1.040099 1.055951 1.078608 1.119621
Cheapest-10 1.046971 0.021509 1.004963 1.034614 1.043514 1.064647 1.077072
Cheapest-15 1.042607 0.018153 1.004963 1.033149 1.043329 1.055097 1.069825
Cheapest-25 1.043423 0.019344 1.004963 1.034433 1.041337 1.052711 1.075544

VLSI

Cheapest-2 1.064157 0.03407 1.011938 1.039239 1.057378 1.079476 1.167398
Cheapest-3 1.050576 0.028365 1.015288 1.029963 1.041957 1.064156 1.156156
Cheapest-5 1.041045 0.025829 1.012227 1.025265 1.032674 1.04918 1.149123
Cheapest-10 1.039794 0.023886 1.010944 1.024264 1.032607 1.047651 1.127628
Cheapest-15 1.038909 0.021421 1.015646 1.025531 1.032088 1.04866 1.098844
Cheapest-25 1.039226 0.02084 1.015749 1.024719 1.034089 1.046722 1.11038

Table 4.1: Cheapest−m Testing Tour Length Ratio Summary
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Type Partitioning Method Sorting Method Mean Std Dev Minimum 25% Median 75% Maximum

National

Cheapest-10
Ascending 1.041186 0.018656 1.004963 1.025618 1.038571 1.056893 1.077072
Descending 1.036117 0.020573 1.007662 1.023854 1.032534 1.043436 1.113393

Cheapest-5
Ascending 1.04942 0.026486 1.004963 1.028692 1.042689 1.067527 1.119621
Descending 1.038139 0.026995 1.007662 1.022251 1.031847 1.044799 1.14894

Hull
Ascending 1.035077 0.016494 1.004963 1.023554 1.034399 1.040006 1.080938
Descending 1.163679 0.584803 1.007662 1.030801 1.040799 1.066192 4.027742

Hybrid-5
Ascending 1.046419 0.026143 1.004963 1.02656 1.040921 1.058732 1.124938
Descending 1.197102 0.82045 1.007662 1.024879 1.033866 1.0435 5.218511

VLSI

Cheapest-10
Ascending 1.037185 0.023367 1.010944 1.022405 1.029338 1.044051 1.127628
Descending 1.035543 0.0178 1.014519 1.022901 1.029388 1.039479 1.091266
Shifted 1.03477 0.015228 1.012653 1.023352 1.032416 1.042573 1.074561

Cheapest-5
Ascending 1.038316 0.025326 1.012227 1.021777 1.030348 1.047526 1.149123
Descending 1.03777 0.01983 1.016101 1.02596 1.031888 1.044999 1.115616

Hull
Ascending 1.081401 0.035384 1.026614 1.05384 1.074608 1.094015 1.200625
Descending 1.057326 0.02565 1.019373 1.038109 1.050612 1.074301 1.126758
Shifted 1.069798 0.028619 1.023816 1.047005 1.068419 1.089452 1.17394

Hybrid-5
Ascending 1.032756 0.015831 1.011595 1.02231 1.028659 1.03878 1.080206
Descending 1.032676 0.015985 1.011988 1.020989 1.028705 1.037769 1.107949
Shifted 1.035883 0.015507 1.012187 1.025589 1.033184 1.040885 1.088645

Table 4.2: Insertion Order Tour Length Ratio Summary

Method Mean Std Dev Minimum 25% Median 75% Maximum

All Instances

Cheapest-10 1.041186 0.018656 1.004963 1.025618 1.038571 1.056893 1.077072
Cheapest-15 1.038286 0.015274 1.004963 1.027033 1.038353 1.050201 1.069825
Cheapest-5 1.04942 0.026486 1.004963 1.028692 1.042689 1.067527 1.119621
Hull 1.035077 0.016494 1.004963 1.023554 1.034399 1.040006 1.080938
Hybrid-10 1.039619 0.017852 1.004963 1.025288 1.035241 1.051321 1.073192
Hybrid-15 1.03743 0.015426 1.004963 1.025948 1.036518 1.047783 1.069825
Hybrid-5 1.046419 0.026143 1.004963 1.02656 1.040921 1.058732 1.124938
LKH 1.006872 0.015982 1 1.001122 1.0018 1.004637 1.077333

≥ 10000 points

Cheapest-10 1.032186 0.016759 1.01874 1.021068 1.024381 1.037525 1.064994
Cheapest-15 1.028393 0.009092 1.019253 1.021653 1.024324 1.034824 1.042223
Cheapest-5 1.036391 0.01857 1.020237 1.0247 1.027722 1.041826 1.073724
Hull 1.024412 0.008434 1.0156 1.017405 1.022456 1.030227 1.037562
Hybrid-10 1.02883 0.012183 1.017526 1.020392 1.024236 1.034728 1.04981
Hybrid-15 1.028938 0.011005 1.018606 1.020951 1.024413 1.035598 1.046445
Hybrid-5 1.032117 0.014103 1.020427 1.02166 1.025465 1.038385 1.058839
LKH 1.012915 0.028428 1.001301 1.001595 1.001708 1.003437 1.077333

Table 4.3: National TSP Tour Length Ratio Summary
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Method Mean Std Dev Minimum 25% Median 75% Maximum

All Instances

Cheapest-10 1.020668 1.587578 0.197901 0.26291 0.36986 0.952536 7.565797
Cheapest-15 1.044192 1.42567 0.206821 0.293868 0.382647 1.059974 5.993854
Cheapest-5 0.884996 1.171526 0.186241 0.246829 0.367992 0.970407 5.266605
Hull 1.04677 1.445117 0.169943 0.258339 0.361881 1.125991 6.364203
Hybrid-10 0.978889 1.461294 0.17955 0.262125 0.379157 0.978219 6.915064
Hybrid-15 0.954922 1.349047 0.185441 0.272508 0.352767 0.970509 6.436971
Hybrid-5 1.064255 1.751422 0.182562 0.245385 0.362286 0.875882 6.88121

≥ 10000 points

Cheapest-10 0.231735 0.025457 0.197901 0.214545 0.230513 0.24887 0.266902
Cheapest-15 0.241982 0.03539 0.206821 0.213479 0.231732 0.267873 0.29262
Cheapest-5 0.216305 0.029656 0.186241 0.193635 0.211561 0.231217 0.266631
Hull 0.217102 0.041132 0.169943 0.184044 0.221407 0.236666 0.286943
Hybrid-10 0.218911 0.035323 0.17955 0.194171 0.201231 0.247397 0.268461
Hybrid-15 0.222895 0.042782 0.185441 0.190439 0.197745 0.253848 0.288509
Hybrid-5 0.212802 0.028114 0.182562 0.188596 0.214659 0.23027 0.254664

Table 4.4: National TSP Time Summary Statistics

Method Mean Std Dev Minimum 25% Median 75% Maximum

All Instances

Cheapest-10 1.037185 0.023367 1.010944 1.022405 1.029338 1.044051 1.127628
Cheapest-15 1.032705 0.021501 1.009798 1.018716 1.026422 1.038641 1.098844
Cheapest-5 1.038316 0.025326 1.012227 1.021777 1.030348 1.047526 1.149123
Hull 1.081401 0.035384 1.026614 1.05384 1.074608 1.094015 1.200625
Hybrid-10 1.029287 0.015457 1.009312 1.017345 1.026814 1.033907 1.08587
Hybrid-15 1.029297 0.015859 1.010898 1.018005 1.026794 1.035009 1.092896
Hybrid-5 1.032756 0.015831 1.011595 1.02231 1.028659 1.03878 1.080206
LKH 1.002074 0.002018 1 1.000438 1.00152 1.003319 1.012341

≥ 20000 points

Cheapest-15 1.013777 0.004469 1.009798 1.01131 1.011933 1.01372 1.023705
Hybrid-10 1.013057 0.002452 1.009312 1.011779 1.012676 1.014935 1.017782
Hybrid-15 1.013067 0.002341 1.010898 1.011709 1.012701 1.013452 1.020037
LKH 1.004782 0.002274 1.003264 1.003809 1.004251 1.00482 1.012341

Table 4.5: VLSI TSP Tour Length Ratio Summary

Method Mean Std Dev Minimum 25% Median 75% Maximum

All Instances

Cheapest-10 0.863883 0.397004 0.184232 0.59205 0.850054 1.153819 1.855708
Cheapest-15 0.812852 0.439144 0.174568 0.42438 0.729908 1.153831 1.826261
Cheapest-5 0.821678 0.392392 0.16932 0.546907 0.772005 1.09762 1.743561
Hull 0.949595 0.420837 0.177663 0.632992 0.911028 1.270457 1.990936
Hybrid-10 0.776813 0.422414 0.178167 0.376185 0.66188 1.081566 1.770218
Hybrid-15 0.741827 0.411472 0.186958 0.380672 0.660022 1.043354 1.888237
Hybrid-5 0.798618 0.369081 0.177687 0.505896 0.773647 1.112434 1.538877

≥ 20000 points
Cheapest-15 0.384945 0.085423 0.235317 0.338761 0.366494 0.46008 0.526377
Hybrid-10 0.359009 0.081275 0.225493 0.317993 0.338406 0.397266 0.498538
Hybrid-15 0.343978 0.078723 0.206485 0.300095 0.324222 0.386352 0.484926

Table 4.6: VLSI TSP Time Summary Statistics
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Chapter 5

Extensions of CHP

The standard CHP implementation is designed to produce a high qual-

ity TSP solution in a reasonable amount of time. Based on testing, CHP per-

forms well in that capacity. However, improvements can still be made. Three

extensions to the standard CHP implementation are described in this section.

