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Dynamic Congestion Pricing in Within-Day and

Day-to-Day Network Equilibrium Models
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This dissertation explores two kinds of dynamic pricing models which react

to within-day and day-to-day variation in traffic. Traffic patterns vary within

each day due to uncertainty in the supply-side that is caused by non-recurring

sources of congestion such as incidents, poor weather, and temporary bottle-

necks. On the other hand, significant day-to-day variations in traffic patterns

also arise from stochastic route choices of travelers who are not fully ratio-

nal. Using slightly different assumptions, we analyze the network performance

in these two scenarios and demonstrate the advantages of dynamic pricing

over static tolls. In both cases, traffic networks are characterized by a set of

stochastic states. We seek optimal tolls that are a function of the network

states which evolve within each day or across days.

In the within-day equilibrium models, travelers are assumed to be completely

rational and have knowledge of stochastic link-states, which have different de-

lay functions. At every node, travelers observe the link-states of downstream
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links and select the next node to minimize their expected travel times. Col-

lectively, such behavior leads to an equilibrium, which is also referred to as

user equilibrium with recourse, in which all used routing policies have equal

and minimal expected travel time. In this dissertation, we improve the system

performance of the equilibrium flows using state-dependent marginal link tolls.

These tolls address externalities associated with non-recurring congestion just

as static marginal tolls in regular traffic assignment reflect externalities related

to recurring congestion.

The set of tolls that improve system performance are not necessarily unique.

Hence, in order to make the concept of tolling more acceptable to the public,

we explore alternate pricing mechanisms that optimize social welfare and also

collect the least amount of revenue in expectation. This minimum revenue

toll model is formulated as a linear program whose inputs are derived from

the solution to a novel reformulation of the user equilibrium with recourse

problem.

We also study day-to-day dynamic models which unlike traditional equilib-

rium approaches capture the fluctuations or stochasticity in traffic due to

route choice uncertainty. Travelers decisions are modeled using route choice

dynamics, such as the logit choice protocol, that depend on historic network

conditions. The evolution of the system is modeled as a stochastic process and

its steady state is used to characterize the network performance. The objec-

tive of pricing in this context is to set dynamic tolls that depend on the state

viii



of the network on previous day(s) such that the expected total system travel

time is minimized. This problem is formulated as an average cost Markov deci-

sion process. Approximation methods are suggested to improve computational

tractability.

The day-to-day pricing models are extended to instances in which closed form

dynamics are unavailable or unfit to represent travelers’ choices. In such cases,

we apply Q-learning in which the route choices may be simulated off-line or can

be observed through experimentation in an online setting. The off-line meth-

ods were found to be promising and can be used in conjunction with complex

discrete choice models that predict travel behavior with greater accuracy.

Overall, the findings in this dissertation highlight the pitfalls of using static

tolls in the presence of different types of stochasticity and make a strong case

for employing dynamic state-dependent tolls to improve system efficiency.
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Chapter 1

Introduction

Urban transportation planning is traditionally carried out using a four-step

method. The first three steps are used to estimate the number of travel-

ers/users, their origin-destination (OD) pairs, and their mode of travel. The

final step, also called route choice or traffic assignment, involves assigning

travelers to different routes. This assignment procedure is done assuming that

traffic networks are in a state of user equilibrium (UE) or Nash equilibrium

(NE), which states that “All used routes between an OD pair have equal and

minimal travel times.” The UE principle results from assuming that users

selfishly choose routes so as to minimize their travel time. Many efficient al-

gorithms exist for finding the UE solution to the traffic assignment problem

(TAP) (Larsson and Patriksson, 1992; Jayakrishnan et al., 1994; Bar-Gera,

2002; Dial, 2006; Bar-Gera, 2010; Mitradjieva and Lindberg, 2013). Another

state typically of interest is called the system optimum (SO), in which the sum

total of travel time experienced by all travelers, also called the total system

travel time (TSTT), is minimized. The equilibrium solution to the traffic as-

signment problem (TAP) can be expressed either in terms of link flows (volume

of users on each roadway link) or path flows (volume of users on each path

between every OD pair).
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1.1 Traffic Assignment Problem

