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Abstract

Dynamic Pricing and Long-term Planning Models for Managed

Lanes with Multiple Entrances and Exits

Venktesh Pandey, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Stephen D. Boyles

Express lanes or priced managed lanes provide a reliable alternative to travelers by

charging dynamic tolls in exchange for traveling on lanes with no congestion. These lanes

have various locations of entrances and exits and allow travelers to adapt their route based

on the toll and travel time information received at a toll gantry. In this dissertation, we

incorporate this adaptive lane choice behavior in improving the dynamic pricing and long-

term planning models for managed lanes with multiple entrances and exits.

Lane choice of travelers minimizing their disutility is affected by the real-time infor-

mation about tolls and travel time through variable message signs and perceived information

from past experiences. In this dissertation, we compare various adaptive lane choice models

differing in their reliance on real-time information or historic information or both. We pro-

pose a decision route lane choice model that efficiently compares the disutility over multiple

routes on an express lane. Assuming drivers disutility is only affected by tolls and travel

times, we show that the decision route model generates only up to 0.93% error in expected

costs compared to the optimal adaptive lane choice model, making it a suitable choice for

modeling lane choice of travelers.

Next, using the decision route lane choice framework, we improve the current dynamic

pricing models for express lanes that commonly ignore adaptive lane choice, assume simpli-

fied traffic dynamics, and/or are based on simplified heuristics. Formulating the dynamic

pricing problem as an MDP, we optimize the tolls for various objectives including maxi-

mizing revenue and minimizing total system travel time (TSTT). Three solution algorithms
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are evaluated: (a) an algorithm based on value-function approximation, (b) a multiagent

reinforcement learning algorithm with decentralized tolling at each gantry, and (c) a deep

reinforcement learning assuming partial observability of traffic state. These algorithms are

shown to outperform other heuristics such as feedback control heuristics by generating up to

10% higher revenues and up to 9% lower delays. Our findings also reveal that the revenue-

maximizing optimal policies follow a “jam-and-harvest” behavior where the toll-free lanes are

pushed towards congestion in the earlier time steps to generate higher revenue later, a char-

acteristic not observed for the policies minimizing TSTT. We use reward shaping methods

to overcome the undesired behavior of toll policies and confirm transferability of the algo-

rithms to new input domains. We also offer recommendations on real-time implementations

of pricing algorithms based on solving MDPs.

Last, we incorporate adaptive lane choice in existing long-term planning models for

express lanes which commonly represent these lanes as fixed-toll facilities and ignore en route

adaptation of lane choices. Defining the improved model as an equilibrium over adaptive

lane choices of self-optimizing travelers and formulating it as a convex program, we show

that long-term traffic forecasts can be underestimated by up to 45% if adaptive route choice

is ignored. For solving the equilibrium, we develop a gradient-projection algorithm which is

shown to be efficient than existing link-state algorithms in the literature. Additionally, we

estimate the sensitivity of equilibrium expected costs with demand variation by formulating

it as a convex program solved using a variant of the gradient projection algorithm proposed

earlier. This analysis simplifies a complex express lane network as a single directed link,

allowing integration of adaptive lane choice for planning of express lanes without significantly

altering the components of traditional planning models.

Overall these models improve the state-of-the-art of pricing and planning for managed

lanes useful for evaluating future express lane projects and for operations of express lanes

with multiple objectives.

Keywords: Managed lanes, Dynamic pricing, Markov decision process, Deep rein-

forcement learning, User equilibrium with recourse, Network contraction
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Chapter 1

Introduction

1.1 Background

Managing traffic congestion is a growing challenge for transportation planners, traffic

operators, and engineers. The United States lost around $121 billion in net worth in the year

2011 directly attributable to congestion on roadway facilities [2]. A recent trend in managing

freeway congestion is to prioritize improving travel time reliability while trying to minimize

user delay in the network [3]. Travelers using transportation networks want to reach their

destination on time and a reliable freeway corridor guarantees that their experienced delay

does not exceed a threshold.

A trending way to improve travel time reliability is by constructing new managed

lanes or repurposing existing lanes as managed lanes on freeway. A managed lane (ML)

project sets apart a set of lanes “where operational strategies are proactively implemented

and managed in response to changing conditions” to provide reliable travel time to the road

user [4]. A subcategory of managed lanes are priced managed lanes, which are also referred

as express lanes or high-occupancy/toll (HOT) lanes, where the user has to pay a toll for

utilizing the facility.

Priced managed lanes are increasingly being used by many cities around the United

States. As of January 2019, there are 41 active managed lane projects across the United

States [5]. These include North Tarrant Express and LBJ TEXpress corridor in Dallas Fort-

Worth, I-85 lanes in Atlanta, I-495 lanes in Northern Virginia, I-15 lanes in San Diego,

MoPaC Expressway in Austin, and Katy Freeway in Houston. These lanes exploit users’

willingness to pay for saving travel time and charge toll rates which may vary with the time-

of-day or dynamically based on the congestion pattern. These lanes also generate revenue

for infrastructure projects and promote the usage of transit by providing faster travel time

for transit vehicles.

1



As managed lanes solve congestion problems and gain popularity, its infrastructure

has also become complex. Managed lanes on a corridor now have multiple assess locations,

and can span an entire corridor across a city. The LBJ TEXpress Lanes, a corridor of

managed lanes in Dallas, Texas, feature 15 entrance ramps and 16 exit ramps along the

13.3-mile stretch of the roadway [6]. Networks of managed lanes can exist, with one corridor

merging into another. Given the widespread adoption of electronic tolling and dynamic

tolling based on real-time measurements, tolls on managed lanes can now adapt to current

traffic conditions.

Furthermore, the deployment of extensive sensor networks and penetration of location-

based services such as global positioning systems (GPS) on mobile phones have enabled

conveying real-time information to the travelers. In the future, we also expect connected

vehicles to obtain real-time updates about travel time and tolls using vehicle-to-vehicle or

vehicle-to-infrastructure connections. The provision of real-time information allows travelers

to adapt their routes based on the information received, which makes predicting the number

of travelers using the managed lanes uncertain complicating the operations and planning of

these lanes.

Additionally, public private partnerships (PPP) are commonly being used to finance

the construction of these lanes. Under PPP, a private entity handles the design, construc-

tion, planning, operations, and management of managed lanes over a time period typically

spanning multiple decades. Different agencies assign different priorities to various objectives

for managed lane operations. For example, a private entity might prioritize revenue gener-

ation over ensuring least possible delay for travelers while doing toll operations. Managed

lane operations have thus become more complicated than in the past as they are now mul-

tiobjective with varying priorities for different objectives including enhancing the HOT lane

efficiency and utilization, providing travel time reliability, reducing total delay, and yielding

sufficient revenue to offset the lifecycle costs of the project [7]. In addition, there are emerg-

ing social equity concerns with the usage of managed lanes: is the social benefit of reduced

delay equally distributed across travelers from all social classes?1.

1While express lanes are nicknamed “Lexus” lanes mocking the typical affluence of its users, there is
conflicting evidence on the income levels of the users of these lanes [8, 9]

2



1.2 Motivation

This dissertation is motivated by three key challenges which will be the focus in the

remainder of this document.

First, from the perspective of planning and operations, understanding how travelers

make lane choice decisions under the presence of real-time information is critical for the

success of managed lanes. For managed lanes with multiple entrance and exit locations, the

driver lane choice behavior can be complex. Travelers decide where and when they enter and

exit the express lanes given the current information on toll prices and travel time savings.

Current lane-choice models make simplified assumptions on driver behavior, like a traveler

only compares two choices at each diverge, a traveler does not exit the managed lane once

they enter the lane until their exit is reached, and/or travel time on the general purpose

lanes (GPL) is unaffected by the shift of travelers to the express lanes [10, 11, 12].

Inaccurate predictions of lane choice decisions of travelers can impact the traffic and

revenue forecasts and also the investment decisions for an express lane. For example, ac-

cording to a recent article in The Seattle Times, the I-405 express toll lanes in Seattle are

operating below the desired speed limit 90% of the time [13]. In another recent instance,

the toll rates on the 66 Express lanes in Virginia were raised to $47.5 during peak hours to

maintain free flow on the express lanes [14]. These instances demonstrate the need for better

driver behavior model which can predict lane choices for travelers accurately.

Second, building on accurate driver behavior models, there is a need for pricing models

which can optimize toll prices for a certain objective. Most of the current dynamic pricing

strategies utilize real-time measurements for dynamic pricing and are heuristic in nature: the

decision to increase or decrease the toll is often made using a pre-determined threshold. An

example of a heuristic strategy based on density measurements made using a loop detector

data is shown in Figure 1.1, where the choice of whether or not to increase the toll is based

on the measurements of current density of the roadway.

These heuristics can be potentially improved and tolls can be dynamically updated

to achieve a particular objective. Models for managed lanes with a single entrance and a

single exit have been extensively studied. Such systems are easier to model because there is
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Figure 1.1: Commonly used heuristic for dynamic tolling of managed lanes (Source-
Michalaka et al. [1])

only one decision point for the traveler and the tolls influence traveler’s decision only once.

However, for managed lanes with multiple entrances and multiple exits, there are multiple

decision points located at each diverge location. In such cases, it is complicated to model

the behavior of a traveler and update the tolls that still achieve a particular system-wide

objective. Furthermore, the mechanism to handle the tradeoff between multiple objectives

for dynamic pricing has not been studied.

Last, current models used for long-term planning of managed lanes model the lanes

as toll facilities with static tolls and ignore the en route changes to route choice made by

the availability of real-time information. In the current literature, equilibrium models and

algorithms have been proposed that consider adaptive route choice under the presence of

network uncertainties [15, 16, 17]. However, these models need to be adapted for cases

where users of the managed lane corridor belong to different travel classes. Additionally,

there is a need for integrating the equilibrium model with adaptive route choice into the

traditional planning models and software.

Given these complications, how should a planning agency handle day-to-day opera-

tions and long-term planning for managed lanes of the future? In this dissertation, we focus

on improving the dynamic pricing and long-term planning models by considering en route

changes to the route choice of the travelers when subject to real-time information.

These translate to following goals for this dissertation:
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1. Modeling en route changes in lane choice: Adaptive route choice under the

presence of real-time information, also referred as online routing, has been well studied

for general networks [18, 19, 20]. However, managed lanes networks are acyclic and

thus efficient online routing algorithms can be adapted for these networks. Under this

goal, we extend the existing models in the literature to managed lanes and compare

the performance of currently used lane-choice models in the literature with an optimal

online routing model.

2. Developing improved dynamic pricing models for short-term operations: By

modeling the dynamic tolling as a Markov decision process, our goal is to propose a

heuristic that generates toll prices which does better than the existing heuristics on two

tolling objectives, incorporates adaptive lane choices made by a traveler, and handles

tradeoff between optimizing for multiple objectives together.

3. Modeling multiclass user-equilibrium under toll and travel time uncertainty:

When each traveler expects tolls and travel times to be stochastic, they route them-

selves using policies which minimize their expected costs. Under the presence of net-

work congestion where there are several travelers using the managed lane network, we

expect that travelers’ choice of routing policies will converge to an equilibrium flow. We

term this multiclass user equilibrium with recourse, where at equilibrium all travelers

with a certain value of time (VOT) going from same origin to the same destination

follow policies such that all used policies have equal and minimal expected costs. Un-

der this goal, we study the multiclass static user equilibrium with recourse (M-UER)

models for managed lane networks and conduct sensitivity analysis of the equilibrium

for network contraction of managed lanes as part of the traditional equilibrium models.

1.3 Contributions

Figure 1.2 outlines the chapters in the dissertation and states the contribution for

each chapter in a few words. The detailed contributions from each chapter are described as

follows:

Single Driver Route Choice Model (Chap 2): First, we present a methodolog-
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Figure 1.2: Organization of chapters and contribution

ical comparison of different route choice models and make recommendations on the choice

of appropriate route choice model to develop efficient component models for managed lanes

planning and operations. Second, we demonstrate how different assumptions on driver be-

havior produce variations in route choice, forming a basis for future research in understanding

driver’s lane choice patterns.

Dynamic Pricing Model for Short-term Operations (Chap 3): First, we

develop a model where travelers make online decisions at each diverge point considering all

routes on a managed lane network. The proposed method compares utility across a set of

routes which grow quadratically with network size at each diverge point. Such online route

choice on managed lane networks has not been studied in the literature to the best of our

knowledge. Second, we demonstrate how the value function approximation (VFA) algorithm

from the approximate dynamic programming (ADP) literature can determine tolls which
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perform better than “greedy” tolling schemes and other heuristics used in practice. Third,

we also develop a distributed model for dynamic pricing of managed lanes with multiple

entrances and exits that scales for networks with multiple toll segments. And last, with an

appropriate selection of the lane choice model, we develop a method to explore continuous

toll action space for all agents which obviates the need to generate and evaluate discrete toll

values like previously done in the literature.

Deep reinforcement learning algorithm for dynamic pricing (Chap 4): First,

we demonstrate the usefulness of Deep-RL algorithms for solving dynamic pricing control

problem under partial observability, and show that it performs well against existing heuris-

tics, without requiring restricting assumptions on driver behavior or traffic dynamics. Sec-

ond, we apply multi-objective optimization methods for joint optimization of multiple objec-

tives and overcome undesirable jam-and-harvest (JAH) characteristics of revenue-maximizing

optimal policies. Last, we conduct tests to verify the transferability of learned Deep-RL algo-

rithms to new input distributions and make recommendations on real-time implementation

of the algorithm.

Static Multiclass User Equilibrium with Recourse (M-UER) (Chap 5): We

propose a multiclass formulation of the model for user-equilibrium with recourse where a

traveler seeks to minimize a linear combination of two criteria: tolls and travel time.

Sensitivity analysis of UER for network contraction (Chap 6): First, we

present a gradient-projection algorithm for generating computationally-efficient solutions to

UER with better accuracy than the algorithms in the literature. And second, we present

a convex program for sensitivity analysis of UER models and present an extension of the

gradient-projection algorithm above for computing the sensitivity parameters.

1.4 Organization

The dissertation has been written so all the chapters can be read independent of each

other. The rest of the document is organized as follows. Chapter 2 discusses the online

route choice model for single traveler. Chapter 3 focuses on the dynamic pricing problem for

short-term operations where a traveler only rely on the real-time information to make online

decisions and the case where toll operations at each toll gantry are decentralized. Chapter 4
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extends the dynamic pricing problem to settings where traffic state is not fully observable.

Chapter 5 presents a static user-equilibrium with recourse framework for long-term planning

of managed lanes. Chapter 6 presents a sensitivity analysis model for network contrac-

tion of acyclic express lane networks in the traditional user equilibrium models. Chapter 7

summarizes the findings in the dissertation and discusses ideas for future work.
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Chapter 2

Single Driver Route Choice Model

1Modeling driver behavior and lane choice patterns is crucial for the success of sev-

eral components of managed lane planning and operations, including traffic and revenue

forecasting and toll pricing. A route choice model, also referred as a lane choice model in the

literature, predicts decisions of travelers at each diverge location. The analysis of lane choice

decisions is complex for managed lanes with multiple entrances and exits due to multiple

decision locations. Improper assumptions on driver behavior may lead to incorrect traffic

or revenue forecasts and may negatively impact reliability on the corridor. For example, a

recent analysis of traffic speed data on the I-495 managed lanes in Washington showed that

the minimum speed standards on the 15-mile-long managed lane corridor were met only 81%

of the time [13].

Current route choice models for managed lanes with multiple entrances and exits

make limiting assumptions, for example, travelers entering a managed lane do not exit until

the destination is reached [10, 11] or that a traveler only relies on real-time information to

make her decision [21]. With the influx of connected and autonomous vehicles, we expect

that travelers (or vehicles) can soon learn the historic pattern and the evolution of traffic and

toll prices and can adapt their routes dynamically (also referred to as online adaptation of

routes). Under such cases, existing route choice models for managed lanes are not sufficient.

Routing algorithms for networks with dynamic information have been a widely studied area

of research [22, 23, 24]. However, managed lane networks which have an acyclic nature and a

defined tolling architecture present a special testbed for adapting routing algorithms in the

literature to understand driver behavior.

Furthermore, a recent data-driven analysis of lane choice on managed lanes found

1The chapter has been published as following:
a) Venktesh Pandey and Stephen D. Boyles. Comparing route choice models for managed lane networks
with multiple entrances and exits. Transportation Research Record, 2673 (10):381-393, 2019.;
The contributions of Venktesh Pandey include study conception and design, conducting simulations, data
collection, analysis and interpretation of results, and manuscript preparation.
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that the existing route choice model predictions do not match well with field data [25].

Some travelers were found to make the same lane choice decision regardless of the toll and

travel time information, while others were found to choose lanes inconsistent with their

approximate value of time (VOT). This study shows the need for research which evaluates

appropriate driver behavioral assumptions and their impacts on route choice of a traveler.

This chapter seeks to fill this gap in the literature. We formulate an online route

choice model that determines the lane choice of a traveler at each diverge node in a managed

lane network with multiple entrances and exits that minimizes the total expected cost. We

compare the performance of the formulated model against other routing methods in the

literature and demonstrate the impact on results due to variations in driver behavior. We

also make recommendations on the choice of routing models when embedded within other

planning models for managed lanes.

The primary contributions of this work are two-fold. First, we present a methodolog-

ical comparison of different route choice models and make recommendations on the choice

of appropriate route choice model to develop efficient component models for managed lanes

planning and operations. Second, we demonstrate how different assumptions on driver be-

havior produce variations in route choice, forming a basis for future research in understanding

driver’s lane choice patterns.

2.1 Literature review

The literature on lane choice models for managed lanes with a single entrance and

exit can be classified as binary logit, VOT distribution, and all-or-nothing assignment [26].

The most commonly-used binary logit model predicts the probability of choosing a managed

lane given the toll and travel time difference between the two lanes [27, 28]. On the other

hand, models based on VOT distribution attribute the differences in traveler choices to the

variability in their VOT values instead of an error associated with the perception of the

utility of an alternative. Gardner et al. [26] show that a logit model may cause inconsistent

behavior such as travelers choosing managed lanes even if there is no congestion, which a

VOT distribution-based approach avoids. The all-or-nothing assignment is a special case of

VOT distribution when the distribution is uniform.
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In a recent data-driven analysis for the managed lanes in Katy, TX and North Tarrant

Expressway (Dallas-Fort Worth), Burris and Brady [25] observe that travelers often choose

a certain lane regardless of the toll or travel time values. They also find that travelers are

not really observed to optimize their lane choice and have shown to take choices which are

inconsistent with their past behavior. Under limited information settings, we can expect

drivers to behave suboptimally. However, in the near future, smart devices in a connected

vehicle can collect historic and real-time data and direct travelers towards an optimal decision

at each diverge. In such cases, we can expect travelers to make optimal decisions. Our

research includes analysis for these scenarios where a traveler has navigated the managed

lane system enough to learn about the network conditions and its variation.

Developing pricing or planning models for managed lanes with multiple entrances and

exits has been a recent field of research where the assumptions made on route choice are

simplistic. Yang et al. [11] solve for optimal tolls for each entrance and exit by assuming

that if a traveler enters the managed lane, they do not exit it until their destination. Zhu

and Ukkusuri [10] and Tan and Gao [12] make similar assumptions in their pricing models

and use a binary logit model to determine lane choice. Pandey and Boyles [21] use VOT

distributions to model lane choice by comparing utilities over a set of routes called decision

routes. These current models are built on the use of real-time information for dynamic

routing and fail to consider the availability of historic information that a traveler may learn

from experience.

This chapter focuses on routing vehicles on stochastic time-varying (STV) managed

lane networks, an area which has been extensively studied in more general networks. There

are two broad categories in this area: one finding the least-expected-cost path before starting

a route and the other finding a least-expected-cost strategy that makes changes to the route

as it is traversed based on the real-time information.

Finding a least-expected-cost path in STV networks is an NP-hard problem [29], as

Bellman’s principle of optimality does not hold true due to the non-linear nature of the

expectation operator. Miller-Hooks and Mahmassani [24] proposed an algorithm that finds

“non-dominated” paths from all nodes to the destination. Several extensions to this work

and other heuristic algorithms have been proposed. Readers are referred to Prakash [30] for
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a review of these algorithms.

A least-expected-cost strategy in STV networks chooses a link downstream of a node

to minimize the expected cost given the current information. Since Bellman’s principle of

optimality holds in this case [29], polynomial and pseudopolynomial algorithms have been

developed for finding optimal routing policy [19, 31]. Gao and Chabini [22] present a general

framework for finding optimal routes when link travel times are correlated. These algorithms

have been extended for network design problems like finding the optimal location of variable

message signs (VMSs) [32].

Optimal online routing strategies for optimizing multiple criteria have also been stud-

ied. If we assume that travelers seek to minimize a linear combination of tolls and travel

time, the algorithms from the single-criterion optimization can be easily extended to solve

multi-criteria problems. Jafari and Boyles [33] use a backward recursion algorithm for find-

ing online shortest paths for an electric vehicle while minimizing its wait time at a charging

station, travel time, and cost associated with charging. Opasanon and Miller-Hooks [23]

present a general framework for solving the least-expected-cost strategy for multiple criteria

and discuss algorithms that determine Pareto-optimal “hyperpaths”. Models for managed

lanes with reliability as a component of lane choice have also been studied [25]. Prakash

and Srinivasan [34] present a formulation based on “hypergraphs” for solving robust optimal

strategies which minimizes the combination of mean travel time and standard deviation,

which is a manner of expressing reliability.

This research formulates the online routing problem as a Markov decision process and

uses a backward recursion algorithm to solve the problem on managed lane networks as a

special case from the current literature. We also compare the online routing problem results

with the other routing models in the literature.

2.2 Routing models

This section explains the routing model for a single vehicle in STV managed lane

networks. We first present the notation and framework for our analysis, then discuss the

formulation for optimal route choice model, and end the section with a discussion of other

routing models. Throughout the text, we use vehicle and traveler interchangeably.
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2.2.1 Notation and framework

This section introduces the notation related to different components of the formula-

tion. Figure 2.1 shows an abstract network for managed lanes, where the top set of links

form the managed lanes (ML) while the bottom set of links form the general purpose lanes

(GPL). There are three entrances to the managed lane and two exits out of the managed

lane as shown.

Figure 2.1: An abstract managed lane network

Network

Consider a directed acyclic graph for managed lanes G = (N,A), where N and A are

the sets of nodes and links, respectively. A link (i, j) ∈ A connects nodes i and j, where

i, j ∈ N . Let Γ(i) and Γ−1(i) represent the set of outgoing and incoming links from and to

node i, respectively. Let T = {0, 1, 2, . . . T} denote the discrete set of time intervals in our

period of interest. We model route choice of a single vehicle traveling from origin o ∈ N to

destination d ∈ N , but other vehicles may be present. The route choice model of a single

vehicle is analogous to finding shortest path while solving user equilibrium on transportation

networks. Equilibrium analysis of routing for multiple vehicles is part of the future work.

Let Ndiv ⊂ N denote the set of diverge nodes where the vehicle makes a decision. These

nodes are highlighted in Figure 2.1.

Tolling

Several options have been suggested in the literature for charging a traveler for ac-

cessing a managed lane [1, 35]. We briefly discuss each of the toll options. Each tolling

option can be charged either as a fixed or distance-based rate at any given time step.
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1. Option 1–Tolling by segment/zone: In this option, the managed lane network is

divided into multiple segments and a traveler pays the same toll if they enter and exit

the managed lane anywhere within that segment. An additional toll is charged if a

new segment is entered. For example, for the network in Figure 2.1, say that links

(2, 4) and (4, 5) belong to segment 1, and links (5, 8) and (8, 9) belong to segment 2. A

traveler entering at 2 and exiting at 4 will pay the rate for segment 1, while a traveler

entering at 2 and exiting at 9 will pay the rate for both the segments.

2. Option 2–Tolling by entrance: In this option, a traveler entering the ML at any

given entrance pays the same toll rate regardless of the exit. For the network in Figure

2.1, the toll rate is different if a vehicle enters at 2, 4, or 8. Option 1 can be developed

as a special case of this option.

3. Option 3–Tolling by entrance-exit pair: In this option, a traveler pays a specific

toll rate based on the entrance and the exit location from the managed lane. There

is no difference between a fixed rate and distance-based rate for this option since the

distance between an entrance and exit is fixed. Options 1 and 2 can both be developed

as a special case of this option.

In this chapter, we choose another tolling option which we call option 4–tolling by

diverge location. Here a traveler pays a separate toll at every diverge node i ∈ Ndiv. For

the network in Figure 2.1, a certain rate is charged if a traveler enters the managed lane

at node 1. If the traveler continues to travel on the managed lane at node 5, they pay an

additional rate. Toll options 1 and 2 are special cases of this option. Toll option 3 offers

more degrees of freedom in controlling tolls; however, we must employ restrictions on toll

possibilities in option 3 to ensure fairness for the charged tolls, e.g. the toll for (1, 2)→ (5, 6)

entrance-exit pair should be lower than the toll for (1, 2)→ (9, 10).

We choose option 4 for the simpler models it provides. This option allows for tolls

to be collected on all ML arcs directly succeeding a diverge node. Let Atoll be the links

where tolls are charged. For the network in Figure 2.1, Atoll = {(1, 2), (3, 4), (5, 8), (7, 8)}.

Let τij(·) denote the dynamic toll charged on link (i, j) ∈ Atoll. We set τij(·) = 0 for all links

(i, j) ∈ A\Atoll. We explain the time dependence of tolls later in this section.

14



Driver behavior

Let α denote the VOT of a vehicle being routed from the origin node o ∈ N to the

destination node d ∈ N . For our purposes, a rational traveler always seeks to minimize

their cost, while an irrational traveler may choose lanes based on a certain preference. We

model an irrational traveler using parameter εr ∈ [0, 1], which models the probability that

the traveler will behave rationally. We define another variable, εML, which indicates the

conditional probability that a traveler prefers the managed lane given that a traveler behaves

irrationally (εr < 1). If εr < 1, then εML may range between [0, 1], where a value of 0 (1)

indicates that the traveler always chooses the GPL (ML). It is possible that a traveler with

εr < 1 may end up making the same decision as a traveler who always makes decisions

rationally [25].

Stochasticity and dynamic information

We model arc travel times and tolls as stochastic, time-varying, finite, and discrete

random variables. In our current model, we assume tolls and travel times are independent

of each other. This assumption is made to simplify the modeling process but may not hold

in reality, where tolls are set based on the evolution of travel times, and travel times on the

links have spatial and temporal correlation. This is similar to the independence assumptions

in past literature [23, 31, 33]. In our future work, we will relax this assumption.

We further assume that upon arrival at any node in the network, each traveler learns

about the toll and travel time realizations on downstream links. There can be alternate

ways of learning information about tolls and travel time, example using VMSs or traveler

information systems. However, several of the current implementations of managed lanes only

display tolls right before the diverge location. In such settings, it is reasonable to assume that

a traveler learns the toll and can see the congestion on the downstream links immediately

ahead of her. In our future work, we will extend our analysis to alternate assumptions on

information acquisition.

Let Θi(t) denote the set of all possible informationvectors that can be made available

to a traveler at node i at time step t, where an information vector θ ∈ Θi(t) consists of travel

time and toll values of the downstream arcs. Let tij(θ) and τij(θ) denote the travel time and

toll values on link (i, j) for information vector θ ∈ Θi(t). The probability of occurence of
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information vector θ ∈ Θi(t) is denoted by vθi (t) and is assumed to be known to the traveler

in advance. This is a reasonable assumption for experienced drivers or for scenarios in the

future with connected or autonomous vehicles which can track information across days.

2.2.2 Optimal online route choice model

The optimal routing seeks to minimize the total expected cost after departing the

origin at a certain time. There are two criteria used in routing, travel time and toll. We

simplify the modeling process by assuming that the total cost is a linear combination of toll

and travel time, thus the algorithms from the single criterion literature apply.

We formulate the problem as a non-discounted finite horizon Markov decision process

(MDP) with a termination state. MDPs are a traditional method for solving problems

involving stochasticity and dynamic decision-making. The components of the MDP are

defined as following:

1. State space: The current state of a vehicle is given by scurr, defined as scurr =

(icurr, tcurr, θcurr), where icurr is the current node location of the vehicle, tcurr is the

current time step, and θcurr ∈ Θicurr(tcurr) is the current information received at node

icurr. The simulation terminates when the vehicle has arrived at the destination. We

define termination state set C = {scurr | icurr = d}, where d ∈ N is the destination

node of the vehicle.

2. Action space: The action space given a state scurr is the set of downstream links

from the current node. We denote the action space by U(scurr) which is same as the

set Γ(icurr). Let a ∈ U(scurr) be an action in the action space representing a link in the

network and headNode(a) represent the head node of the link.

3. Transition function: Given a state scurr and the action a ∈ U(scurr), the transition

function f(scurr, a) determines the next state snext visited by the vehicle. The evolution
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dynamics of f(·) are given in Equation (2.1):

inext = headNode(a)

tnext = tcurr + ta(θcurr) (2.1)

θnext = any θ ∈ Θinext(tnext) with probability vθinext
(tnext)

4. One step cost: Given a state scurr and the action a ∈ U(scurr), the one step cost is

given by g(scurr, a) = αta(θcurr) + τa(θcurr)

An adaptive routing policy µ(·) determines the action a to be taken in each state

scurr at all time steps. The objective of solving the MDP is to determine an adaptive routing

policy that minimizes the expected cost. The expected cost-to-go starting from state scurr

and using a certain policy µ is given by Jµ(scurr) which is defined as shown in Equation (2.2).

Jµ(scurr) = E[g(scurr, µ(scurr)) + Jµ(f(scurr, µ(scurr)))] (2.2)

By definition of termination state, Jµ(scurr) = 0 for all scurr ∈ C .The optimal routing

policy µ∗ is the one that minimizes the total expected cost over all policies. The cost-to-go

values in any state when following the optimal policy satisfy the Bellman equation as shown

in Equation (2.3). We also denote the optimal cost-to-go value of being in state scurr as

J∗(icurr, tcurr, θcurr).

J∗(icurr, tcurr, θcurr) = Jµ∗(scurr) = min
∀a∈U(scurr)

g(scurr, a) + E[Jµ∗(snext)] (2.3)

where E[Jµ∗(snext)] is the expectation over all possible next states reached by taking

an action a in the current state.

Finding the optimal cost-to-go values for each node is the new objective as knowing

these can determine the optimal policy. This finite-horizon MDP can be solved using the

standard backward recursion algorithm shown in Algorithm 1. The algorithm starts with an

initialization of the cost-to-go values for each state and improves them sequentially by going

in a reverse topological order from the destination node. The algorithm exploits the acyclic
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nature of the managed lane network and terminates with optimal cost-to-go values in one

sweep of the network. We denote this route choice model by OSP in the remaining text.

Algorithm 1 Backward recursion algorithm for solving the proposed MDP

Initialization
for t ∈ T do

Set J∗(d, t, θ) = 0 ∀θ ∈ Θd(t)
Set J∗i (i, t, θ) =∞ ∀i ∈ N\d,∀θ ∈ Θi(t)

end for

Update the value
for node i in reverse topological order do

for t ∈ T do
for information θ ∈ Θi(t) do

Update cost for J∗(i, t, θ) using Equation (2.3)
end for

end for
end for

2.2.3 Other routing models

In this section, we discuss other routing models proposed in the literature focusing in

particular on models for managed lanes with multiple entrances and exits. We first define

the notion of instantaneous and experienced cost for any path in the network.