First, a recursive implementation attempts to solve TSPs even more quickly.

Second, augmented CHP uses the same general framework but increases the

number of partitions by using more points as partition bases. Finally, tests

are run using an improvement heuristic on the output CHP tour to lower the

final tour length.

5.1 Recursive Implementation

A recursive implementation of the CHP framework attempts to pro-

vide a further improvement in solution time. Algorithm 14 shows an outline

of recursive CHP. The implementation begins with a specified recursion limit.

This value sets the maximum size of any partition. This also limits the maxi-

mum size of any Hamiltonian path problem solved by the subproblem method.

This is useful because as problem instances grow, the partition size also grows,
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leading to the subproblems themselves being large. The trade-off of recursive

CHP is a drop in solution quality as partitioning plays a larger role in deter-

mining the overall solution. Recursive CHP initially partitions points exactly

the same as non-recursive CHP. Then, a recursive call of CHP is performed

on any partition larger than the recursion limit. For any group smaller than

the limit, the subproblem is solved and its solution is incorporated into the

output tour.

Input: N : set of points, γ: recursion limit
Output: T : heuristic tour
T = [ ];
Q = partitioning of N ;
for partition q ∈ Q do

Nq = points ∈ q;
if |Nq| ≤ γ then

pq = Hamiltonian path through Nq;
else

pq = RecursiveCHP (Nq, γ);
end
Append pq to T ;

end
Return T ;

Algorithm 14: Recursive CHP

5.1.1 Recursive CHP Experiments

Recursive CHP places an upper limit on the number of points in a

subproblem being solved by LKH. A recursive call of CHP is performed on

any partition with more points than the recursion limit. The recursion level

dictating that upper limit is an input parameter and affects the final solution.

113



Because the heuristic nature of CHP largely stems from imperfect partitioning,

a lower recursion tends to lead to longer final tours. This is because partition-

ing plays a larger role in recursive CHP. Every time CHP is called within a

group of points, an additional layer of partitioning occurs and the likelihood of

error increases. However, solving large subproblems with LKH is the biggest

contributor to the overall runtime of CHP. In theory, the recursive version

helps decrease runtime by shifting work to the faster partitioning algorithms

and decreasing the size of subproblems solved by LKH.

LKH is capable of quickly solving small TSP instances, and CHP runs

significantly faster only as problems grow larger. Recursive CHP is expected to

exhibit the same trend because there is more room for runtime improvement

on larger instances. For that reason, tests consist of a comparison between

standard CHP, recursive CHP, and LKH for instances with more than 15000

points. Testing included recursion levels of 5000, 10000, and 20000 points

and both national and VLSI problems. If the recursion level is set higher

than the number of points in the TSP instance being solved, then recursive

CHP functions exactly as the standard implementation. For example, consider

solving the Finland instance (fi10639), which has 10639 points. If a recursion

level of at least 11000 is used, then recursive CHP runs exactly as standard

CHP. However, if a recursion level of 10000 is used, then a recursive call may

occur.

Summary statistics of the recursion level tests are shown in Tables 5.1

and 5.2. These tables contain tour length ratio and runtime comparisons,
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respectively. Additionally, a summary of the recursive CHP results is shown

in Figure 5.1. The results are split into national and VLSI instances, which

are shown in Figures 5.1a and 5.1b, respectively. These figures show recursive

CHP’s relative performance to standard CHP. The horizontal axis shows the

ratio to CHP time. The vertical axis again shows the ratio to the optimal

tour length. In this case, different colors represent the tested recursion levels,

with markers indicating a different solution method. Plotting these metrics

for each test instance helps identify trends in relative performance between

the two methods. Because the primary interest is examining the effects of

recursion limit, these are shown in different colors.

In both cases, recursive CHP leads to a runtime improvement over

traditional CHP when using a recursion limit of 5000. When used to solve

VLSI instances, recursive CHP leads to shorter runtimes for recursion limits of

both 5000 and 10000. As expected, using lower recursion limits leads to bigger

runtime improvements. In most cases, a 20000-point recursion limit does not

lead to any significantly lower runtime compared to traditional CHP; the best

case of any variant with a 20000 limit ran in around 90% of the traditional

CHP runtime. The biggest improvement comes from using a recursion level of

5000. For either type of problem, recursive CHP with a limit of 5000 solves

TSPs in less than 80% of the time of traditional CHP, on average. Recursive

CHP runs even faster for VLSI problems. With a limit of 5000 points, all VLSI

instances were solved in at most 72.5% of CHP time regardless of partitioning

method. On average, they were solved in around half of traditional CHP’s
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(a) National TSPs

(b) VLSI TSPs

Figure 5.1: Recursive CHP Summary Results
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total time. When using a limit of 10000 points, the runtime improvement is

less; recursive CHP solves VLSI problems in an average of 75% and 68% of

CHP time for cheapest-15 and hybrid-10 partitioning, respectively. However,

this can still be a large improvement in absolute time for large instances.

The increased solution speed comes at the cost of solution accuracy,

albeit a small amount in most cases. Again, for national TSPs, only a recursion

level of 5000 points made an impact on the results. In this case, the average

optimality gap increased by around 1% for the tested partitioning methods.

The tour length ratios for VLSI instances were changed for recursion levels

5000 and 10000. For the 5000-point case, average and median optimality

gaps increased by about 1.5% over the no recursion case. As expected, this

increase was less when using a recursion level of 10000 points. Across all VLSI

instances, partitioning methods, and recursion levels, the worst-case solution

was 3.8% above optimal. For at least 3
4

of VLSI instances, the optimality gap

was just over 2% when using a recursion level of 10000 points.

In summary, lower recursion limits lead to faster runtimes but longer

tours. These trends can be seen in Figure 5.1. The red markers show the

results of standard CHP on each instance and serve as the benchmark. The

blue and orange markers, showing 5000- and 10000-point limits, tend to have

x-values less than 1, indicating a lower runtime than CHP. However, they also

typically have a higher y-value, which means a tour further from the optimal

length. On the other hand, the green markers showing tests with a recursion

limit of 20000 points typically appear near the baseline CHP markers. This
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shows a recursion limit of 20000 finds tours of about the same length as CHP

in about the same time.

The tour length and runtime trends described can be seen in Figure

5.2, which shows a summary of the VLSI test results. Clearly, the tour length

ratio decreases as the recursion level increases. On the other hand, the ratio

to CHP time is lower for smaller recursion levels as these variants run faster.

The charts in Figure 5.2 show a comparison of CHP, recursive CHP, and

LKH. Clearly, LKH finds the best tours. However, as problems grow in size,

CHP and recursive CHP solve problems significantly faster. The trends shown

in Figure 5.1 can be seen here as well. In Figure 5.2a, markers indicating a

lower recursion limit are higher on the chart, corresponding to a tour length

further from optimal. However, the 5000- and 10000-point limit markers in

Figure 5.2b have the lowest y-values, meaning recursive CHP using smaller

limits run faster than standard CHP and LKH. Consider the instance with

just below 35000 points. LKH finds the tour closest to optimal, followed by

standard CHP and recursive CHP with a limit of 20000 points. A limit of

10000 leads to solutions just over 2% above optimal, and a recursion limit of

5000 results in the longest tours, about 3% above optimal. The trend reverses

in the runtime chart. LKH is the slowest method by far. Standard CHP and

recursive CHP with a 20000-point limit run in about 1000 seconds less than

LKH. Recursive CHP with 5000- and 10000- point limits run the fastest. They

take almost 1500 fewer seconds less than LKH and run in 1
3

to 1
2

the time of

standard CHP.
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(a) Tour Length Ratio

(b) Ratio to CHP Time

Figure 5.2: Recursive CHP Results as Problem Size Increases
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Depending on the recursion limit, recursive CHP solves TSPs more

quickly but results in slightly longer tours. Based on the conducted tests, a

recursion limit set to no more than half the total number of points typically

leads to recursive calls. Decreasing the recursion level leads to faster solution

times but finds longer tours. These results show that recursive CHP can be a

useful tool for solving TSPs. Whether or not to use recursive CHP depends

on the priorities of the user. If speed is most important, recursive CHP seems

to solve TSP more quickly than CHP and thus also LKH. If accuracy is top

priority, then LKH is hard to beat. Finally, CHP seems to be a happy medium

of the two.

5.2 Augmented Convex Hull Partitioning

As discussed in Section 4.9, one limitation of CHP is its reliance on

the convex hull boundary to determine the number of partitions used to form

subproblems. Because the size of the convex hull boundary does not scale pro-

portionally to the number of points in a TSP instance, even the Hamiltonian

path subproblems can themselves be large. This means that while CHP is

relatively fast compared to other methods, it can still take a large amount of

time in an absolute sense. In theory, increasing the number of partitions leads

to solving smaller subproblems and thus a lower overall solution time. The

method presented here, augmented CHP, is one way to produce more parti-

tions. As the name implies, augmented CHP picks a subset of interior points to

augment the convex hull boundary when initializing partitions. An outline of
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the method is shown in Algorithm 15. The procedure is the same as standard

CHP except for two additional steps occurring between finding the convex hull

and assigning points to partitions. Once the convex hull has been found, a

subset of interior points is chosen. Then, a Hamiltonian tour through the hull

points and interior point subset is found. This tour then replaces the convex

hull boundary as the basis for forming partitions. Instead of a partition for

each pair of consecutive hull points, in augmented CHP, a partition is formed

for each consecutive of points in the augmented subset tour. Once partitions

have been initialized, the process for assigning points, solving subproblems,

and forming a final tour is the same standard CHP.