Consider a directed network G = (N,A), where N and A are the set of nodes

and arcs/links respectively. Assuming that the flow on an arc (i, j) ∈ A is

denoted by xij, let the function tij(xij) (also referred to as link performance

function or latency/delay function) represent the travel time experienced by

users on arc (i, j). Suppose the set of origins and destinations is denoted by

Z ⊆ N and the demand between origin and destination nodes u ∈ Z and

v ∈ Z is represented by duv. We denote the set of paths between u and v using

Πuv (we consider only the set of simple paths, i.e., ones without any directed

cycles) and the set of all paths in the network using Π = ∪(u,v)∈Z2Πuv. We will

use the notation (i, j) ∈ π to denote that link (i, j) belongs to path π. Assume

that yπ denotes the flow on a path π. Let δπij represent the arc-path incidence

variable, i.e., δπij is 1 if (i, j) ∈ π and is 0 otherwise. The following mathematical

program, proposed by Beckmann et al. (1956) (and hence popularly known as

the Beckmann formulation), describes the traffic assignment problem:

min
∑

(i,j)∈A

∫ xij

0

tij(x) dx (1.1)

s.t. xij =
∑
π∈Π

δπijyπ ∀ (i, j) ∈ A (1.2)∑
π∈Πuv

yπ = duv ∀ (u, v) ∈ Z2 (1.3)

yπ ≥ 0 ∀ π ∈ Π (1.4)

xij ≥ 0 ∀ (i, j) ∈ A (1.5)
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If the link performance functions are continuous, it is easy to verify that the

objective of the TAP is continuous and differentiable. Hence, existence of an

optimal solution follows directly from the fact that the objective is continuous

and the constraints define a compact feasible region. If it is also assumed that

the link performance functions are non-decreasing, the objective is convex and

hence every equilibrium solution has equal link travel times. Furthermore, if

the link performance functions are strictly increasing then there exists a unique

solution in link flows to the TAP (Patriksson, 2015).

At low volumes, the travel time on a roadway link is usually insensitive to

increase in flow but as more travelers use it, variability in driver behavior

and speeds results in an increase in time taken to traverse the link. Hence,

one expects that the link performance functions be non-decreasing. A widely

used class of link performance functions are functions of the type tij(xij) =

τij
(
1 + α(xij/µij)

β
)

(also known as the Bureau of Public Roads (BPR) func-

tion), where µij and τij denote the capacity of link (i, j) and its free-flow

travel time respectively, and α and β are parameters. Since these functions

are strictly increasing an equilibrium solution obtained using BPR functions

in unique in link flows. The mathematical elegance of the TAP has led to its

widespread use in the transportation planning process.

Remark. The assumption that the travel time on an arc depends only on the

flow on it is also known as the separability condition. Relaxing this assumption

leads to a more general traffic assignment formulation which can help model the

impacts of intersections. These problems are usually expressed as a variational
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inequality (VI) (see ?Dafermos, 1980). Another widely studied variant of the

TAP is called dynamic traffic assignment (DTA), which captures traffic queue

dynamics (see Peeta and Ziliaskopoulos, 2001; Chiu et al., 2010). Unlike DTA

models which represent traffic at a meso- or micro-scopic level, we restrict our

attention to computing the equilibrium flows and optimal tolls in the presence

of link delay functions.

1.2 Pricing in Transportation Networks

An equilibrium assignment is not optimal from a network wide perspective, i.e.,

it does not minimize the TSTT. In fact, for certain classes of link performance

functions, one can bound the inefficiency of the UE solution (Roughgarden,

2002). Economists have suggested using tolls to drive a network of selfish users

to an SO state. The idea of using tolls to control congestion dates to Pigou

(1920), who proposed the concept of marginal tolls which are equal to the

congestion externalities imposed by a traveler. To be more precise, suppose

each arc in the network can be tolled and the toll paid by a traveler is the

sum of tolls on the arcs along his/her path. Also suppose that the toll on

arc (i, j) is given by xijt
′
ij(xij), where xij is the flow on arc (i, j). If users

act in a selfish manner but try to minimize the sum of travel time and toll,

then the solution to the UE problem in the presence of tolls has an objective∑
(i,j)∈A

∫ xij
0

tij(x) + xt′ij(x) dx =
∑

(i,j)∈A
∫ xij

0
d(xt(x)) =

∑
(i,j)∈A xijt(xij).