We define a path (or route) π = [j0, j1, . . . , jKπ ] in the network as an ordered set of

nodes jk ∈ N for all k ∈ {0, 1, . . . , Kπ}, where Kπ is the number of links in the path. Let

π(i) = (ji−1, ji) be the ith link in the path, i ∈ {1, . . . , Kπ}. Furthermore, let θ̂i(t) ∈ Θi(t)

be the realization of the travel time and toll information at node i ∈ N at time step t. The

instantaneous cost of path π at time step t is defined as the sum of total cost for each link

on the path using the realizations of travel time and tolls at the current instant of time. It

is denoted by U inst
π (t) and is calculated using Equation (2.4), where the summation is over

all links in the path and α is the VOT value of the traveler.

U inst
π (t) =

Kπ∑
i=1

τπ(i)(θ̂ji−1
(t)) + αtπ(i)(θ̂ji−1

(t)) (2.4)

The experienced cost of a path is defined similarly, as the sum of costs for each
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link on the path. However, it takes into account the time of arrival at future nodes. We

define the expected experienced cost of path π at time step t recursively by calculation

expectation over all possible realizations of travel time and toll in the future. We denote this

by U exp
π (t) and calculate it using Equation (2.5), where α is the VOT value of the traveler

and π̄ = [j1, j2, . . . , jKπ̄ ] is the path obtained by removing the first node (or link) from the

current path π.

U exp
π (t) =

∑
θ∈Θj0 (t)

(
τπ(1)(θ) + αtπ(1)(θ) + U exp

π̄ (t+ tπ(1)(θ))
)
vj0(θ) (2.5)

Binary logit model

Binary logit route choice models used in the literature [10, 11, 12] assume that trav-

elers do not exit the managed lane after they enter, until the end of the corridor. The

diverge nodes located on the managed lanes are no longer considered as decision point. At

each diverge node along GPL, a traveler compares instantaneous utility between two paths:

one connecting the current node to the destination only using links on ML while the other

connects the current node to the destination only using links on GPL.

Figure 2.2(a) shows routes over which the utility is compared at each diverge node.

We denote the path using the managed lane by πML and the path using the general purpose

lane by πGPL, where the first node on both paths is the current diverge node j0. The route

choice decision is made by computing the probability of choosing the managed lane pML

given the current realizations of toll and travel time at any diverge node. The probability

pML is evaluated using Equation (2.6), where ζ is the inverse of the scale parameter for a

logit model which can be used to calibrate the model. We denote this route choice model by

Logit in the later text.

pML =
e−ζU

inst
πML

(t)

e−ζU
inst
πML

(t) + e−ζU
inst
πGPL

(t)
(2.6)
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Figure 2.2: Routes for which the instantaneous costs are compared: (a) Logit model and
(b) Decision Route model

Decision routes based route choice model

Proposed in Pandey and Boyles [21], this approach considers a set of routes, called

decision routes, at each diverge location on the managed lane network. Intuitively, at each

diverge node, a decision route connects the current node with the head node of the first exit

from the ML downstream of the current node entrance. This approach avoids enumeration

of all possible routes to the destination and maintains scalability of the model. A formal

definition is given in [21]. Figure 2.2(b) shows the decision routes for each diverge node. Let

Πi
DR denote the set of decision routes at any diverge node i ∈ Ndiv.

At each diverge node, the traveler makes an online decision by comparing the instan-

taneous costs across each decision route and choosing the first link of the path minimizing

the cost. Formally, for a given diverge node i ∈ Ndiv, the chosen link (i, j) is given by

Equation (2.7). We denote this route choice model by Decision Route in the later text.

π∗ = argminπ∈ΠiDR
U inst
π (t)

(i, j) = π∗(1) (2.7)

Offline route choice model

Under this routing model, a complete route is selected before the vehicle departs from

the origin and the path is not adapted later. We use the concept of Pareto-optimal paths

as discussed in Miller-Hooks and Mahmassani [24]. A path π is called a dominated path
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if there is at least one path π′ connecting the same first node and the last node such that

U exp
π′ (t) ≤ U exp

π (t) for all t ∈ T , and U exp
π′ (t) < U exp

π (t) for at least one t ∈ T .

A set P (i) of Pareto-optimal paths between nodes i and the destination d of the

vehicle is defined as a set of paths which are not dominated. We adapt the algorithm in

Miller-Hooks and Mahmassani [24] and Jafari and Boyles [33] for solving Pareto-optimal

paths for all nodes as shown in Algorithm 2. The Pareto-optimal path from origin o at a

given departure time is the path that minimizes the expected cost to the destination. We

denote this route choice model by Offline in the later text.

Algorithm 2 Offline routing algorithm

Create an artificial path π from d to d
for t ∈ T do

Set U exp
π (t) = 0

end for
SEL ← π
while SEL 6= Φ do

Remove path π from SEL. Let j be the path origin.
for i ∈ Γ−1(j) do

Define η = (i, j)⊕ π
For all t ∈ T , find U exp

η (t) using Equation (2.5)
If η is Pareto-optimal, then P (i)← P (i) ∪ η and SEL ← SEL ∪η
Remove set of paths from dominated by η from P (i) and SEL

end for
end while

Random policy

This routing policy chooses the next link at each decision node randomly with equal

probability and is denoted by Random in the later text. This policy is included as a baseline

where a traveler uses no historic or real-time information in choosing her routes.

Each of these routing models can be categorized based on the type of historic and

real-time information used in deciding the route. Table 2.1 shows the taxonomy of the

routing models discussed above. The Logit and Decision Route models only use real-time

information on the routes over which the instantaneous utilities are compared. The Offline

model uses only the historic information on probability distributions of tolls and travel time.

The OSP model uses both information sources for determining the optimal route, while the

Random model uses none.
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Table 2.1: Taxonomy of route choice models considered in this study

In the next section, we compare the performance of the discussed routing algorithms

on different STV managed lane networks. Since we make the assumption that travel time

and tolls are independent spatially and temporally, the differences in the information re-

quirements among DR, Logit, and OSP model, shown in Table 2.1, still make for a valid

comparison. If the travel times are correlated, the differences in information will impact the

shortest path cost; this is left as future work.

2.3 Experiments

We compare the route choice models discussed in Section 2.2 on three test networks: a

double-entrance-single-exit (DESE) network, the LBJ TEXpress network consisting of three

entrances and two exits (LBJ), and a network with thirteen entrances and fourteen exits

(13En14Ex). The DESE and 13En14Ex networks are constructed artificially, where the

length of each entrance and exit ramp is set as 0.15km, and the length of other links is a

multiple of this length, with multipliers randomly sampled from the set {2, 3, 4}. The LBJ

network is constructed using the lengths for the first toll segment from the LBJ TEXpress

network in Dallas, TX. Figure 2.3 shows an abstraction of these networks.
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Figure 2.3: Networks used for analysis: (a) Double-entrance-single-exit network (DESE),
(b) LBJ TEXpress network (LBJ), and (c) 13 entrance 14 exit network (13En14Ex)

The free-flow travel time t̄ij for each link (i, j) ∈ A is determined by dividing the

length by its free-flow speed, set as 90 km/hr for all links on GPL and 120 km/hr for all

links on ML. The travel times for each link on ML is sampled from the set {t̄ij, 1.1t̄ij},

while travel times for each link on GPL is sampled from the set {mt̄ij}, where m takes

value between 1 and 2 in increments of 0.1. The toll on each link (i, j) ∈ Atoll is sampled

randomly from the set {$0.1, $0.3, $0.5, $0.7, $0.9}, while tolls on other links are set at $0.

The possible combinations of toll and travel time information on each link are generated and

each combination is assigned the same probability of occurrence. Each routing model was

implemented in Java on a 3.3 GHz Windows machine with 4 GB RAM.

2.3.1 Rational traveler

The analysis in this section considers a traveler with εr = 1 for the OSP model, that

is, the traveler always follows the optimal policy action predicted by the model.

Figures 2.4(a) and (b) show the expected cost between vehicle’s origin and destination

obtained using the OSP model on the three networks for varying VOT values for the vehicle.

The expected cost is expressed both in money units ($) and time units, the latter obtained

after dividing the money units by traveler’s VOT. We observe that the expected cost is

higher for vehicles with higher VOT, since, for a given value of travel time and toll on a

link, a vehicle with higher VOT incurs higher costs. The costs are higher for network with

more links because the average path length is longer. Decreasing expected cost in time units

shows that the average travel time spent in the network is lower for vehicles with higher
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VOT since they save time by traveling on the managed lanes in-spite of paying a toll. The

DESE network shows an almost linear variation in the costs with a negligible slope which is

possible if the difference between the best and the second best policy is large and all VOTs

follow the same policy.

Figure 2.4: Comparison of expected costs in (a) dollar units and (b) travel time units

We also compare the expected costs of the shortest route using the OSP and the

Offline models. Figure 2.5(a) shows the percent difference in costs from the Offline

model measured relative to the OSP model and Figure 2.5(b) shows the difference in costs

expressed in travel time units by dividing the difference by the VOT. The differences in costs

between the two models is indicative of the potential benefit of providing online information

in lowering the expected cost of a traveler. Expressed in units of time, we call this difference

the value of online information (VoOI). This definition is similar to the one in the literature

[36].
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Figure 2.5: Comparison of the (a) percent difference in costs between the Offline and the
OSP model, and (b) value of online information for the three networks with varying values

of time

For the LBJ and 13En14Ex networks, VoOI value initially increases, then attains a

peak, and decreases from then onwards. The location of the peak varies with the network.

This pattern is expected: for vehicles with very low VOT, GPL is always preferable and the

preference remains unchanged irrespective of the online information. Similarly, for vehicles

with very high VOT, ML is always preferable and the presence of online information does

not impact the preference. The benefit of online information is higher for vehicles with a

certain VOT value. The peak VoOI for the LBJ and 13En13Ex networks are found to be 38

seconds and 85 seconds, respectively. For the DESE network, we do not observe this pattern

over the simulated VOT values. This is because, for the generated network instance, the ML

never becomes attractive as the toll values in the set are very high.

Next, we compare the expected costs obtained from simulating 100, 000 random in-

formation instances for all of the proposed methods for varying values of time. We plot the

results for four VOT values ranging from $15/hr to $45/hr in increments of $10/hr. Figure

2.6 shows the plots of the percent difference in expected cost for each model defined in Sec-

tion 2.2.3 versus the OSP model. We test the Logit model for two values of ζ parameter, 0.1

and 0.01.

The percent error was found lowest for the Decision Route model, ranging between

0% − 1.5% for all three networks, with an average percent error of 0.93%. This suggests
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Figure 2.6: Comparison of percent difference in the expected cost between each of the four
route choice model and the OSP model for the three networks

usefulness of the Decision Route model in determining online routes which are close to

the optimal. The model is easy to implement as it relies only on the instantaneous cost

predictions on decision routes and is thus relevant for use in the current planning or pricing

models.

The error in the Offline model varied between 0% − 12% with patterns discussed

earlier for the value of online information. We note that the benefit of the historic information

used in the Offline model can be significant if travel times and tolls are highly correlated

spatially and temporally, lowering the percent errors. In such settings, there can be a limited

value in learning from the real-time information at diverge nodes, making offline routing

beneficial [36]. Our modeling assumption that the link travel times and tolls are independent

enhances the success of the Decision Route model compared to Offline model. Though

models with correlation are much harder to solve, we will test the benefits of both models

under correlation in future work.

We also observe that the Logit model for both values of ζ parameter performed

almost identically. The model had an average percent error of 49.83% for ζ = 0.01 and

51.09% for ζ = 0.1, which is even higher than the average percent error of 40.76% for the

Random model. The higher error in the Logit model shows its non-optimal prediction of lane
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choice. This is reasonable since we use restrictions on exits from the ML in the definition of

Logit model. The results show that making this assumption can have a significant impact

in the accuracy of a driver behavior model if the traveler behaves rationally.

We also observe a trend that the error in the Logit model decreases with the in-

creasing VOT value. This may be a result of the model preferring the managed lane when

choosing routes. This preference leads to higher error in the expected cost for vehicles with

lower values of time. In the next section, we compare Logit model for irrational travel

behavior.

2.3.2 Irrational traveler

The analysis in this section assumes that a traveler makes sub-optimal decisions

and the value of εr parameter is strictly less than 1. We model this behavior by generating

100,000 random information vectors and modeling that the traveler chooses actions predicted

by the optimal policy with probability εr and a random action towards ML with probability

(1− εr)εML and towards GPL with probability (1− εr)(1− εML). We only compare the OSP

model with εr < 1 and the Logit model with varying values of ζ. Other models do not have

an inherent structure for irrational route choice and are thus ignored for this analysis. We

focus our analysis on the LBJ network for two values of time, $20/hr and $45/hr.

We compare the expected costs obtained for different values of time for varying values

of εr and εML parameters. Table 2.2 shows the variation of expected cost from the OSP model

for increasing εr value on the vertical axis and increasing value of εML on the horizontal axis.

The heat map in the table shades a cell darker if the expected cost is higher relative to the

value in other cells.
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Table 2.2: Comparison of expected costs for varying values of εr and εML

We observe that increasing the value of εr for a given value of εML reduces the cost

of a traveler regardless of the value of time of the traveler. This is reasonable, as increasing

the εr value promotes a traveler to make optimal decision and thus reduces the costs.

In contrast, the variation of costs due to increasing value of εML depends both on the

value of εr and the value of time α. For example, for εr = 0.3 and α = $20/hr, the expected

cost has a peak at εML = 0.7, while for α = $45/hr, the peak occurs at εML = 0.001. This is

because a traveler with low value of time and a high preference for GPL is better off choosing

the GPL because the ML has higher associated costs. Similarly, a traveler with a high VOT

and a high preference for ML is better off choosing the ML. Thus, for modeling irrational

driver behavior, a lower (higher) value of εML is recommended for drivers with low (high)

VOT values. Though this relative setting for εML values is obvious, the OSP model can help

determine the appropriate value of εML.

Figure 2.7 shows a comparison of expected costs from the Logit model with varying

values of ζ where the x-axis is a logarithmic scale. The dashed line represents the minimum

cost obtained for a certain ζmin parameter. For $20/hr, ζmin = 0.01 with a cost of 2.65 while

for $45/hr, ζmin = 0.003 with a cost of 4.08. We observe that increasing the ζ values beyond

0.1 leads to an increase in the cost, indicating that the calibrated ζ value should be lower

for the LBJ network. Optimal calibration of the ζ parameter should be done, accounting for

variation of VOT values in the entire population.
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Figure 2.7: Logit model expected cost variation with ζ

Figure 2.8 shows the contour plots of the expected cost from the OSP model for varying

values of εr and εML. We show the approximate contour lines corresponding to ζmin for both

VOT values on the plot. For the case of $20/hr, the contour line is a single dot in the corner.

Figure 2.8: Contour plots of expected cost for varying εr and εML values with approximate
contour lines shown for the Logit model costs

As observed, for a given value of ζ, similar costs can be obtained from the OSP model

for different combinations of εr and εML. This shows that Logit model does predict “opti-

mal” costs under irrational traveler behavior assumptions for certain values of ζ; however,
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calibration for the appropriate value of ζ may be a cumbersome task. Using field-collected

data on route choice to calibrate the values of ζ, εr, and εML is left for future work.

2.4 Summary

In this chapter, we evaluated the performance of route choice models on STV managed

lane networks with multiple entrances and exits. We formulated the online routing problem

as an MDP and used the backward recursion algorithm to determine the optimal policy. The

performance of other algorithms in the literature was evaluated against the online algorithm

for different assumptions on driver behavior.

Simulation results on three test networks showed that the Decision Route model

performs the best and generates an average percent error of 0.93% in the expected cost.For

the tests using the Offline model, the peak value of online information was found to be 38

and 85 seconds for the LBJ and 13En14Ex network, respectively, which shows that providing

real-time information can reduce traveler’s expected cost by an amount that varies with

networks size. The Logit model showed an average 50% error in the expected cost under

the assumption of rational driver behavior; however, it obtained costs similar to the OSP

model for certain parameter values under irrational driver behavior assumptions.

We recommend the use of Decision Route model for route choice under real-time

information settings as it relies only on instantaneous costs, is easy to implement, and pre-

dicts close-to-optimal behavior. Logit model is recommended for modeling irrational driver

behavior; however, appropriate calibration of the scaling parameter is essential. The OSP

model is recommended to understand lane choice variations in a population after calibrating

the values of εr and εML using field data. These recommendations can be applied for route

choice models used for several applications like, improving revenue forecasts for managed

lane planning, calibrating parameters of route choice based on real-time data with hetero-

geneous drivers, equilibrium behavior analysis for travelers on managed lane networks, and

online route guidance using navigation applications.
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Chapter 3

Dynamic Pricing Model for Managed Lanes

with Multiple Entrances and Exits

1Dynamic pricing for managed lanes with a single entrance and exit has been studied

extensively [26, 27]. However, pricing managed lane networks with multiple entrances and

exits poses different challenges, due to multiple decision points for travelers and varying toll

rates for different segments of the network. Yang at al. [11] and Zhu and Ukkusuri [10] have

used algorithms from stochastic dynamic programming and reinforcement learning literature

to determine dynamic prices on network with multiple entrances and exits. However, the

proposed methods work on network with simplified assumptions, for example, that travelers

from managed lane cannot join back the general-purpose lane or that travel time on general

purpose lane is independent of the flow diverting from the lane to the HOT lane.

This chapter is divided into two major sections, one where the same toll rate is ap-

plied across all toll gantry entrance locations (called centralized single-toll-variable dynamic

pricing) and the other where different toll gantries are controlled by different agents who

coordinate their actions to optimize the tolls for the system (called distributed dynamic

pricing).

The primary contributions from the first section of this chapter are two fold. First,

we develop a model where travelers make online decisions at each diverge point considering

all routes on a managed lane network. The proposed method compares utility across a set of

routes which grow quadratic with network size at each diverge point. Such online route choice

on managed lane networks has not been studied in the literature to the best of our knowledge.

1The chapter has been published as following:
a) Venktesh Pandey and Stephen D Boyles. Dynamic pricing for managed lanes with multiple entrances and
exits. Transportation Research Part C: Emerging Technologies, 96:304–320, 2018; and
b) Venktesh Pandey and Stephen D Boyles. Multiagent reinforcement learning algorithm for distributed
dynamic pricing of managed lanes. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 2346-2351. IEEE, 2018.
The contributions of Venktesh Pandey include study conception and design, conducting simulations, data
collection, analysis and interpretation of results, and manuscript preparation.
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Second, we demonstrate how the value function approximation (VFA) algorithm from the

approximate dynamic programming (ADP) literature can determine tolls which perform

better than “greedy” tolling schemes and other heuristics used in practice. The chapter also

compares the performance of different VFA initializations in convergence towards optimal

toll. The results are developed for the objectives of revenue maximization and total system

travel time (TSTT) minimization. The primary contribution from the second section, which

builds on the findings in the first section, are the following: First, we develop a distributed

model for dynamic pricing of managed lanes with multiple entrances and exits that scales

for networks with multiple toll segments. And last, with an appropriate selection of the lane

choice model, we develop a method to explore continuous toll action space for all agents

which obviates the need to generate and evaluate discrete toll values like previously done in

[10] and [21]

3.1 Literature review

The models for dynamic pricing of managed lanes in the literature involve three sub

models [26]. The lane choice model determines how a traveler makes the choice between the

managed lane and the parallel general purpose (GP) lane. The traffic flow model determines

how traffic propagates before and after the choice of a lane is made. The toll pricing model

determines how tolls are updated with time using a particular objective function set by the

toll operator.

There are two broad categories to model lane choice in the literature. A binary

logit model selects a choice which maximizes the expected utility, where the utility for each

alternative (managed lane or GP lane) is defined in terms of travel time and toll and is

assumed to have a random component having a Gumbel distribution. The second approach

uses a value of time (VOT) distribution directly, assuming no inherent randomness in the

decision of travelers and that travelers make different choices based on their value of time.

Gardner et al. [26] highlight results where the logit model gives counter-intuitive results

in cases of low congestion and indicate better performance of the VOT distribution based

method. The analysis in this chapter thus uses VOT distribution to model lane choice.

The traffic flow models can be broadly categorized into microscopic, mesoscopic,
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and macroscopic models. Several researchers have used detailed microsimulation models

to capture the precise impact of lane change around the decision point [28, 37]; however,

the flexibility and faster computation time for mesoscopic models make them more useful.

The most commonly used mesoscopic model is the cell transmission model used in several

managed lane studies [10, 11, 27, 38, 39]. The choice of toll-pricing model is varied across the

literature and depends on the operator’s objective, some of which include maximizing revenue

[11, 40], minimizing total system travel time [10], and maximizing corridor throughput [1].

3.1.1 Single control variable

A managed lane network with single entrance and single exit has been studied ex-

tensively in the literature. Gardner et al. [26] used value-of-time based toll pricing model

for a single entrance-exit managed lane network with a downstream bottleneck on the GP

lane. An extension to the same research considered stochastic demand and compared the

performance of four pricing schemes [41]. Lou et al. [27] developed a model using real-time

loop detector measurements to estimate logit model parameters and the optimal toll price

simultaneously. Toledo et al. [38] developed a model where the real-time measurements are

used to predict the toll profile in the prediction horizon and based on driver’s response to

the toll profile, the toll is updated in the next time step. Goccmen et al. [40] presented

a revenue maximizing toll pricing model and compared adaptive and non-adaptive policies

used for these purposes. They indicate that optimal revenue maximizing policies follow a

“jam-and harvest” approach, where the tolls are set high in the beginning to push the GP

lane towards congestion, after which the revenue on the managed lane is maximized.

Analysis of managed lane networks with multiple entrances and exits is less devel-

oped. Michalaka et al. [42] developed simulations to evaluate the effectiveness of four tolling

strategies on I-95 express lanes in Florida which have multiple entrances and exits. However,

the toll pricing is assumed constant and is not optimized. Dorogush and Kurzhanskiy [43]

proposed a theoretical model where the optimal split of travelers at each diverge point is cal-

culated first and then toll prices are set to achieve that proportion. Yang et al. [11] developed

a distance-based revenue maximization problem for managed lane networks with multiple

access points. Using additional assumptions, the problem is reduced to a stochastic dynamic
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programming problem and solved on a network with three entrances and exits. However,

the assumptions made are non-trivial. These include the assumption that travelers from the

managed lane do not re-enter the GPL and that the travel time on the GPL is unaffected

by the shift of travelers to managed lanes. Zhu and Ukkusuri [10] solve a similar problem

in a connected vehicle environment where the travelers can choose the managed lane at the

end of each time step; however, it is assumed that the travelers do not exit back to the

GPL. They use a reinforcement learning algorithm to solve the formulated infinite horizon

Markov decision process (MDP) and present the results of their analysis on the Sioux Falls

network. Tan and Gao [12] present a hybrid method based on model predictive control which

optimizes the toll rate between each entrance and exit to maintain the desired density on

the ML. The model determines the inflows at each toll entry as a control and provides a

one-to-one mapping between the inflows and the toll rate which is made possible because of

simplified lane-choice assumption where a traveler do not exit the ML if they enter the lane

at the current toll entry point. This chapter relaxes these assumptions by considering route

choice on managed lane networks where a traveler can enter or exit the managed lane at any

diverge point.

The work in Zhu and Ukkusuri [10] indicate the usefulness of ADP algorithms to

solve decision making problems in transportation networks. Researchers in the field of active

traffic management (ATM) strategies have used methods from stochastic optimal control to

determine optimal control algorithms. Kotsialos et al. [44] developed a discrete time problem

for solving coordinated and integral control of motorway networks using ramp metering and

variable speed limits as ATM strategies. They use feasible-direction algorithm, originally

proposed in Papageorgiou and Marinaki [45], to solve the non-linear optimal control problem

operating in the policy space. Several other researchers have looked at individual ATM

strategies and developed optimal control algorithms including model predictive control based

algorithm in Hegyi et al. [46] and feedback linearization algorithm in Zhang and Ioannou

[47]. However, these algorithms are challenging to directly apply to the managed lane pricing

problem because of the level of service constraint on the managed lane and the dynamic

decisions made by the travelers at each entrance point. We propose to solve the managed

lane pricing problem by formulating it as an MDP, the details for which are provided in the
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next section.

3.1.2 Multiple control variables

Reinforcement learning (RL) algorithms have been used for optimal decision making

in several traffic control problems involving active traffic management. Mannion et al. [48]

provide a review of the RL algorithms applied to the adaptive traffic signal control problem

where traffic signal timings are adjusted in real-time to optimize system performance. Other

researchers have looked at RL algorithms for ramp metering [49, 50] and variable speed limits

[51] among other active traffic management strategies.

Applied in a multiagent setting, MARL algorithms use the MDP architecture to

determine coordinated actions across all agents. Rezaee [49] and El-Tantawy et al. [52]

present a coordination graph based approach to determine optimal coordinated action for

multiple agents for the ramp metering and traffic signal control applications, respectively.

Kuyer et al. [53] use a max-plus algorithm for coordination of signals, which is built on

the coordination graph concept. The neighboring agents in a max-plus algorithm negotiate

and choose optimal actions after the negotiation. However, the negotiation process can be

time consuming. When applied to traffic settings, the MARL problem is assumed to have

the following characteristics: full cooperation between different agents; fix locations of the

agents in space; and fixed shared objective across all agents (like minimize total delay or

maximize revenue etc.) [49]. This architecture simplifies the challenges of MARL like goal

specification, and trade off between stability and adaptability which occur frequently in other

application domains of MARL (discussed in detail in Busoniu et al. [54]). In this chapter,

we build on a sparse cooperative Q-learning approach proposed in Kok and Vlassis [55].

3.2 Centralized single-toll-variable dynamic pricing

3.2.1 Optimization model

This section explains the model details for managed lane networks with multiple

entrances and exits and their characteristics.
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Assumptions

The assumptions made in the model are:

1. Travelers have information about the current travel time and toll information at every

instant when a lane choice is possible. This assumption is reasonable in a connected

vehicle environment or using variable message signs (VMSs).

2. Travelers make lane choice decisions en route at each diverge point based on the latest

information presented. The decisions are assumed to be based on the perceived utility

of the alternative at the current instant of time, without considering the choices or

information that will be made available in the future. We assume that drivers rely

only on the real-time information displayed on the VMSs for their decisions. Future

work will extend the lane choice model for travelers who chose routes based on their

past experiences.

3. There is only one origin and destination point for all travelers in the network. This

assumption can be relaxed by including additional entrance and exit points and by

disaggregating the traffic flow based on its destination.

4. Travelers pay the toll rate they see while entering the managed lane and continue to

pay that rate until the next decision point.

5. We use the VOT distribution method discussed in Gardner et al. [26] for modeling

lane choice. A discrete VOT distribution is used with different classes of vehicles and

is assumed to be known beforehand. Such a distribution can be estimated by looking

at historical trends of lane choice behavior of travelers, or by using estimation models

like the ones discussed in Pandey [56].

6. We assume that the toll prices are optimized for a finite time horizon. The demand

distribution is assumed to be known for this horizon and is considered deterministic.

In our model, we represent a general managed lane network as a combination of nodes

and links. Figure 3.1(a) shows one such network. The upper set of links represent managed

lanes while the lower set of links represent GPLs. Travelers make decisions at each diverge

point. For the network in Figure 3.1(a), the diverge points are 1, 3, 5 and 7. The origin and

destination nodes are marked as O and D respectively.
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Figure 3.1: (a) Multiple entrance multiple exit managed lane network (b) Representation of
the same network in cell transmission model

Notation

This section introduces the notations based on the cell transmission model [57] that

is used to model traffic flow.

The time horizon is divided into equal time steps, each ∆t units long. We assume

∆t = 1 without loss of generality. The set of all time intervals is given by T . Each link in

the network is divided into cells of length ∆xi, where i is the cell index. The length of the

cell is equal to the product of the free-flow speed in the cell, defined as ν, and the length of

a time interval (∆xi = ν∆t) [57].

Set C represents the set of all cells in the networks. This set can be partitioned into the

sets of ordinary cells CO, diverging cells CD, merging cells CM , source cells CR, and sink cells

CS. The definition of different cell types can be found in Daganzo [57]. We define a toll cell as

the cell immediately after the diverge point which leads a traveler towards the managed lane.

The toll is charged only for vehicles entering this cell. Set Ctoll represents the set of toll cells.

Additionally, we denote the set of all cells on managed lane as CML and the set of all cells
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on general purpose lane as CGPL, where CGPL = C \ CML. For the network shown in Figure

3.1(b), each of these sets are given as follows: CD = {2, 4, 13, 16}, CM = {12, 15, 21, 27},

CR = {1}, CS = {28}, CO = {3, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26}, Ctoll =

{5, 8, 17, 20}, and CML = {6, 7, 12, 13, 17, 18, 19, 21, 22}.

A cell i is connected to cell j by a cell connector (i, j). The set of cell connectors is

given by E . These connectors can be further classified as connectors going into a merge cell

EM , connectors going out of a diverge cell ED, and all other cell connectors EO = E \(EM∪ED).

Sets Γ(i) and Γ−1(i) refer to the set of successor and predecessor cells for a cell i ∈ C .

Figure 3.1(b) shows the location of these cell connectors for the example network shown.

Additionally, a sequence of adjacent cells defines a route, denoted by π.

A trapezoidal fundamental diagram is used to model traffic with the following param-

eters: free-flow speed ν, backwave speed w, capacity qc, and jam density kj. We assume the

fundamental diagram to be uniform across the network, but the assumption can be easily

relaxed. Converting these parameters to the level of a cell, we determine Ni = kj∆xi as the

maximum number of vehicles that can be stored in cell i and Q = qc∆t as the maximum

number of vehicles that can leave or enter cell i in one time step.

The discrete VOT distribution used to model lane choice is given by a set of possible

VOT values v ∈ V . We define xvi (t) as the number of vehicles of VOT class v in cell i at

time t and yvij(t) as the number of vehicles of class v moving from cell i to cell j from time

step t to t + 1. The total number of vehicles xi(t) and the total flow yij(t) are obtained by

adding the respective variables for each VOT class. Variable di(t) is defined as the demand

entering origin cell i ∈ CO from time t to t+ 1.

For the distance-based pricing model, tolls are updated periodically after a certain

interval. Let K ⊂ T denote the set of time steps t ∈ T at which the tolls prices are updated.

We index the elements of this set by k ∈ K and refer these as toll-update time steps. We

assume that the toll-update time steps are uniformly spaced with a gap of ∆k time steps.

Let β(k) denote the toll charged for all time steps between time step k and k + ∆k. For a

time step t ∈ T , we denote by tk the toll update time step k ∈ K, such that k ≤ t < k+∆k.

The units of the toll is $/km and it can take values from a finite feasible set B. Furthermore,

for each cell i ∈ Ctoll, we define li as the length of travel on the managed lane for which a
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toll needs to be paid while entering the managed lane through cell i.

Lane choice at diverge cells

At each diverge point, a traveler of VOT class v ∈ V compares the utility across

different routes which we define as decision routes. In the previous literature, two decision

routes are considered at each diverge point, defined by the set of links on managed lane and

GPL until the destination point. However, this definition assumes that a traveler entering

the managed lane will not choose to exit it until the destination point is reached.

To relax this assumption, on the other extreme, we could compare utilities across all

possible routes towards the destination at each diverge point. We call this approach the

complete-route generation (CRG) approach to determining decision routes. Figure 3.2(a)

shows the routes using the CRG approach. However, this approach suffers from two disad-

vantages. First, the total number of such routes can grow exponentially with network size.

Second, this method generates longer routes and using instantaneous time to predict utility

of longer routes increases the error in the estimate of experienced travel time on a route.