Input: N : set of points
Output: T : heuristic tour
H = convex hull boundary of N ;
I = points in N not in H;

Î = subset of I chosen to augment H;

Ĥ = Hamiltonian tour through points in H
⋃
Î;

Initialize partitions by forming one for each pair of consecutive
points in Ĥ;

Assign points to partitions;
Solve Hamiltonian path through each partition;

T = join partition paths using points in Ĥ; Return T ;

Algorithm 15: Augmented CHP

How to choose points to augment the convex hull is another factor in

augmented CHP. Four potential methods for making this selection are ascend-

ing order, descending order, random, and iterative convex hulls. Ascending

and descending order are very similar to the insertion orders when forming
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partitions. Ascending selection adds the nearest points to a hull point until

the desired number is reached. Descending selection adds the furthest points

first. Unsurprisingly, random is a random selection of interior points. Iterative

convex hulls is the most intensive. It begins by finding the overall convex hull.

Then, the convex hull of the interior points is found. Points in the boundary

of this inner convex hull are used to augment the overall set of hull points.

If the desired number has been reached, then the algorithm moves forward

to find an order. If too few points have been selected, the process continues

by finding convex hulls of successively smaller interior point sets until enough

points have been chosen.

5.2.1 Augmented CHP Experiments

For each national and VLSI instance, augmented CHP was run using 20,

30, and 50 partitions. This testing includes only ascending selection. Iterative,

descending order, and random selection were not included because they either

found significantly worse tours or took much longer to run in preliminary

testing. Augmented CHP performs relatively well for instances with more

than 10000 points. For problems smaller than that threshold, augmented CHP

still finds solutions within 10% of optimal but typically takes more time than

CHP. Standard CHP itself does not lead to significant runtime improvement

until problems become larger. For this reason, the augmented CHP results

discussed include only problems with more than 10000 points. Aggregations

of the tests are shown in Tables 5.3 and 5.4. These tables show summary
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statistics of the tour length ratio and ratio to CHP time, respectively. When

determining the usefulness of augmented CHP, the optimal (or best known)

tour length still makes sense as a benchmark. However, in this case CHP

replaces LKH as the time benchmark. This allows for comparison between

augmented and traditional CHP. Clearly, the hope was that augmented CHP

finds better tours in less time than CHP. Unfortunately, that does not seem

to be the case in general. Charts comparing the tour length ratio of different

augmentation levels are shown in Figure 5.3. In this case, different colors

indicate a different number of partitions used to solve the TSP. Results are

again split into the national and VLSI categories. Augmented CHP seems

most effective for VLSI instances. Specifically, augmented CHP finds better

solutions than standard CHP when using hybrid-10 partitioning. For national

instances, augmented CHP finds solutions comparable to standard CHP for

most variants.

A few trends can be clearly seen in the results. First, the variants with

50 partitions usually found longer tours, although not significantly. The me-

dian optimality gap is still within 2.5% for most variants. For VLSI instances,

hybrid-10 partitioning seems like the obvious partitioning method to pair with

augmented CHP. For all three partition numbers, it found better tours than

standard CHP in at least half of the instances. Additionally, augmented CHP

typically takes about the same time as standard CHP to solve VLSI instances.

On the other hand, augmented CHP performs less well on national instances.

It typically takes slightly longer than standard CHP and does not seem to find
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better tours in general. Specifically, hull partitioning does not seem to pair

well with augmented CHP. The number of partitions does not seem to make a

major difference in tour quality. However, increasing the number or partitions

too much seems to decrease the quality of the final solution. Typically, using

20 or 30 partitions lead to better tours than 50 partitions. Another interesting

trend is that the interquartile range is lower for some augmented CHP variants

than standard CHP.

Figures 5.4 and 5.4 show the tour length ratio and runtime of aug-

mented and standard CHP as problems grow in size. Figures 5.4a and 5.5a

show the tour length ratio of national and VLSI instances. Figures 5.4b and

5.5b show runtimes of the various methods. As in the box plots, different

colors represent different augmentation levels. In the scatter plots, different

marker shapes indicate different partitioning methods. Again, only instances

with more than 10000 points are included. Based on the tests, there is no

augmented CHP variant that is clearly better than standard CHP. The tour

length comparisons do not show any augmented CHP variant that produces

consistently better tours. However, as problems continue to grow larger, stan-

dard CHP seems to take slightly longer than augmented CHP in many of

instances.

Based on the test results, augmented CHP performs comparably with

CHP in many cases. As problems grow increasingly large, augmented CHP

may run slightly faster. One potential limitation is the way partition basis

points are ordered. Choosing which points to include with the convex hull
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(a) National Instances

(b) VLSI Instances

Figure 5.3: Summary of Augmented CHP using Ascending Selection
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(a) Tour Length Ratio as Problem Size Increases

(b) Runtime as Problem Size Increases

Figure 5.4: Augmented CHP Results for National Instances
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(a) Tour Length Ratio as Problem Size Increases

(b) Runtime as Problem Size Increases

Figure 5.5: Augmented CHP Results for VLSI Instances
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points and finding the Hamiltonian tour through this augmented hull both

add time. Additionally, using more partitions typically leads to smaller par-

titions. This means more time is spent forming partitions and less is spent

solving subproblems. As discussed in Section 4.9, augmented CHP would likely

improve with a more integrated implementation. Partitioning is performed in

the Python portion of the code. Additionally, using more partitions requires

more reading and writing of files to use with LKH. With a more integrated

version of augmented CHP written in C, partitioning would take less time,

and the file reading and writing would not be required. Another limitation

with using a Hamiltonian tour of the augmented point set is that the order

of points in the smaller tour is not guaranteed to be the same order in which

those points occur in the overall tour.

Ideally, augmented CHP would have been an outright improvement on

traditional CHP. However, it seems to highlight how effective CHP is as a

TSP heuristic and underlines the usefulness of the convex hull of the input

points. The major limitation of augmented CHP is not knowing the order of

the augmented point set in the final tour. This order is found heuristically,

which both adds time and leads to error in the final tour. These initial tests

show augmented CHP can produce better tours and run more quickly than

CHP. More work into the method could lead to consistently better solutions.

One main area of potential work is developing better selection methods, ideally

with an inherent order of the points. This would more closely mirror CHP but

would ideally contain more points to build partitions around.
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5.3 Secondary Improvement Algorithms on CHP Tours

As outlined in Section 2.1.4, TSP improvement methods take an initial

tour and make changes, typically edge swaps, that lead to a shorter distance

tour. While capable of generating a strong initial tour, LKH is at its most basic

level a very strong implementation of the Lin-Kernighan algorithm, allowing

it to be used as an improvement method [Helsgaun, 2000]. To that end, any

feasible tour, including one generated through CHP, can be used as an initial

tour in LKH. Beyond LKH, other improvement methods, such as 2- or 3-opt

can be used to improve a tour found through CHP.

The results of preliminary testing are shown in Figure 5.6. These tests

used CHP tours as the initial tour for LKH. Both national and VLSI instances

with less than 10000 points were tested. The initial tours came from CHP using

cheapest-5, cheapest-10, hull, and hybrid partitioning. A comparison of tour

length ratios for the CHP variants and fast LKH is shown in Figure 5.6a. As

shown in the chart, using the CHP tour an initial tour for LKH typically leads

to worse solutions. Some partitioning methods lead to better tours than others.

For example, cheapest-10 clearly performs the worst, as most of its tour length

ratios are higher than that of any other method. The other CHP variants find

tours much closer to LKH, especially for smaller instances. The good news

is that the secondary LKH algorithm did improve the tours in all instances.

This shows that improving the CHP tours can be done by using them as input

to a secondary algorithm. Unfortunately, using an initial or input tour did

not seem to improve the runtime of LKH. Runtimes are shown in Figure 5.6b.

129



The LKH runtimes are from fast LKH and the CHP variant runtimes are the

total runtime including CHP and the secondary LKH algorithm. As shown in

the chart, using CHP to initialize LKH leads to consistently longer runtimes

than running LKH on its own.

In theory, using a tour found through CHP to give LKH a good starting

point, would lead to a decrease in the time spend running LKH. However,

testing showed the opposite was true. The reason behind this is unclear. It

is possible that the initial CHP tours are worse than those initialized by LKH

on its own. This would lead to more work to reach the eventual output tour.

Other preliminary tests using 2 − opt as the improvement algorithm showed

little to no decrease in tour length over CHP on its own. Running a secondary

improvement algorithm does lead to a decrease in CHP tour length. However,

finding the right method and implementation that allows this to be done in a

reasonable time remains as a potential area of future work.