Thus congestion pricing with marginal tolls helps reduce the TSTT as the

UE flow on the network with tolls results in a SO flow pattern in the original
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network.

Efficient algorithms and extensions to the TAP fueled modifications to marginal

pricing to account for cases in which tolls may be collected only on a subset of

links belonging to a cordon or a freeway (Verhoef et al., 1996); travelers have

different values of time (Dial, 1999a); or the demand is elastic (Yildirim and

Hearn, 2005). Models that maximize profit (Labbé et al., 1998), which could

be of use to a private tolling firm, also exist. A thorough review on congestion

pricing in theory and practice can be found in de Palma and Lindsey (2011).

Despite these research efforts that span several decades, congestion pricing

found its way into practice (in a limited way) with great difficulty for political

and financial reasons. It was and continues to remain unpopular among the

public as many consider it inequitable (Ecola and Light, 2009). Also, the set-

up costs for toll collection requires considerable investment in infrastructure

although the revenue from tolls can be used to maintain and operate such

facilities.

However, with the advent of electronic roadway pricing systems some of these

hurdles have been overcome and tolls have been instrumental in addressing

congestion issues on freeways all around the world and on arterials in cities

such as London, Hong Kong, and Singapore. The future is also likely to see

innovative means of pricing in the form of vehicle miles traveled (VMT) taxes,

credit based systems (Yang and Wang, 2011), and autonomous vehicles, all of

which could make pricing a very practical and effective solution to deal with

5



congestion.

1.3 Motivation and Research Objectives

One of the key issues to consider when setting tolls is the dynamic nature of

traffic. On no two days are the flow patterns in a network the same. Further-

more, changes in network conditions due to non-recurring sources of congestion

can result in significant variation of traffic within each day. Thus, in order to

effectively manage congestion we could let the tolls be dynamic. The question

that remains is how to set the right tolls to reduce congestion. In order address

this question, it is first necessary to understand the sources of uncertainty that

cause variability in traffic networks.

Uncertainty in network equilibrium models can be of three types: supply-side

uncertainty, demand-side uncertainty, and route choice uncertainty and all

three forms of uncertainty lead to traffic states that vary over time. Supply-

side uncertainty mostly stems from non-recurring sources such as incidents and

poor weather while demand-side uncertainty originates from changes in trav-

elers’ decisions to travel, mode and departure time choices. Both these forms

of uncertainty can lead to uncertainty in travelers’ route choices. However,

by route choice uncertainty we refer to the inherent randomness associated

with the lack of perfect rationality among travelers or that due to unobserved

factors that impact route choice.

Modeling any of these three sources of uncertainty requires several assumptions

6



on the distributions of uncertainty and the timing of observations. Thus,

studying each type of uncertainty is a challenge in itself which makes a unified

theory for modeling stochasticity in traffic networks and dynamic pricing sound

far-fetched. We therefore restrict our attention to two different pricing models

in this dissertation which improve network performance under two different

sources of stochasticity: supply-side and route choice uncertainty. Hence,

throughout this dissertation, the number of travelers in the network is assumed

fixed and known. A study of these two problems will likely provide insights

into developing hybrid models that capture more features of the route choice

process.

More specifically, the two models proposed in this dissertation solve the prob-

lem of dynamic pricing in the following contexts:

• Within-day pricing models: When supply-side parameters such as ca-

pacity and free-flow travel time vary due to factors such as incidents,

poor weather, and bottlenecks, we may assume that network arcs exist

in a finite number of states with different delay functions with differ-

ent probabilities. In such scenarios, travelers do not just choose paths

but follow routing policies that respond to en route information. It is

assumed that at every node in the network, travelers observe the true

state of the immediate downstream arcs and select one of them to min-

imize their expected cost of travel. In this context, we find dynamic

tolls that vary with the state of each link in order to minimize the to-

7



tal expected travel time of all the users. While humans would find it

difficult to optimize their routes in the presence of such dynamic tolls,

autonomous vehicles equipped with computers can find the best possi-

ble strategy that minimizes the expected generalized cost of travel. A

marginal cost pricing scheme that leads to a socially optimal outcome

and methods to compute it are discussed in detail. Further, alternate

equilibrium formulations are explored and their solutions are used to find

tolls that lead to a socially optimal outcome while generating the least

amount of revenue in expectation.