(We note that this CRG approach still assumes that travelers make decisions online at each

diverge point.) We overcome these disadvantages by defining decision routes at each diverge

cell, which compares utility across shorter routes and tractably enumerates the routes at each

diverge. This new approach termed sub-route generation (SRG) approach to determining

decision routes is explained next.

In the SRG approach, the set of decision routes at each diverge point comprises of the

routes connecting current diverge point with the point where the next exit from the managed

lane will merge the GPL. First, we number all cells in topological order, such that for each

cell connector (i, j) ∈ E , j is greater than i. A topological order always exists because the

traffic on the corridor flows in a particular direction, so the network is acyclic. For a diverge

cell i located on GPL (i ∈ CD ∩ CGPL), we define an end cell cend
i as the merge cell located

on the GPL with least topological order value among all cells with order values greater than

the order of cell i. Similarly, for a diverge cell i located on managed lane (i ∈ CD ∩ CML),

we define an end cell cend
i as the merge cell located on the GPL with second least topological

order value among all cells with order values greater than the order of cell i. In simpler

terms, the end cell is the first merge cell on the GPL located immediately after the first exit
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from the managed lane beyond the current diverge point. For the network shown in Figure

3.1(b), the end cells are cend
2 = 15, cend

4 = 15, cend
13 = 27, and cend

16 = 27.

Then for each diverge cell i ∈ CD, the set of decision routes Πi is given by all paths

connecting cell i and cend
i . The intuition behind such a definition is to consider the set of

routes at each diverge until the next managed lane exit is found, because travelers commit

to paying a certain toll when they enter the managed lane and continue paying that toll

until the exit where they make the decision again. Since the managed lane must exit to the

GPL (at least at the end of the corridor) and the merge cell on GPL is located at the end of

that exit, an end cell always exists for every diverge point. Figure 3.2(b) shows the decision

routes at each diverge point for the SRG approach. We also generalize the definition of the

set of decision routes for any cell other than a diverge cell as a singleton containing the route

connecting the cell and the cell immediately downstream.

Figure 3.2: Decision routes for each highlighted diverge point using (a) the complete-route
generation (CRG) approach, and (b) the sub-route generation (SRG) approach

We next show that any route connecting origin and destination in the entire network

can be constructed using the decision routes in the SRG approach.

Proposition 1. Every route in the entire network can be constructed using the decision

routes in the SRG approach

Proof. Consider a route π from source cell so to sink cell si in the entire network. Consider all

diverge cells along the route and label them in topological order (1, 2, . . . , n). Since decision
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routes for any cell other than a diverge cell pass through the cell immediately downstream,

subroutes connecting so and diverge cell 1 and connecting diverge cell n and si can be

constructed as an overlap of decision routes. Additionally, the subroute from any diverge

cell i (i < n) to diverge cell i+1 can also be constructed using decision routes at cell i. There

can be two cases for this construction: case 1, the decision routes from i pass through i+ 1,

or case 2, the decision routes from i do not pass i+ 1. For case 1, the subroute connecting i

and i+ 1 exists by default. For case 2, the decision routes at i terminate at cend
i , which is a

merge cell and which has a subroute connecting to the succeeding diverge cell that must be

the diverge cell i + 1 (as decision routes for any cell other than a diverge cell is a singleton

connecting it to the next cell).

We can then construct π as an overlap of these sub routes constructed from the

decision routes.

The following examples show this route construction for sample routes in the network

shown in Figure 3.1(a):

• For the route O → 1 → 3 → 6 → 7 → 8 → 9 → 10 → D, the diverge cells along

the route are {2, 4, 16}. Origin is connected to cell 2 and the decision routes for 16

terminate at cell 27 which is then connected to the destination. Cell 2 is connected

to cell 4 because decision routes for cell 2 pass through cell 4 (case 1 from the proof).

Cell 4 is connected to cell 16 because decision routes from cell 4 terminate at cell 15

which is then connected to cell 16 (case 2 from the proof).

• For the route O → 1 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → D, the diverge

cells along the route are {2, 4, 13, 16}. Cell 4 is connected to cell 13 through decision

routes of cell 4 and cell 13 is connected to cell 16 through decision routes of cell 13

(both belonging to case 1 from the proof). Other diverge cells are connected from the

previous example.

The number of decision routes at each diverge point contributes to the computational

complexity of evaluating utilities across routes. Earlier models in the literature considered

two decision routes from any diverge cell to the destination (one along managed lane and
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the other along GPL) which offers lower computational complexity at the expense of not

including the complete route set. The CRG approach considers the complete route set but

the number of routes scale exponentially with network size. We next show that the decision

routes using the SRG approach grow at most quadratically with network size. In practice,

where the entrances and exits are closely located, the growth is usually linear.

Proposition 2. The number of decision routes in the SRG approach at any diverge point is

no more than |CD|

Proof. Consider a diverge cell i and its corresponding end cell cend
i labeled in a topological

order. Let Ki be the set of all diverge cells between i and cend
i . If we assume for an instant

that |Ki| = 0, then the current number of routes connecting i and cend
i , that is |Πi|, is 2. Now

add a diverge cell with topological order label between i and cend
i such that cend

i does not

change. Adding this diverge cell increases the cardinality of the set of route choices by one,

changing |Πi| to 3. Likewise, if we keep on adding diverge cells between i and cend
i without

altering the end cell cend
i for cell i, the cardinality of route set keeps increasing by one. Thus

for a given diverge cell, the number of decision routes is less than or equal to one plus the

number of “in-between” diverge cells defined as diverge cells having topological order higher

than the current cell and lower than the end cell. Since in the worst case, the number of

“in-between”’ diverge cells can be equal to the number of diverge cells minus one, we prove

the proposition.

Now given that there are |CD| diverge cells in the network and Proposition 2 holds for

each of them, we can claim that the total number of decision routes in the complete network

is upper bounded by |CD|2, which is a quadratic function of network size.

This SRG approach for defining decision routes thus offers three advantages: con-

sideration of all possible routes towards the destination; tractable quantification of routes

at each diverge node for online decisions; and, producing shorter route segments leading to

reduced error in instantaneous travel time estimates. This makes the SRG approach suitable

for use in lane choice models. More complex lane choice models can also be considered like

those involving the assumptions of bounded rationality or asymmetric VOT preferences, but

the study of those is left for future work.
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Traffic flow equations

To explain the evolution of traffic, we follow the equations of cell transmission model

proposed in Daganzo [57]. The equations are discretized for each value of time class. In this

section, we only include the equations for flow from a diverge cell to its successor cells. The

traffic flow equations for other cells are identical to the equations in Daganzo [57], except for

discretization for each VOT class. Readers are directed to that reference for more details.

To describe the traffic flow equations for a diverge cell, we define a few additional

terms. The instantaneous travel time of a cell i at time t is denoted by τi(t). It is measured by

evaluating the average speed for the given number of vehicles in the cell using the fundamental

diagram and using it to determine the average time as shown in Equation (3.1).

τi(t) = max

{
∆xi
ν
,

∑
v x

v
i (t)

Q
,

∑
v x

v
i (t)

W
∆xi

(Ni −
∑

v x
v
i (t))

}
(3.1)

We denote the utility of a route π for a vehicle of VOT class v at time t, by U v
π(t).

It is defined as shown in Equation (3.2). The first term computes the disutility caused by

adding the instantaneous travel time over all cell j contained in the route weighted by the

value of time of the vehicle. The second term computes the total toll paid on the route by

computing the product of current toll rate and length of travel associated with each toll cell

located on the route.

U v
π(t) = −

∑
j∈π

τj(t)V OTv −
∑

j∈π,j∈Ctoll

β(tk)lj (3.2)

Then, calculations are performed to compute diverge proportion towards the successor

cells for each diverge cell. Let π(k) denote the k-th cell in the sequence on route π. Further,

define cell cvi (t) ∈ Γ(i) as the cell chosen by the vehicles of VOT class v at diverge cell i at

time t. The value of cvi (t) is evaluated using Equation (3.3). First, πvi,max(t) is evaluated as

the route which maximizes the utility for VOT class v among all decision routes Πi of the

diverge cell i. Then, the successor cell for each VOT class is chosen by picking the second

cell in that route.
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πvi,max(t) = argmax
π∈Πi

U v
π(t) (3.3a)

cvi (t) = πvi,max(t)(2) (3.3b)

Then the flow from diverge cell i towards each successor cell j ∈ Γ(i) at time step t is

evaluated using Equation (3.4a). The minimization is performed over three terms: the first

term is the number of vehicles trying to enter cell j from cell i, the second term is the capacity,

and the third term is the number of vehicles allowed to enter cell j given the current number

of vehicles in cell j.

yij(t) = min

 ∑
v∈V,cvi (t)=j

xvi (t), Q,
w

ν

(
Nj −

∑
v∈V

xvj (t)

) ∀j ∈ Γ(i) (3.4a)

yvij(t) =
xvi (t)∑

v∈V,cvi (t)=j x
v
i (t)

yij(t) ∀v ∈ V ∀j ∈ Γ(i) (3.4b)

This flow from diverge cell i is then discretized for each VOT class in proportion of the

current number of vehicles in that VOT class in the diverge cell trying to enter the same

successor cell j, using the Equation (3.4b).

The values of yvij(t) are evaluated for every other cell using the methods in Daganzo

[57] and these are then used to update the number of vehicles in each cell in the next time

step using Equation (3.5) which is based on flow conservation.

xvi (t+ 1) = xvi (t) +
∑

k∈Γ−1(i)

yvki(t)−
∑
j∈Γ(i)

yvij(t) ∀v ∈ V, ∀i ∈ C (3.5)

Optimization problem and Markov decision process

The objective of the optimization problem is to find toll rate β(k) for all time steps

k ∈ K, such that a certain objective is achieved. Two objectives are considered in this

analysis: revenue maximization and TSTT minimization. The objective function for revenue

maximization is given in Equation (3.6) where the revenue collected at each toll-update time

step, evaluated by charging toll on all vehicles entering each toll cell till the next toll update,
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is summed over all toll-update time steps. The objective function for TSTT minimization

is given in Equation (3.7) which sums over all time steps the number of vehicles present in

each cell per time step.

ZRev = max
β(k)

∑
k∈K

k+∆k∑
t=k

∑
i∈Ctoll

β(k)li
∑

j∈Γ−1(i)

yji(t)

 (3.6)

ZTSTT = min
β(k)

∑
k∈K

k+∆k∑
t=k

∑
i∈C

xi(t) (3.7)

Three constraints are included in the optimization problem. The first constraint

requires variables xi(t) and yki(t) to be updated using the traffic flow equation of the cell

transmission model. The second constraint requires the toll rate β(k) to belong to the

defined set B. The last constraint requires that the managed lane always maintains a speed

above a desired minimum speed limit νmin ≤ ν. We model this constraint by restricting the

number of vehicles allowed in the managed lane to be less than or equal to a threshold value.

For a trapezoidal fundamental diagram with parameters defined above, we define νthresh as

the speed at which the fundamental diagram changes from the horizontal to the downward

sloping curve. This value is evaluated as νthresh = qc
kj−qc/w and is given by the slope of the

dashed line shown in Figure 3.3.

Figure 3.3: Trapezoidal fundamental diagram for modeling traffic flow
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We restrict the number of vehicles allowed in the managed lane using Equation (3.8),

where the maximum number of vehicles in each cell on the managed lane is determined based

on the value of νmin.

if νthresh ≤ νmin ≤ ν, xi(t) ≤
Q∆xi
νmin

∀i ∈ CML (3.8a)

else if 0 ≤ νmin < νthresh, xi(t) ≤
wkj∆xi
νmin + w

∀i ∈ CML (3.8b)

This optimization problem is then formulated as a finite-horizon MDP. MDPs are a

traditional method for solving problems that involve sequential decision making [58]. For

the given optimization problem, a toll rate decision is to be made every ∆k time step, so

the update step of the MDP is at every toll-update time step k ∈ K. The components of

the MDP are defined as the following:

• State: Number of vehicles of each class in each cell at the start of toll update time

step k:

x(k) = {(xvi (k))|∀i ∈ C ,∀v ∈ V }, ∀k ∈ K

• Action: Toll rate uk(x(k)) = β(k) ∈ Uk(x(k)) ⊆ B, where Uk(x(k)) is the set of tolls

at the current state x(k) that do not violate the constraint in Equation (3.8) for all

time steps t between k and k + ∆k

• Transition function: Obtain x(k + ∆k) after applying traffic flow equations for all

time steps k ≤ t < k + ∆k

• One step reward: Equation (3.9a) shows the one step reward for the revenue max-

imization objective, while Equation (3.9b) shows the one step reward for the TSTT

minimization objective. We note that the one step reward for the TSTT minimiza-

tion objective does not directly depend on the action selected in the state, but may

indirectly depend on it based on the next state due to the current action.

gRev(x(k), uk(x(k))) =
k+∆k∑
t=k

∑
i∈Ctoll

uk(x(k))li
∑

j∈Γ−1(i)

yji(t) (3.9a)
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gTSTT(x(k), uk(x(k)) = −1 ∗
k+∆k∑
t=k

∑
i∈C

xi(t) (3.9b)

The next section describes the solution algorithm using this MDP structure to solve the

dynamic pricing problem.

3.2.2 Solution methods

Solving the formulate finite-horizon deterministic MDP using traditional MDP solu-

tion methods is challenging because of the exponential increase in the number of states with

the size of network. Let N be the maximum value of the number of vehicles that can be

stored in any cell, |V | be the number of vehicle class, and |C | be the number of cells, then

number of states is O(N |V ||C |), which grows exponentially with the number of cells in the

network. We use the value function approximation (VFA) method to address this curse of

dimensionality. In the following subsections, we focus our explanation on revenue maximiza-

tion as the objective. The analysis for TSTT minimization will follow the same steps by

replacing all max operators with a min, and using gTSTT instead of gRev.

VFA is a commonly used method to solve discrete time approximate dynamic pro-

gramming (ADP) problems [58]. This method attempts to determine a good estimate for

the value function in each state. A value function in a state x(k), indicated by variable

R∗(x(k)), is the maximum revenue that can be obtained if the system were to start from

state x(k) at time k till the end of time horizon. If R∗(x(k)) is known accurately for each

state, the optimal toll rate u∗(x(k)) at any given state x(k) can be determined using the

Bellman equation shown in Equation (3.10).

u∗(x(k)) = argmax
uk(x(k))∈Uk(x(k))

(gRev(x(k), uk(x(k))) +R∗(x(k + ∆k))) (3.10)

The VFA method initializes the value function in every state to a suitable guess and

improves that value iteratively, and involves three steps [58]. The first step chooses a form

for the value function. This can either be a look-up table or a parametric function. The

second component simulates a particular policy and learns its values, and the last component
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updates the estimates of the value functions and chooses a better policy to run the second step

again. The iteration between the second and the third step is continued until convergence.

For our analysis, we chose a look-up table representation as a form for value functions

as it is the easiest to implement. In this representation, the value of each state is initialized

and updated independently. Such a representation works well for MDPs with a small number

of states. For MDPs with a large number of states, the states are aggregated together based

on their similarity. All states classified within the same aggregate are assumed to have same

value for the value functions. For our analysis, we aggregate all states by rounding the

current flow values in each cell with respect to each VOT class to the nearest integer. That

is, all states x(k) which round to the same integer value of the current vehicles in each cell

xvi (k), for all i ∈ C and v ∈ V , are assumed to have same value function at any given

toll-update time step k.

After defining an appropriate form for the value function, we run the second step

of VFA. A policy is selected from the current estimates of value function using the same

formula in Equation (3.10). This selection procedure assumes that the current value function

approximations are optimal and is referred as greedy policy selection in the literature [59].

Other policy update methods also exist, but we choose this method for its simplicity.

For the last step of VFA, we update the previous estimate by combining it with the

estimate of values predicted from simulating the policy in the previous step using a stepsize

parameter. The above three steps are summarized in Algorithm 3. The variable R∗n(x(k))

is the estimate of the value function in state x(k) at time k for the n-th iteration. xn(k)

represents the state chosen at time step k in the n-th iteration. λn represents the step-size

to combine the new and old value estimates in iteration n. We terminate the algorithm if

either the maximum number of iterations is reached or the value functions do not change in

the last 10 consecutive iterations.

A proper selection of step-size is crucial for convergence [58]. For our analysis, the

step-size value was chosen to decrease monotonically over iterations. If N is the maximum

number of iterations simulated, then the step-size at iteration n was chosen as, λn = N
N+ n

10

.

Such a step-size selection ensures that λn drops gradually from 1 to 0.91.

For the purposes of our study, we used two value function initializations for the
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Algorithm 3 VFA algorithm using look-up table representation

Step 0: Initialization
Set R∗0(x(k)) to a suitable value ∀x(k) ∀k ∈ K
Choose initial state x1(0)
Set n = 1

Step 1: Simulating a policy
Set R̂n(x(k)) =null ∀x(k)
for k ∈ K do

R̂n(xn(k)) = max
uk(xn(k))∈Uk(xn(k))

(
gRev(x(k), uk(xn(k))) +R∗n−1(x(k + ∆k))

)
un(k) = argmax

uk(xn(k))∈Uk(xn(k)

(
gRev(x(k), uk(xn(k))) +R∗n−1(xn(k + ∆k))

)
Determine xn(k + ∆k) after applying traffic flow equations on xn(k) using toll value

un(k) for all time steps t such that k ≤ t < k + ∆k
end for

Step 2: Update the state values
for kinK do

if R̂n(x(k)) is NOT null then

R∗n(x(k)) = λnR̂n(x(k)) + (1− λn)R∗n−1(x(k))
end if

end for
if n < max number of iterations OR R∗n(x(k)) values converged then

n← n+ 1
Go back to Step 1

else
Stop. Report R∗n(x(t)) as final value estimate for each state x(t) in time step t

end if

revenue maximization objective:

1. VFA1: Initialize values for all states in time step k as L(n(T ) − k − 1), where L is

an upper bound on the one-step revenue that can be obtained from any state.

2. VFA2: Initialize value function in each state to be equal to the sum of the number

of vehicles on general purpose lanes after each diverge point, summed over all diverge

points in the network. We use a scaling factor S (S ≥ 1) with values greater than or

equal to 1 to control the relative values of initial value functions.

The VFA1 initialization uses the knowledge that a state which is farther away from the last

time horizon can generate higher revenue (and equivalently has higher value) than the state

at the later time step. The VFA2 initialization uses the intuition that a state with congested
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GPLs allows more travelers to shift to the managed lane and thus would generate higher

revenue. For the TSTT minimization objective, we initialized all state values to 0 (VFA3)

using the simplest initialization method.

The convergence of the VFA method is not guaranteed for a general initialization.

However, if the MDP is deterministic and the state and action spaces are finite, “optimistic”

initializations have been proved to converge to optimal [58]. An optimistic initialization for

the revenue-maximization (TSTT-minimization) objective initializes values to a very high

(low) number which encourages the VFA method to explore all possible states and determine

the optimal toll profile. Due to the aggregation scheme employed for the representation of

states, we cannot guarantee convergence of Algorithm 3 even though we have a large but

finite space for states and actions. Even if the convergence happens, it is not guaranteed

to converge to optimal. Thus, Algorithm 3 serves as a heuristic to find the optimal toll

profiles. We track the best-found toll profile for each iteration and use the objective from

the best-found toll profile at termination as a measure of performance of this heuristic.

We compared the performance of the VFA method against three other heuristics as

follows:

1. Density-based heuristic: This heuristic uses feedback control to keep the number of

vehicles on managed lane to a desired number. The tolls are updated using Equation

(3.11), where Xdesired
HOT is the desired number of vehicles on HOT lane, XHOT is the

current number of vehicles on the HOT lane, and P is the regulator parameter. The

value of P is varied between 0.1 and 1.5 (in the increments of 0.1) for selecting the

best tolls using this heuristic for a given objective. We refer this heuristic as Density

in the remaining text.

β(k + 1) = β(k) + P ∗ (XHOT −Xdesired
HOT ) (3.11)

2. Ratio-based heuristic: This heuristic aims to keep the ratio of number of travelers

on the ML to GPL near a desired value. The tolls are updated using Equation (3.12),

where rdesired
HOT:GP is the desired ratio between managed and GPL, rHOT:GP is the current

ratio between managed and GPL, and P is the regulator parameter. Same as before,
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the value of P is varied between 0.1 and 1.5 (in the increments of 0.1), and the value

of rdesired
HOT:GP is varied between 0.1 and 0.4 (in the increments of 0.05) for selecting best

tolls using this heuristic for a given objective. We refer this heuristic as Ratio in the

remaining text.

β(k + 1) = β(k) + P ∗ (rHOT:GP − rdesired
HOT:GP) (3.12)

3. Myopic revenue policy: This policy acts in a greedy fashion. At each time step,

it selects the toll rate which maximizes the one-step revenue obtained all over feasible

tolls. We refer this heuristic as Myopic in the remaining text.

The Density and Ratio heuristics are forms of feedback-control method for deter-

mining toll rate based on the current congestion pattern, similar to the feedback-control

methods for other ATM strategies like ALINEA for ramp metering [60]. Though the details

of dynamic pricing heuristics currently used in practice are proprietary and undisclosed,

extensions of feedback-control methods are commonly used [61]. The Myopic heuristic is

another heuristic commonly used in the MDP literature to compare the performance of the

optimal policy and is thus included in our study.

3.2.3 Experiments

This section shows the results of the VFA algorithm and its comparison against other

heuristics. We conduct the analysis on four test networks: a 0.5-mile long double entrance

single exit (DESE) network, a 4.5-mile long managed lane corridor having a similar structure

as the second toll segment on the LBJ TEXpress lanes in Dallas, Texas (LBJ), and two other

artificially constructed networks, one with seven entrances and five exits (7En5Ex), and the

other with thirteen entrances and fourteen exits (13En14Ex). Figure 3.4 shows schematics

for the four networks. The origin and destination nodes are marked as O and D respectively.

The dashed links represent the location of bottleneck in the network to simulate the effect

of congestion.

The traffic flow follows a trapezoidal fundamental diagram with ν = 90 km/hr, w = 30

km/hr, qc = 2200 veh/hr/lane, and kj = 165 veh/km. Each time step is assumed to be 6

seconds long and the tolls are updated every 50 time steps, that is ∆k = 300 seconds. Each
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network is simulated for a period of two hours with no vehicles in each cell at the beginning

of the simulation. The demand distribution from origin to the destination follows the profile

as shown in Figure 3.5(a). The feasible toll set B includes toll rates varying from $0.05/km

to $1.25/km in increments of $0.1/km. The minimum speed limit νmin on the ML is set to 80

km/hr. For the analysis we consider five VOT classes: $10/hr, $15/hr, $20/hr, $25/hr, and

$30/hr with assumed proportions of demand as 0.1, 0.4, 0.2, 0.2, and 0.1 respectively. Figure

3.5(b) shows the discrete VOT distribution.

Figure 3.4: Four test networks: (a) double entrance single exit (DESE) network; (b) LBJ
TEXpress network for toll segment 2; (c) a network with seven entrances and five exits

(7En5Ex); and (d) a network with thirteen entrances and fourteen exits (13En14Ex). The
dashed link indicates the location of downstream bottleneck.
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Figure 3.5: (a) Demand as a function of time (b) VOT distribution

To demonstrate the effectiveness of the SRG approach, we first compare the average

computation time per iteration for solving the VFA algorithm using both SRG and CRG

approaches. The algorithm is implemented in Java and the simulations are run on a 3.3 GHz

Windows machine with 4 GB RAM. Figure 3.6 shows the bar plot of the average computation

time per iteration for each network where the average is calculated as the total CPU time

for the first 10 iterations divided by 10.

Figure 3.6: Comparison of computation time per iteration in seconds for the SRG and
CRG approaches

As observed, the CRG approach requires higher computation time per iteration for

all networks except DESE network where the CRG and SRG approaches perform identically

because both approaches generate same set of decision routes at each diverge point. The
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percent reduction in computation time using the SRG approach relative to the CRG approach

is higher for networks with more entrances and exits with a reduction of 86.8% for the

7En5Ex network and 92.6% for the 13En14Ex network. This is because the CRG approach

enumerates all possible combinations of decision routes which increases the computation

time for determining the downstream cell at each diverge cell in the network. The results in

the remaining paper use the SRG approach for the VFA method.

Next, we analyze the convergence characteristics of the VFA method for different

VFA initializations for the four networks for both toll optimization objectives. The value of

L for the VFA1 initialization is set as 50 while the value of S for the VFA2 initialization

is set as 3.0. These values are determined based on experiments. Figure 3.7 shows the

plots of variation of revenue with iterations for the revenue maximization objective for the

VFA1 and VFA2 initialization. The thinner lines in the plot show the variation of revenue

in each iteration obtained from simulating a toll profile using the most recent value function

estimates, while the thicker lines show the variation of the maximum revenue obtained so

far. The value of N̄ is set to 1000 for the DESE and LBJ networks, and set to 50 for the

7En5Ex and 13En14Ex networks considering the constraints on computational resources.
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Figure 3.7: Revenue obtained as a function of iteration number for the VFA1 and VFA2
initializations for all four networks

We make two main observations from the convergence plots for the DESE and LBJ

networks in Figures 3.7(a) and 3.7(b), respectively. First, both VFA initializations converge

after 700-800 iterations for both networks. The oscillations indicate that the VFA method

continues to explore new states; however, the method learns the values of the visited states

and avoids the states which have lower values. The convergence happens when the algorithm

stops learning. Second, the converged value is not optimal as it is lower than the best-found

revenue obtained in the earlier iterations. The converged revenue value for the VFA1 (VFA2)

initialization is 2.5% (8.7%) lower than the best-found revenue for the DESE network and

16.3% (9.38%) lower than the best-found revenue for the LBJ network. This suboptimal

convergence behavior is as expected: the VFA1 and VFA2 initializations determine the

value of each state relative to the other states and it is not necessary that the relative values
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for each state are set correctly for the given aggregation choice.

For the 7En5Ex and the 13En14Ex networks, both initializations do not converge

within 50 iterations; however, in spite of the lack of convergence, the VFA1 initialization

continues to simulate toll profiles which generate high revenue as indicated by the gradual

increase in the best-found revenue obtained so far.

We also observe that the maximum revenue obtained from the VFA2 initialization

is higher than the one obtained from the VFA1 initialization for all four networks and that

maximum is obtained at an earlier iteration than the VFA1 initialization. This is because

the VFA2 initialization distinguishes between the relative values of states at a given time

step by assigning higher value to states with more vehicles on GPL and thus is able to

find better policies in first few iterations. This shows that VFA2 performs better than

VFA1 initialization for all networks and suggests the usefulness of the VFA2 initialization

for obtaining toll profiles which produce high revenue in earlier iterations.

Figure 3.8 shows the convergence plots for the VFA3 initialization for the TSTT min-

imization objective for the four networks. Similar to the plots in Figure 3.7, the thinner line

represents the variation of TSTT obtained from the toll profile simulated in each iteration,

while the thicker line represents the minimum TSTT obtained thus far.

We observe that TSTT converges for both DESE and LBJ networks, and the value at

convergence is within 0.2% and 0.8% of the minimum TSTT value obtained at termination,

respectively. Additionally, this minimum value is obtained earlier in the simulation (within

first 5 iterations for the LBJ network and within first 50 iterations for the DESE network.)

For the 7En5Ex and the 13En14Ex networks, a similar pattern is observed where the mini-

mum TSTT after 50 iterations is obtained in the first iteration itself. This early detection of

toll profiles with better TSTT is due to the nature of congestion in the network. As vehicles

arrive gradually at the bottleneck, the TSTT is minimized using profiles which send more

vehicles towards ML to best utilize the entire network capacity. For the VFA3 initialization,

the chosen action is the one that minimizes the number of vehicles in the next state since

the one step cost is same for all actions. The action minimizing the number of vehicles in

the next state is the one that sends more vehicles towards the ML resulting in more vehicles

entering and exiting the network. This leads to close-to-optimal behavior in the first few
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Figure 3.8: TSTT obtained as a function of iteration number for the VFA3 initialization
for all four networks

iterations. Since this gradually-evolving congestion pattern is commonly observed during

peak hours, VFA3 initialization is suitable for determining toll profiles with low TSTT in

fewer iterations.

The convergence of VFA methods for larger networks takes more iterations which may

require large computation time. However, based on the observations above, VFA method

can be used as a heuristic to obtain relatively better solutions in lesser time. We recommend

the use of VFA2 initialization as a heuristic for obtaining revenue-maximizing toll profiles

and VFA3 initialization as a heuristic to obtain TSTT-minimizing toll profiles.

Next, we compare the toll profiles generated by the VFA method with the other

heuristics. Table 3.1 shows the comparison of revenue and TSTT for the toll profiles obtained

from the VFA method and the profiles generated from the heuristics for both objectives. A

“best policy” from a particular VFA initialization or a heuristic is the one which leads to a
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maximal return on the objective for any iteration or for any choice of input parameters of a

heuristic.

Table 3.1: Comparison of revenue and TSTT for different toll policies for the four networks

We observe that VFA3 initialization predicts a policy which has lowest TSTT across

all policies. For revenue maximization, VFA2 determines the policy with maximum revenue

across all other networks. Other heuristics perform poorly compared to the VFA method

regardless of the choice of their parameter values. For the revenue maximization objective,

the revenues generated by the Density, Ratio, and Myopic policies are lower than the

maximum revenue obtained by the VFA method by an average of 67.2%, 60.9%, and 60.1%,

respectively. This shows that the VFA method performs well for revenue maximization.

For the TSTT minimization objective, the TSTT generated by Density and Ratio

heuristics are higher than the lowest TSTT obtained from the VFA method by an average

of 7.3% and 7.4%, respectively. The percent differences are lower compared to the revenue

maximization objective indicating that these heuristics are more suited towards the TSTT

minimization objective than the revenue maximization objective.

We also observe that the policy minimizing TSTT generates a revenue which is 88.6%

lower than the best-found maximum revenue on an average. Similarly, we observe that the

policy maximizing the revenue generates TSTT which, on an average, is 102.3% higher
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than the best-found minimum TSTT for all the networks. This indicates that both these

objectives are conflicting in nature. Finding toll profiles which optimize both objectives

together is part of the future work.

Figure 3.9 shows a comparison of revenues and TSTT obtained from the best policies

for each method at varying levels of demand for the DESE network. The VFA method

is only run for 50 iterations. As observed in Figure 3.9(a), for the demand level 0.5, all

methods generate $0 revenue as there is no congestion in the network. As the demand

levels increase, the revenue from the VFA2 method increases until a threshold beyond which

it starts decreasing. This is reasonable since there is an upper limit on the toll rate and

thus only a certain revenue can be generated from tolling the managed lanes. The revenues

from the Density and Ratio heuristics are on an average 36.8% and 40.2% lower than the

revenues from VFA2 heuristic run for 50 iterations. The TSTT values in Figure 3.9(b) are

almost identical for all the three methods, but the lowest TSTT is always obtained using

the VFA3 initialization. The TSTT obtained from the Density and Ratio heuristics are on

an average 7.8% and 4.2% higher than the TSTT from the VFA3 initialization.

Figure 3.9: Variation of revenue and TSTT obtained from the three heuristics with varying
levels of demand for the DESE network

The computation time required to run 50 iterations of the VFA method is less than 1

minute for both VFA2 and VFA3 initializations. This suggests the usefulness of VFA method

for online implementation for the DESE network. The demand during the previous 5-minute
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period can be observed and used to predict the future demand using a certain demand

prediction algorithm. Using this demand profile, the optimal policies can be generated by

running 50 iterations of the VFA method and the best toll profile predicted by the VFA

method can be implemented in the field based on the optimization objective. For larger

networks, where running each iteration is more time intensive, we recommend offline training

of toll profiles where several demand profiles may be simulated in advance and the best course

of action is made available for real-time decision based on the observed demand pattern. A

detailed analysis of the effectiveness of VFA method for online implementation is left for

future work.