5.4 Results Tables

The tables in this section contain the results of testing on the CHP

extensions described in Chapter 5. The tables come in two forms, mirroring

the formats of those seen in Section 4.10.
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(a) Tour Length Ratio as Problem Size Increases

(b) Runtime as Problem Size Increases

Figure 5.6: Results of using CHP tour as input to LKH
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Type Partitioning Method Recursion Level Mean Std Dev Minimum 25% Median 75% Maximum

National

Cheapest-15

5000 1.037837 0.00829 1.031333 1.033169 1.035006 1.041089 1.047171
10000 1.027882 0.012505 1.019253 1.020711 1.02217 1.032196 1.042223
20000 1.027881 0.012507 1.01925 1.02071 1.02217 1.032197 1.042225
No recursion 1.027882 0.012505 1.019253 1.020711 1.02217 1.032196 1.042223

Hull

5000 1.028533 0.004661 1.024381 1.024995 1.026838 1.032493 1.034382
10000 1.024711 0.007756 1.015622 1.017995 1.025607 1.030093 1.034383
20000 1.020884 0.00892 1.0156 1.015734 1.015868 1.023526 1.031183
No recursion 1.020884 0.008921 1.0156 1.015734 1.015868 1.023527 1.031185

Hybrid-10

5000 1.03595 0.008446 1.029656 1.031151 1.032645 1.039097 1.045548
10000 1.026111 0.013224 1.017526 1.018497 1.019468 1.030403 1.041339
20000 1.026077 0.013249 1.017526 1.018446 1.019366 1.030353 1.041339
No recursion 1.026082 0.013245 1.017526 1.018454 1.019382 1.030361 1.041339

VLSI

Cheapest-15

5000 1.02645 0.004857 1.018879 1.022416 1.02653 1.030665 1.033898
10000 1.018009 0.006439 1.010873 1.014039 1.015764 1.020098 1.030875
20000 1.013776 0.00447 1.009798 1.01128 1.011933 1.01372 1.023705
No recursion 1.013777 0.004469 1.009798 1.01131 1.011933 1.01372 1.023705

Hybrid-10

5000 1.027937 0.00561 1.017062 1.024743 1.028066 1.030681 1.038
10000 1.018666 0.005539 1.012422 1.013832 1.017739 1.02203 1.029773
20000 1.013029 0.002477 1.009312 1.011491 1.012676 1.014935 1.017782
No recursion 1.013057 0.002452 1.009312 1.011779 1.012676 1.014935 1.017782

Table 5.1: Recursive CHP Tour Length Ratio Summary Statistics

Type Partitioning Method Recursion Level Mean Std Dev Minimum 25% Median 75% Maximum

National

Cheapest-15
5000 0.789273 0.116352 0.712276 0.722349 0.732422 0.827771 0.923119
10000 1.018169 0.006728 1.010838 1.015223 1.019608 1.021835 1.024062
20000 0.984883 0.037098 0.944507 0.968592 0.992677 1.005071 1.017465

Hull
5000 0.790014 0.106231 0.68165 0.715605 0.754885 0.868855 0.939309
10000 0.919014 0.129646 0.751486 0.809046 0.959566 1.015093 1.050991
20000 1.01571 0.021694 0.992438 1.005878 1.019319 1.027346 1.035374

Hybrid-10
5000 0.754571 0.111569 0.680153 0.69043 0.700707 0.791779 0.882852
10000 0.981902 0.011856 0.968544 0.977265 0.985986 0.988581 0.991176
20000 0.993949 0.033811 0.962107 0.976207 0.990307 1.00987 1.029433

VLSI

Cheapest-15
5000 0.516829 0.091201 0.364979 0.476563 0.518201 0.556509 0.724836
10000 0.742636 0.215706 0.405574 0.576688 0.705847 0.968023 1.027479
20000 0.999331 0.030514 0.95209 0.985717 0.998534 1.01199 1.077469

Hybrid-10
5000 0.445583 0.099213 0.276712 0.383597 0.456512 0.521333 0.625012
10000 0.673866 0.213868 0.33373 0.528328 0.640869 0.871391 1.00813
20000 0.968508 0.054169 0.896206 0.917791 0.972445 0.998028 1.06825

Table 5.2: Recursive CHP Runtime Summary
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Type Partitioning Method # of Partitions Mean Std Dev Minimum 25% Median 75% Maximum

National

Cheapest-15

20 1.028595 0.009568 1.01925 1.021354 1.024356 1.035812 1.042223
30 1.028088 0.008208 1.019353 1.022165 1.02523 1.032609 1.042488
50 1.029342 0.007475 1.021842 1.02419 1.025829 1.033281 1.04278
Convex hull 1.028393 0.009092 1.019253 1.021653 1.024324 1.034824 1.042223

Hull

20 1.025202 0.008622 1.015622 1.017408 1.02722 1.030228 1.038302
30 1.026568 0.008841 1.015582 1.018561 1.029772 1.033719 1.036066
50 1.030922 0.017917 1.017647 1.019834 1.023226 1.033784 1.068343
Convex hull 1.024412 0.008434 1.0156 1.017405 1.022456 1.030227 1.037562

Hybrid-10

20 1.027719 0.010295 1.017505 1.020168 1.024236 1.034728 1.042498
30 1.030021 0.013919 1.017624 1.020832 1.024313 1.035241 1.056067
50 1.028384 0.007289 1.020193 1.023476 1.024433 1.034033 1.039048
Convex hull 1.02883 0.012183 1.017526 1.020392 1.024236 1.034728 1.04981

VLSI

Cheapest-15

20 1.014479 0.003795 1.010685 1.011335 1.013463 1.01678 1.022532
30 1.014551 0.004136 1.009678 1.011707 1.012937 1.016506 1.022983
50 1.015415 0.00402 1.010346 1.012447 1.0141 1.017151 1.022653
Convex hull 1.015064 0.004412 1.009798 1.011436 1.012964 1.018543 1.023705

Hybrid-10

20 1.013939 0.002882 1.008968 1.012201 1.013192 1.016667 1.019077
30 1.014181 0.002981 1.009756 1.012252 1.01358 1.016189 1.019849
50 1.014493 0.002571 1.011048 1.012448 1.013998 1.01679 1.019697
Convex hull 1.014122 0.002812 1.009312 1.012563 1.014154 1.015837 1.019622

Table 5.3: Augmented CHP Tour Length Ratio Summary

Type Partitioning Method # of Partitions Mean Std Dev Minimum 25% Median 75% Maximum

National

Cheapest-15
20 1.009456 0.066708 0.951029 0.976167 0.987935 1.010997 1.152903
30 1.071674 0.184917 0.878001 0.986499 1.049464 1.06955 1.462157
50 1.071452 0.161424 0.811153 0.981504 1.093423 1.184093 1.264395

Hull
20 1.014083 0.047745 0.958761 0.974438 1.017489 1.047509 1.078437
30 1.123717 0.108899 0.978209 1.040922 1.136655 1.204772 1.259768
50 1.299513 0.190337 1.00972 1.186225 1.292067 1.45381 1.514735

Hybrid-10
20 0.986998 0.049783 0.905129 0.963773 0.98327 1.022229 1.048583
30 1.059142 0.178107 0.872193 0.983299 1.015383 1.064299 1.431221
50 1.055587 0.141432 0.767197 1.033945 1.092574 1.13753 1.186392

VLSI

Cheapest-15
20 1.010186 0.057287 0.881288 0.977469 0.991438 1.054332 1.128474
30 1.028189 0.110638 0.722431 0.989959 1.016202 1.115002 1.198483
50 1.063823 0.126532 0.815147 0.971786 1.051984 1.170091 1.292952

Hybrid-10
20 0.971819 0.060194 0.85374 0.935801 0.978853 1.011143 1.120309
30 0.974786 0.106192 0.750662 0.903658 0.986833 1.063612 1.172662
50 0.997058 0.095607 0.843483 0.924819 1.006524 1.05566 1.236394

Table 5.4: Augmented CHP Runtime Summary
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Chapter 6

Partitioning for Constrained Routing

Problems

Beyond the TSP, applying partitioning to other NP-hard routing prob-

lems may require different or more complicated methods. Extending the CHP

framework to solve SOPs is fairly straightforward as it requires a single ad-

ditional step. However, when considering resource-constrained problems the

sequential nature of CHP becomes difficult to use. For this reason, the algo-

rithms described for solving these problems uses an entirely different idea of

partitioning.

6.1 Sequential Ordering Problems

Applying CHP to the sequential ordering problem (SOP) uses a simi-

lar technique to augmented CHP but takes the idea further. Instead of using

the convex hull boundary, partitioning the SOP relies on the precedence con-

straints defining the problem. Consider two subsets of the SOP input points.

Precedence points are those used in a precedence relationship. Interior points

are any not included in a precedence constraint. To apply the CHP framework

to the SOP, precedence points replace hull points as the basis for partitions.
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The general procedure is outlined in Algorithm 16. It differs from stan-

dard CHP and its other extensions in that the SOP algorithm never uses the

convex hull. It most closely resembles augmented CHP because both require

solving a smaller version of the original problem prior to forming partitions.

In augmented CHP, this is a smaller TSP, and a smaller SOP must be solved

in this case. The smaller SOP finds the order through the precedence points

without considering any points not specified in a precedence relationship. In

SOPs, the order of the convex hull points is not guaranteed to be the same in

an optimal tour. For this reason, another subset of known points with known

order is necessary to serve as the basis of partitions. The given precedence

information helps form this ordered subset.