• Day-to-day pricing models: A finite number of habitual drivers choose

from a set of routes over different days. From an empirical standpoint,

when a large number of selfish humans travel in a network, the chances of

reaching an equilibrium are slim. User behavior in such settings can be

modeled using probabilistic route choice models which define when and

how travelers switch paths. This approach results in stochastic processes

with steady state distributions containing multiple states in their sup-

port. Tolls are set on each day based on the route pattern(s) on previous

day(s) and revealed to users before they make their trips. Travelers are

also known to have access to historic travel times and choose routes in a

probabilistic way as they do not precisely know how other travelers react

to the travel time and toll information. The route choice probabilities of

travelers are either assumed to be known to the system manager or may

be inferred from real world data. The objective is to minimize the ex-

8



pected TSTT over an infinite horizon. In order to make this framework

practical, approximation schemes for handling a large number of users

are developed.

1.4 Examples

In this section, we demonstrate the core results of this dissertation using simple

two link networks. The first example demonstrates how dynamic tolls can

improve network performance in a within-day setting when the supply-side is

uncertain and the second example illustrates a similar result in a day-to-day

setting when route choices are uncertain.

1.4.1 Within-Day Pricing

To illustrate within-day pricing under supply-side uncertainty, consider the

example in Figure 1.1. Suppose that the 1 unit of demand between nodes 1

and 2 is infinitely divisible. Since we model a nonatomic version of the problem,

the terms ‘travelers’ and ‘users’ are to be interpreted as flow rates. The top

link has a constant travel time of 1 unit. The bottom link on the other hand

is congestible and exists in two states with link performance/delay functions

x2 and 2x with probabilities 0.6 and 0.4 respectively. These states on bottom

link are referred to as s1 and s2. Of the 1 unit of demand arriving at node 1,

0.6 and 0.4 units of flow see the bottom arc in states s1 and s2 respectively.

(In general, if η travelers arrived at node 1, 0.6η and 0.4η travelers observe

9
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Figure 1.1: Demonstration of system optimal solutions with recourse.

the bottom arc in states s1 and s2 respectively.) A policy for a traveler is

a complete contingent plan of action that selects a downstream node at each

node, for each of the possible set of adjacent link-states (and tolls) at that node.

For instance, a policy in the network in Figure 1.1 may require a traveler to

head to node 2 via the top arc if the state s1 is observed at node 1 and use the

bottom arc otherwise. Thus, each traveler has 4 policies to choose from (see

Table 1.1) and a feasible assignment involves dividing the 1 unit of demand

across these policies. Let y1, . . . , y4 represent the number of travelers using

the 4 policies. The cost of a policy is a random variable and hence we suppose

that travelers choose policies which minimize the expected travel time.

The system optimal solution may assign a positive demand to all four policies,

whereas at equilibrium, all travelers select the bottom arc. We will refer to

the system optimum and equilibrium states as system optimum with recourse

(SOR) and user equilibrium with recourse (UER) respectively. Unless stated

otherwise, we assume that all travelers have the same value of time (VOT)
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Table 1.1: Flows on policies at UER and SOR states (T and B represent top
and bottom arcs respectively).

Policy No.
Arc

ySO yUE
s1 s2

1 T T 0.0185 0
2 B B 0.6058 1
3 T B 0.0192 0
4 B T 0.3565 0

and units for the tolls are chosen such that VOT equals 1. Let the total

expected travel time (TETT) represent the sum total of the expected travel

times of all the users in the network. At the SOR state, the number of users

on the bottom arc in states s1 and s2 are 0.6(0.6058 + 0.3565) = 0.5774 and

0.4(0.6058+0.0192) = 0.25 respectively. The number of users on the top arc is

0.6(0.0185 + 0.0192) + 0.4(0.0185 + 0.3565) = 0.1726. Thus, the TETT of the

SOR solution is 0.1726 + (0.5774)3 + 2(0.25)2 = 0.4901. On the other hand,

the TETT of the UER solution is 0.63 + 2(0.4)2 = 0.536. Our findings in this

dissertation suggest that by collecting a marginal toll of 2(0.5774)2 = 0.6667

when the bottom link is in states s1 and 2(0.25) = 0.5 when it is in state s2

would result in a socially optimal solution.