Last, we compare the behavior of the toll profiles for different objectives. Figure 3.10

shows the variation of toll rate with time for the DESE network for the three heuristics at

demand level 1 for both objectives. For the revenue maximization objective, we observe that

the VFA2 profile charges toll rate between $1 − $1.25/km from 1500-2100 seconds during

the simulation, which is higher compared to the rates charged by the Density and Ratio

heuristics. On the other hand, for the TSTT minimization objective, the toll rates from the

VFA3 profile are comparately lower than the other heuristics. The variation in the toll profile

behavior for both objectives can be explained by visualizing the evolution of congestion in

the network.

Figure 3.10: Toll profiles for the DESE network for the (a) revenue maximization and (b)
TSTT minimization objectives

Figure 3.11 plots the time-space diagram showing the evolution of the ratio of current
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density to jam density for each cell along the ML and GPL for both revenue-maximizing

and TSTT-minimizing toll profiles. Values closer to 1 are shown in red indicating higher

congestion, while the values closer to 0 are shown in green indicating lower congestion. All

other values follow the spectrum in between. A close analysis of the revenue-maximizing

profile shows that such policies charge a high toll value in the beginning to let the congestion

build up on the GPLs. Once the GPL get congested, the policy continues to charge higher

toll and attracts more traveler because of the high travel time difference created between

the GPL and the ML. On the other hand, the TSTT-minimizing profile charges low toll in

the beginning and thus causes both ML and GPL to become congested; however, since the

managed lane needs to satisfy the speed limit constraint, the balance between the split for

ML and GPL is maintained throughout the simulation.

This observation is consistent with the “jam-and-harvest” behavior of the policies

maximizing the revenue, first observed in Göçmen et al. [40]. The “jam-and-harvest” be-

havior of the revenue-maximizing policies is a characteristic of the model and is not neces-

sarily observed in practice. Our future work will include the search of improved policies by

including a constraint that avoids congestion built-up on the GPL while no vehicle is using

the ML.
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Figure 3.11: Time-space diagram showing the ratio of current density to the maximum
jam-density for each cell on the GPL and the ML, for (a) revenue-maximizing toll profile,

and (b) TSTT-minimizing toll profile

3.2.4 Summary

This chapter developed a formulation for determining optimal dynamic toll prices

for managed lane networks with multiple entrances and exits. We proposed a definition of

decision routes at each diverge point which incorporates complete set of route choices at each

diverge point and scales quadratically with network size even though the total number of

routes can be exponential. An optimization problem was formulated with the toll rate per km

as the decision variable. Two optimization objectives were studied: revenue maximization

and TSTT minimization. After making suitable assumptions, the formulation was converted

to a deterministic MDP. The VFA method was used to solve the MDP problem to deal with

the curse of dimensionality. The performance of the algorithm was tested on four networks

using three different initializations for value functions.

The VFA method converges to within 0.2-17% of the best-found objective function for

the DESE and LBJ networks. VFA2 initialization generates higher revenue than the VFA1

initialization and finds a profile with best-found maximum revenue in the first 50 iterations.
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Similarly, VFA3 initialization finds a profile with the best-found minimum TSTT in the first

5–50 iterations of the VFA method. This suggests the usefulness of VFA2 and VFA3 initial-

izations as a heuristic for dynamic pricing, suitable both for online or offline implementations.

The VFA method also shows promising results in determining the toll profiles which per-

form better than other heuristics used in practice for both revenue maximization and TSTT

minimization objectives. On an average, the heuristics predict policies generating revenues

10-90% lower than the revenues predicted by the VFA method (for revenue-maximization

objective) and generating TSTT 0-27% higher than the TSTT predicted by the VFA method

(for TSTT-minimization objective).

The TSTT minimization and revenue maximization objectives are found to conflict;

policies generating higher revenue perform poorly on the TSTT minimization objective and

vice versa. On an average, the TSTT minimization policy is found to generate revenue which

is 88.6% lower than the best-found revenue and the revenue-maximizing toll profile is found

to generate TSTT with is 102.3% higher than the best-found TSTT. Revenue-maximizing toll

profiles are found to exhibit the “jam-and-harvest” behavior, a characteristics not observed

by the profiles minimizing TSTT.

3.3 Model for distributed dynamic pricing

3.3.1 Optimization model

Assumptions

Consider a managed lane network shown in Figure 3.1(a). The upper set of links form

managed lanes (ML) and the lower set of links form GP lanes. As we describe the network,

we label the assumptions made in the our model as “A#”.

We assume that there is only one origin and destination point for all travelers in the

network (A#1). For the network in Figure 3.1, the origin is node O and destination node is

labeled D. This assumption can be relaxed by including additional origin and destination

points and by disaggregating the traffic flow based on its origin and destination; however,

we adopt this assumption to simplify the explanation.

As travelers continue to travel towards the destination, they make routing decisions
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at diverge locations. Nodes 1, 3, 5, and 7 are the diverge locations for the network in Figure

3.1(a). At each diverge node, travelers use the information about the current travel time

and toll values to make a lane choice decision. We assume that the information about the

current travel time is provided by measuring instantaneous travel time (A#2) and that all

travelers have complete information about the current network state (A#3).

There are two primary ways to model lane choice decision at each diverge location

from the literature: using a binary logit model [10, 11] or a value of time (VOT) distribution

[21, 26]. We model lane choice using VOT distribution where each traveler is assumed to

have a certain value of time and they choose a path that minimizes the linear combination

of toll and travel time, converted to the same units using their VOT value (A#4). We

further assume that at each decision point, travelers compare the current utility along a

certain set of routes associated with each diverge location, which are called decision routes

at each diverge location (A#5). Decision routes are defined as the set of routes connecting

the current diverge node to the first merge node located immediately downstream of the

first exit from the managed lane if a traveler enters the lane at the current diverge node.

The diverge routes for the network in Figure 3.1 are shown in Figure 3.2. We borrow this

definition from [21].

Each decision point is monitored by a toll agent which controls the toll for travelers

entering the managed lane at that location. We assume that the control variable is the time

varying toll rate per mile where each traveler is charged a toll based on the distance traveled

on the managed lane after entering the managed lane at the current decision point regardless

of the exit point (A#6). Other variations of the choice of control variable include charging

toll rate based on entrance and exit points, or charging a constant toll rate regardless of

destinations [42]. Extending our model to other variants will be a part of the future work.

We also consider that travelers pay the toll rate they see while entering the managed lane

and continue to pay that rate until the next decision point is reached (A#7). We focus on

the revenue maximization objective since it is one of the primary objectives for operating

managed lanes where the funds are used to recover the costs of construction and maintain

the toll facility.

The problem is formulated as a finite horizon MDP. The demand distribution at the
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origin is assumed to be known (A#8). The entire problem is modeled as a deterministic

process (A#9). This assumption is made to simplify the understanding of the results; making

the problem stochastic will be a part of the future work.

Notation

We divide the time horizon into equal time steps, each one unit long. The set of

all time intervals is denoted by T = {1, 2, . . . , T}, where T is the final time step. Set C

represents the set of all cells in the network and the set of all diverging cells is denoted by

CD ⊂ C . We follow the Godunov scheme for discretizing the links into cells, where the

length of a cell i, denoted by ∆xi, is more than the product of its free flow speed times

the length of a time interval [57]. Figure 3.1(b) shows the discretized representation of the

network in Figure 3.1(a).

We define a toll cell as the cell immediately after the diverge point which leads a

traveler towards the managed lane. The toll is charged only for vehicles entering this cell.

Set Ctoll represents the set of toll cells. In the decentralized pricing model, each toll agent

regulates the toll at each toll cell. A toll agent n ∈ N manages the toll rate at the toll cell

immediately following a diverge cell i.Each toll agent sets the toll using a distance based

pricing model, where the toll rate per mile set by an agent n at time step t is βn(t). Each

βn(t) is bounded by its minimum (βmin) and maximum (βmax) values.

A discrete VOT distribution is used to model lane choice. It is denoted by a set of

possible VOT values v ∈ V , where the proportion of each class in the population is denoted

by pv (
∑

v pv = 1). We define xvi (t) as the number of vehicles of VOT class v in cell i at time

step t and yvij(t) as the number of vehicles of class v moving from cell i to cell j from time

step t to t + 1. Throughout the rest of the chapter, variables i, n, and v are used to index

variables of the set of all cells, agents, and VOT values respectively.

Multiagent Markov Decision Process Model

In this section, we explain the formulation of the toll pricing model as a cooperative

MDP and its relaxed version under certain assumptions.

Complete MDP

The complete MDP problem has following parameters:

• Finite number of time steps t ∈ T and finite number of agents n ∈ N
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• State vector of the system at time step t, denoted by s(t). We defined s(t) as a

vector containing the number of vehicles of each VOT class in each cell in the network.

Mathematically, s(t) = {xvi (t) | i ∈ C , v ∈ V }

• Action vector at time step t, denoted by a(t) and defined as a(t) = {βn(t) | ∀n ∈ N}

• Deterministic transition function f determines the state at the next time step given

current state and action vectors, that is s(t + 1) = f(s(t), a(t)). The f function is

governed by the traffic flow update equations in [57] where the lane choice at a diverge

is determined by the value of time of a vehicle and the current travel time and toll

values on each of the decision route like explained in [21]

• Reward function R(s(t), a(t)) determines the one step reward obtained from taking

action a(t) in state s(t). For the revenue maximization problem, the reward is the

product of the number of vehicles choosing the managed lane times the toll rate per

mile times the length of travel on the managed lane. Additionally, since the managed

lane is to kept uncongested at all times, we penalize tolls which push more vehicles

towards managed lanes than required with a reward of −100

The objective of the model is to find a policy π : s(t) → a(t) which maximizes

the total sum of one step reward across all time steps and agents, given the initial state

s(0). Since the one step reward depends on the joint action of all agents, each agent has

to collaborate with the others to obtain an optimal policy. We define the optimal value of

being in a state s(t) by value functions V ∗(s(t)) which represent the total reward obtained

from starting in state s(t) at time t and choosing optimal actions thereafter. At optimality,

the value functions satisfy the Bellman equation (3.13):

V ∗(s(t)) = max
a(t)
{R(s(t), a(t)) + V ∗(s(t+ 1))} (3.13)

Relaxed MDP

Solving optimal policies in a multiagent setting where the actions are a continuous

function of time is a challenging task. The regular Q-learning or value function approximation
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methods fail due to the curse of dimensionality, where the computation time is exponential

in the number of agents. In the case where toll agents collaborate and need to coordinate

their actions with few “neighboring” agents only, we can approximate the value function of

a state as the sum of value functions defined for each agent as shown in (3.14):

V ∗(s(t)) =
∑
n∈N

V ∗n (sn(t)) (3.14)

,where, V ∗n (sn(t)) is the value function associated with agent n defined at a local state vector

sn(t). This value function denotes the total future reward obtained by agent n starting from

local state sn(t) at time step t and assuming all agents take joint optimal actions thereafter.

The local state vector for agent n is defined as the number of vehicles of each VOT class

in each cell located along the decision route for the diverge cell associated with agent n.

Substituting (3.14) in (3.13) for both s(t) and s(t+1), and decomposing the reward function

as the sum of reward function for each agent (Rn(s(t), a(t))), we can write a new form for

the Bellman equation decomposed for each agent, similar to the Q function decomposition

in [62]:

V ∗n (sn(t)) = max
a(t)
{Rn(s(t), a(t)) + V ∗n (sn(t+ 1))} ∀n ∈ N (3.15)

3.3.2 Solution methods

To solve the relaxed MDP model, we use a variant of the sparse cooperative Q-learning

algorithm from Kok and Vlassis [55], where we replace learning Q-functions for each agent

and state with learning value functions for each local state for each agent. We call this

algorithm SparseV. The algorithm estimates the value function, Vn(sn(t)) for each agent

and at each time step. The basic structure of the algorithm is presented in Algorithm 1.

The algorithm begins with an initialization of the value functions and then simulates a policy

generated using the current estimates of value functions. It uses the ε-greedy approach for

policy selection with a decreasing value of ε to balance exploration and exploitation. Next,

it changes the estimates of the value functions of the visited states by combining it with the
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current estimates using a step size which decreases harmonically with time. The process is

repeated until the convergence of value functions or till a maximum number of iterations. A

superscript m on V m
n (sn(t)) indicates the iteration number.

Algorithm 4 SparseV using look-up table representation

Step 0: Initialization
Initialize V 0

n (sn(t)) ∀n ∈ N, t ∈ T , sn(t)
Choose initial state s(0) and set m = 0

Step 1: Simulating a policy
Set V̂ m

n (sn(t)) =null ∀sn(t)
for t ∈ {1, 2, . . . , n(T )} do

if random number between 0 and 1 less than ε then
Select a(t) randomly between max{βmin, a(t − 1) − $0.25} and min{βmax, a(t −

1) + $0.25}
else

a(t) = localPolicySearch(a(t− 1),
V m
n (sn(t)))

end if
Determine s(t+ 1) = f(s(t), a(t)) and sn(t+ 1)
Determine the updated value function estimate for state sn(t):

V̂ m
n (sn(t)) = Rn(s(t), a(t)) + V m

n (sn(t+ 1)))
end for

Step 2: Update the V values for the visited states
Step size update: αm = 20000/(20000 +m)
for t ∈ {T, . . . , 3, 2, 1} in the reverse order of time and for each agent n ∈ N do

if V̂ m
n (sn(t)) is NOT null then

V m+1
n (sn(t)) = (1− αm)V m

n (sn(t)) + αmV̂
m
n (sn(t))

end if
end for
if m > max number of iterations or if V values converged then

Stop. Report V m
n (sn(t)) as the final value estimates

else
m← m+ 1 and go back to Step 1

end if

To find an optimal joint action given the current value function estimates, we as-

sume that the action of an agent is influenced only by its “downstream neighboring agents”

(A#10). We define downstream neighboring agents as agents located downstream of the cur-

rent agent which lie on the decision routes associated with the current agent’s diverge cell.

This assumption is reasonable since the toll values set by all downstream neighboring agents
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immediately impacts the decisions made by the travelers at current agent’s toll gantry.

We show this influence relationship using a directed coordination graph (CG) corre-

sponding to the managed lane network. The nodes of a CG represent the agents and edges

connect agents which are assumed to influence actions of each other. If an edge is directed

from agent n1 towards agent n2, then the action of agent n1 influences the action of agent n2.

Given the managed lane network is acyclic, the CG is also acyclic and thus has a topological

order. For the managed lane network in Figure 3.1, the CG is shown in Figure 3.12. In

contrast to the undirected coordination graph approach used in the literature [49, 52, 55],

we choose a directed CG to simplify the local policy search.

Figure 3.12: Coordination graph for the network in Figure 3.1 with agents as nodes and
edges connecting agents representing interdependencies

The localPolicySearch() method solves the optimal action of each agent given the

current value function estimates (shown in detail in Algorithm 2). It visits agents in the

topological order of the CG and determines the optimal action assuming the action of all

downstream neighboring agents is fixed. It first finds the threshold toll values for each agent

corresponding to each VOT class (βvn). The calculation of these threshold values is explained

later. Next, it evaluates the gain gvn for agent n for each threshold toll βvn and sets the action

of the agent to the threshold toll that results in the maximum gain. We define gain as the

sum of the total one step revenue for that agent and the value of the resulting next state

from the joint action. Unlike the approach in Rezaee [49] and El-Tantawy et al. [52] where

the action of agents are continuously changed till no agent can cause any gain by changing

its action (the stopping point for which is not guaranteed), our approach terminates after

one sweep of the CG and thus the computation time is linear in the number of agents.

The toll threshold values for each agent enable the search on a continuous action

space. We determine these thresholds by exploiting the fact that there are only a finite

number of VOT classes and thus only finite toll values can lead any VOT class to choose the

managed lane. We demonstrate the evaluation of threshold tolls using an example.
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Algorithm 5 localPolicySearch(a(t− 1), V m
n (sn(t)))

Set a(t) = a(t− 1)
for agent n in the topological order of the CG do

Determine βvn for all v ∈ V
for v ∈ V do

Set βn(t) = βvn and determine gain:
gvn = Rn(s(t), a(t)) + V m

n (sn(t+ 1))
end for
Let v̄ = argmaxv g

v
n. Set βn(t) = β v̄n

end for
Return a(t)

Consider the diverge node 5 on the network in Figure 3.1. There are three paths over

which a traveler compares the utility using instantaneous travel time and toll values. Table

3.2 shows these paths, and the instantaneous travel time, the toll, and the total disutility

for a vehicle with VOT value v for each path. The route {5, 8, 9, 10} leads a traveler towards

the managed lane.

Table 3.2: Disutility comparison over decision routes for agent 5 for a vehicle of value of
time class v

Decision route Inst. travel time Inst. toll Total disutility
{5, 8, 9, 10} τ1 β1 β1 + vτ1

{5, 6, 7, 8, 9, 10} τ2 β2 β2 + vτ2

{5, 8, 7, 10} τ3 0 vτ3

The objective of the action selection method is to determine the toll rate β1, given the

instantaneous value of travel times τ1, τ2, and τ3, and the assumed fixed value of β2. If the

VOT values are defined using a discrete distribution (v ∈ V ), then the value of β1 which lets

vehicles of VOT class v onto the managed lane is the one which causes the route {5, 8, 9, 10}

to have the minimum disutility. That is, if we define the threshold toll value corresponding

to VOT class v (βv1) as in (3.16) and (3.17), then for all β1 < βv1 , all vehicles of VOT class

v will choose the managed lane. We also ensure that the threshold value belongs to the

feasible toll values by bounding it between the limits βmin and βmax. This method reduces
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the search on a continuous action space to a search over finite βv1 values.

βv1 = min{β2 + v(τ2 − τ1), v(τ2 − τ1)} (3.16)

βv1 = min{βmax,max{βmin, β
v
1}} (3.17)

We compare the performance of the SparseV algorithm against following heuristics.

The first two are feedback control based heuristics which seek to maintain the traffic flow

operation on the managed lane at the desired level and are commonly used in the field

implementations. The last heuristic generates the toll profiles randomly.

1. Density based heuristic (Density): Using this heuristic, each toll agent monitors the

density on the managed lane cells (defined as the ratio of the current number of vehicles

in the cell to the maximum number of vehicles allowed in the cell) downstream of the

current diverge cell operated by the agent. If the density is different from the desired

density, the toll is increased or decreased using a regulator parameter.

2. Ratio based heuristic (Ratio): Similar to the Density heuristic, each toll agent moni-

tors the ratio of the density on the managed lane cells to the density on the GP cells

downstream of the current diverge cell operated by the agent. If the ratio is different

from the desired ratio, the toll is increased or decreased using a regulator parameter.

3. Random search (Random): We simulate 100,000 random policies where the action of

each agent is chosen randomly and select the policy which generates highest revenue.

3.3.3 Experiments

We test the performance of the algorithms on two networks shown in Figure 3.13. The

first network has double entrances and a single exit (DESE) with two agents located at each

entrance point, while the second network have three entrances and two exits with four agents

located at the three entrances and the first exit. The second network is an approximation of

the 3.5-mile long toll segment 2 of the LBJ TEXpress lanes in Dallas, TX.

We consider five VOT classes with VOT values as $10/hr, $15/hr, $20/hr, $25/hr, and

$30/hr, with assumed known proportions of demand as 0.1, 0.4, 0.2, 0.2, and 0.1 respectively.

71



Figure 3.13: Two test networks: (a) DESE network; (b) LBJ TEXpress toll segment 2
abstract network. The dashed link indicates a bottleneck

The traffic flow follows a trapezoidal fundamental diagram with free flow speed as 60 mph,

back wave speed as 20 mph, link capacity as 2200 veh/hr/lane, and jam density as 265

veh/mile. Each time step is assumed 6 seconds long. The minimum and maximum values

of toll rate are set as $0.1/mile and $3/mile respectively. The network is simulated for 30

minutes with no initial congestion. Buildup of congestion is modeled using a downstream

bottleneck located at the end of each network. The value functions in the SparseV algorithm

are initialized by an upper bound revenue, as shown in (3.18), where qn and ln are respectively

the capacity and the length of the toll cell following the diverge cell associated with agent n.

V 0
n (sn(t)) = (qnβmaxln)(T − t) (3.18)

DESE network

To test that the algorithm converges when the time horizon is short, we simulated

the DESE network with initial congestion on the GP lanes for 1 minute. Figure 3.14 shows

the variation of the moving average revenue (calculated as the average revenue over last 10

iterations) with the iteration number. As observed, the average revenue converges to a stable

state after approximately 1200 iterations, after which the moving average is only influenced

by the spikes generated by the random policies simulated using the ε-greedy approach. The
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best revenue maximizing policy for this network generated a revenue of $63.5 in 1 minute,

while the revenues generated by the Density, Ratio, and Random heuristics were $16.8,

$12.5, and $53.35 respectively. At convergence, the SparseV method generated a revenue of

$56.2, which is still better than the other heuristics, though not optimal.

Figure 3.14: Convergence of SparseV method on DESE network for 10 timesteps

Figure 3.15(a)-(d) show the results for the DESE network for 30 minutes of simulation.

Figure 3.15(a) shows the moving average revenue with iterations. We observe that the

convergence of the SparseV method is not guaranteed for longer time horizons. This can be

explained by the graph in Figure 3.15(b) which shows the number of new states visited in

each iteration. The graph starts flattening out towards the later half of the simulation at a

value around 100, that is, the SparseV method is still exploring an average of 100 new states

in the later iterations across both agents. Convergence can be expected when new states are

not explored and instead, the values of the older states are updated. Nevertheless, in the

process of iterating the SparseV method, the toll profiles which led to the highest revenue

are shown in Figure 3.15(c) and (d) for agents 1 and 2, respectively.

Table 3.3 compares the best revenue obtained from the simulated policies. As ob-

served, the revenues generated by the Density and Ratio heuristics are 70 − 75% percent

lower than than of the SparseV algorithm. The SparseV generates revenue which is 9.42%

lower than the best revenue obtained by the Random algorithm; however it only takes 3 min-

utes of simulation time on a 2.8Ghz 64-bit Windows machine, in contrast to the 8 minutes

of computation for the Random policy. We also observe that the Density and Ratio based

heuristics lead to an average of 37% violations (defined as the proportion of the simulation

time period the managed lane is congested) on the managed lane where additional 605 and

661 vehicles are let onto the managed lane causing the speed in the lanes to fall below the
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Figure 3.15: Tests on DESE network. (a) Converge rate of the SparseV method with
iterations; (b) Number of new states explored each iterations; Agent 1 (c) and Agent 2 (c)

toll rate with time

free flow speed. The best toll policy from SparseV only causes 5% violations.

Better performance of the toll policies generated by Random and SparseV algorithms

can be explained by the jam-and-harvest nature of the optimal policies [21, 40]. As shown in

Figure 3.15(c) and (d), the SparseV and Random policies charge higher toll in the earlier time

steps to let the GP lanes become congested (“jam”) and then continue charging higher toll

rate in the later time steps to obtain more revenue when there is higher demand trying to

enter the facility (“harvest”). This behavior of the optimal revenue policies is a characteristic

of our model and can be avoided in practice using regulations on toll changes, studying which

will be a part of our future work.

Overall, the results show that the SparseV method is successful in predicting better
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Table 3.3: Comparison of revenues across different algorithms for DESE network

Algo. Max. revenue % Violations Extra vehicles on ML
Density 38.32 37.7% 605.00
Ratio 33.09 36.6% 661.00
Random 146.00 0 0
SparseV 132.25 5% 38

policies than the other heuristics used in practice, though the policies may not converge to

optimal and may exhibit undesirable characteristics like “jam-and-harvest”.

LBJ network

Figure 3.16 and Table 3.4 show the performance of the four algorithms on the LBJ

test network. As observed, the SparseV algorithm’s best toll policy generates 24.3% more

revenue than the best policy generated by the Random method, and 75− 86% more revenue

than the Density and Ratio heuristics. The Density and Ratio heuristics continue to

perform worse due to their inability to coordinate the tolls between agents.

Table 3.4: Comparison of revenues across different algorithms for LBJ network

Algo. Max. revenue % Violations Extra vehicles on ML
Density 125.21 32.33% 1313.00
Ratio 109.63 32.0% 3358.00
Random 602.38 0% 0
SparseV 795.32 0% 0

The better performance of the SparseV algorithm can be explained by the coordi-

nation of tolls between the agents. As observed in Figure 3.16, the SparseV algorithm

strategically charges lower toll for agent 2 at earlier time steps such that more vehicles are

diverted towards the managed lane at that entrance, and once these vehicles arrive the di-

verge point for agent 3, they are faced with a higher travel time savings on the managed

lane because the GP lane is congested due to the spillback from the downstream bottleneck.

Thus, agent 3 can charge higher toll in later time steps to generate higher revenue. The

same is true for agent 4 charging higher toll towards the later half of the simulation.

Figure 3.17 shows the convergence of the SparseV algorithm with iterations. Con-
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Figure 3.16: Toll profiles for the 4 agents compared for each of the four algorithms

sistent with the observations on DESE network, SparseV fails to converge within 1500 it-

erations and continues to oscillate around a certain toll revenue. Overall, we observe that

the SparseV method does well in predicting policies which do better than the Density and

Ratio heuristics, but it shows a lack of convergence.

3.3.4 Summary

In this section, we proposed a multiagent reinforcement learning algorithm for the

dynamic pricing of managed lanes with multiple entrances and exits where each agent regu-

lates its own toll and coordinates with other agents to optimize the system performance. We

focused on revenue maximization as our objective. Our future work will focus on extending
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Figure 3.17: Convergence of the SparseV algorithm on the LBJ network

this work towards other objectives like maximizing throughput, minimizing delay or total

system travel time, or a combination of these. The proposed SparseV algorithm builds on

the assumption that the total value function in any state can be decomposed into value

function for each agent. We proposed a localPolicySearch method to determine the tolls

using a directed coordination graph modeling interactions between the agents. The method

chooses joint optimal action by exploring the continuous action space.

Our experiments on two test networks show promising results. The SparseV algorithm

performed better than the Density and Ratio heuristics by generating revenues 70%− 86%

higher than those heuristics. SparseV also did comparably well to the Random heuristic,

producing revenues within 9 − 20% of the heuristic. SparseV has an advantage over the

Random heuristic that it takes less computation time and does not enumerate toll policies,

but rather builds on a MDP structure.

Though the SparseV method shows promising results, it has several limitations which

need to be addressed. The first is the issue of convergence where the algorithm continues

to oscillate heavily. This issue is inbuilt in all Q-learning based algorithms because they

77



depend heavily on the Q or value functions initialization. Second, the algorithm is shown to

converge to values which are suboptimal. This lack of convergence to the optimal depends

on the aggregation level used for the state space. Third, the jam-and-harvest nature of the

optimal policies is not desired in practice and thus constraints on toll policies to prohibit this

nature needs to be modeled. In the next chapter, we propose a deep reinforcement learning

framework to overcome these limitations.
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Chapter 4

Deep Reinforcement Learning Algorithm for

Dynamic Pricing

In this chapter, we take an artificial intelligence approach to dynamic pricing of

express lanes. Dynamic pricing for MLs with multiple access locations is a complex control

problem due to the heterogeneity in lane choice behavior of travelers with varying values

of time and destinations of travel. Predicting driver behavior with certainty is difficult. A

recent study showed that a binary logit model, commonly used for modeling lane choice, is

inadequate in predicting heterogeneity in lane choice observations [25].

Several dynamic pricing algorithms have been explored in the literature that optimize

tolls under varying assumptions on driver behavior. These include methods using stochastic

dynamic programming [11], hybrid model predictive control (MPC) [12, 38], reinforcement

learning (RL) [10, 63], and approximate dynamic programming [21]. While these algorithms

do well against existing heuristics, they make some or all of the following restricting assump-

tions, which we relax:

1. Restricted access for travelers: travelers do not exit the managed lane once they enter

till their exit is reached [10, 11], and that only the first entry location is considered for

lane-choice decision [12]

2. Fully observable system: toll operators have access to measurements of traffic density

throughout the network for optimizing tolls [10, 11, 12, 21, 63]

3. Ignored traveler heterogeneity: a single vehicle class is considered with a single origin

and destination [10, 11, 21]

4. Simplified traffic dynamics: for example, the flow dynamics on general-purpose lanes

(GPLs) are assumed independent of vehicles using the ML [11]; or the proportion of

flow split at diverge points is assumed identical for all origins [12]
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In addition, there are relatively few analyses on the conflict between optimization

of multiple objectives with realistic constraints. In Chapter 3 showed that the revenue-

maximizing tolls exhibit a jam-and-harvest (JAH) nature where GPLs are intentionally

jammed to congestion earlier in the simulation to harvest more revenue towards the end.

Handling such undesirable behavior of optimal policies has not been studied in the literature.

Furthermore, practical applicability of these algorithms in real-world environments is

a less-explored question. Algorithms that optimize prices using a simulation model can be

applied in real time using lookup tables. However, the transferability analysis of such lookup

tables to new input distributions is not considered [10, 11, 21]. The hybrid MPC algorithm in

Tan and Gao [12] follows a different procedure for practical applications. It predicts boundary

traffic as an exogenous input using a simulation model and optimizes tolls over a finite

horizon using real-time measurements of traffic densities and queue lengths. However, solving

an MPC-based model with heterogeneous vehicle classes and partial observability of the

system, without the restricting assumptions stated earlier, is complex and not fully studied.

We thus require scalable algorithms for real-world networks that relax the assumptions on

driver behavior and traffic flow, and transfer well from simulation settings to new input

distributions.

In this chapter, we focus on pricing algorithms that rely on real-time density ob-

servations using sensors (such as loop detectors) located only at certain locations around

the network without access to any information about the demand distribution or driver

characteristics like the value of time (VOT) distribution. We use deep reinforcement learn-

ing (Deep-RL) algorithms for optimizing tolls while relaxing simplifying assumptions in the

earlier literature. In the recent years, Deep-RL algorithms have been successfully used for

applications such as playing Atari games and planning the motion of humanoid robots like

MuJoCo [64]. Similar algorithms have been applied for traffic signal control [65], active traffic

management [50], and control of autonomous vehicles in mixed autonomy [66].

Simply applying Deep-RL as a “black box” is unlikely to yield effective solutions for

pricing dynamic lanes, due to the size of the state space and the potential for undesirable jam-

and-harvest behavior. We have introduced two domain-specific elements into our formulation

and experiments: the use of a “decision route model” as a concise (polynomial-space) way
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of simulating route choice in corridors with multiple ML entrances and exits; and the use

of reward shaping to avoid JAH phenomena. In addition, using Deep-RL algorithms, we

relax assumptions in the literature by considering multiple origins and destinations, multiple

access points to the managed lane facility, en route diversion of vehicles at each diverge

point, and partial observability of traffic state.

The key contributions of this chapter are:

• We demonstrate the usefulness of Deep-RL algorithms for solving dynamic pricing

control problem under partial observability, and show that it performs well against

existing heuristics, without requiring restricting assumptions on driver behavior or

traffic dynamics.

• We apply multi-objective optimization methods for joint optimization of multiple ob-

jectives and overcome undesirable JAH characteristics of revenue-maximizing optimal

policies.

• We conduct tests to verify the transferability of learned Deep-RL algorithms to new

input distributions and make recommendations on real-time implementation of the

algorithm.

• We develop an open-source framework for dynamic pricing using multiclass cell trans-

mission model available for benchmarking future dynamic pricing experiments.