Because of the initial, smaller SOP, the effectiveness of this method

depends on the number of precedence points. In the case that every point is

included in a precedence constraint, then this method will have no effect on

the output because the initial SOP is the same as the original problem. At the

other extreme, if no points are included in precedence relationship, this method

should not be used and instead the problem should be solved as a TSP. More

generally, a happy medium likely exists in the number of precedence points

for this method to be effective. If too many or too few precedence points are

given in the problem, then runtime increases. If the number of precedence

points is large relative to the total number of points, then the initial SOP

takes more time, but the partitions, and thus subproblems, will be smaller.

If the problem includes relatively few precedence points, then the initial SOP
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can be run quickly. The downside is large subproblems taking longer to solve.

Input: N : set of points, PC: set of precedence relationships
Output: T : heuristic tour
PP = points used in precedence relationship;
TPP = SOP through precedence points;
Initialize partitions by forming one for each pair of consecutive
points in TPP ;

Assign points to partitions;
Solve Hamiltonian path through each partition;
T = join partition paths using points in TPP ; Return T ;

Algorithm 16: SOP Partitioning Framework

It is possible to include the convex hull points when forming partitions.

However, any hull points not included in precedence relationships would be

additional points included when solving the initial SOP. This may cause a

longer runtime for the initial SOP but also leads to fewer, and likely smaller,

subproblems.

The current version of the SOP partitioning framework builds on the

CHP implementation. For that reason, it currently solves only Euclidean SOP

instances. A Euclidean SOP uses edge symmetric distances that satisfy the

triangle inequality. Preliminary test results seem promising but making any

major performance claims requires more thorough testing. Additionally, be-

cause it shares much of the CHP implementation, the current SOP framework

requires both point coordinates and precedence relationships to solve the prob-

lem. SOP test instances consist of only distance matrices and typically have

asymmetric edge costs. For that reason, the current SOP partitioning frame-

work cannot be tested on these instances. New SOP instances, created to test
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the framework, combine point coordinate data from symmetric TSPs with the

precedence constraint data from existing SOP test problems. Unfortunately,

this means optimal solutions to the test problems do not already exist. In sum-

mary, the two main areas of future work for the SOP partitioning framework

include further testing of new SOP instances and extending the framework to

allow for use of the existing test problems.

6.2 Resource-Constrained Problems

When this work began, the idea was to use a similar, geometry-based

partitioning method to solve resource-constrained problems, including the RC-

SPP and RCTSP. However, difficulties in this approach became apparent. For

the remainder of this section, the discussion focuses on the RCSPP. However,

the same issues, and more, arise for the RCTSP.

First, the RCSPP lacks maybe the most important characteristic al-

lowing for CHP to be effective in solving TSPs. The relationship between a

point set’s convex hull and the optimal Hamiltonian tour through those points

makes the problem of combining subproblem solutions trivial in CHP. Any

partitioning method must specify ways of dividing the original problem into

subproblems, solving subproblems, and then combining the subproblem solu-

tions to form a solution to the original problem. The known order of the convex

hull points immediately handles the issue of combining subproblem solutions.

Additionally, it serves as the basis for how to form subproblems, at least in

CHP. Unfortunately, there is no immediate analog for resource-constrained
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problems. One idea to address this issue was to find bottleneck nodes within

the network. The premise was to find subnetworks with limited incoming and

outgoing edges and form subproblems based on those. Unfortunately, every

subnetwork could only have a single incoming edge and a single outgoing edge

for this idea to use the methodologies developed for CHP. In early testing,

subnetworks with only a one entry and one exit did not occur with any regu-

larity or on the scale required within a given network. Instead, subnetworks

had many entry or exit nodes, which led to the second major roadblock in

applying a CHP-like method. That is, any node with an incoming edge can

be the origin of the subproblem. Similarly, any node with an outgoing edge

can be the destination.

Hamiltonian path subproblems in CHP had an obvious origin and des-

tination, again thanks to the relationship between the convex hull and optimal

tour. When subproblems have several potential origins and destinations, how

should they be chosen? Again, any method should follow the general proce-

dure of forming subproblems, solving subproblems, and then combining their

solutions. To accommodate the case of subproblems with multiple origins

and destinations, subproblem solutions must consist of the path between each

combination of origin and destination. When solving a subproblem, it is not

known which incoming and outgoing edges from a subnetwork a final solution

includes. For the RCSPP, the outgoing edges are less of an issue, as good

all-destinations methods exist. On the other hand, an all-destinations method

needs to be run for each possible origin, making it a time intensive approach.
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Methods using a false origin were developed in an attempt to speed up solu-

tion time. Unfortunately, these methods faced issues because paths preceding

each incoming edge can have different distances and resource costs. These

preceding values must be somehow incorporated. Otherwise, domination cri-

teria eliminate subpaths that are non-dominated when considering a full path

through the network. In the end, any attempted technique addressing this

issue led to the same runtime issues.

Finally, using a geometric partitioning method similar to CHP requires

dividing the global resource constraint across the points subsets. In theory, the

subpath through any subnetwork could consume any amount of the constrained

resource between 0 and β and still be included in a final solution. In practice,

preprocessing can determine the maximum resource cost value relevant to any

subproblem, limiting the work required for each. However, a larger issue exists

when it comes to combining subproblem solutions and forming a final solution.

To form a correct final solution, non-dominated paths from every origin to

every destination for every subproblem must be known. Subproblem solutions

do not inherently take into account the distances and resource costs of paths

leading into them. For example, the shortest path through a subnetwork may

lead to infeasibility when used as part of a path through the entire network.

Therefore, any combination of non-dominated paths from subnetworks must

be checked when forming a solution for the original problem.

A somewhat obvious method solves subproblems as a form of prepro-

cessing. Then a secondary algorithm solves the original problem on the pre-
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processed network. This idea led to two methods being developed. First,

a network reduction procedure formed a reduced network composed of only

nodes and edges used in non-dominated subpaths. An RCSPP was then solved

on this reduced network. The second approach attempted to reduce the size

of the problem by forming a secondary network consisting of only subproblem

origins and destinations. Then, non-dominated paths from each subproblem

were added as edges between their origin and destination nodes. In the end,

this led to fewer nodes but a larger number of edges in the secondary network.

More work could probably be done to reduce the number of edges, specifically

when it comes to redundancy. Given the time required to solve subproblems,

make a new network, and solve the reduced problem, neither method showed

significant runtime improvement.

In the end, the issues discussed above led to a different approach to

partitioning being applied to the RCSPP.

6.2.1 Resource Partitioned Dynamic Programming

In lieu of forming groups based on the inherent geometry of the input

network, an alternative means of partitioning was used for the RCSPP. Like

CHP, the partitioning method described in this section was developed for use

in solving a specific problem. In this case, that problem is the ADRCSPP. It

can therefore be immediately applied to the single-destination RCSPP. Addi-

tionally, a slight modification allows it to be used to find all non-dominated

paths to all destinations.
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As the name implies, resource partitioned DAD (RPDAD) is built

around the DAD dynamic programming algorithm presented in Section 2.2.2.

An outline of RPDAD is shown in Algorithm 17. The algorithm first forms sets

of nodes based on resource cost partitioning, a procedure which is described

in the next section. Then, RPDAD follows the same process as standard

DAD nearly exactly. The only difference is the set of nodes iterated through

at each cost value. Instead of going through every node for every cost, only

nodes that could have a non-dominated path with the current resource cost

value are searched. This is a seemingly small difference. However, limiting the

search space at each iteration can greatly improve the total runtime.

Input: N : set of nodes, E: set of edges, β: upper limit on
resource consumption

Output: L: map of non-dominated path lengths,P : map previous
nodes

C,RP = overall cost range and partitions from resource cost
partitioning L(s, 0) = 0, P (s, 0) = −1;
L(v, 0) =∞, P (n, 0) = −1, ∀n ∈ N, n 6= s;
t = 0;
for t ∈ C do

for n ∈ RP [t] do
L(n, t) =
min{L(n, t−1),minu:(u,n)∈E and cun<=t{L(u, t−cun)+dun}};

Track P (n, t);

end

end

Algorithm 17: Resource Partitioned DAD

Before diving into more specifics, there are some key differences with

previous methods presented in this dissertation that should be discussed. First
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and foremost, the way the input points are partitioned is entirely different. In

CHP, points are grouped based on their proximity to other points. Therefore,

partitions are likely to be continuous regions of points. On the other hand,

RPDAD does not use proximity at all when grouping points. For this rea-

son, partitions in RPDAD may contain nodes spread throughout the network.

Another major difference is that partitions in CHP are largely disjoint. Hull

points are contained in exactly two groups and interior points are in exactly

one. Typically, nodes will have a range of non-dominated resource costs, mean-

ing nodes are contained in many partitions. Maybe the biggest difference is

the structure of the algorithms themselves and how their subproblems may

be solved in parallel. While it has not been implemented, the Hamiltonian

path subproblems in CHP could be solved in parallel. On the other hand,

the iterations of RPDAD must be run sequentially, as the paths found in one

iteration depend on those from the previous iteration. In theory, the search

through nodes at a given resource cost could be done in parallel because their

results do not depend on one another. Parallelization is not the focus of this

dissertation and will be left for future work.