1.4.2 Day-to-Day Pricing

As explained in Section 1.2, congestion pricing helps reduce the TSTT as the

UE flow on the network with marginal tolls results in a SO flow pattern in

the original network. However, in a day-to-day setting, marginal prices are of
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little relevance. In fact, in some cases, they can result in increased TSTT as

illustrated by the following example.

O D 

𝑡1 𝑥1 =  4𝑥1 

𝑡2 𝑥2 =  8 

2 2 

Figure 1.2: Sub-optimality of marginal prices in a day-to-day setting.

Consider two travelers from O to D in the network shown in Figure 1.2. De-

mand in a day-to-day traffic model represents actual travelers and not flow

rates and is integral in nature. Let the vector (x1, x2) denote the state of the

system, where x1 and x2 denotes the number of travelers on the top and the

bottom path respectively. The above system has three states (2, 0), (0, 2), and

(1, 1), which we will refer to as states 1, 2 and 3 respectively. It is easy to verify

that state 1 is a NE and state 3 is SO. Suppose both travelers use the logit

choice model to select paths on each day, in which the probability of choosing

the top and bottom paths are exp(−t1(x1))
exp(−t1(x1))+exp(−t2(x2))

and exp(−t2(x2))
exp(−t2(x2))+exp(−t2(x2))

,

where t1(x1) and t2(x2) represents the travel times as a function of the previous

day’s flow. The stochastic process is Markovian and the steady state probabil-

ities of observing states 1, 2, and 3 are 0.5654, 0.1414, and 0.2932 respectively.

Thus, the expected TSTT is 16(0.5654) + 16(0.1414) + 12(0.2932) = 14.8272.

Now suppose we price the network using marginal tolls (4 units on the top link

12



and no toll on the bottom one) and assume that both travelers now replace the

travel time functions in the logit choice model with generalized costs (travel

time + toll). The steady state distribution of the Markov chain for states 1, 2,

and 3 is 0.467, 0.467, and 0.066 respectively and the expected TSTT is 15.736

which is higher than before.

On the other hand, suppose tolls were dynamic and a function of the system

state. Specifically, let the toll on the top link be 0, 8, and 4, in states 1, 2,

and 3 respectively. Then the steady state probabilities of finding the system in

states 1, 2, and 3 are 0.25, 0.25, and 0.5 respectively and the expected TSTT

is 14, which is less than the expected TSTT of the no-tolls scenario.

Remark. The tolling solutions discussed in this dissertation are state depen-

dent. As the state of the network evolves within each day or across days,

the tolls change and are hence dynamic in nature. Such tolling mechanisms

are also referred to as adaptive or responsive congestion pricing (Boyles et al.,

2010). Another type of dynamic pricing involves collecting different tolls at dif-

ferent times of the day. These time-of-day tolls are designed to ease recurring

congestion, but they do not adapt to stochastic variations in traffic.

1.5 Contributions

This dissertation explores two kinds of dynamic pricing models while cap-

turing within-day variation in supply-side and day-to-day variation in route

choices. The within-day pricing framework studies the impact of non-recurring
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events such as incidents, weather, and bottlenecks that result in supply-side

uncertainty. In such scenarios, travelers are incentivized to adaptively select

links instead of following a fixed route. Assuming that links exist in multi-

ple states with different delay functions, a state-dependent pricing mechanism

is proposed that can bring the equilibrium and system optimum solutions

into alignment. The state-dependent link tolls address externalities associated

with non-recurring congestion just as static marginal tolls in regular traffic

assignment reflect externalities related to recurring congestion. The major

contributions of the within-day pricing model are:

1. Despite the prevalence of non-recurring congestion, tolling models under

supply-side uncertainty have not received enough attention in pricing

literature. Furthermore, existing research does not account for the ef-

fect of rerouting among travelers. In this dissertation, we formulate a

system optimum model with recourse in which travelers do not simply

select paths but follow adaptive routing policies that respond to en route

information and minimize expected generalized costs.

2. Users arriving at a node observe the states of the downstream links

and the associated tolls (that are different for different link-states) and

select the next link to travel on. The optimal polices are computed

assuming full-reset, i.e., the probability of observing a downstream link-

state resets every time the traveler revisits its head node. However, the

reset assumption is known to induce cycles in the optimal policies. We
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address this modeling artifact by proposing a network transformation

and a reformulation using symmetric delay functions. The Frank-Wolfe

algorithm is adopted to find the equilibrium solution and the optimal

tolls and the sub-optimality of static tolls is demonstrated on the Sioux

Falls test network.