4.1 Literature review

Many control problems have been studied in the area of transportation engineering

including active traffic management strategies such as ramp metering, variable speed limits,

dynamic lane use control, and adaptive traffic signal control (ATSC). These control problems

can be broadly solved using three methods: open-loop optimal control methods (that solve

the optimal control problem without incorporating real-time measurements), closed-loop

control methods like MPC (that incorporate the feedback of real-time measurements and

optimize over a rolling horizon), and lately RL methods where the optimal control is learned

with an iterative interaction with the environment, possibly in simulated offline settings

which can then be translated in real world settings. Refer Ferrara et al. [67, Chapter 8] for

an overview of control problems in the transportation domain.
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The managed lane pricing problem is also a traffic control problem, where the chosen

control directly impacts the driver behavior and thus the congestion pattern. There are three

component models to the ML pricing problem [26]: a lane choice model that determines how

travelers choose a lane given the tolls and travel times, a traffic flow model that models the

interaction of vehicles in simulated environments, and a toll pricing model which determines

the toll pricing objectives and how the optimization problem is solved to achieve the best

value of the objective. Pandey [68] presented a tabular comparison of component models for

the existing models in the literature. In this research, we focus on the toll pricing models.

Toll pricing models for MLs with a single access point are commonly studied. Gardner

et al. [26] argued that for MLs with a single entrance and exit, the tolls minimizing the total

system travel time (TSTT) also utilize the managed lanes to full capacity at all times.

The authors developed an analytical formulation for tolls minimizing TSTT which send as

many vehicles to the ML at each time step as is the capacity of the lane. Lou et al. [27]

used a self-learning approach for optimizing toll prices where the average VOT values were

learnt using real-time measurements. Toledo et al. [38] used a rolling horizon approach to

optimize future tolls with predicted demand from traffic simulation; however, the method

of exhaustive search to solve the non-convex control problem does not scale well for large

managed lane networks.

For managed lanes with multiple access points, Tan and Gao [12] presented a for-

mulation where the proportion of vehicles entering the managed lane is optimized instead

of directly optimizing the toll prices. The authors showed a one-to-one mapping between

optimal toll prices and the proportion values, and transformed the control problem into a

mixed-integer linear program which can be solved efficiently for networks with multiple ac-

cess points. Dorogush and Kurzhanskiy [43] used a similar method and optimized split ratios

at each diverge, which are then used to determine toll prices; however, their analysis ignored

the variation of incoming flow at each diverge. Apart from these optimal control based meth-

ods, Zhu and Ukkusuri [10] and Pandey and Boyles [21] used RL methods, where the control

problem is formulated as a Markov decision process (MDP) and the value function (or its

equivalent Q-function) is learned by iterative interactions with the environment. However,

the tests are conducted for discrete state and action spaces assuming full observability of
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the system. The present chapter is guided by advances in RL methods, and improves these

earlier RL-based approaches for dynamic pricing.

Deep-RL improves traditional RL by using deep neural networks as function approx-

imators, which has been effective in various control problems. See Arulkumaran et al. [64]

for a survey of Deep-RL applications. Application of Deep-RL algorithms for traffic control

problems is not new. Belletti et al. [50] developed an “expert-level” control of coordinated

ramp metering using Deep-RL methods with multiple agents and achieved precise adaptive

metering without requiring model calibration that does better than the traditional bench-

mark algorithm named ALINEA. Wu et al. [66] used Deep-RL algorithms to solve the control

problem of selecting the acceleration and brake of multiple autonomous vehicles (AVs) under

conditions of mixed human vehicles and AVs to mitigate traffic congestion. When compared

against classical approaches, their approach generated 10-20% lower TSTT. Other applica-

tions of Deep-RL algorithms are in the domain of ATSC including traditional one signal

control [65, 69], coordinated control of traffic signals [70], and large-scale multiagent control

using Deep-RL methods [71]. See Yan et al. [72] for a review of RL algorithms in the area

of ATSC.

4.2 Model for deep reinforcement learning

4.2.1 Network notation

Consider the directed network shown in Figure 4.1 which is an abstraction of a man-

aged lane network. The upper set of links form MLs, the lower set of links form GPLs, and

the ramps connect the two lanes at various access points. As we describe the network, we

label the assumptions made in our model as “A#”. We also label ideas for future work as

“FW#”.

Let N represent the set of all nodes and A = {(i, j) | i, j ∈ N} represent the set

of all links in the network. Let No denote the set of all origins and Nd denote the set of

all destinations. We assume that origins and destinations connect to the network through

nodes on the GPLs (A#1) and the only way to access the MLs is through on-ramps leading

towards the lane. This is a reasonable assumption as most current ML installations allow
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Figure 4.1: Managed lane network with multiple entrances and exits where links with higher
thickness are tolled, and links with a box are observed by the toll operator

access to MLs only through ramps from the GPL. If there is a direct access to the ML from

outside the network, the current framework can still be used by appropriately adjusting the

lane choice model explained in Section 4.2.2.

The time horizon is divided into equal time steps, each ∆t units long. The set of all

time periods is given by T = {t0, t1, t2, . . . , tT/∆t}, where T , an integral multiple of ∆t, is

the time horizon. Tolls are updated after every ∆τ = m∆t time units, where m is a positive

integer fixed by the tolling agency. Define Tτ = {k | tkm ∈ T , where k ∈ {0, 1, 2, . . .}}

as the set of time periods where tolls are updated, indexed in increasing order of positive

integers. Then, |Tτ | = T/∆τ + 1. For example, Figure 4.2 shows different elements of time

where m = 4 and T = 16∆t. For the figure, T = {t0, t1, t2, . . . , t16} and Tτ = {0, 1, 2, 3, 4}.
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Δ𝜏
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0 1 2 3 4
Toll update steps

Simulation update steps

Figure 4.2: Representation of a time scale

The demand between an origin and a destination is a random variable. A toll operator

does not know the demand distribution, but only relies on the observed realizations of

demand. However, for simulation purposes, we model the demand of vehicles from origin

r ∈ No to destination s ∈ Nd at time t ∈ T to be a rectified Gaussian random variable with

mean drs(t) and standard deviation σd, and ignore correlations of demand between different

origin-destination (OD) pairs and across time. The mean demand drs(t) can be estimated
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by observing the historical data of the managed lane facility or from the regional model.

Let V denote the set of all values of VOT (assumed to be a discrete distribution for

the population, A#2) and pv be the proportion of demand with VOT v, for any v ∈ V .

The pv values are unknown to a toll operator. For simulation purposes, we choose the VOT

distribution (pv | v ∈ V ) and σd to be identical for all origin-destination pairs. Though

dynamic traffic assignment models have been used in the literature for optimization of toll

prices for MLs [73], we focus on real-time optimization of toll prices and ignore route-choice

equilibration of travelers (A#3). The lane choice models are discussed in Section 4.2.2.

Traffic flow models can either be microscopic or macroscopic. With the exception of

Belletti et al. [50], all other Deep-RL models in transportation domain use microsimulation

to capture the vehicle-to-vehicle interactions. In this chapter, we use macroscopic models

to represent traffic flow for the simplicity they provide. In contrast to the cell-based repre-

sentation of managed lane network in macroscopic traffic models from the literature, where

MLs and GPLs are modeled as part of the same cell [11, 12, 43], we divide each link into

individual cells, where the links for GPLs are separate from that of MLs. This choice lets

us use the cell transmission model (CTM) equations from Daganzo [57] for modeling traffic

flow. Let C(i,j) represent the set of all cells for link (i, j) ∈ A and C =
⋃

(i,j)∈A C(i,j) denote

the set of all cells in the network. The length of each cell c ∈ C , denoted by lc, is determined

as usual (the distance traveled at free flow in time ∆t) [57], and is assumed constant for all

links in the network (A#4). We thus require all link lengths to be integral multiples of the

cell length. Let lij, νij, qmax,ij, wij, and kjam,ij represent the length, free-flow speed, capacity,

back-wave speed, and jam density, respectively, for link (i, j) ∈ A as its fundamental diagram

parameters, which we assume has a trapezoidal shape (A#5).

A toll operator is assumed to manage the toll rate at each on-ramp and diverge

point beyond a diverge on a ML (A#6). We assume this toll structure in contrast to the

generic structure of separate toll values for each origin-destination (OD) pair, like in Yang

et al. [11] and Tan and Gao [12], because it inherently models the constraint that traveling

longer distance on the ML levies a higher toll than traveling shorter distance. For a detailed

discussion on various options to charge toll on a managed lane network with multiple accesses,

see Chapter 2 [74]. Let Atoll represent the links where tolls are collected. Figure 4.1 highlights
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these links in bold. We denote the toll charged on link (i, j) ∈ Atoll for any t ∈ T by βij(t).

4.2.2 Lane choice model

Travelers make lane choice decisions at each diverge location (nodes a, c, f , and h in

Figure 4.1), where information about the current travel time and toll values is displayed.

We assume that the information about the current travel time is provided by measuring

instantaneous travel time (A#7), and that all travelers make their lane choice decision

only using the instantaneous/real-time information (A#8). Assumptions A#7 and A#8 are

only made for simulation purposes, as the Deep-RL model only requires the realization of

lane choices in form of observed loop detector measurements. If we have an estimate of

experienced travel time on each route, the simulations can be based on experienced travel

time. Assumptions A#3 and A#8 are related: because we assume no prior experience for

the drivers, users do not find an equilibrium over route choices. Considering dynamic route-

choice equilibrium while optimizing a dynamic stochastic control is a complex problem and

will be studied as part of the future work (FW#1).

Conceptually, the lane choice models can be categorized based on three characteristics:

the number of routes over which travelers compare the utility, whether or not the lane choice

is stochastic/deterministic, and the heterogeneity in vehicles’ value of time (single class vs

multiple classes). Commonly used binary Logit model assumes stochastic lane choice over

two routes connecting current diverge to the destination, while the decision route model

evaluates deterministic lane choice of multiple vehicle classes comparing utilities over a set

of routes connecting current diverge to the merge after the first exit from the ML [21]. The

analysis in Chapter 2 showed that the decision route model has least error compared to the

optimal route choice model for rational travelers and offers an efficient way for simulating

route choices over a corridor, thus providing a potential for speeding up Deep-RL training.

Table 4.1 shows the combinations of categories and models used in the literature.

Certain combination have not been used directly, but they could be used. For example,

combining decision routes with stochastic lane choice can result in models like multinomial

logit or mixed logit, but the assumption that the utilities across overlapping routes are

independent may not hold true.
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Table 4.1: Categorization of lane choice models for managed lanes with multiple entrances
and exits

Number of
VOT classes

Number of routes
over which the utility(s)

is (are) compared

Deterministic
or Stochastic

Reference(s) in the
literature using
this lane choice

Single Two Deterministic [26]
Single Two Stochastic [12][38][10][11]
Single Decision routes Deterministic None
Single Decision routes Stochastic None

Multiple Two Deterministic [41]
Multiple Two Stochastic None
Multiple Decision routes Deterministic [21],[63]
Multiple Decision routes Stochastic None

The Deep-RL algorithm developed in this chapter is agnostic to the lane choice model.

For simulation purposes, we focus our attention on two models: multiple VOT classes with

two routes and stochastic choice (multiclass binary logit model) and multiple VOT classes

with decision routes and deterministic choice (multiclass decision route model). For simu-

lation purposes, we evaluate the utility of a route as the linear combination of the toll and

route’s travel time, converted to the same units using the VOT for the class (A#9).

4.2.3 Partially observable Markov decision process

MDPs are a discrete time stochastic control process that provide a framework for

solving problems that involve sequential decision making [75]. At each time step, the system

is in some state. The decision maker takes an action in that state, and the system transitions

to the next state depending on the transition probabilities, which are only a function of

the current state and the action taken (called the Markov property). Given an action,

this transition from one state to the other generates a reward for each time step and the

decision maker seeks to maximize the expected reward across all time steps. Control problems

in transportation do not necessarily have the Markov property because of the temporal

dependence of congestion pattern. However, by including the simulation time as part of the

state, they can be formulated as an MDP.

Partially observable Markov decision processes (POMDPs) are MDPs where the state

at any time step is not known with certainty, that is, the state is not fully observable. For
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the dynamic pricing problem where a toll operator does not have access to traffic information

throughout the network but only at certain locations, POMDPs are a suitable choice. We

define the control problem for determining the optimal toll as an POMDP with following

components:

• Timestep: Tolls are to be optimized over a finite time horizon for each time k ∈ Tτ .

A finite horizon can represent a morning or an evening peak period on a corridor, or

an entire day.

• State: We first define xzc(t) as the number of vehicles in cell c ∈ C belonging to class

z ∈ Z at time t ∈ T , where Z = {(v, d) | v ∈ V, d ∈ Nd} is the set of all classes,

disaggregated by the VOT value and the destination of the vehicle (the origin of a ve-

hicle does not influence lane choice once the vehicle is on the road and is thus ignored).

For ML networks where high occupancy vehicles pay a different toll than single/low

occupancy vehicles, we can extend Z to include the occupancy level of vehicles, but

we leave that analysis for future work (FW#2). The dimensionality of Z impacts the

computational performance of the multiclass cell transmission model. Similar to the

non-atomic flow assumption commonly used in the transportation literature, we con-

sider xzc(t) to be a non-negative real number We denote the state of the POMDP by s

comprising of the current toll update step k ∈ Tτ and the values xzc(tk∆τ ) for all cells

c ∈ C and class z ∈ Z. Thus, the state space S can be written as Equation (4.1).

Allowing ∆τ to be greater than ∆t (m > 1) reduces the size of state space compared

to choosing m = 1, which improves the computational efficiency.

S = {(k, xzc(tk∆τ )) | k ∈ Tτ , c ∈ C , z ∈ Z} (4.1)

• Observation: In our model, the observation is done using loop detectors. The detec-

tors measure the total number of vehicles going from one cell to the next and cannot

distinguish between vehicles belonging to different classes, so the state is not fully ob-

servable. The observation space depends on the location of detectors. We conduct sen-

sitivity analyses with respect to changes in the observation space later in the text. Let
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o(s) denote the observation vector for state s and comprise of the measurement of total

number of vehicles on each link (i, j) ∈ Aloop ⊆ A which has a loop detector installed

at beginning and end.1 That is, o(s) = {
∑

z∈Z
∑

c∈C(i,j)
xzc(tk∆τ ) | (i, j) ∈ Aloop}. We

assume that we can learn the total number of vehicles on any link by tracking the num-

ber of vehicles entering the link (measured at an upstream detector) and the number

of vehicles leaving the link (measured at a downstream detector) (A#10). The actual

observation is assumed to be Gaussian random variable with the mean as specified and

the standard deviation σo which models the noise in loop detector measurements. We

project negative values of observation, if any, to zero.

• Action: Action a in state s is the toll βij(tk∆τ ) charged for a toll link (i, j) ∈ Atoll,

where βij(·) ∈ [βmin, βmax]. The action is modeled as a continuous variable; the values

can be rounded to nearest tenth of a cent or dollar if desired.

• Transition function: The transition of the POMDP from a state s to a new state s′

given action a, is governed by the traffic flow equations from the CTM model which

incorporates the lane choice behavior of travelers. For simulation purposes, we assume

that traffic flow throughout the network is deterministic except at diverges where the

lane choices of travelers may be stochastic (A#11). We use a multiclass version of the

CTM model similar to the model in Chapter 3.

• Reward: The reward obtained after taking action a in state s, denoted by r(s, a),

depends on the choice of tolling objective. We consider two objectives, revenue maxi-

mization and total system travel time (TSTT) minimization, with following definitions

of reward:

– Revenue maximization:

rRevMax(s, a) =

(k+1)∆τ−1∑
x=k∆τ

∑
(i,j)∈Atoll

βij(tk∆τ )
∑

(h,i)∈A

yhij(tx)

 , (4.2)

where yhij(t) is the total flow moving from link (h, i) ∈ A to (i, j) ∈ A from time

1For Figure 4.1, Aloop = {(o, a), (a, c), (c, e), (d, f), (g, h), (h, j)}.
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step t to time step t+ ∆t

– Total system travel time minimization:

rTSTTMin(s, a) = −

(k+1)∆τ−1∑
x=k∆τ

∑
c∈C

∑
z∈Z

xzc(tx)

 , (4.3)

where the negative sign ensures that reward maximization is equivalent to TSTT

minimization.

For the dynamic pricing problem, revenue-maximizing tolls often have a JAH nature

where the GPLs are jammed to congestion earlier in the simulation to attract more travelers

towards the ML later in the simulation generating more revenue [21, 40]. This undesirable

characteristic of optimal policy is also seen in other applications of RL. For example, for

ATSC a simpler definition of reward that maximizes amount of flow during a cycle may lead

to “evil” optimal policies, where the controller agent holds congestion on the mainline and

then gains a larger reward by extending the greens for the main approach [65]. Similarly,

Van der Pol and Oliehoek [76] show that with inappropriate definitions of reward, the signal

control policy may have unusual flips from green to red.

To overcome the undesired JAH nature, we use reward shaping methods that modify

the reward definitions such that the optimal policies have less or no JAH behavior (discussed

later in Section 4.4.4). For reward shaping, we quantify the JAH behavior using two statistics

defined as a numeric value at the end of simulation. The first statistic, JAH1, measures the

maximum of difference between the number of vehicles in GPLs to the number of vehicles

in MLs across all time steps. It is defined as in Equation (4.4), where AGPL(AML) are links

on the GPL (ML).

JAH1 = max
t∈T

 ∑
(i,j)∈AGPL

∑
c∈C(i,j)

∑
z∈Z

xzc(t)−
∑

(i,j)∈AML

∑
c∈C(i,j)

∑
z∈Z

xzc(t)

 (4.4)

The value of JAH1 is dependent on network properties like number of lanes in GPLs

and MLs. We also define an alternate statistic JAH2 that is network independent. We

first define ζ(t), as in Equation (4.5), as the difference between the ratio of current number
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of vehicles to the maximum number of vehicles allowed in each cell (corresponding to jam

density) for all cells on GPLs with that of MLs.

ζ(t) =

∑
(i,j)∈AGPL

∑
c∈C(i,j)

∑
z∈Z x

z
c(t)∑

(i,j)∈AGPL

∑
i∈C(i,j)

lijkjam,ij

−
∑

(i,j)∈AML

∑
i∈C(i,j)

∑
z∈Z x

z
i (t)∑

(i,j)∈AML

∑
i∈C(i,j)

lijkjam,ij

(4.5)

JAH2 can then be defined as a maximum value of ζ(t) across all time steps, as in

Equation (4.6). The value of JAH2 varies between [−1, 1] with a high positive value indicating

more congestion on GPLs before congestion set in the ML.

JAH2 = max
t∈T

ζ(t) (4.6)

For the given POMDP, a policy πθ(a|o(s)) denotes the probability of taking action

a given observation o(s) in state s. We consider stochastic policies parameterized by a

vector of real parameters θ. For example, for a policy replaced by a neural network, θ

represents the flattened weights and biases for the nodes in the network. Since the action

space for the POMDP is continuous, the neural network outputs the mean of the Gaussian

distribution of tolls which is then used to sample continuous actions. For simplicity in

Deep-RL training, we assume the covariance of the joint distribution of actions to be a

diagonal matrix with constant diagonal terms (A#12). Figure 4.3 shows a schematic of the

parameterized representation of the policy which takes in the input of observations across

the network and returns the mean of the Gaussian toll values for all toll links. MLP stands

for multi-layer perceptron which is a feedforward neural network architecture.

Observation 
vector

MLP neural 
network

Mean of the 
Gaussian toll at 

every toll 
entrance 

Figure 4.3: Abstract representation of the policy
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4.2.4 Episodic reinforcement learning

In an episodic reinforcement learning problem, an agent’s experience is broken into

episodes, where an episode is a sequence with a finite number of states, actions, and rewards.

Since the POMDP introduced in the previous subsection is finite-horizon, the simulation

terminates at time T/∆t. Thus, an episode is formed by a sequence of states, actions, and

rewards for each time step k ∈ Tτ .

We first define a trajectory ℵ as a sequence of states and actions visited in an episode,

that is ℵ = (s0, a0, s1, a1, · · · , s|Tτ |−1), where sk is same as the state defined earlier indexed

by the time k in that state. Let r(sk, ak) be denoted by rk for all k ∈ Tτ .

The goal of the RL problem is to find a policy that maximizes the expected reward

over the entire episode. The optimization problem can then be written as following:

max
πθ(·)

J(πθ) = Eℵ[R(ℵ)|π] (4.7)

R(ℵ) =
∑
k∈Tτ

rk, (4.8)

where, Eℵ[R(ℵ)|π] =
∫
R(ℵ)pπ(ℵ)dℵ is the expected reward over all possible trajec-

tories obtained after executing policy π with pπ(ℵ) as the probability distribution of trajec-

tories obtained by executing policy π.2 We do not discount future rewards because tolls are

optimized over a short time period (like a day or a morning/evening peak).

We define a few additional terms used later in the text. Let V π(sk) = Eℵ
∑|Tτ |

k′=k rk′ be

the value function which evaluates the expected reward obtained from state sk till the end

of episode following policy π. Similarly, we define the Q-function, denoted by Qπ(sk, ak), as

the expected reward obtained till the end of episode from state sk after taking action ak and

following policy π thereafter. Last, the advantage function Aπ(sk, ak) = Qπ(sk, ak)−V π(sk),

defined as the difference between Q-function and value function, determines how much better

or worse is an action than other actions on average, given the current policy.

2Defining an expectation conditioned over a function (π) instead of a random variable is a slight abuse
of notation, but is commonly used in the RL literature.

92



The solution of this POMDP is a vector θ∗ that determines the policy which optimizes

the objective under certain constraints on the policy space. Commonly considered policy

constraints for the dynamic pricing of MLs include the following:

1. Tolls levied for a longer distance are higher than tolls levied for a shorter distance from

the same entrance: with the choice of tolling structure (assumption A#6) where tolls

are charged at every diverge, this constraint is already satisfied.

2. The ML is always operated at a speed higher than the minimum speed limit (called

the speed-limit constraint): in our model, we allow violation of this constraint on the

ML. We observe that, given the stochasticity in lane choice of travelers and demand,

bottlenecks can occur at merges and diverges which can result in an inevitable spillover

on managed lanes during congested cases. Thus, a hard constraint keeping the ML

congestion free throughout the learning period is not useful. We instead quantify the

violation of the speed-limit constraint using the time-space diagram of the cells on

the ML. We define %-violation as the proportion of cell-timestep pairs on the time-

space diagram where the speed limit constraint is violated, expressed as percentage.

Mathematically,

%-violation =

∑
(i,j)∈AML

∑
c∈C(i,j)

∑
t∈T I tc

|T |
∑

(i,j)∈AML
|C(i,j)|

× 100, (4.9)

where, I tc is an indicator variable which is 1 if the number of vehicles in the cell c in time

step t is higher than the desired number of vehicles in the cell and 0 otherwise. The

desired number of vehicles in each cell is determined from the density corresponding

to the minimum speed limit on the fundamental diagram. As discussed in Section 4.4,

allowing the speed-limit constraint to be violated in our model is not restrictive as the

best-found policies for each objective have %-violation values of less than 2% for all

networks tested.

3. Toll variation from one time step to the next is restricted: we do not explicitly model

this constraint. If the tolling horizon is “sufficiently” large (say 5 minutes), a large

change in tolls from one toll update to the next can be less of a problem. In our
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experiments, the optimal tolls are structured and do not oscillate significantly.

4. Tolls are upper and lower bounded by a value: we model this by clipping the toll

output by the function approximator within the desired range [βmin, βmax].

Next, we discuss the solution methods used to solve the POMDP using Deep-RL methods

and other heuristics.

4.3 Solution methods

4.3.1 Deep reinforcement learning algorithms

Deep reinforcement learning algorithms can be broadly categorized into value-based

methods and policy-based methods. The former methods try to learn the value functions

and use approaches based on dynamic programming to solve the problem, while the latter

methods try to learn the policy directly based on the observations. Policy gradient methods

work well with continuous state and action spaces, making it a preferred choice for the toll

optimization problem.

Derivative-free optimization and gradient-based optimization are two types of policy-

based methods. We focus on the methods relying on derivatives as they are considered to be

data efficient [77]. Providing an overview of the state-of-the-art of policy gradient methods

to solve RL problems is out of the scope of this work. We refer the reader to Schulman [77]

for additional details. In this chapter, we choose two of the commonly used algorithms for

solving the problem: the vanilla policy gradient (VPG) algorithm and the proximal policy

optimization (PPO) method from Schulman et al. [78], which we describe next.

The algorithms use the derivative of the objective function with respect to the policy

parameters to improve them using stochastic gradient descent. The methods differ in cal-

culation of the derivatives and the update of parameter θ. We can express the derivative of
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J(πθ) with respect to θ as:

∇θJ(πθ) = ∇θEℵ[R(ℵ)|π] (4.10a)

= ∇θ

∫
ℵ
P (ℵ|θ)R(ℵ)dℵ (4.10b)

=

∫
ℵ
∇θP (ℵ|θ)R(ℵ)dℵ (4.10c)

=

∫
ℵ
P (ℵ|θ)∇θ logP (ℵ|θ)R(ℵ)dℵ

(
since ∇θ logP (ℵ|θ) =

1

P (ℵ|θ)
∇θP (ℵ|θ)

)
(4.10d)

= Eℵ [∇θ logP (ℵ|θ)R(ℵ)] (4.10e)

= Eℵ

 |Tτ |∑
k=0

∇θ log(πθ(ak|sk))R(ℵ)

 , (4.10f)

where we first convert the probability of a trajectory into a product of the probabilities of

taking certain actions in each state, and then convert this product into a sum. As a result,

the derivative in the RHS of Equation (4.10f) can be easily obtained by performing back

propagation on the policy neural network.

The expectation in Equation (4.10f) can be approximated by averaging over a finite

number of trajectories. Let N = {ℵi | i ∈ 1, 2, ...} be the set of trajectories obtained using

policy πθ(·). Then, we can write:

∇θJ(πθ) ≈
1

|N |
∑
ℵ∈N

 |Tτ |∑
k=0

∇θ log(πθ(ak|sk))R(ℵ)

 . (4.11)

In the above formulation the likelihood of actions taken along the trajectory is affected

by reward over entire trajectory. However, it is more intuitive for an action to influence the

reward obtained only after the time step when it was implemented. It can be shown that the

right hand side of the expression in Equation (4.11) is equivalent to the following expression:

1

|N |
∑
ℵ∈N

 |Tτ |∑
k=0

∇θ log(πθ(ak|sk))R̂(k)

 , (4.12)
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where R̂(k) is the reward-to-go function at time k, given by R̂(k) =
∑|Tτ |

k′=k rk′ . This

new expression for the gradient of the objective requires sampling of fewer trajectories and

generates a low-variance sample estimate of the gradient.

Additionally, the variance can be further reduced by using the advantage function es-

timates instead of reward-to-go function [79]. VPG uses the following form for approximating

the derivative:

∇θJ(π(θ)) ≈ 1

|N |
∑
ℵ∈N

 |Tτ |∑
k=0

∇θ log(πθ(ak|sk))Âk

 , (4.13)

where Âk is the estimate of advantage function, Aπθ(sk, ak), from current time k till

the end of episode, following the policy from which the given trajectory is sampled. We

use the generalized advantage estimation (GAE) technique to estimate Âk which requires

an estimate of the value function [79]. We use value function approximation to estimate

of V π(sk) using a neural network as the functional approximator. Let V̂φ(sk) denote the

estimate of V π(sk), parameterized by a real vector of parameters φ. The algorithm starts

with an estimate of φ (φ0) and iteratively improves it by minimizing the squared difference

with the reward-to-go value from the trajectory. The update in φ parameters are evaluated

using Equation (4.14):

φn+1 = argmin
φ

1

|N ||Tτ |
∑
ℵ∈N

|Tτ |∑
k=0

(
Vφ(sk)− R̂(k)

)2

. (4.14)

More details on GAE are provided in Schulman et al. [79].

VPG updates the value of θ parameter from iteration n to n + 1 using the standard

gradient ascent formula:

θn+1 = θn + α∇θJ(π(θn)). (4.15)

In Equation (4.15), an inappropriate choice of the learning rate α can lead to large

policy updates from one iteration to the next which can cause the objective values to fluctu-

ate. The PPO algorithm modifies the policy update to take the biggest possible improvement

using the data generated from current policy while ensuring improvement in the objective.
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It performs specialized clipping to discourage large changes in the policy. The policy update

for PPO is given by:

θn+1 = argmax
θ

1

|N |
∑
ℵ∈N

 |Tτ |∑
k=0

min
(
rk(θ)Â

πθn (sk, ak), clip(rk(θ), 1− ε, 1 + ε)Âπθn (sk, ak)
) ,

(4.16)

where rk(θ) is the ratio of probabilities following a policy and the policy in the current

iteration (θn) given by Equation (4.17), and the clip(·) function, given by Equation (4.18),

restricts the value of first argument between the next two arguments.

rk(θ) =
πθ(ak|sk)
πθn(ak|sk)

(4.17)

clip(r, 1− ε, 1 + ε) =


1− ε, if r ≤ 1− ε

r, if 1− ε < r < 1 + ε

1 + ε, if r ≥ 1 + ε.

(4.18)

The clipping operation selects the policy parameters in the next iteration such that

the ratio of action probabilities in iteration n + 1 to iteration n are between [1− ε, 1 + ε],

where ε is a small parameter, typically 0.01. Policy updates for PPO can be solved using

the Adam gradient ascent algorithm, a variant of stochastic gradient ascent with adaptive

learning rates for different parameters [78, 80].

The structure for both algorithms is presented in Algorithm 6. For the experiments,

we develop a new RL environment for macroscopic simulation of traffic similar to the current

RL benchmarks (called “gym” environments) and customize the open-source implementation

of both algorithms provided by OpenAI Spinningup [81] to work with our new environment.
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Algorithm 6 Policy gradient algorithm for dynamic pricing [81]

Input: initialize policy parameters θ0 and value function parameters φ0

for do n = 0, 1, 2, · · ·
Collect set of trajectories Nn = {ℵn} by running policy πn = πθn in the environment
Compute rewards to go R̂k

Compute advantage estimates using rewards-to-go and generalized advantage esti-
mation

Update policy parameters using either VPG or PPO update:

• VPG: Estimate policy gradients using Equation (4.13) and update policy param-
eters using Equation (4.15), or
• PPO: Update policy parameters by solving Equation (4.16) using Adam gradient

ascent algorithm

Update value function approximation parameter (used for advantage estimation) in
Equation (4.14) using Adam gradient descent
end for

4.3.2 Feedback control heuristic

We compare the performance of Deep-RL algorithms against a feedback control

heuristic based on the measurement of total number of vehicles in the links on ML. We

customize the Density heuristic in the previous chapter to charge varying tolls for different

toll links.

Define ML(i, j) as the set of links on the ML used by a traveler upon first entering the

ML using the toll link (i, j) ∈ Atoll until the next merge or diverge. For the network in Figure

4.1, ML(a, b) = {(b, d)}, ML(c, d) = {(d, f)}, ML(f, i) = {(f, i)}, and ML(h, i) = {(i, k)}.

This definition allows the sets ML(i, j) to be mutually exclusive and exhaustive in the space

of all links on the ML. That is,

ML(i, j) ∩ML(k, l) = Φ ∀ (i, j) ∈ Atoll, (k, l) ∈ Atoll, (i, j) 6= (k, l)⋃
(i,j)∈Atoll

ML(i, j) = AML.

We assume that the feedback control heuristic updates the tolls for each toll link

(i, j) ∈ Atoll based on the density observations on links in ML(i, j), that is, detectors are

installed on each link in the ML and only those detectors are used to update the toll (A#13).