6.2.1.1 Resource Cost Partitioning

Resource cost partitioning (RCP) forms a group of nodes for each re-

source cost value relevant to the problem. The general steps in RCP consist

of finding the relevant cost ranges for each node, finding the cost range for the

problem overall, and then forming groups of points for each cost level. A more
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detailed outline of the steps of RCP is shown in Algorithm 18.

Input: N : set of nodes, E: set of edges, s: origin of paths, β:
resource consumption upper bound

Output: C: set of relevant costs, Q: set of partitions
MinCosts = Dijkstra(s, cost);
MinDistPaths = DijkstraPath(s, dist);
for i ∈ N do

MaxCosts[i] = cost(MinDistPaths[i]);
end
LB = min{MinCosts};
UB = max{MaxCosts};
C = range from LB to UB;
for c ∈ C do

Make empty partition qc ∈ Q;
for i ∈ N do

if MinCosts[i] ≤ C ≤MaxCosts[i] then
Add i to qc;

end

end

end
Return C,Q;

Algorithm 18: Resource cost partitioning

Finding the relevant costs for each node first requires a discussion of

what relevant means in this context. Consider resource cost c and node i. In

this dissertation, c is relevant for i if it is possible that a non-dominated path

ending in i has cost c. In other words, c falls between the minimum feasible

cost to i and the cost of the minimum distance path to i. The minimum

feasible cost is the lower bound on the range of relevant costs for i. The

resource cost of the minimum distance path is the upper bound because no

path with higher cost can be non-dominated. To be non-dominated, a higher
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cost path would need to have a distance less than the minimum distance path,

which is impossible. Fortunately, finding the relevant cost range is simple

for the RCSPP and ADRCSPP. Two runs of Dijkstra’s algorithm can find

the range for every point. One run uses distance as the edge weight being

minimized and the other uses resource cost. This finds the minimum distance

and minimum cost paths for each point. The lower bounds are given directly

from the minimum cost paths. The upper bounds require one additional step.

To find the maximum relevant costs for a node, use the total sum of resource

costs of edges in its minimum distance path.

Next, the relevant resource consumption range for the entire problem

must be found. The lower bound on this range can be trivially set to 0.

For a slightly smaller range, set the global minimum of each node’s minimum

feasible cost as the lower bound. Depending on the problem being solved, the

upper bound on this range of costs differs. Single-destination RCSPPs are not

explicitly interested in all non-dominated paths. Therefore, the upper bound

is the global resource constraint, β. If the cost of the minimum distance path

is less than β, then that path is also resource-feasible, and no more work need

be done. To find all non-dominated paths less than β, the upper bound is

the minimum of the resource cost of the minimum distance path and β. To

find all non-dominated paths regardless of β, then the upper bound is the

cost of the minimum distance path. To find all non-dominated paths to more

than one destination, the upper bound is the maximum of the costs of the

minimum distance path to any desired destination. This can be expanded to
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the all-destinations case as well.

Finally, forming partitions requires matching the overall cost range with

the nodes’ relevant cost ranges. Consider a relevant resource consumption

value c and node i. Let c+i and c−i be the maximum and minimum relevant

costs i. Node i belongs in cost partition qc if c−i ≤ c ≤ c+i , where qc is the

group of nodes to be searched for cost c.

6.2.1.2 Illustrative Example

An example of RCP is shown in Figure 6.1. The example network is

the same as previously seen in Figure 2.3. The first step of RCP is finding the

minimum and maximum relevant costs for each node in the network. These

resource cost ranges are shown in parentheses by each node starting in Figure

6.1b. The subsequent figures show the group of points needing to be searched

at each incremental resource cost. Nodes are only included in groups if the

current resource cost falls within their relevant range. To see this, consider

node 2. Its relevant cost range is (2, 4) and thus it is only included the searches

for paths with resource cost 2, 3, or 4. As a reminder, these groups are meant to

limit the number of nodes searched in an iteration of a dynamic programming

algorithm. Clearly, iterating through only the corresponding group of points

for each cost level requires less work than searching each node at each resource

cost value.
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(a) Network (b) Cost 1 Partition

(c) Cost 2 Partition (d) Cost 3 Partition

(e) Cost 4 Partition (f) Cost 5 Partition

Figure 6.1: Illustrative Example of CHP
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6.2.1.3 Resource Partitioning Experiments

To test the effectiveness of RPDAD, experiments compare it to two

other dynamic programming algorithms, DSA and LSA. Test problems consist

of transportation network test problems (TNTP) based on city street grids

[Stabler, ]. The tested networks ranged in size from 24 to 13741 nodes. These

networks are typically used to test transportation system problems, such as

the traffic assignment problem (TAP). Edges in these networks have associated

lengths, which are used to compute the distance of paths through the network.

To use these networks to test RPDAD and other RCSPP methods, resource

costs must be associated with each edge. Some networks contain edges with

toll values, which could be used as a resource cost. However, these are not

consistently used across the networks; even when networks contain toll values,

they a typically used on only a few edges. For these reasons, random edge costs

were added to edges. For these tests, edge resource costs were drawn from a

random uniform distribution between input lower and upper bounds. Method

comparisons were made for several cost ranges. Additionally, edge costs are

integer in these tests. Similar to DAD, RPDAD finds optimal solutions with

integer edge costs. The effects of non-integer edge costs and rounding is also

an area of interest but left for future work at this points.

One focus of testing is how the runtime of different algorithms scaled

as networks increased in size and edge costs became larger. To that end, tests

were run using edge cost ranges of (0, 10, (0, 100), (0, 1000), and (0, 10000).

In these tests, an edge cost range of (0, 10) means that each edge has an
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integer resource cost between 0 and 10, inclusive. Because there are not that

many TNTP networks and costs are random, several tests were run for each

network, each with new edge costs. In each test, all non-dominated paths from

an origin to all other nodes were found. The results of these tests are shown in

Figures 6.2 and 6.3. In these charts, different colors represent different solution

methods and markers differentiate the cost range.

Figure 6.2 shows runtimes for networks with edge costs between 0 and

100. Figures 6.2a and 6.2b show a comparison of RPDAD, LSA, and DSA run-

times when solving networks up to 1000, and 400 nodes, respectively. Clearly,

RPDAD solves these networks much faster than the other two methods. Com-

paring the two charts allows examination of how the algorithms’ runtimes scale

as problems grow in size. RPDAD’s runtime does not grow nearly as quickly

as other methods. Additionally, the runtimes experienced by multiple tests of

the same network are much more consistent for RPDAD.

Figure 6.3 shows results for a larger cost range, with edge costs ranging

from 0 and 1000. Given its performance at the lower cost range, similarity to

RPDAD, and expected runtime scaling, DSA was not included in these tests.

Because both are incremental cost algorithms, anything increasing the runtime

of RPDAD would lead to an even larger increase in DSA. Similar to the top

two charts, Figures 6.3a and 6.3b show results for networks with less than 1000

and 400 nodes, respectively. In this case, RPDAD does not perform as well

for smaller networks when compared to LSA. However, when looking at larger

networks, RPDAD’s runtime is again more consistent and grows more slowly
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with network size.

Another interesting comparison is seen by looking at Figures 6.2a and

6.3a. Looking at the RPDAD runtimes for the higher cost range in Figure

6.3a, they are on par with the fastest LSA runtimes seen in Figure 6.2a. On

the other hand, the LSA runtimes increase much more between the two cases.

This again emphasizes how well RPDAD scales to larger networks, especially

relative to LSA.

These trends make sense given how each algorithm works. Both RP-

DAD and DSA are incremental cost algorithms. That is, they use solutions at

incremental cost values to build solutions. LSA, on the other hand, extends

paths by checking each successor node. The expected runtimes of these two

methodologies are impacted by different network characteristics. RPDAD and

DSA depend much more on the overall maximum cost range of the network.

This range is the difference between the minimum cost of the minimum cost

paths to any node and the maximum cost of the minimum distance paths to

any node. This overall range determines how many resource cost values DSA

or RPDAD must search in order to find all solutions. Increasing the range of

values each edge can take increases the size of the overall range, leading to the

longer runtimes. LSA’s runtime is much more determined by the number of a

network’s nodes and edges. This is because LSA does not search incremental

cost values but by extending labels one node at a time. As the number of nodes

increases, the number of labels created and checked for domination grows very

quickly. This is what leads to the steep increase in runtime as networks grow
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(a) Networks up to 1000 Nodes

(b) Networks up to 400 Nodes

Figure 6.2: Runtime Comparison using Edge Cost Range (0, 100)
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(a) Networks up to 1000 nodes

(b) Networks up to 400 nodes

Figure 6.3: Runtime Comparison using Edge Cost Range (0, 1000)
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in size. Again looking at Figures 6.3a and 6.3b, the tradeoff between LSA and

RPDAD can be seen. Clearly, with the higher cost range, LSA typically runs

faster for smaller networks and RPDAD remains better for larger networks.

To see how RPDAD’s runtime scales, more edge cost ranges were tested.

The runtime of RPDAD tests using edge cost ranges of (0, 10), (0, 100), (0, 1000),

and (0, 10000) are shown in Figure 6.4. As expected, a larger range of edge

costs leads to a longer runtime. Given the time taken to solve each instance,

cost ranges of (0, 1000) and (0, 10000) were not tested on instances larger than

4000 nodes. In Figure 6.4 edge resource cost ranges are differentiated by both

color and marker shape, as these results only compare methods from RPDAD.