The toll value for an update time (k + 1) ∈ Tτ is based on the toll value in the previous
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update step adjusted by the difference between the desired and current numbers of vehicles.

The toll update is given by Equation (4.19),

βij(t(k+1)∆τ ) = βij(tk∆τ ) + P ×
(
XML(i,j)(k)−Xdesired

ML(i,j)

)
, (4.19)

where XML(i,j)(k) is the total number of vehicles on links in ML(i, j) before updating

tolls at time k + 1 and Xdesired
ML(i,j) be the desired value of the number of vehicles on the links

in ML(i, j). P is the regulator parameter, with units $/veh, controlling the influence of

difference between the desired and current number of vehicles on the toll update. A typical

desired value is the number of vehicles corresponding to the critical density on the ML link.

We generalize the desired number of vehicles by defining Xdesired
ML(i,j) as:

Xdesired
ML(i,j) =

∑
(g,h)∈ML(i,j)

ηkcritical,(g,h)lgh, (4.20)

where, kcritical,(g,h) is the critical density for link (g, h) ∈ A and η is the scaling

parameter varying between (0, 1] that sets the desired number of vehicles to a proportion

value of the number of vehicles at critical density. We calibrate the feedback control heuristic

for different values of desired density and regulator parameter. In principle, both η and P

can vary with time and the toll location; however, determining the “optimal” variability in

these parameters is a control problem in itself, exploring which is left as part of the future

work (FW#3).

In Section 4.4.5 we also compare the performance of algorithms making the full ob-

servability assumption against the Deep-RL algorithms which do not make that assumption.

We choose two algorithms from our previous work: the algorithm based on value function

approximation (VFA) using look-up tables [21], and the multiagent reinforcement learning

algorithm that learns value functions separately for each toll gantry (SparseV algorithm) [63].

Comparing the performance of Deep-RL methods against the hybrid MPC method in Tan

and Gao [12] requires extensive analysis and will be a part of the future work (FW#4).
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4.4 Experimental analysis

4.4.1 Preliminaries

We conduct our analysis on four different networks. The first is a network with single

entrance and single exit (SESE) commonly used in the managed lane pricing literature.

The next two are the double entrance single exit (DESE) network and the network for toll

segment 2 of the LBJ TEXpress lanes in Dallas, TX (LBJ). The DESE network includes two

toll locations for modeling en route lane changes. The LBJ network has four toll locations.

Last is the network of the northbound Loop 1 (MoPac) Express lanes in Austin, TX. The

MoPac network has three entry locations to the MLs and two exit locations.
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Figure 4.4: Abstract representation of (a) single entrance single exit (SESE) network, (b)
double entrance single exit (DESE) network, (c) LBJ network, and (d) Northbound MoPac
express lane network (latitude-longitude locations of MLs are shifted to the left to show the

locations of toll points and exits from the managed lane). The tolls are collected on the
links with higher thickness.

Figure 4.4 shows the networks, where the thick lines denote the links where tolls are

collected. The demand distribution for the first three networks is artificially generated and

follows a two-peak pattern (refer to the original demand curve in Figure 4.5a), while the

demand for the MoPac network is derived from a dynamic traffic assignment model of the

Travis County region. There are a total of 105 origin-destination pairs in the MoPac network

with a total demand of 49,273 vehicles using the network in three hours of the evening peak.
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Figure 4.5: (a) Demand distributions used for the SESE, DESE and LBJ networks and its
variants, and (b) VOT distribution and its variant

Table 4.2 shows the values of parameters used for different networks. Five VOT

classes were selected for each network and the same VOT distribution was used. Figure

4.5b shows this VOT distribution (labelled “original”; in some experiments we vary this

distribution.)

Table 4.2: Values of parameters used in the simulation

SESE DESE LBJ MoPac Parameter Value
Corridor length (miles) 7.3 1.59 2.91 11.1 βmin $0.1

Simulation duration (hour) 2 2 2 3 βmax $4.0
∆τ (seconds) 60 300 300 300 qij (vphpl) 2200
νij (mph) 55 55 55 65 kjam,ij (veh/mile) 265
σo (veh/hr) 50 50 50 50 νij/wij 3
σd (veh/hr) 10 0 0 100 ∆t (seconds) 6

A feedforward multilayer perceptron was selected as the neural network. Hyperpa-

rameter tuning was conducted, and the architecture with two hidden layers and 64 nodes in

each layer was selected. For the MoPac network, three hidden layers with 128 nodes each

were selected. The values of other hyperparameters for Deep-RL training are as follows:

learning rate for policy update equals 10−4, learning rate for value function updates is 10−3,

number of iterations for value function updates is 80, and the γGAE and λGAE values for the

GAE method are 0.99 and 0.97, respectively. Each network was simulated for a number of
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iterations ranging between 100 and 200 where the average in each iteration was reported

over 10 episodes.

4.4.2 Validating JAH statistics

In this subsection, we discuss how the JAH statistics defined in Equations 4.4 and 4.6

are meaningful in capturing the jam-and-harvest nature of the revenue maximizing profiles.

We simulate random toll profiles on the LBJ network and record the congestion profiles for

two values of JAH2: 0.22 and 0.49.3

Figures 4.6 and 4.7 show the plots for the time space diagram on managed lane and

general purpose lane, and the variation of ζ(t) for two different toll profiles leading to JAH2

values of 0.22 and 0.49, respectively. The scale on the time-space diagrams varies from 0,

representing no vehicles, to 1, representing jam density. The cell id value on the y-axis is a

six-digit number where the first two digits are the tail node of the link, the second two digits

are the head node of the link, and the last two digits are the index of the cell number on the

link starting from index 1 for the first cell near the tail node. Thus, the increasing value of

cell IDs on the y-axis indicates the downstream direction.
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Figure 4.6: Plots for JAH2 = 0.22

3The JAH2 values varied between 0.2 and 0.5 for this network as shown in Figure 4.11
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Figure 4.7: Plots for JAH2 = 0.49

As observed, higher value of JAH statistics results in higher congestion on the GPL

relative to the ML. When JAH2 = 0.22, vehicles use the ML starting from 1500 seconds into

the simulation. Whereas, when JAH2 = 0.49, vehicles do not enter the managed lane until

approximately 2300 seconds into the simulation, by which the GPLs are heavily congested,

indicating more jam-and-harvest behavior .

Table 4.3 shows values of revenue, TSTT, and JAH1 for the two toll profiles simulated.

We see that the JAH1 statistic is also high when the JAH2 statistic is high. The highest

revenue is obtained for the highest value of JAH2 value. TSTT values follow the reverse trend

as the revenue: high JAH statistic leads to low TSTT. These experiments help quantify the

abstract “jam-and-harvest” nature used in the literature. In Section 4.4.4, we use reward

shaping to generate toll profiles with low JAHi values (i = {1, 2}).

Table 4.3: Value of different statistics for different cases

Figure Revenue ($) TSTT (hr) JAH1 (vehicles) JAH2

Figure 4.6 1203.68 1018.7 451.73 0.22
Figure 4.7 4106.03 1421.05 997.23 0.49

4.4.3 Learning performance of Deep-RL

Learning for different objectives

We next compare the learning performance of the VPG and PPO Deep-RL algorithms

for both revenue maximization and TSTT minimization objectives. Figure 4.8 show the

plots of variation of learning for two objectives for all four networks over 200 iterations. The
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average in each iteration is reported over 10 random seeds, and for each random seed 10

trajectories are simulated to perform policy updates in Equations (4.15) and (4.16).

We make the following observations. First, both Deep-RL algorithms are able to

learn “good” objective values within 200 iterations, evident in the increasing trend of the

average revenue for the revenue maximization objective and a decreasing trend of the average

TSTT for the TSTT minimization objective. For the revenue maximization objective, the

average revenue values converge to a high value for all networks. For the TSTT minimization

objective, the average TSTT values for SESE (Figure 4.8b) and DESE (Figure 4.8d) networks

do not converge; however a decreasing trend is evident. The VPG algorithm for the DESE

network in Figure 4.8d shows divergence towards the end. This behavior can be attributed

to the lack of convergence guarantees for gradient-based algorithms in stochastic settings,

where the algorithms may converge to a local optimum or may not converge within desired

number of iterations. Therefore, we recommend tracking the value of policy parameters (θ)

that achieve the best-found objective over iterations.

We argue that learning for the revenue maximization objective is easier than learning

for the TSTT minimization objective. This is because the reward definition for revenue

maximization in Equation (4.2) involves the action values (in terms of βij(·)) and thus

incorporates a direct feedback on the efficiency of current toll. On the other hand, for the

TSTT minimization objective, Equation (4.3) does not incorporate the toll values directly

and the feedback on current toll is only obtained at the end of simulation when the TSTT

value is generated. This is known as the credit assignment problem in the RL literature

where it is unclear which actions over the entire episode were helpful. The credit assignment

problem can potentially be addressed by reframing the reward definition for the TSTT

minimization objective, but this analysis is left as part of the future work (FW#5).

Second, we observe that there is no evident difference in the performance of VPG and

PPO algorithms. For the revenue maximization objectives, the algorithms perform “almost

identically” with values of average revenue of PPO within 5% of the average revenue values

of VPG algorithm at any iteration. For the TSTT minimization objective, we observe that

PPO prevents high variation in average TSTT values from one iteration to the next, whereas

the VPG algorithm shows higher oscillations (evident in Figures 4.8b and 4.8d). The variance
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(b) SESE TSTT Minimization.
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(c) DESE Revenue Maximization.
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(d) DESE TSTT Minimization.
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(e) LBJ Revenue Maximization.
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(f) LBJ TSTT Minimization.
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(g) MoPac Revenue Maximization.
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(h) MoPac TSTT Minimization.

Figure 4.8: Plot of average objective value and the confidence interval with iteration over
10 random seeds for the four networks
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in the average TSTT values is also higher for the VPG algorithm for the TSTT minimization

objective.

Last, in contrast to our expectation that a larger network with high dimensional action

space might require large number of iterations to converge, we observe that for both LBJ and

MoPac networks, the average objectives converge within 200 iterations, which is equivalent

to simulating 2000 episodes with 2000× 2 hours/5 minutes = 48000 action interactions with

the environment. Both networks mimic the real-world implementations of managed lanes,

and thus we argue that learning is possible within a reasonable number of interactions with

the environment even for real-world networks. The amount of data required for training

Deep-RL models is often considered its major limitation [64]; however, for the dynamic

pricing problem it is not a constraining factor.

Next, we report the computation time needed for training the networks in Table 4.4.

The run times are reported on a Unix machine with 8 GB RAM and are computed starting

when the algorithms begin execution till the end of desired number of iterations. As observed,

both Deep-RL algorithms show minor to no difference. The total computation time for

training of algorithm for an objective is less than half a hour for the first three networks. For

the MoPac network, the computation time is around 23 hours. The computational bottleneck

is the traffic flow simulation using multiclass cell transmission model. For the MoPac network

there are |Z| = 65 classes and |C | = 258 cells, and thus updating 65 × 258 = 16,770 flow

variables for every time step is time consuming. Efficient implementation of CTM model

with parallel computations can help improve the efficiency of training. We note that the

23.39 hours spent for training are conducted offline on a simulation model. Once the model

is trained, it can be transferred with less effort to real-world settings. We conduct tests on

transferability of learned algorithms to new domains in Section 4.4.3.
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Table 4.4: Computation time for Deep-RL training

Network
Computation time per iteration

for simulating 10 episodes (seconds)
Total average computation
time for training (hours)

VPG PPO
SESE 7.00 6.99 0.39
DESE 3.59 3.57 0.20
LBJ 7.51 7.49 0.42

MoPac 420.99 419.2 23.39

Impact of observation space

We also test the impact of observation space on the learning of Deep-RL algorithms.

For the LBJ network, the results in Figures 4.8e and 4.8f assumed that flows are observed

on all links (which we term High observation). We consider two additional observation

cases: (a) observing links (3, 5), (4, 7), (6, 9), and (8, 11) (Medium observation), and (b) only

observing link (6, 9) in the network (Low observation). Figure 4.9 shows the learning results

for revenue maximization objectives for the two algorithms for three levels of observation

space.

We observe that changing the observation space has a minor impact on learning

rate. This result was unexpected, and suggests that good performance can be obtained

with relatively few sensors. We speculate that this happens due to the spatial correlation

of the congestion pattern on a corridor (where observing additional links does not add a

new information for setting the tolls). The computation time differences on using different

observation spaces were also not significant.
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Figure 4.9: Plot of the average revenue with iteration over 5 random seeds for the three
levels of observation for (a) VPG algorithm, and (b) PPO algorithm for the LBJ network
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These findings indicate that a toll operator can learn toll profiles optimizing an ob-

jective without placing sensors on all links, which is a lower cost alternative than observing

all links. Future work will be devoted to the cost-benefit analysis of different sensor-location

combinations assuming variability in sensing errors across different sensors. (FW#6)

Learning for varied inputs and transferability analysis

In this section, we consider how Deep-RL algorithms perform for varied set of inputs

and how the policies trained on one set of inputs perform when transferred to new inputs

without retraining for the new inputs. This analysis is useful for a toll operator who trains

the algorithm in a simulation environment for certain assumptions of input. For the pol-

icy to transfer, the observation space in the new setting must be identical to the setting

where the transferred policy is trained. We only consider cases for changes in input demand

distribution, VOT distribution, and lane choice model. Transferability of Deep-RL algo-

rithms trained on one network to other networks or the same network with new origins and

destinations requires extensive investigation and is a topic for future research (FW#7).

We consider the revenue-maximizing policy for the LBJ network and consider four

different input cases. The first two cases consider new demand distributions (Variant 1 and

Variant 2) shown in Figure 4.5a. The third case considers a new VOT distribution (Variant

3) shown in Figure 4.5b. And, the last case uses a multiclass binary logit model with scaling

parameter 6 for modeling driver lane choice [74]. For each case, we also directly apply

the policy obtained at the final iteration of training on the LBJ network for the revenue-

maximization objective with the original demand, VOT distribution, and lane choice model

(Figure 4.8e).

Figure 4.10 show the plots of variation of revenue with iterations while learning from

scratch for both VPG and PPO algorithms and the average revenue (and its full range of

variation) obtained from the transferred policy for the new inputs. The average is reported

over 100 runs of the transferred policy for new inputs without retraining.

First, we observe that learning for the new input configurations “converges” within

100 iterations for all four cases. This observation indicates the Deep-RL algorithms can

iteratively learn “good” toll profiles regardless of the input distribution. This is a significant

advantage over the MPC-based algorithms in the literature that require assumptions on
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(a) Demand Variant 1.
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(b) Demand Variant 2.
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(c) VOT Variant 3.
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(d) Stochastic lane choice.

Figure 4.10: Comparing learning-from-scratch performance of the VPG and PPO
algorithms on different input distributions with the policy transferred after learning on the

original distribution (shown as a horizontal line-dot pattern) for the LBJ network

driver behavior and inputs to solve the optimization problem at each time step. Similar

to the previous cases, both VPG and PPO algorithms perform almost identically with less

than ∼ 10% difference in the objective values at any iteration for the four cases. This is

in contrast to the other environments used for testing Deep-RL algorithms like Atari games

and MuJoCo where the PPO algorithm is significantly better than the VPG algorithm [78].

This is because the state update in the ML pricing problem is not drastically influenced by

the toll actions, unlike the high uncertainty in the state transition in the Atari and MuJoCo

environments. Thus, the VPG algorithm does not produce large-policy updates and has no

relative disadvantage over the PPO algorithm, explaining their almost-identical performance.

Second, the average revenue of the transferred policy is within 5−12% of the average

revenue at termination while learning from scratch. For case 3 with VOT variant, the

transferred policy does even better than the policy learned from scratch after 100 iterations

of training. The observations from the first three cases suggest that even though the Deep-RL
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algorithms were not trained for the new inputs, they are able to learn characteristics of the

congestion in the network and perform well (on an average) on the new inputs. However, for

case 2, the transferred policy has a lot of variance in the generated revenue; this is because

small changes in input tolls have higher impact on generated revenue for demand Variant 2.

Third, contrary to the first three cases, the transfer of policy in case 4 did not work

well: the average revenue of transferred policy is 40% of the maximum revenue obtained.

This is because the multiclass logit model predicts significantly different proportion of splits

of travelers at a diverge and thus have a significant impact on the evolution of congestion.

Both cases 3 and 4 impact the split of travelers at the diverge, yet the performance of

transferred policy is very different for both cases. This finding suggests that the driver lane

choice model should be carefully selected and calibrated for Deep-RL training for reliable

transfer to the real-world environments, whereas the demand and VOT distributions are less

important.

4.4.4 Multi-objective optimization

We next focus our attention on multiple optimization objectives together. In the

literature, revenue maximization and TSTT minimization objectives are shown to be con-

flicting [21], that is toll policies generating high revenue have a high value of TSTT. Finding

toll profiles that satisfy both objectives to a degree is the focus of this section.

We consider how different objectives vary with respect to each other for 1000 ran-

domized toll profiles simulated for all four networks. Figure 4.11 shows the plots of vari-

ation of TSTT, JAH1, JAH2, %-violation, and the total number of vehicles exiting the

system (throughput) against the revenue obtained from the toll policies. The figure also

shows the values of objectives from the toll profiles generated by Deep-RL algorithms where

“DRLRevMax” indicates toll profiles from the revenue maximization objectives and “DRLT-

STTMin” indicates toll profiles from the TSTT minimization objective.

We make following observations:

1. First, the best toll profiles generated from Deep-RL algorithm are the best found among

the other randomly generated profiles for the respective objectives (except for TSTT

minimization on SESE network where the Deep-RL algorithm did not converge after
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Figure 4.11: Plot of various objectives against the revenue for 1000 randomly generated toll
profiles (Random) and the profiles generated from Deep-RL for revenue maximization

(DRLRevMax) and TSTT minimization (DRLTSTTMin) objectives
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200 iterations).

2. Second, similar to the trends in the literature, toll profiles generating high revenue

also generate high values of TSTT for the LBJ and MoPac networks. However, for the

SESE and DESE networks, the trend does not hold. This behavior, where revenue-

maximizing tolls do not differ significantly from the TSTT-minimizing tolls is possible

for networks where GPLs are jammed quickly enough. Once the GPL is jammed,

revenue is maximized by charging the highest possible toll while sending maximum

number of vehicles towards the ML. Such tolls will also generate low values of TSTT

as they utilize the ML to its full capacity from that time step onwards. This finding

indicates that, depending on the network properties and the inputs, the two objectives

may not always be in conflict with each other. We leave a detailed analysis of how

different network characteristics impact the differences between revenue-maximizing

and TSTT-minimizing tolls for future work (FW#8).

3. Third, we see that tolls generating high revenue also have high values of JAH1 and

JAH2 statistics. The tolls generating low TSTT, however, do not have a fixed trend.

For example, for the MoPac network, tolls generating low TSTT have lower revenue

and thus have lower values of JAH statistics; however, for the other networks, JAH

statistics are also relatively high for the tolls minimizing TSTT compared to the least

JAH statistic value obtained. This finding shows that tolls minimizing TSTT may

also exhibit JAH behavior, though the extent of JAH for TSTT-minimizing profiles is

always lower than the revenue-maximizing profiles.

4. Fourth, for the LBJ and MoPac networks with multiple access points to the ML,

we observe that several toll profiles can cause violation of the speed limit constraint.

However, the toll profiles optimizing the revenue or TSTT generate %-violation less

than 2% for both MoPac and LBJ networks.

5. Last, the trends in throughput depend on the congestion level; if all vehicles clear at

the end of simulation, throughput is a constant value equal to the number of vehicles

using the system. However, for SESE and MoPac networks congestion persists till the
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end of simulation. For the MoPac network, tolls generating high revenue have less

throughput and the tolls generating low TSTT have a higher throughput.

Next, we seek toll profiles that optimize two objectives. Multi-objective reinforce-

ment learning is an area that focuses on the problem of optimizing multiple objectives [82].

There are two broad approaches for solving this problem: single-policy approach and multi-

policy approach. Single-policy approaches convert the multi-objective problem into a single

objective by defining certain preferences among different objectives like defining a weighted

combination of multiple objectives. Multi-policy approaches seek to find the policies on the

Pareto frontier of multi objective. In this chapter, we focus on the single-policy approach

due to its simplicity. We consider the weighted-sum and threshold-penalization approaches

explained next.

First, we apply the weighted-sum approach for finding a single policy that jointly

optimizes TSTT and revenue. We define a new joint reward function rjoint(s, a) as a linear

combination of two rewards:

rjoint(s, a) = λ rRevMax(s, a) + rTSTTMin(s, a). (4.21)

The value of λ is the relative weight of revenue ($) with respect to TSTT (hrs) and

has units hr/$. Geometrically, λ represents the slope of a line on the TSTT-Revenue plot.

We run VPG and PPO algorithms for the new reward on the LBJ network with two

different values of λ: λ1 = 0.1325 hr/$ and λ2 = 0.175 hr/$ (the values are chosen so that

toll profiles in the mid-region of the TSTT-revenue plot are potentially optimal). Figure

4.12 shows the plot of optimal toll profiles obtained from Deep-RL algorithms on the TSTT-

Revenue space. The slopes of the lines, equal to the λ values, are also shown, and the lines

are positioned by moving them from the bottom to the top till they touch the first point

among the generated space of points (that is, the line is approximately a tangent to the

Pareto frontier).

As observed, Deep-RL algorithms are able to learn toll profiles that maximize the joint

reward. For the λ1 case, toll profiles are generated very close to the Pareto frontier; however,

they are concentrated in the region where both TSTT and revenue are lower indicating the
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Figure 4.12: Plot of TSTT vs revenue for the LBJ network for toll profiles generated
randomly and toll profiles generated after optimizing the joint reward for two different

values of λ

presence of local minima in the region. For the λ2 case, the toll profiles are more spread out

in terms of their values of TSTT and revenue; however, there are still a few toll profiles that

are closer to the Pareto frontier tangent line which the Deep-RL algorithms did not find.

This can again be explained by the behavior of policy gradient algorithms which are prone

to converge to local optimum because they follow a gradient-descent approach.

Optimizing using a joint reward definition as Equation (4.21) can also be interpreted

as following: that a toll operator is willing to sacrifice $1 revenue for a 1/λ hours decrease in

TSTT value. For the two values of λ, λ1 and λ2, this is equivalent to sacrificing $1 revenue

for a 7.55 hours and 5.72 hours decrease in total delay for the system, respectively. If they

trade off these objective outside this range, the optimal policy will be the same as solely

maximizing revenue or minimizing TSTT.

The second approach for solving multi-objective optimization problem is the threshold

approach where we find toll policies that maximum revenue (minimize TSTT) such that

TSTT (revenue) is less (higher) than a certain threshold. In this chapter, we apply the

threshold-penalization method to model threshold constraints. This method simulates a

policy and if at the end of an episode the constraint is violated, a high negative value is

added to the reward to penalize such update. We test this technique to find tolls that
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maximize revenue such that JAH1 statistic is less than a threshold value. We use JAH1

statistic because it has a physical interpretation and, unlike JAH2, is not unitless.

We conduct tests for the threshold-penalization technique on the LBJ network with

a threshold JAH1 of 700 vehicles and add a reward value of −$3000 to the final reward

if at the end of simulation the JAH1 statistic is higher than the threshold. Figure 4.13a

shows the learning curve plotting the variation of modified reward with iterations. We

observe that both VPG and PPO algorithms improve the modified reward with iterations,

though it is hard to argue that they have converged. Learning is difficult in this case due

to the same credit assignment problem where it is unclear will toll over an episode resulted

in the constraint violation. Figure 4.13b shows the plot for tolls obtained from threshold-

penalization technique on the JAH1-Revenue space.
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Figure 4.13: (a) Plot of average modified reward with iteration while maximizing revenue
with a reward penalty of −$3000 if the JAH1 statistic is more than 700 vehicles, and (b)
the plot of JAH1 vs revenue for the best-found toll profiles from the threshold-penalization

method, along with toll profiles generated randomly

As observed, the threshold-penalization method is able to learn toll profiles with

desired JAH value for 7 out of 10 random seeds. However, the learned toll profile is not the

best found (that is, there are toll profiles with JAH less than 700 but generating revenue

higher than $2800, which is the best found revenue). This is because the modified reward

did not converge (yet) after 200 iterations. Despite the lack of convergence, we conclude that

the penalization method is a useful tool to model constraints on toll profiles. The success of

115



threshold-penalization method depends on the random seed, as that determines which local

minimum the algorithm will converge to.

4.4.5 Comparison with other heuristics

In this section, we compare performance of the Deep-RL algorithms against other

methods.

First, we study the variation of different objectives from the feedback control heuristic

for different values of η and P values to identify the best performance for benchmarking.

Figure 4.14 shows the variation of revenue and TSTT values for the SESE, LBJ, and MoPac

networks. The values for each combination of parameters are reported as an average over 10

random seeds where the initial tolls on all toll links are set randomly between the minimum

and maximum values for different seeds.
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Figure 4.14: Variation of revenue ((a),(b),(c)) and TSTT ((d),(e),(f)) for different values
of η and P parameters for the feedback control heuristic tested on SESE, LBJ, and MoPac

networks

As observed, low values of η generate the highest average revenue across all combina-

tions. Lower values of η ensure that ML is kept relatively more congestion free than the case
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when η value is high. A low value of η charges high toll in the beginning and ensures that

GPLs are more jammed promoting jam-and-harvest nature and generating more revenue.

In contrast to this, low values of TSTT are obtained for high values of η for both LBJ

and MoPac networks. This is also intuitive: tolls minimizing TSTT operate the managed

lane close to its critical density at all times. The contrary behavior of the SESE network,

where low values of η also generate low TSTT, is because of the reasons explained in Section

4.4. For a given value of η, the variation of TSTT and revenue with P is not significant,

indicating that the performance of feedback control heuristic is more sensitive to the η

parameter.

Next, we compare the performance of feedback control heuristic against Deep-RL al-

gorithms. Table 4.5 shows the values of different statistics reported as five-tuple: (revenue,

TSTT, JAH1, JAH2, %-violation) for both the revenue maximization and the TSTT min-

imization objectives for Deep-RL algorithms (we report the better objective value between

VPG and PPO) and the feedback control heuristic. We highlight the value of the optimiza-

tion objective in bold. We also include the standard deviation in the objective value for both

algorithms; the Deep-RL algorithm generates stochastic objective values due to the stochas-

tic nature of the policy, while the feedback control heuristic generates stochastic objective

values for different random initializations, given values of η and P .

The Deep-RL algorithms always find tolls with better objective values compared to

the feedback control heuristic. For the revenue maximization objective, the average revenues

from Deep-RL are 0.07–9.5% higher than the ones obtained from the feedback control heuris-

tic. Similarly, for the TSTT minimization objective, the average TSTT values obtained from

the Deep-RL algorithm are 0.09–10.38% lower than the average TSTT from the feedback

control heuristic. Similar to the observations made earlier, the tolls maximizing the revenue

also generate a high value of JAH2 statistic and the tolls generating high revenue generate

low TSTT (with an exception of SESE network). The value of %-violation on the ML

is less than 2% on an average for all toll profiles, with insignificant differences between the

Deep-RL algorithm and the feedback control heuristic.

Last, we also compare the performance of Deep-RL against VFA and SparseV algo-

rithms which assume full observability. These algorithms rely on look-up table representation
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Table 4.5: Comparison of Deep-RL against the feedback control heuristic for the two
optimization objectives. Results are reported as a five-tuple: (revenue, TSTT, JAH1, JAH2,

%-violation)

Revenue maximization objective
Deep-RL Feedback Control

SESE
($11889.80 ± 3.77, 2933.88 hr,

1166.43 veh, 0.34, 0%)
($11881.70 ± 7.92, 2933.70 hr,

1166.44 veh, 0.34, 0%)

DESE
($497.97 ± 4.94, 221.52 hr,

159.47 veh, 0.32, 0%)
($489.08 ± 0, 223.26 hr,

160.43 veh, 0.32, 0%)

LBJ
($4718.43 ± 255.70, 1396.15 hr,

986.81 veh, 0.49, 1.62%))
($4307.74 ± 275.59, 1356.89 hr,

929.57 veh, 0.43, 0.77%)

MoPac
($18740.40 ± 61.64, 9618.04 hr,

3102.17 veh, 0.32, 1.26%)
($18544.77 ± 133.36, 9600.08 hr,

3097.71 veh, 0.32, 1.28%)
TSTT minimization objective

Deep-RL Feedback Control

SESE
($11705.9, 2894.27 ± 16.22 hr,

1166.38 veh, 0.34, 0%)
($11530.38, 2897.41 ± 18.72 hr,

1166.53 veh, 0.34, 0%)

DESE
($271.46, 191.40 ± 7.53 hr,

128.23 veh, 0.22, 0%)
($275.91, 213.57 ± 5.64 hr,

128.00 veh, 0.25, 0%)

LBJ
($254.43, 641.72 ± 15.67 hr,

541.18 veh, 0.25, 0.24%)
($158.46, 661.40 ± 0 hr,
421.67 veh, 0.21, 0.32%)

MoPac
($655.45, 4022.45 ± 4.21 hr,

1199.22 veh, 0.11, 0.07%)
($606.01, 4024.83 ± 11.01 hr,

1141.37 veh, 0.11, 0.03%)

of value functions and discretize the state space4. For uniform comparison with the previous

studies which use distance-based tolling [21, 63], we conduct tests only on DESE and LBJ

networks with toll values varying between $0.05/mile and $0.8/mile. Additionally, since

the SparseV algorithm in the previous chapter is only defined for the revenue-maximization

objective, we only focus on that objective. Table 4.6 shows the best found revenue for the

two networks using the three algorithms. As observed, Deep-RL algorithm outperforms VFA

and SparseV by generating an average 11.85% percent higher revenue. These findings show

that even under partial observability Deep-RL algorithms can learn toll profiles with better

objectives than algorithms assuming full observability.

4It is possible to implement neural networks as function approximators in VFA and SparseV than using
look-up tables; however, our focus is on direct comparison with previous algorithms in the literature.
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Table 4.6: Comparison of best-found toll objective from Deep-RL algorithm with partial
observability against the VFA and SparseV heuristics that assume full observability

Revenue-maximization best-found revenue ($)
Deep-RL VFA SparseV

DESE 503.71 500.18 493.80
LBJ 4634.69 2880.59 4316.03

4.5 Summary

In this chapter, we developed Deep-RL algorithms for dynamic pricing of MLs with

multiple access points. We showed that the Deep-RL algorithms are able to learn toll profiles

for multiple objectives, even capable of generating toll profiles lying on the Pareto frontier.

The average objective value converged within 200 iterations for the four networks tests. The

number of sensors and sensor locations were found to have little impact on the learning

due to the spatial correlation of congestion pattern. We also conducted transferability tests

and showed that policies trained using Deep-RL algorithm can be transferred to setting

with new demand distribution and VOT distribution without losing performance; however,

if the lane choice model is changed the transferred policy performs poorly. We analyzed

the variation of multiple objectives together and found that TSTT-minimizing profiles may

be similar to revenue-maximizing profiles for certain network characteristics where the GPL

invariably becomes congested early in the simulation. We also compared the performance of

Deep-RL algorithms against the feedback control heuristic and found that it outperformed

the heuristic for the revenue maximization objective generating average revenue up to 9.5%

higher than the heuristic and generating average TSTT up to 10.4% lower than the heuristic.