Based on testing, RPDAD provides a good alternative to LSA and

improves on other incremental cost algorithms, such as DSA. Specifically, for

large networks, RPDAD seems to find non-dominated paths to all destinations

in a network more quickly than LSA or DSA. When networks are smaller and

the overall cost range is larger, LSA may run more quickly. RPDAD improves

on the runtime of DSA in either case, probably because both are incremental

cost algorithms. Therefore, any factor leading to an increased runtime for

RPDAD would also lead to an increase in that of DSA.

6.2.2 Limitations and Future Work

The biggest limitation to RPDAD carries over from the DAD algorithm.

Given the structure of both algorithms, they only work with integer valued

edge resource costs and global resource constraint. Any non-integer values
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Figure 6.4: RPDAD runtime as edge cost range increases
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must be somehow made integer before solving the problem. As discussed in

Section 2.2.2, rounding is one way to address this issue. However, rounded

edge costs may not lead to an optimal solution. Integrating these rounding

methods into RPDAD and testing the effects remain as areas of future work.

Another option for handling non-integer edge costs lies in scaling all values to

become integer. To better understand this idea, consider a toll road that costs

$1.80. To make this integer, it must be multiplied by 100, giving the toll road

a cost of 180. Therefore, to use a network where some edges have costs in

dollars and cents, all edge costs and the global constraint must be multiplied

by 100. Because tolls on a single edge very rarely exceed $100, scaling in this

way puts edge costs in the range [0,1000]. Testing shows RPDAD performs

competitively for this cost range. Some combination of scaling and rounding

could also lead to an effective version of RPDAD. For example, rounding any

non-integer value to a single decimal point and then scaling by a factor of 10

leads gives an integer value. While this may not lead to optimal solutions, a

combination of the two methods may balance runtime and solution accuracy.

In its current form, RPDAD finds non-dominated paths from a single

origin to all other nodes in a network. Clearly, this covers the single-destination

case as well. However, because it solves for every paths to every other node,

RPDAD likely runs more slowly than many dedicated single-destination meth-

ods, including bidirectional LSA. Applying preprocessing methods to limit

network size or overall cost range could increase the speed of RPDAD. A pre-

processing method currently being developed reduces an input network to in-
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clude only edges in non-dominated paths between an origin and a destination.

Running RPDAD on the reduced network then finds the exact non-dominated

paths. An additional benefit of combining preprocessing with RPDAD is the

ability to find non-dominated paths to some, but not all, other nodes. Run-

ning the previously mentioned preprocessing method for a subset of nodes

leads to a reduced network containing edges in a non-dominated path between

the origin and any of the destinations. In theory, methods similar to bidirec-

tional methods could be expanded to this case as well, but it may not be as

straightforward.

Another major area of potential future work lies in applying resource

cost partitioning to the RCTSP. The Hamiltonian requirement stands as the

major roadblock to this application. Because every node must be visited in

a Hamiltonian tour, the same domination criteria do not apply. An addi-

tional limitation lies in finding the minimum and maximum resource cost for

every point. Given the structure of dynamic programming algorithms for

the TSP, the minimum and maximum resource cost of paths ending in every

point through every subset of other points would need to be identified to ap-

ply resource cost partitioning. Clearly, this is intractable. The minimum and

maximum resource cost tours can be found by running two instances of the un-

constrained TSP. This mirrors the two runs of Dijkstra’s algorithm in RPDAD.

However, because solving the TSP often requires a significant amount of time,

even finding minimum and maximum resource cost tours may be unrealistic

when solving the RCTSP. Given these limitations, applying partitioning to the
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RCTSP requires much more work. If a partitioning method similar to RPDAD

can be developed for the RCTSP, it would naturally extend to the orienteering

problem. In theory, the output would consist of all non-dominated Hamilto-

nian paths of any length to each point. This also includes all non-dominated

Hamiltonian tours of any length. This then solves the orienteering problem by

giving the tour visiting the most points within the distance constraint.
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Chapter 7

Conclusion

Partitioning frameworks allow NP-hard routing problems to be solved

more quickly. These methods work by dividing the original problem into

groups, solving an easier subproblem within each group, and forming an overall

solution by combining the subproblem solutions. Partitioning can be especially

effective at reducing runtime for routing problems because the computational

effort grows exponentially as problem size increases. Therefore, solving several

smaller problems may require less time than solving a single large instance.

For large problems, the time savings offset the additional time spent forming

subproblems and combining their solutions. This idea led to the partitioning

methods for the TSP, SOP, and RCSPP described in this dissertation. Devel-

oping the convex hull partitioning framework for the TSP is the biggest contri-

bution of this dissertation. Most of the additional work attempts to improve

the framework or extend the idea to other problems. The most promising of

these extensions include a recursive CHP implementation and a modification

for use in solving SOPs. Some characteristics of resource-constrained problems

make applying a CHP-like framework difficult. For that reason, an algorithm

for the RCSPP uses an entirely different partitioning paradigm to form groups

of nodes based on resource cost. Computational experiments demonstrate the
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effectiveness of CHP, its extensions, and resource cost partitioning. These re-

sults support the claim that partitioning frameworks can be effective at solving

NP-hard routing problems.

Convex hull partitioning uses the relationship between the convex hull

boundary of a TSP and its optimal tour. Hull points occur in the same order

in both the convex hull boundary and the optimal tour. This order provides

two benefits. First, it allows subproblems to be defined with a known order.

Second, it makes the problem of combining subproblem solutions trivially easy.

Each pair of consecutive hull points anchors a partition. Partitioning methods

assign each interior point to a single group. Subproblems consist of Hamil-

tonian path problems through each partition. The hull points serve as the

origins and destinations for these paths. Joining partition Hamiltonian paths

at their shared hull points produces a solution to the original TSP. In sum-

mary, CHP finds portions of the final tour between each pair of consecutive

hull points. The work included the development of several new partitioning

methods. Some of these extend ideas from existing TSP heuristics while other

are entirely new.

Because combining subproblems solutions is made easy, CHP consists

of two main problems, dividing the input points and solving subproblems.

Given the variety of partitioning methods and subproblem solvers, many vari-

ations of CHP exist. Computational experiments attempted to demonstrate

the effectiveness of CHP overall and identify variants that perform well across

many instances. Experiments consisted of several types of testing and focused
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mostly on the partitioning phase. One of the predominant TSP heuristics,

LKH, solves subproblems and serves as a benchmark method. Experiments

use the optimal solutions of the TSP test instances as another benchmark. The

results show the capabilities of CHP and demonstrate the framework’s ability

to solve TSP effectively. CHP’s performance relative to the two benchmarks

improves as problems grow in size. On larger instances, CHP runs significantly

faster than LKH without a large decrease in tour quality. Different partitioning

methods work better on instances from the two different test sets. Hull parti-

tioning appears to work best on TSPs with an irregular outline and variable

point density, such as problems from the national problem set. For national

TSPs with more than 10000 points, CHP with hull partitioning found tours

within 3% of optimal for most instances and required less than 30% of the

time used by LKH. In general, cheapest-m and hybrid-m seem to work better

on VLSI TSPs, which have a rectangular outline and consistent point density

throughout. Specifically, CHP with cheapest-15, hybrid-10, and hybrid-15 all

solve VLSI instances with more than 20000 points in around half the time of

LKH. Additionally, each CHP variant solves most large VLSI instances well

within 1.5% of optimal. These results show a few trends. CHP seems to be

more effective on TSPs like those from the VLSI test set. As problems grow

in size CHP’s performance relative to LKH improves. The framework solves

large TSPs much more quickly than LKH and still finds tours with near opti-

mal length. The biggest opportunity for further improvement lies in a faster

implementation or one more integrated with LKH.
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Some of the extensions of CHP include a recursive version, a method to

increase the number of partitions, and an application to solve SOPs. Recursive

CHP sets an upper limit on the size of a subproblem solved by LKH. Based

on some tests, recursive CHP runs more quickly than CHP and therefore

exhibits potential for an even bigger runtime improvement over LKH. The

decrease in solution time does lead to slightly longer tours. In general, smaller

recursion limits lead to faster solutions and longer tours. Again, recursive CHP

offers the biggest benefit when solving large instances and seems to perform

better on VLSI instances. For example, 5000 points was the smallest recursion

limit tested and typically led to tours with length within 3% of optimal for

large VLSI instances. However, it required only around half the time spent

by CHP for most instances. This corresponds to around a quarter of LKH

time. Another extension, augmented CHP, attempts to increase the number

of partitions by using additional points as partition anchors. Augmented CHP

led to better tours or faster runtime for some instances, but there were no

conclusive benefits across all instances. However, the idea behind augmented

CHP led to the application of the CHP framework for solving the SOP. Instead

of using the convex hull boundary, points used in precedence constraints serve

as the partition bases. This requires the additional step of solving a smaller

SOP consisting of only precedence points. While major testing this method is

left as future work, some preliminary experiments show promise.

Finally, applying partitioning methods to resource-constrained prob-

lems led to resource cost partitioning which groups nodes based on the resource
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costs required to reach of their incoming paths. When used in conjunction

with existing dynamic programming algorithms, RCP leads to a significant

decrease in the search at each iteration. The resulting algorithm RPDAD

finds all non-dominated paths from a single origin to all other nodes. RPDAD

finds optimal solutions with integer edge resource costs. Experiments compare

the runtime of RPDAD to two other dynamic programming algorithms solving

for the same information. In general, RPDAD runs more quickly than DSA

because the same factors lead to runtime increases in both algorithms. For

small networks with a large range of edge resource costs, LSA may run more

quickly than RPDAD. However, as networks grow larger, RPDAD outperforms

LSA. Therefore, RPDAD provides a good alternative to LSA, and the choice

of method depends on the specific instance being solved. Additional test-

ing could examine the case of non-integer resource costs, which would require

rounding to be solved with RPDAD. Some other areas of potential future work

include combining the benefits of resource cost partitioning and LSA. Finally,

the biggest potential for the method lies in extending it to other resource-

constrained problems such as the resource-constrained TSP or orienteering

problem.

The partitioning frameworks described in this work offer a strong alter-

native to existing methods. They exhibit the overall potential of partitioning-

based methods to effectively solve NP-hard routing problems. Given the in-

creasing dependence on fast and efficient movement in our everyday lives,

routing problems are likely to become even more relevant. As they continue
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to grow in size and complexity, partitioning frameworks provide the ability

to solve these problems quickly while maintaining a high degree of solution

accuracy.

162



Appendices

163



Appendix A

Additional Background

A.1 TSP

A.1.1 Construction Heuristic Performance

Method Worst-Case |T |
|T ∗| Time Complexity

Greedy (Nearest neighbor) 1
2
dlog(n)e+ 1

2
Θ(n2)

Nearest Insertion 2 O(n2)
Cheapest Insertion 2 O(n2)
Arbitrary Insertion 2ln(n) + 0.16 O(n2)
Farthest Insertion 2ln(n) + 0.16 O(n2)

Christofides Algorithm 3
2

O(n3)

Table A.1: Performance and Time Complexity of Construction Heuristics
[Golden et al., 1980]

A.1.2 Utilizing Existing Heuristic Bounds

The Held-Karp (HK) lower bound is the solution to the LP relaxation

of the symmetric TSP [Held and Karp, 1970],[Held and Karp, 1971]. Let THK

and T ∗ be the HK bound value and optimal tour length, respectively. Then,

the bound is proven to be no less than 2
3

of the optimal integer solution, THK

T ∗ ≥
2
3

[Wolsey, 1980]. Additionally, a widely-accepted conjecture states THK

T ∗ ≥ 3
4

[Carr and Vempala, 2004]. In practice, the HK bound often lies within 1%

of the exact cost [Valenzuela and Jones, 1997]. Because it is deterministic
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and has a known worst-case, comparing to the HK bound gives an idea of

the relative performance of different heuristic methods [Johnson et al., 1996].

The HK bound is especially useful when solving the problem to optimality is

impractical. An iterative method using minimum spanning trees solves for the

bound in O(n log(n)), allowing for its use without a significant computational

cost [Johnson et al., 1996], [Valenzuela and Jones, 1997].

The Christofides algorithm also provides a useful and efficient bound for

heuristic comparison. Unlike the HK bound, a solution from the Christofides

algorithm gives a well-defined upper bound on the optimal value [Christofides, 1976].

Let Tc be the solution value of the Christofides algorithm. Then in the worst

case, Tc
T ∗ ≤ 3

2
.

Consider Lemma A.1.1, which uses the Christofides and HK bounds

to place bounds on the ratio of any heuristic tour length to the optimal tour

length.

Lemma A.1.1. Let THK , Tc, z, and T ∗ be the HK bound, Christofides bound,

heuristic value, and optimal value of a symmetric Euclidean TSP instance.

Then, 2
3

z
THK
≤ z

T ∗ ≤ 3
2
z
Tc

.

Proof. The bounds found through the Held-Karp and Christofides algorithms

give an upper and lower bound on the optimal solution, 3
2
THK ≥ T ∗ ≥ 2

3
Tc.

Then, inverting these ratios and multiplying by the heuristic tour length gives

bounds on the ratio of heuristic length to the optimal length, 2
3

z
THK
≤ z

T ∗ ≤
3
2
z
Tc
.
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Lemma A.1.1 combines the bounds on T ∗ from the HK and Christofides

algorithms to provide a performance range on the ratio of a heuristic solution

to the optimal solution. The effectiveness of this range depends on the heuristic

used to produce z and its goal. For example, if z is a feasible solution, the

trivial lower bound on z
T ∗ is 1. Thus, the lower bound in Lemma A.1.1 is

only relevant if z is at least 3
2
THK . On the other hand, if z is infeasible and

a lower bound on T ∗, then Lemma A.1.1 provides a range on how close to T ∗

the lower bound can be. While the performance range may be useful in some

applications, the main purpose of the lemma here is to demonstrate how to

construct such a bound structure using known relationships between different

heuristic solutions, related structures, and the optimal solution.

166



A.2 Constrained Shortest Path Problem

A.2.1 Example DAD Length and Predecessor Tables

After Iteration 0

After Iteration 1

After Iteration 2

After Iteration 5

Figure A.1: DAD L and P Tables for Figure 2.3

A.2.2 Lagrangian Relaxation for Resource Constrained Problems

The Lagrangian relaxation moves the knapsack constraint (2.2.4) in the

IP formulation into the objective function and leaves only flow balance and
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binary domain constraints to define the feasibility region [Xiao et al., 2005].

This relaxation is very effective because the resulting problem is simply a

shortest path problem with the objective coefficients as a weighted sum of

distance and cost. Thus, the relaxed problem can be further relaxed to a

linear program and will still produce an integer solution. The key is to find a

Lagrangian multiplier, λ, that minimizes the Lagrangian relaxation objective

(2.2.6).

Minimize
∑

(i,j)∈E

((dij + λcij) ∗ xij)− λβ (A.2.1)

subject to:

∑
j∈N

xij −
∑
j∈N

xji =


1 if i == s

−1 if i == t

0 otherwise

∀i ∈ N (A.2.2)

xij ∈ {0, 1} ∀(i, j) ∈ E (A.2.3)

Figure A.2: RCSPP Lagrangian Relaxation IP Formulation

A.2.2.1 LARAC-BIN

LARAC-BIN seeks to find the best Lagrangian multiplier by performing

a binary search over the values [Xiao et al., 2005]. First, an upper and lower

bound on the optimal Lagrangian multiplier are set and bisected to choose a

multiplier. This multiplier is then used to augment the edge distances. Then

Dijkstra’s algorithm is used to find the shortest path with the cost-augmented

edge distances. Depending on the result of Dijkstra’s, the upper and lower
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bounds on the Lagrangian multiplier is altered. The process of bisection, Di-

jkstra’s, and multiplier bound updating continues until the termination criteria

has been met. This criteria can be set such that the difference between the

heuristic solution error has a known bound, or an actual optimality condition

can be enforced. The details of LARAC-BIN can be seen in Algorithm 19.

In the algorithm, the third parameter of Dijkstra(s, t, ·) indicates which edge
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attributes to use when determining the paths.

Input: N, E, s,t,β, τ
Output: Shortest distance path with cost ≤ β + τ
pdist = Dijkstra(s, t, distance)
if c(pdist) ≤ β then

return pdist
end
pcost = Dijkstra(s, t, cost)
if c(pcost) > β then

return Infeasible
end
if c(pcost) == β or d(pcost) == d(pcost) then

return pcost
end
λ0 = 0
λ1 = d(pcost)−d(pdist)

β−c(pcost)
while λ1−λ0

β−c(pcost) > τ do

λ = λ1+λ0
2

cλ = {d(i, j) + λ ∗ c(i, j),∀(i, j) ∈ E}
p = Dijkstra(s, t, cλ)
if c(p) == β then

return p
else if c(p) < β then

λ1 = λ
else

λ0 = λ
end

end
return p = Dijkstra(s, t, cλ1)

Algorithm 19: LARAC-BIN

Aside from the termination criteria, the initial Lagrangian multiplier

bounds serve as the most important definitions in the algorithm. Xiao et al.

provide theorems outlining their choice. These bounds need to enclose the

optimal multiplier, otherwise the binary search cannot identify it. Obviously,
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the lower bound begins at 0. The choice in upper bound is not as obvious,

however. The upper bound is initialized to d(pcost)−d(pdist)
β−c(pcost) , where pcost and

pdist are the lowest cost and lowest distance paths, respectively. It is clear

d(pcost) ≥ d(pdist) and β ≥ c(pcost). Additionally, pdist must be infeasible given

the knapsack constraint, otherwise it would have been returned in an earlier

step. Let pλ1 be the optimal path found using cλ1 . Lemma A.2.1 shows pλ1 is

feasible and because it is feasible, d(pλ1) is at least d(pdist). Additionally, any λ

greater than the initial λ1 leads to a longer path than pλ1 Therefore, the initial

λ1 is an upper bound on the λ value leading to the best solution. The proof

for Lemma A.2.1 is analogous to the two-line proof from Xiao et al. but shows

additional steps that are not obvious upon first inspection [Xiao et al., 2005].

Lemma A.2.1. If λ = d(pcost)−d(pdist)
β−c(pcost) , c(pcost) < β, and d(pcost) > d(pdist),

then pλ is feasible.

Proof. See [Xiao et al., 2005].
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