The Deep-RL model in this chapter requires training, which is dependent on the

input data and the parameters. We make following implementation recommendations. If

a toll operator has access to the input data including the demand distribution and driver

lane choice behavior, we recommend first calibrating a lane-choice model using the data and

then using the calibrated model to train the policy for the desired objective under desired

constraints. If the driver lane choice data is very detailed and can exactly identify how many

travelers chose the ML at each time, then that data can be directly used in training without

calibrating a lane-choice model; however, a calibrated model is still recommended as it can
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assist in conducting sensitivity analysis to other inputs and/or long-term planning. If the

input data is not available or has poor accuracy, we recommend two alternatives. A toll

operator can either train the Deep-RL model considering high stochasticity by choosing a

large values for the standard deviations (σd and σo), or train several policies for different

combinations of inputs and use the policy based on the expected realization of inputs from

field data for real-time implementation. Lastly, we also recommend retraining the toll policy

using real-time data. For example, a policy can be trained from the historic data and then

improved based on the observations from a specific day and the improved policy can then be

applied to the next day. Additionally, though the model in this chapter trains a stochastic

policy, for implementation purposes, we can use a deterministic policy with the tolls set as

the mean value predicted by the policy.
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Chapter 5

Static Multiclass User Equilibrium with

Recourse

Given that travelers can change their routes online, we assume travelers to follow a

fixed policy from their origin to their destination, instead of a fixed path. A policy determines

what next node to choose given the current received information so far. The user-equilibrium

with recourse concept proposed in Unnikrishnan and Waller [15] seeks to find equilibrium

flows using these policies such that all used policies between an origin and a destination

have equal and minimal expected costs. For managed lane networks, travelers have varying

values of time and perceive different costs for the same policy, where the perceived cost is

a linear combination of the expected travel time and expected toll. In such cases, we need

to construct revised equilibrium models where travelers from multiple classes participate in

the congestion.

The current literature on multi-class assignment is rich in algorithms for solving

multiclass multicriteria traffic assignment for large scale networks [83, 84, 85, 86]. Dial [83, 84]

developed efficient algorithms for solving multi-criteria traffic assignment for continuous

distribution of the value of time (VOT). The user equilibrium condition in these settings

state that each traveler between the same origin and destination having the same value of

time use paths which have equal and minimal costs.

An extension of the same to the case where travelers choose policies instead of fixed

routes can be stated as the principle of multiclass user equilibrium with recourse: at user

equilibrium all used policies between an origin and a destination used by the vehicles of

the same VOT class have equal and minimal costs. Figure 5.1 shows the schematic for the

M-UER model and its relation to other models in the literature.
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Figure 5.1: Schematic of M-UER model and its relation to other models in the literature
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5.1 Literature review

User equilibrium formulation for several travelers under the influence of congestion is

commonly employed to study long-term driver behavior. Yang ang Huang [85] classify the

multiclass models in the traffic assignment literature into two categories:

1. Travelers of each class perceive the link travel time functions to be different but the

costs are based on the total flow of the link [87]. A common example for this includes

models with car and truck vehicles where the link travel time function for the different

types of vehicles is different.

2. Travelers of each class have same link travel time or toll function, but differ in their

calculation of perceived costs due to a different value of a parameter. The commonly

used parameter is the value of time. The research in this area has focused on discrete

[86, 88] and continuous VOT distributions [83, 84], separately.

The primary focus of this chapter is to extending these models for equilibrium with

recourse. The current state-of-the-art for UER models includes algorithms from acyclic net-

works in [15] and cyclic networks in Rambha et al. [16]. The idea of policy based routing

has also been extended to the transit assignment [89]. In this chapter, we propose a vari-

ational inequality for M-UER and use algorithms from the traffic assignment literature to

solve M-UER policy flows for discrete and continuous VOT distributions.

5.2 M-UER model

5.2.1 Assumptions

For our model, we make following assumptions:

1. Each link exists in a finite discrete number of states with a fixed probability of occur-

rence for each state.

2. The total cost on each link is a linear combination of travel time and toll on the link,

and does not depend on any factor outside of travel time and toll.
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3. Each traveler behaves rationally and is fully aware of the probability distribution of

travel time and toll across the network. Though a limiting assumption for technolo-

gies currently in place, we can expect travelers to be more aware in the future with

automated data recording by the connected and autonomous vehicles.

4. Link states are independent of each other. This might be a restrictive assumption in

real-life setting where link travel times are spatially and temporally correlated. How-

ever, we sacrifice realism in our model by trading off with models which are theoretically

sound and tractable. Exploring link travel time and toll correlation is left for the future

work.

5.2.2 Model

In this section we introduce the notation for the M-UER model. We borrow the

notations used in explaining the UER model in Rambha et al. [16].

Let G = (N,A) denote a strongly connected network with N as the set of nodes and

A as the set of arcs. Let Γ(i) and Γ−1(i) denote the sets of upstream and downstream nodes

of node i respectively. Let W denote the set of all origin-destination pairs in the network

with demand between them. Let K denote the set of all driver classes and a traveler of

class k ∈ K has a value of time αk, where K is discrete and finite. We shall later relax this

assumption by extending K to be an infinite set. For any (u, v) ∈ W , let dkuv denote the

demand of class k from origin u to destination v.

Each arc (i, j) ∈ A is assumed to exist in one of the states in set Sij where probability

that link (i, j) exists in state s ∈ Sij is denoted by psij. Let xs,kij denote the number of vehicles

of class k using link (i, j) in state s. Let tsij(x
s
ij) denote the travel time on link (i, j) in state

s which is a function of total link flow xsij in state s, where xsij =
∑

k∈K x
s,k
ij . Similarly, define

τ sij to denote the toll charged on link (i, j) in state s. We assume tolls are constant and do

not depend on link flows. We assume t(·) as an increasing and convex function of flow in

any state (which is a reasonable assumption in the traffic assignment literature [90]). Let

S =
⋃

(i,j)∈A Sij denote the set of all link-states in the network. Then, we define link-state

flow vector x with dimensions |S| × 1 containing total link-state flow for each state, where

we use the notation | · | for any set to denote the number of elements in the set.
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A traveler receives online information upon arrival at a node and learns the travel

time and toll information on the downstream links. Let θ ∈ Θi = ×(i,j)∈ASij denote the

information vector received at node i, where Θi is the set of all possible information that

can be received at node i. Let θij denote the link-state of link (i, j) under information θ at

node i. Let qθi denote the probability of receiving message θ ∈ Θi, then assuming that the

link travel time and toll updates on a link are independent of other links in the network, we

get qθi = Π(i,j)∈Ap
θij
ij . Let φ = {(i, θ) : i ∈ N, θ ∈ Θi} denote the set of node-states, which

stores all possible node-states associated with node i.

We then formulate the problem as a finite horizon Markov decision process with no

discounting and with a terminal state. The components of MDP are:

• State: Define the set of node-states φ = {(i, θ) : i ∈ N, θ ∈ Θi} as the state of the

MDP

• Action: The available action in each time node state (i, θ) is given by the set of

downstream nodes to the current node, Γ(i)

• Transition probability: Given node state (i, θ) and action (i, j), the probability of

transitioning to another node state (j, θ̄) is given by qθ̄j and is zero for all other node

states.

• One step cost: The one step cost of taking an action is the linear combination of toll

and travel time given a vehicle’s VOT. Note that the one step cost varies with different

classes.

Define a policy π : φ→ N as a function that maps each node-state to a downstream

node or a terminal node if the node is a destination. Since the network is acyclic, the policy

always terminates at the destination node. Let Πv denote the set of policies terminating at

node v and Π =
⋃
v∈Z Πv be the set of all policies in the network across different destinations.

We explain these notations using an example. Consider the network shown in Figure

5.2, with two routes connecting nodes 1 and 3. Link (1, 3) exists in two states with given

link performance function. Link (1, 2) also exists in two states with fixed travel time but

different toll, and link (2, 3) exists in only one state.
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Figure 5.2: Sample network

Figure 5.3: Network transformation for the network in Figure 5.2 by splitting it into
node-states, link-states, and physical nodes

We present a network transformation, similar to the one in Boyles [91] as shown in

Figure 5.3. Each physical node connects to a node-state which in turn connect to link state

through action links which connect to the downstream physical node.

We define ρsπij as the probability of leaving node i via link (i, j) in state s ∈ Sij, which

can be evaluated using Equation (5.1).

ρsπij =
∑

θ∈Θi : π(i,θ)=j, θij=s

qθi (5.1)

Each traveler follows a policy from their origin to their destination and seeks to
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minimize the total cost for the chosen policy. The travel times tsij and tolls τ sij are assumed

fixed for routing of a single traveler. We define following cost-to-go values for each location

point in the transformation map:

• Gπ,k
i as the expected travel cost from node i to destination v for a traveler of VOT αk

following policy π or the cost-to-go from a physical node

• Gs,π,k
ij as the expected travel cost starting the upstream end of link (i, j) in state s for

a traveler with VOT αk following policy π

• Gπ,k
(i,θ) as the expected travel cost starting the node state (i, θ) in state s for a traveler

with VOT αk following policy π.

For deterministic policies (which maps deterministically to a downstream link), Gπ,k
(i,θ) =

G
θij ,π,k

π(i,θ) . Since the action and state space is finite and one step rewards bounded, there is

atleast one optimal deterministic policy. We focus our attention on deterministic policies.

In the terms of the MDP literature, Gπ,k
i is the expected cost-to-go from node i for a policy

π ∈ Π. These cost-to-go values under policy π can be evaluated using a recursive structure

as shown below:

Gπ,k
v = 0 (5.2)

Gπ,k
i =

∑
j∈Γ(i)

∑
s∈Sij

ρsπij (αkt
s
ij + τ sij +Gπ,k

j ) ∀i ∈ N/{v} (5.3)

This recursive relation can be used to solve the proposed MDP to find optimal node-

state values for each node state and the optimal policy for each class k using the Bellman

equation.

For the M-UER formulation, however, we work with the cost-to-go values for each

link state which can be expressed as following function of cost-to-go for each node state:

Gs,π,k
ij = αkt

s
ij + τ sij +Gπ,k

j ∀(i, j) ∈ A, s ∈ Sij, k ∈ K (5.4)
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which, upon eliminating the cost-to-go for node states gives us the following relation:

Gs,π,k
ij = αkt

s
ij + τ sij +

∑
h∈Γ(j)

∑
s̄∈Sjh

ρs̄πjhG
s̄,π,k
jh (5.5)

This equation can be written in an equivalent matrix form for each VOT class k ∈ K:

Gπ,k = αkt + τ + PπG
π,k (5.6)

where Gπ,k, t, and τ are vectors of dimensions |S| × 1 and Pπ is the probability

matrix of dimensions |S| × |S| containing elements ρsπij .

Let yπ,ki denote the number of travelers of VOT class k who originate from node i

and follow policy π. Flow conservation requires that yπ,ki ≥ 0 for all origin nodes i, policies

π and VOT class k, and the sum of total flow across all policies is equal to the demand, that

is dkuv =
∑

π∈Πv
yπ,ki , where a destination based aggregation of policies has been employed.

Next, we relate the policy flow to flow on each link-state using Equation (5.7),

xs,π,kij = ρsπij y
π,k
i + ρsπij

∑
h∈Γ−1(i)

∑
s̄∈Shi

xs̄,π,khi (5.7)

where the first term is the total flow originating at the from node that will choose the link

state s, while the second term is the total flow arriving at the tail node from its predecessor

link states.

The Equation (5.7) can be represented in matrix form as:

xπ,k = bπ,k + PT
πxπ,k

where xπ,k is a |S| × 1 vector of link-state flow wrt each VOT class, bπ,k is a |S| × 1 vector

of flow departing from physical node i following policy π for each VOT class with elements

ρsπij y
π,k
i .

The M-UER principle says that all feasible policy flows y at equilibrium satisfy the
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following property:

yπ,ku > 0 ⇒ Gπ,k
u (y) = min

π′∈Πv
Gπ′,k
u (y) ∀v ∈ Z, π ∈ Π, k ∈ K (5.8)

Similar to the earlier formulations, this intuitive equilibrium property can be con-

verted to an optimization problem as following. The objective function is a linear combina-

tion of convex functions and is thus convex.

min
y,x,xπ,k,bπ,k

∑
(i,j)∈A

∑
s∈Sij

∫ ∑
k∈K xs,kij

0

αkt
s
ij(x) dx+

∑
(i,j)∈A

∑
s∈Sij

∑
k∈K

xs,kij τ
s
ij (M-UER) (5.9)

s.t.
∑
π∈Πv

yπ,ku = dkuv ∀(u, v) ∈ W,k ∈ K (5.10)

∑
π∈Π

xs,π,kij = xs,kij ∀(i, j) ∈ A, s ∈ Sij, k ∈ K (5.11)

(I −Pπ)xπ,k = bπ,k ∀π ∈ Π (5.12)

yπ,ku ≥ 0 ∀π ∈ Π, u ∈ W, k ∈ K (5.13)

Proposition 3. The optimal solution of the convex program in (5.9)-(5.13) corresponds

exactly to the policy flows satisfying the MUER definition in Equation (5.8)

Proof. The proofs follows logically from Rambha et al. [16] by simply discretizing policy

flows and link-state flows by VOT class.

Additionally, since the cost functions are positive and strictly increasing in space of

total link-state flow, the formulation results in unique total link-state flows.

5.3 Solution algorithms

The online shortest path MDP is solved using backward recursion by starting at the

terminal node and moving in the reverse topological order. The structure is similar to the

algorithm in Chapter 2.

To solve the M-UER problem, we use the method of successive averages (MSA), which

is a link-state-based algorithm. This method starts with loading all travelers on the shortest

policy. And, then it iteratively combines the link-state flows, where in each iteration the
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Figure 5.4: Network for North Tarrant Expressway for eastbound direction of toll segment 1

new set of shortest hyperpath flows are given a weightage of 1/n, where n is the iteration

number. This algorithm operates in the space of link-states and is thus tractable and has

less memory requirements.

5.4 Results

We test the proposed algorithms on the North Tarrant Expressway network in Dallas,

TX with 54 nodes and 67 links. Figure 5.4 shows the network. The network was extracted

from the original demand model provided by the North Central Texas Council of Govern-

ment. The freeflow travel time and capacity of each link were used as is and the travel time

function was assumed to follow the standard non-linear BPR function. The tolls on each

managed lane arc were as obtained from the field. The supply-side uncertainty in the net-

work was added by creating two additional states on the links on general purpose lanes with

revised free-flow travel times as 0.7 and 2 times the true value, and two additional states on

the express lanes with tolls multiplied by 0.7 and 2 times the true value.

We first compare the rate of convergence for the MSA algorithm for varying levels

of demand. Figure 5.5 shows the variation in the relative gap values with iteration. As

observed, the value decrease with iteration number. The rate of decrease is faster for lower

demand levels due to lower congestion in the network.
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Figure 5.5: Convergence of relative gap for varying demand levels for the NTE network

We also compare the volume to capacity ratios obtained by M-UER and standard

multiclass traffic assignment. For running standard multiclass assignment, we assigned the

capacity, free flow travel time, and tolls on a link to be the weighted average of the respec-

tive values in different states. Figure 5.6 compares the v/c ratio for the two assignment

procedures. The link flow for the M-UER runs is the weighted average of the total flow in

each link state. As observed, M-UER procedure splits the flow among managed and general

purpose lanes and generates less congestion, whereas the multiclass assignment sends more

travelers to the general purpose lane and is not able to adapt their routes based on the

received downstream information.
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Figure 5.6: Comparison of v/c ratios between M-UER runs and runs based on multiclass
traffic assignment for the NTE network

The total system expected travel cost obtained from solving M-UER is $93419.397

while the same from standard multiclass traffic assignment is $94924.043, which is 1.6% lower

that the M-UER value. This shows the benefit obtained to the system if we incorporate

online route choice behavior of the travelers. Additionally, the flow prediction on express

lanes is 45% lower using standard multiclass traffic assignment. This indicates that ignoring

adaptive route choice can have a significant impact on the long-term traffic forecast, useful

for evaluation of future express lane facilities.

5.5 Summary

In this chapter, we have proposed a model for multiclass user equilibrium under

recourse where travelers made adaptive changes to their route choice at each diverge location.

M-UER is then reformulated as a convex program. Method of successive averages is used to

solve the M-UER for test networks. Test on the North Tarrant Expressway network in Dallas,
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TX show convergence of the relative gap measure with iterations. The M-UER link flows

were found to be different from the flows obtained from static multiclass user equilibrium

with total system travel cost differing by 1.6%. The proposed model is useful for predicting

long term traffic predictions given that travelers respond to online information.
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Chapter 6

Sensitivity Analysis of User Equilibrium with

Recourse for Network Contraction

6.1 Introduction

Models for MLs can be divided into two broad categories: corridor-level models and

network-level models. Corridor-level models are used for analysis made for the corridor like

dynamic pricing, traffic operations, estimation of bottlenecks, etc. These models capture

vehicle-to-vehicle interaction and provide detailed statistics like the number of vehicles per

lane, distribution of speeds, and the location of bottlenecks [42]. On the other hand, network-

level models are used for analysis on large-scale networks such as long-term traffic and

revenue forecasts. Network-level models aggregate travel behavior and find steady-state

traffic condition in a system with multiple travelers.

Despite their advantages, both these models have limitations. In particular, corridor-

level models consider the travel demand to be inelastic and ignore the diversion of travelers

away from or towards the ML after changes in corridor operations. Similarly, network-level

models, in their traditional four-step planning format, assume tolls as static values and

ignore the en route changes to the route choice of travelers made possible by the availability

of real-time toll and travel time information.

In this chapter, we have two motivating questions: (a) how to simplify the integration

of dynamic tolls and en route changes in static long-term planning models, and (b) how to

approximate the diversion of demand (using elastic demand functions) for corridor-level

models. The answers to these questions are critical to improve the accuracy of current

models for MLs used for planning and operations of future ML installations.

We propose a solution to both these questions by determining sensitivity of steady-

state traffic pattern on a managed lane corridor under the principle of user equilibrium with

recourse (UER) that finds equilibrium over route choices of travelers under the presence of
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uncertainty in tolls and travel times.

Sensitivity analysis of UER models allows network contraction of the ML corridor

using artificial links whose parameters are estimated. For example, consider the managed

lane corridor in Figure 6.1 where the thicker links are MLs and the highlighted nodes are

locations where travelers make an en route lane choice decision. Using sensitivity analysis,

we can condense this network into an artificial link connecting the origin with the destination

by estimating derivative of the expected costs between origin and destination with respect

to the variation in demand (this process is commonly referred as network contraction).

Figure 6.1: Approximating a ML corridor using an artificial link connecting the origin and
the destination

While we have efficient algorithms to solve user equilibrium on large-scale networks [92,

93], the UER models lack scalability to large networks due to the possibility of cyclic route

choice patterns at equilibrium [94]. However, the localized nature of supply-side uncertainty

on express lanes allows us to replace the ML corridor using artificial links generated from

network contraction, thus obviating the need for solving UER on the entire network. This

integration of UER models in traditional equilibrium models can capture network-level im-

pacts of stochastic tolls and adaptive driver behavior, thus answering the first motivating

question. Furthermore, conducting an additional sensitivity analysis on the entire network

with MLs approximated as an artificial link, we can determine the variation of demand using

the corridor as a function of cost parameters, thus answering the second motivating question.

The primary contributions of this chapter are as follows:

1. We present a gradient-projection algorithm for generating computationally-efficient

solutions to UER with better accuracy than the algorithms in the literature.

2. We present a convex program for sensitivity analysis of UER models and present an
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extension of the gradient-projection algorithm above for computing the sensitivity pa-

rameters.

Though the sensitivity analysis model in this chapter is developed for ML corridors,

the models can be easily extended for the sensitivity of UER models on any network with

localized supply-side uncertainty such as non-recurring congestion due to incidents. The rest

of this chapter is organized as follows. Section 6.2 reviews the literature and places our work

in context of existing sensitivity analysis models. In Section 6.3, we describe the notations,

assumptions, and the details of UER model for ML networks. Section 6.4 formulates the

UER-sensitivity problem as a convex program and presents a solution algorithm based on

the gradient projection algorithm. Section 6.5 presents experimental results on real-world

networks. Last, Section 6.6 summarizes the chapter.

6.2 Related work

In this section, we first review the models for traffic assignment under the presence

of uncertainty and motivate the need for UER models. Then, we review the literature on

sensitivity analysis for traditional user equilibrium models and the commonly-used network

contraction techniques.

6.2.1 Traffic equilibrium under stochasticity

Managed lanes are characterized by supply-side uncertainty where tolls are uncertain

inducing stochasticity in lane choices among travelers. Several approaches have been used

in the literature to address stochasticity in traffic assignment models. Classical stochastic

user equilibrium (SUE) models assume that network parameters are deterministic, and the

source of stochasticity is due to different perception in the generalized cost of routes by

travelers [90, 95]. If the network parameters are random variables, the model replaces those

parameters with their expected value. However, as argued in Wallace [96], replacing the

stochasticity in network parameters with their deterministic equivalents (like the expected

value) can result in suboptimal solutions.

An alternate approach to model stochasticity considers day-to-day evolution of route

choice of travelers and analyzes the steady-state of route choices [97]. Day-to-day traffic
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assignment models focus on the stability of equilibrium modeled as Markov chains. However,

these models are computationally inefficient for large-scale networks because the state space

is a function of the number of travelers and the action space is the total number of routes,

and both those quantities can be arbitrarily large for a large-scale network. Approximation

methods based on Monte-Carlo simulation have been proposed to approximate the steady-

state flow distribution [98, 99] and it has been shown that for certain networks, the expected

flow from day-to-day assignment models is equivalent to the SUE solution.

Both SUE and day-to-day assignment models assume that travelers follow a fixed path

from their origin to their destination. However, this assumption for ML corridor translates

to travelers choosing ML even if the tolls are really high or the GPL is uncongested. UER

models overcome this issue by allowing travelers to adapt their routes en route. UER models

assume that instead of following a fixed path, travelers follow a fixed policy from their origin

to their destination, which determines what next node to choose given the current received

information so far. The equilibrium for UER models is the flow distribution where all used

policies between an origin and a destination have equal and minimal expected costs [15].

UER models have been used for applications including dynamic tolling under the presence

of non-recurring congestion [16] and network design problems with uncertainty [100].

The models for UER are similar to the independently studied area of Markov decision

process (MDP) routing games applied in the context of ridesharing where drivers choose

which area to relocate given the real-time observation of demand and surge-prices [101].

MDP routing games, like UER models, are a special case of continuous population stochastic

games where each infinitesimal agent solves an MDP with the rewards dependent on other

agents’ action1. The fundamental difference between MDP routing games and UER models

is the way congestion is modeled. UER models consider congestion on links which represent

physical connections between different parts of a network. On the contrary, MDP routing

games consider congestion on abstract ”links” connecting different states with congestion as

a function of the number of agents taking a specific action in a state. Because UER models

1We note that solving equilibrium under these settings can be formulated as a multi-agent reinforcement
learning (MARL) problem [54] with competition among infinitesimal agents; however, MARL techniques
provide only an approximate solution. In contrast, MDP routing games derive analytical properties of the
equilibrium which are useful for theoretical sensitivity analysis
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capture uncertainty in physical transportation infrastructure, we consider these for modeling

MLs.

6.2.2 Sensitivity analysis and network contraction

Sensitivity analysis of equilibrium models determines the variation in the equilibrium

solution (that is, the flow on each link) with respect to changes in demand and network

parameters. For traditional user equilibrium problems, variational inequality method has

been proposed which uses the implicit-function theorem to determine the derivatives of link

flows to perturbations in demand and link cost parameters [102]. Patriksson [103] derived

conditions for existence of these derivatives and showed that the directional derivatives and

gradients can be obtained by solving an optimization problem which is identical to the

standard traffic assignment problem except with linear costs, called the linearization ap-

proach. Expanded further in Josefsson and Patriksson [104] and Jafari and Boyles [105], this

linearization approach allows applying existing algorithms developed for solving user equi-

librium towards solving sensitivity parameters and simplifies the network design problems

where the sensitivity analysis is conducted in each iteration. Other methods for sensitivity

analysis have focused on multiple driver classes [106], though the computational performance

is poor for a higher number of classes. In this chapter, we focus on single driver class, that

is, all drivers have identical willingness to pay.

The most relevant work in the recent literature is by Li et al. [107] where the authors

conduct sensitivity of MDP routing games with respect to changes in state-action costs,

which are equivalent to the sensitivity to link performance function parameters in each link-

state in our framework. Methods based on inverting the transition probability matrices are

used to derive the sensitivity parameters2. However, the inversion of matrices which have

dimensions as large as the number of node states can be computationally challenging. The

sensitivity analysis is applied on a five-node stochastic Braess-type network. In this chapter,

we exploit the property that the routing MDP for each traveler is associated with an acyclic

network and derive a convex program for determining sensitivity parameters, which can be

2These matrix-inversion methods are similar in structure to the implicit function based sensitivity methods
in standard traffic assignment literature [102].
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shown to be computationally efficient than methods based on matrix-inversion.

The use of sensitivity analysis for network contraction is not new. Hearn [108] pro-

vided a transfer decomposition approach for subnetwork contraction. Lately, bush-based

sensitivity methods have been used for network contraction and it has been shown that such

methods can iteratively improve the computational performance of solving traffic assign-

ment [109, 110]. In this chapter, we exploit the acyclic network structure of MLs and extend

the algorithms in the literature for UER sensitivity that scale well for large networks.

6.3 Preliminaries

The notation in this chapter broadly follows the notations in earlier chapter; however,

some variables are shortented for easier reading while some are restated for independent

reading.

In this section, we introduce the notations for UER models and propose a gradient

projection algorithm for solving the equilibrium. All the assumptions are marked as A# and

ideas for future work are marked as FW#.

6.3.1 Supply-side uncertainty

Let G = (N,A) denote a network with N as the set of nodes and A as the set of

links. Let Γ(i) and Γ−1(i) denote the sets of downstream and upstream nodes of node i,

respectively. Let Z ⊆ N denote the set of all nodes where trips begin or end. For each

(u, v) ∈ Z2, let duv denote the number of travelers from origin u to destination v.

Due to travel time and toll uncertainty, each link (i, j) ∈ A exists in one of the multiple

cost states called link-states. Let Sij represent the set of all link-states for link (i, j) ∈ A and

S =
⋃

(i,j)∈A Sij represent the set of all link-states in the network. On traversing a link each

traveler incurs a cost depending on the link-state. On managed lane networks, link-states

model variable toll on MLs or variable travel time on GPLs. We assume that link travel

times and tolls can be combined linearly as a generalized cost and the parameters in the

generalized cost expression (like the value of time) are homogeneous across the population

(A#1). This assumption is made to simplify the analysis and considering heterogeneity of

parameters is left as part of the future work (FW#1). A link-state s ∈ S is associated with
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a unique link. Let link(s) be the function returning the link associated with state s, and

tail(s) and head(s) be the functions returning the tail and head nodes of link(s).

Let ps denote the probability that link-state s ∈ S is realized on link(s). We assume

that the number of link-states for each link is finite and the probability of occurrence of a link-

state is independent of all other links (A#2). This assumption is commonly made across the

UER literature and is reasonable in a static setting where cost interactions between different

links (due to factors like queue spillback) are not modeled. Limited cases of correlation

between link-state probabilities can also be handled in the same framework [91], but the

approach is not discussed here for notational brevity. We also assume that if a traveler

revisits a link, the probabilities of link-states are reset (A#3). This is called the full-reset

assumption in the literature [20]. Given managed lane networks are acyclic (because of

the directional nature of freeways), the full-reset assumption has less significance in this

chapter as no link is revisited by any traveler; however, we include it for the completeness

of arguments.

Let xs denote the total vehicular flow using link(s) in state s ∈ S (xs may be frac-

tional as we model non-atomic travelers). Let cs(xs) denote the generalized cost in link-state

s as a function of total flow in the link-state xs. We compute cs(xs) as a linear combination of

travel time and toll in link-state s, denoted by ts(xs) and τs(xs), respectively. Similar to the

assumptions on link costs for sensitivity analysis of standard traffic assignment, we assume

that functions cs(·) are separable by link-state flows, and are positive, strictly increasing,

continuous, and differentiable functions of flow for all s ∈ S (A#4). This assumption will

later help establish uniqueness properties of equilibrium and sensitivity parameters.

6.3.2 Information provision and routing of single traveler

Travelers on managed lane networks receive real-time information about tolls and

travel time through various information sources like variable message signs and/or mobile

applications and choose links minimizing their expected costs. We assume that upon arrival

at a node i ∈ N a traveler learns the realization of link-states on all its downstream links

(i, j) ∈ A and only those links (A#5). Assumption A#5 also makes the implicit assumption

that while traversing a link the travel times will not change (referred as the temporal-
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dependence assumption in Waller and Ziliaskopoulos [19]).

Given the assumption that link-states are uncorrelated across different links (assump-

tion A#2) and the full-reset assumption (assumption A#3), assumption A#5 does not sac-

rifice generality as observing any link other than the ones immediately downstream adds no

more information at the current node for a traveler minimizing their expected cost. This

structure for information provision also permits the use of standard MDP algorithms to

determine least-expected-cost strategies for a traveler.

Let θ ∈ Θi = ×j∈Γ(i)Sij denote the information vector received at node i, where Θi is

the set of all possible information that can be received at node i. Let θij denote the link-state

of link (i, j) under information θ at node i. Let qθi denote the probability of receiving message

θ ∈ Θi at node i. Using assumption A#2, we get qθi = Πj∈Γ(i)pθij . We define (i, θ) tuple

as a node-state at node i. Each node-state corresponds to a decision point for a traveler.

Additionally, let Φ = {(i, θ) : i ∈ N, θ ∈ Θi} denote the set of all node-states.

As an example, consider the network shown in Figure 6.2 where links (1, 2) and (2, 3)

form the managed lane while the link (1, 3) forms the general purpose lane (GPL). Link

(1, 3) exists in two possible states s2 and s3 with occurence probabilities as 0.6 and 0.4,

respectively, while the other two links only exist in one link-state. Two node-states (1, θ)

are possible at node 1, one with θ13 = s2 while the other with θ13 = s3. Node-states and

link-states for this network can be visualized using a network transformation as shown in

Figure 6.3.

Figure 6.2: An example managed lane network where links (1, 2) and (2, 3) are managed
lanes with fixed toll, while link (1, 3) is regular lane with two link states under variable

travel times

At each node-state (i, θ) ∈ Φ, a traveler chooses a downstream node j ∈ Γ(i) to

traverse the network and reach their destination. This decision making for a traveler is

captured by a policy that determines an action in any node-state. We define a policy π :
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Figure 6.3: Network transformation show the node-states and link-states for the network in
Figure 6.2

Φ → N as a function that maps each node-state to a downstream node or a terminal node

if the node is a destination. We define two properties of a policy. First, a policy terminates

at i if π(i, θ) = i for all θ ∈ Θi. This is typically the destination node for any policy. Let

dest(π) ∈ N denote the node where the policy π terminates. Second, a policy is defined as

non-waiting if for all i ∈ N \{dest(π)}, π(i, θ) 6= i. Since each traveler must end their travel

at their destination and should not wait idly at intermediate nodes except the destination,

we only consider non-waiting policies that terminate at the destination node (A#6). Let Π̂v

denote the non-waiting policies terminating at destination v ∈ Z and Π̂ =
⋃
v∈Z Π̂v be the

set of all policies.3

If the link generalized costs are held constant, the problem of finding a policy that

minimizes the expected cost for any traveler terminating at destination v ∈ Z is called the

online shortest path (OSP) problem which has been extensively studied in the literature [19,

31]. The OSP problem can be formulated as an MDP with the state space as Φ, the action

space as N , and the cost of choosing action j ∈ Γ(i) in state (i, θ) ∈ Θi as cθij . Since the

state and action spaces are finite and the costs are positive (and thus bounded from below),

there exists a deterministic policy solving the MDP associated with the OSP problem [111].

3In contrast to the formulations in Li et al. [107], we consider deterministic policies. It is possible to
write the formulations in the following sections in terms of a stochastic policy πstoch : Φ× A→ [0, 1] which
determines the probability of choosing link (i, j) ∈ A for any node state (i, θ) ∈ Φ. However, we prefer a
deterministic format for drawing parallels from traditional user equilibrium where a path connecting origin
to destination generates deterministic link choice at nodes along the path.
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Let Cπ
i be the the expected travel cost from node i to destination v following a

policy π ∈ Π̂v. Define ρπi,s as the probability of leaving node i = tail(s) via link-state s

while following policy π, evaluated using Equation (6.1). Because we consider non-waiting

policies,
∑

j∈Γ(i)

∑
s∈Sij ρ

π
i,s = 1 for all i ∈ N and π ∈ Π̂.

ρπi,s =
∑

θ∈Θi s.t. π(i,θ)=j,θij=s

qθi (6.1)

The expected cost from each node i to the destination v following a policy π ∈ Π̂v

can be calculated using following recursive relation, referred as Bellmann equations.

Cπ
v = 0 (6.2)

Cπ
i =

∑
j∈Γ(i)

∑
s∈Sij

ρπi,s
(
ts + Cπ

j

)
(6.3)

Due to the acyclic structure of the managed lane networks, Bellman equations can

be reduced to a simpler expression4. Define Cπ ∈ R|N |×1
+ as a vector of expected costs Cπ

i

with nodes arranged in the topological order. Let o(i) be the order of node i ∈ N given a

topological ordering. Furthermore, define c a vector of cs in some order of states such that

for any two nodes i ∈ N and l ∈ N , if o(i) < o(l), then all link-states s ∈ S with tail(s) = l

are listed after all link-state s′ ∈ S with tail(s′) = i.

We argue that vectors Cπ and c are related using the following expression:

Cπ = Fπc (6.4)

where Fπ ∈ R|N |×|S|+ is an upper trapezoidal matrix. Algorithm 7 shows how to

estimate the elements of Fπ using a single pass through the network in reverse topological

order.

For example, for the network in Figure 6.2, if policy π1 selects link (1, 3) in both

node-states at node 1 and policy π2 selects link (1, 3) only if it is observed in state s3, then

Fπ1 and Fπ2 matrices are given by Equation (6.5). It is easy to verify that Algorithm 7

4We can derive similar expression for policies that have finite number of cycles assuming full-reset; how-
ever, in this chapter, we only focus on policies with no cycles
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Algorithm 7 Algorithm for determining Fπ matrix

Input: Policy π terminating at dest(π), probabilities ρπi,s for all i ∈ N, s ∈ S, and a
topological ordering o(·) for the ML network

Initialize fπ(i, s) = 0 for all i ∈ N, s ∈ S
for node i in reverse topological order starting with i = dest(v) do

for j ∈ Γ(i) do
sum = 0
for s ∈ Sij do

fπ(i, s) = ρπi,s
sum = sum + ρπi,s

end for
for all s′ ∈ S do

if fπ(i, s′) > 0 then
fπ(i, s′) = fπ(i, s′) + sum× fπ(j, s′)

end if
end for

end for
end for

indeed relates the node expected costs with that of link-state costs. Matrix Fπ generalizes

the ρπi,s for any combination of i and s and denotes the cumulative probability for all “routes”

connecting i and s.

Fπ1 =


s1 s2 s3 s4

1 0 0.6 0.4 0

2 0 0 0 1

3 0 0 0 0

,Fπ2 =


s1 s2 s3 s4

1 0.6 0 0.4 0.6

2 0 0 0 1

3 0 0 0 0

 (6.5)

An alternate way to visualize the elements of Fπ matrix is if we remove the node state

in the transformation in Figure 6.3, resulting in a revised transformation as in Figure 6.4.

This revised transformation forms a directed acyclic graph, which we call policy-probability

graph, rooted at destination dest(π) = v. We next define the notion of physical path in

this graph and relate element of Fπ matrix with the product of probabilities on arcs along a

path.
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Figure 6.4: Network transformation show the node to link-state connection with
probabilities on each arc expressed in terms of ρ variable.

Define a directed path as a sequence of physical nodes and link-states connecting two

nodes. For example, [1, s1, 2, s4, 3] is a path connecting 1 and 3 in Figure 6.4. Let ζmn be

all directed paths connecting nodes m ∈ N and n ∈ N . For any directed path z ∈ ζmn, we

define χπ,zm→n as the probability that travelers from node m will pass through n via path z

if they were following policy π. The value of χπ,zm→n is the product of probabilities on each

node to link-state arc along path z.

The element fπ(i, s) denotes the probability that cost from the link-state s will affect

an upstream node i, which is equal to the probability that any directed path connecting

nodes i to v contains state s, weighted by the cumulative probability of each path. That is,

fπ(i, s) =
∑

z∈ζiv :s∈z

χπ,zi→dest(π). (6.6)

For example, for the network in Figure 6.4, fπ(1, s4) = χ
π,[1,s1,2,s4,3]
1→3 = ρπ1,s1ρ

π
2,s4

for

any π ∈ Π̂3. Additionally, ρπ2,s4 = 1 for all π ∈ Π̂3 as s4 is the only choice at node 2. Thus,

fπ(1, s4) = ρπ1,s1 . For π1 and π2 defined earlier, ρπ1,s1 equals 0 and 0.6 respectively, resulting

in the matrix elements in Equation (6.5).

6.3.3 Multiple travelers and flow variables

Under the presence of multiple travelers, a traveler’s choice of policy depends on the

policies chosen by other travelers. Since each policy is a solution for an MDP, this is referred

as an MDP congestion game [107]. Similar to the earlier work on congestion games we
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assume that travelers are non-atomic in nature (A#7) and thus the congestion game is a

mean-field game, that is number of travelers using any policy is a continuous variable.

The Wardrop-type equilibrium for the MDP congestion game, referred as UER, de-

fines the steady-state equilibrium for the game. At UER, all used policies π ∈ Π̂v for travelers

from origin u to destination v have equal and minimal expected costs [16].

We introduce xπs as the flow on link-state s following policy π towards dest(π). Total

flow on each link state is given by xs =
∑

π∈Π̂ x
π
s . Furthermore, let yπu be the flow originating

from node u ∈ Z following policy π headed towards destination dest(π). Flow on each

policy is non-negative, yπu ≥ 0, for all origins u ∈ Z and policies π, and conservation of

flow requires that the total flow on all policies between the origin and destination equals the

demand, that is duv =
∑

π∈Π̂v
yπu .

We define xπ ∈ R|S|+ be a vector with elements xπs in the same order as the c vector,

and define yπ ∈ R|N |+ as a vector of yπi for all nodes i ∈ N (we set yπi = 0 if i /∈ Z). Then, xπ

and yπ satisfy the relation in Equation (6.7).

xπ = F ᵀ
πyπ (6.7)

This relation is easy to verify. Flow through a link-state is a weighted sum of flows

on paths in the corresponding policy-probability graph (refer Figure 6.4). The flow from

any node i following policy π that passes through link-state s is equal to the flow from

the node following that policy times the total probability that any directed path from i to

dest(π) will pass through s (which is same as fπ(i, s)). Summing that across all nodes, we

get xπs =
∑

i∈N fπ(i, s)yπi , which is an expanded form for Equation (6.7). Because demand

only originates at nodes in set Z, yπi = 0 for all i /∈ Z. Thus, we can rewrite Equation (6.7)

as xπs =
∑

i∈Z fπ(i, s)yπi .
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6.3.4 UER convex program

Define y as a vector of all yπu for all u ∈ Z, π ∈ Π̂v, and v ∈ Z. At UER, all used

policies between an origin and a destination have equal and minimal expected costs, that is:

yπu > 0⇒ Cπ
u (y) = min

π̄∈Π̂v

C π̄
u (y) ∀v ∈ Z, π ∈ Π̂v (6.8)

For finding the UER policy flows satisfying this principle, we define a convex program

as follows:

min
y,xπ ,x

Z(y) =
∑
s∈S

∫ xs

0

cs(w)dw (6.9)

s.t. duv =
∑
π∈Π̂v

yπu ∀(u, v) ∈ Z2 (6.10)

xπs =
∑
u∈Z

fπ(u, s)yπu ∀s ∈ S, π ∈ Π̂ (6.11)

xs =
∑
π∈Π̂

xπs ∀s ∈ S (6.12)

yπu ≥ 0 ∀π ∈ Π̂, u ∈ Z (6.13)

Proposition 4. The optimal solutions to the convex program (6.9)–(6.13) correspond exactly

to the policy flows satisfying the UER definition in Equation (6.8).

Proof. The argument is identical to the proof in Rambha et al. [16] and Unnikrishnan and

Waller [15], where we can that the KKT conditions of the convex program are equivalent to

the UER principle.

We next present a gradient-projection algorithm in the space of policies to solve the

UER problem.

6.3.5 Gradient projection algorithm to solve UER

Similar to the gradient projection algorithms for the traffic assignment problem [112],

we propose an algorithm that works directly in the space of policies and shifts travelers
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among policies between an origin and a destination until the UER condition is satisfied.

First, we define a set Π̂uv = {π ∈ Π̂v | yπu > 0} as the set of all used policies between

an origin-destination pair (u, v) ∈ Z2. The gradient projection algorithm finds the shortest

policy connecting u and v and adds it to Π̂uv if it doesn’t already exist. Then, it calculates

the shift of flows among the set of used policies that minimizes the Beckmann-like objective

function in Equation (6.9) and projects the shift onto the space of feasible policy flows.

Rewriting the convex-UER formulation in terms of policy flows alone, we obtain:

min
y

Z(y) =
∑
s∈S

∫ ∑
(u,v)∈Z2

∑
π∈Π̂v

fπ(u,s)yπu

0

cs(w)dw (6.14)

s.t. duv =
∑
π∈Π̂v

yπu ∀(u, v) ∈ Z2, (6.15)

yπu ≥ 0 ∀π ∈ Π̂, u ∈ Z. (6.16)

Define a basic policy π∗uv ∈ Π̂uv for an OD pair (u, v) ∈ Z2 to be a policy with

minimum expected cost to destination v from node u. All the other policies are called

nonbasic policies. We can eliminate the basic policy flow variable for each OD pair by

expressing it in terms of nonbasic policy flows using the demand conservation constraint.

Let ȳπu be the variable representing flows on all nonbasic policies π ∈ Π̂uv \ {π∗uv} and ȳ be

a vector of ȳπu . We can express the flows on the basic policy using demand conservation as

follows:

yπ
∗
uv
u = duv −

∑
π∈Π̂uv :π 6=π∗uv

ȳπu ∀(u, v) ∈ Z2. (6.17)

We then define a modified objective after eliminating basic policy flow y
π∗uv
u for each

OD pair.

min
ȳ

Z̄(ȳ) =
∑
s∈S

∫ ∑
(u,v)∈Z2 [(

∑
π∈Π̂v

fπ(u,s)ȳπu)+fπ∗uv (u,s)(duv−
∑
π∈Π̂uv ;π 6=π∗uv

ȳπu)]

0

cs(w)dw (6.18)

ȳπu ≥ 0 ∀π ∈ Π̂; π 6= π∗uv, u ∈ Z (6.19)
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It is easy to verify that the convex programs in Equations (6.14)–(6.16) and Equa-

tions (6.18)–(6.19) are identical. Because the only constraint for the latter convex program

is the non-negativity constraint on policy flows, we can easily apply gradient projection algo-

rithms for computing an optimal solution. A gradient projection algorithm involves finding

the direction of steepest descent, which requires computing first order derivative of Z̄.

∂Z̄

∂ȳπu
=
∑
s∈S

cs(xs(ȳ))
[
fπ(u, s)− fπ∗uv(u, s)

]
(6.20)

= Cπ
u (ȳ)− Cπ∗uv

u (ȳ) (6.21)

The gradient of objective wrt to a policy flow ȳvu is simply the difference between the

cost from node u to dest(π) following policies π and π∗uv. Since basic policy has the least

expected cost, the first-order derivative is always positive and the descent direction can only

reduce flows from the nonbasic policies. Additionally, since we can compute the second-order

derivative for the objective, we can improve the search direction by dividing the first-order

derivative with the second-order derivative, which is computed as follows:

∂2Z̄

∂ (ȳπu)2 =
∂

∂ȳπu

∑
s∈S

(
cs(xs)

[
fπ(u, s)− fπ∗uv(u, s)

])
(6.22)

=
∑
s∈S

[
fπ(u, s)− fπ∗uv(u, s)

]
c′s(xs(ȳ))

∂xs(ȳ)

∂yπu
(6.23)

=
∑
s∈S

[
fπ(u, s)− fπ∗uv(u, s)

]2
c′s(xs(ȳ)) (6.24)

Given these derivatives, we can write the gradient projection algorithm as in Algo-

rithm 8.
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Algorithm 8 Policy-based gradient projection algorithm for solving UER

Initialize Π̂uv = NULL for all (u, v) ∈ Z2. Set iteration number n = 0. Set xscn = 0 for
all s ∈ S. Set ts = ts(0) for all s ∈ S. Set GAP←∞

while GAP > ε do
for Each destination v ∈ Z do

Find shortest policy π∗v towards destination v using TD-OSP algorithm
for Each origin u ∈ Z with duv > 0 do

Shortest policy π∗uv = π∗v
if π∗v /∈ Π̂uv then Π̂uv ← Π̂uv ∪ {π∗v}
end if
if |Π̂uv| = 1 then

Set y
π∗uv
u cn+1 ← duv

else |Π̂uv| > 1
Set total flow to shift towards basic policy as zero: ∆y∗ ← 0
for π ∈ Π̂uv such that π 6= π∗uv do

∆y ← min

{
yπucn,

Cπ
u − C

π∗uv
u∑

s∈S c
′
s(xscn)(fπ(u, s)− fπ∗uv(u, s))2

}
(6.25)

yπucn+1 ← yπucn −∆y (6.26)

∆y∗ ← ∆y∗ + ∆y (6.27)

end for
end if
Set y

π∗uv
u cn+1 ← y

π∗uv
u cn + ∆y∗

end for
end for

GAP←
(∑

s∈S tsxscn
) (∑

(u,v)∈Z2 duvC
π∗uv
u

)−1

− 1

Update xscn+1 using yπucn+1 values
n = n+ 1

end while

The algorithm starts with an empty used policy set and incrementally adds policies by

generating shortest expected cost policies for each destination in each iteration and adding

them to the used policy set if it doesn’t already exist. The TD-OSP algorithm from Waller

and Ziliaskopoulos [19] is used to determine the shortest expected cost policy towards any

destination. If the set of used policies is a singleton, all demand is loaded onto the only

policy, or else the flow is shifted from every nonbasic policy to the basic policy using the

gradient descent update rule (Equation (6.25), where we assume the step size is set to 1).

The convergence criterion measured using GAP function is identical to the other relative gap
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metrics used in the traffic assignment literature [113]. The comparison of whether a policy

is identical to another is done by testing the equivalence of Fπ matrix associated with the

policy.

6.4 Sensitivity analysis model

In this section, we conduct sensitivity of equilibrium costs to changes in demand

values between an origin-destination pair used for network contraction. The artificial link

models the variation in expected cost as a function of OD demand. For example, for the

network in Figure 6.2, we seek parameters of cost function on the artificial link connecting

nodes 1 and 3 as a function of demand (Figure 6.5). We seek the derivative of expected cost

at equilibrium between nodes u and v as a function of demand between the nodes.

Figure 6.5: (a) Small network and (b) a contracted network with artificial link representing
demand as a function of cost

We start with making following additional assumptions. First, for the derivatives to

be defined, we assume that the current UER equilibrium solution is non-degenerate in policy-

flow space and satisfies “strict-complementarity” in terms of policy flows (A#8). That is, at

equilibrium all unused policies between an origin-destination pair have strictly higher costs

than the used policies. This assumption is reasonable as the number of points of degeneracy

in a network are finite.

Second, we assume that the demand perturbation is small enough that it preserves

the set of used policies (A#9). This assumption is commonly made across the sensitivity

analysis literature [105]. Similar to the analysis in Lu and Nie [114], we hypothesize that

variations in policy-flows are continuous for small changes in demand.

Last, we assume that the expected travel time between an origin-destination (OD)
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pair only depends on the demand between that OD pair and not on other demand values

(A#10). This is called the separability assumption of OD pairs. This assumption is reason-

able if policies between two OD pairs do not overlap significantly. While this assumption may

not hold true for general networks, as we see in the experiments conducted in Section 6.5,

the error in expected costs with this assumption are not significant.

Our goal is to estimate the derivative of expected cost from a node u towards the

destination v with respect to the demand between the two nodes. That is, we seek ∂Cπ
u/∂duv.

Let x∗ and y∗ be the link-state and policy flows at the current UER solution and the local

derivatives are to be estimated at this current solution. Let Πused
uv be the set of all used

policies between origin-destination pair (u, v) and let Πused =
⋃

(u,v)∈Z2 Πused
uv be the set of all

used policies. The following conditions hold at UER:

Cπ
u =

∑
s∈S

fπ(u, s)cs(x
∗
s) ∀π ∈ Πused

uv , u ∈ Z, v ∈ Z (6.28)

x∗s =
∑

π∈Πused

∑
i∈Z

fπ(i, s)yπ,∗i ∀s ∈ S (6.29)

∑
π∈Πused

uv

yπ,∗u = duv ∀u ∈ Z, v ∈ Z (6.30)

We define partial derivatives of node cost-to-go values, link-state flows, and policy

flow with respect to duv. Let ρπi =
∂Cπi
∂duv

, αs = ∂x∗s
∂duv

, βπi =
∂yπ,∗i
∂duv

. Because of the separability

of the OD pair assumption, we set βπi = 0 and ρπi = 0 for all i 6= u and for all π /∈ Πused
uv .

Differentiating the optimality conditions in Equations (6.28)–(6.30) with respect to

duv, we obtain:

ρπu =
∑
s∈S

fπ(u, s)c′s(x
∗
s)αs ∀π ∈ Πused

uv (6.31)

αs =
∑

π∈Πused
uv

∑
i∈Z

fπ(i, s)βπi ∀s ∈ S (6.32)

∑
π∈Πused

uv

βπu = 1 (6.33)
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These conditions are the optimality conditions of following convex program.

min
β,α

∑
s∈S

∫ αs

0

(cs)
′
cxs=x∗s

w dw (6.34)

s.t. 1 =
∑

π∈Πused
uv

βπu (6.35)

αs =
∑

π∈Πused
uv

fπ(s, u)βπu ∀s ∈ S (6.36)

The convex program is identical to the UER problem with
(
csij(x

∗)
)′
w as new linear

cost function for each link-state, αs as the new flow on each link-state and βπu as the new

flow on each policy π. However, there is no non-negativity constraint. We can solve this

convex program using the gradient projection algorithm in Algorithm 8 with the exception

that we allow flows to be negative (that is, exclude the min from Equation (6.25)).

6.5 Experiments

In this section, we report experimental results for the algorithms proposed in previous

section. First, consider the example network in Figure 6.2. Given simpler network structure,

the equilibrium flows on link-states can be solved analytically. Figure 6.6 shows the variation

of expected costs between nodes 1 and 3 as a function of demand between the nodes.

Figure 6.6: Variation of expected cost between nodes 1 and 3 for varying values of demand
highlighting a possible set of used policies for each linear region and the points of

degeneracy where the expected cost is non-differentiable
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Since the cost functions are linear, the variation of expected cost is linear with respect

to variation in demand. There are three linear regions with constant values of derivatives

based on which policies are being used and solving the UER sensitivity algorithm is able to

estimate these derivatives exactly. There are two demand values, D = 1/3 and D = 1.25,

where the costs of unused policies are identical to the equilibrium expected cost between 1

and 3, and the derivative is not defined for those points.

For the real-world experiments, we consider the toll-segment 2 of the North-Tarrant

Expressway (NTE) network in Dallas, TX. The network consists of 54 nodes and 67 links.

The network was extracted from the original demand model provided by the North Central

Texas Council of Government. The free-flow travel time and capacity of each link were

used as is and the travel time function was assumed to follow the standard non-linear BPR

function. The tolls on managed lanes were as obtained from the model. The supply-side

uncertainty in the network was added by creating two additional states on the links on

general purpose lanes with revised free-flow travel times as 0.7 and 2 times the true value,

and two additional states on the managed lanes with tolls multiplied by 0.7 and 2 times

the true value. Figure 6.7 shows the network with the origin and the destination nodes

highlighted.

Figure 6.7: Toll segment 2 of the North Tarrant Expressway, Dallas, TX

First, we highlight the computational benefit of the gradient projection algorithm

proposed in Section 6.3.5. Figure 6.8 shows the variation in relative gap with computation

time for the gradient projection and Frank-Wolfe algorithms.
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Figure 6.8: Variation of relative gap on the NTE network using two algorithms for low and
high demand

For varying levels of demand we find that the gradient projection algorithm is able to

obtain solutions with relative gap lower than 1E-8, while the convergence for the Frank-Wolfe

algorithm in the earlier literature [15, 16] tails off for latter iterations. This is as expected and

relates with the improved decent characteristic of algorithms based on gradient projection

in the traffic assignment literature [112].

Second, we study the variation in expected costs (in travel-time units) between each

of the three origins and the destination for different demand levels. Seven demand levels

were considered where the base demand was multiplied by a factor x, where x belongs to the

set {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}. The sensitivity parameters were estimated by first solving

the UER at the base demand (x = 1.0) and then using the modified-gradient projection

algorithm at the obtained solution. The estimated parameters were then used to predict the

expected costs for other demand factors.

Figures 6.9(a)–(c) show the predicted expected costs (expressed in minutes) obtained

from the sensitivity parameters (dashed lines) and the true expected costs obtained from

solving UER for different demand factors (solid line).
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Figure 6.9: Variation in expected costs between (a) origin 1, (b) origin 2, and (c) origin 3
to the destination for varying demand levels. (d) The mean absolute percent error (MAPE)

in expected costs for different demand factors for the three origins

As observed, the predicted costs closely mimic the true expected costs obtained from

solving UER. The differences are higher for the demand factors farther away from the base

demand. This is as expected: the sensitivity parameters were approximated around the base

demand and at higher demand perturbation the first-order Taylor series approximation does

not hold true. Figure 6.9(d) shows the mean absolute percent error (MAPE) between the

true and predicted expected costs for the three origins at varying demand levels. The average

MAPE value for the NTE network is 2.94% which is a reasonably low value for transportation
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planning purposes. The results suggest that the gradient projection algorithm with linear

cost approximation is well suited for approximating true UER expected costs.

6.6 Summary

In this chapter we proposed a convex program to determine the sensitivity of cost

parameters at UER with variation in demand between origin-destination pair. The proposed

method allows contraction of acyclic express lane corridors into an artificial link whose cost

function can be approximated using the first-order Taylor series with derivatives evaluated

at a given UER solution. We showed that the mean absolute percent error in expected costs

generated using this contraction is up to 10%, or an absolute error of up to a minute, on

the NTE corridor in Dallas, TX. We also proposed a gradient-projection based algorithm to

solve UER equilibrium solution and show that it is efficient that the Frank-Wolfe algorithm

in the literature in generating solutions at low relative gap.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, dynamic pricing and long-term planning models are studied for

managed lanes with multiple locations of entrances and exits. These lanes provide reliable

travel time in exchange for a toll that varies dynamically based on the congestion pattern.

Under the presence of real-time toll and travel time information (provided through variable

message signs) and the historic information obtained via past experiences, travelers choose

between managed lanes or general purpose lanes and can adapt their lane choices en route

based on the received information.

Three component models of managed lanes were studied: a single-driver behavior

model that explains adaptive lane choice of travelers in presence of real-time and historic

information; a dynamic pricing model based on Markov decision process that incorporates

adaptive driver behavior for determining tolls that perform better than the existing heuris-

tics; and a user equilibrium with recourse model for express lanes for long-term prediction

of traffic under the presence of toll and travel-time uncertainty. The primary finding is that

adaptive driver behavior impacts the pricing and planning of express lanes.

For the single-driver behavior model, we considered that a traveler receives real-time

information about the tolls and travel times upon arrival at each diverge node and makes

a dynamic lane choice decision that minimizes the total expected cost. We formulated

the online route choice model as a Markov decision process and solved it using a backward

recursion algorithm for acyclic networks. The model was compared against four other routing

models including a binary logit model, a model based on decision routes, a model that chooses

paths a priori, and a model with routes chosen randomly. We also modeled irrational driver

behavior with parameters like driver’s inclination towards making optimal lane choices and

their preference for certain lanes. The findings show that the expected costs from the routes
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chosen using the decision route model are close to the optimal cost with an average percent

error of 0.93%. The binary logit model is shown to have a high average error of 50% in

the expected cost when a driver is assumed to behave rationally, but the same model shows

optimal prediction for certain irrational driver behaviors.

For the dynamic pricing models, we used the decision route model to explain lane

choices where travelers make online decisions at each diverge point considering all routes

on a managed lane network. We formulated the problem as a Markov decision process and

solved it using three algorithms: (a) the VFA algorithm with different initializations, (b)

a multiagent reinforcement learning algorithm (SparseV) for decentralized tolling at each

toll gantry, and (c) Deep-RL algorithms using neural networks to approximate toll policies.

While VFA and SparseV algorithms assume full observability of traffic states, Deep-RL

algorithms do not.

Both VFA and SparseV were shown to outperform a myopic revenue policy which

maximizes the revenue only at the current timestep and the feedback-control heuristics based

on density measurements. We show the revenue-maximizing optimal policies follow the “jam-

and-harvest” behavior where the GPLs are pushed towards congestion in the earlier time

steps to generate higher revenue in the later time steps, a characteristic not observed for the

policies minimizing TSTT.

Under settings of partial observability, Deep-RL algorithms were shown to outper-

form the feedback-control heuristic by generating up to 10% higher revenue and up to 9%

lower delays. These algorithms relax assumptions in the literature by considering multiple

origins and destinations, multiple access locations to the managed lane, en route diversion

of travelers, and stochastic demand and observations. We also proposed reward shaping

methods for the pricing model to overcome undesired behavior of toll policies, like the jam-

and-harvest behavior of revenue-maximizing policies. Additionally, we tested transferability

of the algorithm trained on one set of inputs for new input distributions and offered recom-

mendations on real-time implementations of Deep-RL algorithms. Deep-RL algorithms also

outperformed VFA and SparseV methods for the revenue maximization objective generating

up to 11.85% higher revenue on an average.

For the long-term planning models of express lanes, we developed a static M-UER
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model where travelers are expected to adapt their routes based on the available real-time

information. M-UER was formulated as a convex program. The tests conducted on the

North Tarrant Expressway network in Dallas, TX showed that ignoring adaptive driver

behavior can lead to differences in link flow predictions in the network and underestimation

of total system travel cost by 1.6%. We also proposed a gradient-projection algorithm for

solving UER on acyclic express lane networks which is shown to be efficient than the existing

link-state-based algorithms. Additionally, we analyzed sensitivity of expected costs between

two nodes with respect to the demand between the nodes, while assuming that the flow

redistributes to maintain the equilibrium. We derived a convex program for estimating the

sensitivity parameters and adapted the gradient-projection algorithm developed earlier for

an efficient computation of these parameters. This sensitivity analysis allows contracting a

complex express lane network as a single directed link. Experiments on real-world networks

showed that the proposed network contraction approximates the true variation of expected

costs between two nodes very well generating less than 2.5% error in costs on an average. This

contraction allows integration of express lanes in existing transportation planning models for

large-scale networks while incorporating the adaptive driver behavior in response to network

stochasticity.

7.2 Future work

The models developed in this dissertation motivate several topics for future work.

The single-driver behavior model in Chapter 2 can be extended for comparing the proposed

models when the link travel time and tolls are correlated. Additionally, other criteria in-

volved in the route choice decisions of travelers on managed lanes like reliability can be

considered in the generalized cost definition. The model can also be extended for other

tolling options discussed in Section 2.2. Route choice data collected from the field can be

used to train the parameters of the model which will be highly relevant to companies with

current ML installations. This model can form a basis for training dynamic discrete choice

models for understanding the route choice behavior of a population based on an individual’s

demographic or trip type attributes. Last, advanced reinforcement learning algorithms can

be used for learning the probability distributions on the fly, which can be useful for efficient
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route guidance for navigation apps.

For the dynamic pricing model in Chapters 3 and 4, some future work ideas are

mentioned inline (marked as FW#). Other topics for future work include the following.

First, for the VFA method in Chapter 3 a weighted aggregation scheme can be designed

which uses lower aggregation levels in the first few iterations to achieve faster learning

of good value function estimates and switches to higher aggregation levels later. Such a

strategy can improve the performance of VFA algorithm for larger networks. Additionally,

there are other factors influencing the relative values of states within each time step which

can be used to improve the initializations and the convergence characteristics. Second,

the choice of traffic flow model is critical to the performance of Deep-RL algorithms in

Chapter 4. The macroscopic multiclass cell transmission model does not capture the impacts

of lane changes and the second-order stop-and-go waves. Future work can be devoted to

developing efficient Deep-RL algorithms using microscopic simulation models and on testing

the transferability of algorithms trained on a macroscopic scale to microscopic scales. Third,

we only considered loop detector density measurements in the simulations. Other types

of observations like speeds, toll-tag readings, and measurements using Lagrangian sensors

like GPS devices on vehicles require redefining the POMDP to handle such measurements

and can be looked into as part of the future work. Fourth, for real-time implementation of

Deep-RL algorithms, the minimum speed limit constraint on ML (constraint 2 defined in

Section 4.2.4) should be satisfied throughout the learning phase, which requires analysis of

constrained policy optimization methods like in Achiam et al. [115]. Last, the future work

should also analyze the equity impacts of the tolls generated by Deep-RL across multiple

vehicle classes and investigate if generating equitable toll policies can be included as part of

the Deep-RL problem.

The long-term planning models for managed lanes in Chapters 5 and 6 motivate

following study topics for the future. First, methodology in Chapter 5 can be extended to

continuous VOT distributions by developing a continuous variational inequality and to the

cases where the correlation between link travel time and toll values is considered. Second,

using the network contraction method proposed in Chapter 6, we can integrate the UER

models with the traditional user-equilibrium models. This integration will require an iterative
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interaction between the two models where the output from one is an input to the other.

Third, there is a need for improving the assumptions on separability of OD pairs made

for the estimation of derivatives. Methods from standard traffic assignment literature can

be extended [105], though we expect a trade off between the computational efficiency in

determining the derivatives and the accuracy of their values. Fourth, the sensitivity analysis

method can be used for bi-level network design problems involving UER, where the second-

level requires determining solutions to UER for revised parameters. Last, extending UER

models to dynamic settings, such as in Gao [17], while developing computationally-tractable

models for large-scale managed lane corridors is also an important area for future work.

In addition to the specific future topics for each chapter, there is need for validation

of the models developed in this dissertation against field data. Furthermore there is a need

for integrating the research on decision making under stress with the models for lane choice.

The assumption that travelers seek lane choices minimizing their expected costs is more

suitable for connected/autonomous vehicles or where a phone application make the decision

on driver’s behalf. However, for human drivers, there might be other factors influencing their

behavior, one of them being the stress of making a decision right at the diverge location given

the information received so far. Future lane choice models should factor this element of stress

with decision making. In addition, there is a need for research looking into the social-equity

concerns with express lanes and analyzing alternatives to collecting dynamic tolls such as

offering driver discounts or a credit-based congestion pricing mechanism [116].
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