3. We formulate an alternate equilibrium with recourse model with split

proportions as the variables. A solution method that is similar to the

origin-based assignment is proposed. The results of this formulation are

then used to construct a linear program which computes state-dependent

optimal tolls that generate the least amount of expected revenue.

4. The within-day pricing mechanism would be useful especially in a net-

work with connected, autonomous vehicles because the vehicles will have

the compute power to calculate optimal policies and because the network

manager can collect and vary link tolls without heavily investing in pric-

ing infrastructure.

We also study day-to-day dynamic models, which unlike traditional equilib-

rium approaches can capture the fluctuations or stochasticity in traffic due to

route choice uncertainty. The objective in these problems is to set dynamic

tolls that minimize the expected total system travel time. Exact and approx-

imate methods to solve the problem are discussed and their applications are

demonstrated. The major contributions of the day-to-day pricing model are:
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1. Existing dynamic pricing methods in day-to-day traffic literature focus

on continuous time deterministic models. However, the solutions from

these methods cannot be used to set tolls on different days in the network.

To our knowledge, this research is the first to study dynamic tolling in

a discrete time setting using an average cost Markov decision process

(MDP) framework.

2. The problem is formulated as an infinite horizon average cost MDP and

optimal stationary policies are computed that enable a system manager

to decide the tolls based on the state of the system/flows on any given

day. Several alternate pricing models with different objectives that may

be of interest to a system manager were also formulated.

3. Most MDPs inherit the curse of dimensionality that makes it difficult to

solve them using exact methods. Hence, we propose simple state space

aggregation methods that were found to be computationally tractable.

Using a test network, we demonstrate that the approximate optimal

policies from these methods result in lower expected total system travel

times when compared to the no-tolls case and also analyze the mixing

times of associated Markov chains.

4. However, an exact computation of the optimal strategy requires closed

form transition probabilities. We relax this assumption by exploring

reinforcement learning methods in which state transitions are simulated

or observed from the field. Small experiments on the Braess network are
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performed to demonstrate the application of the proposed formulation.

1.6 Organization and Notes

This dissertation is organized as follows: In Chapters 2 and 3 we study the

within-day pricing problem under supply-side uncertainty and in Chapters 4

and 5, we study the day-to-day pricing problem under route choice uncer-

tainty. Chapter 2 explores the system optimum with recourse problem and

provides a link-based method for computing the equilibrium flows and opti-

mal state-dependent tolls. These models are extended in Chapter 3 by means

of an alternate formulation in terms of the split proportions. The solution to

this method is used to formulate a minimum revenue state-dependent pricing

problem as a linear program. Chapter 4 introduces day-to-day dynamic mod-

els and formulates exact and approximate methods to find tolls as a function

of the state of the system assuming that travelers follow a logit choice model.

Chapter 5 attempts to find the optimal pricing policy by assuming that closed

form expressions for route choice are unavailable and discusses models involv-

ing simulated route choices and online observations. Finally, in Chapter 6,

the contributions of this dissertation are summarized and directions for future

work are outlined.

Chapters 2 and 3 can be read independently of Chapters 4 and 5. Different

notation has been used in these parts of the dissertation to avoid the use of

uncommon symbols. Some of the work in this dissertation is adapted from
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Rambha and Boyles (2016) and some of it is currently under review (Rambha

et al., 2016).

For most part, this dissertation is self-contained. However, the reader might

benefit from basic knowledge of traffic equilibrium, stochastic processes, and

Markov decision processes. We recommend books by Sheffi (1985) and Patriks-

son (2015) for background on traffic assignment, a text by Kulkarni (2009) for

an introduction to stochastic processes, and books by Puterman (2005) and

Bertsekas (2007) for a comprehensive study of Markov decision processes.
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Chapter 2

Within-Day Pricing: System Optimum
with Recourse

2.1 Introduction

Static traffic assignment models discussed in Chapter 1 assume that travelers

select routes a priori. However, in practice, uncertainty in network conditions

encourages travelers to update their routes in an online manner. When the

major source of uncertainty is in the “supply side”, links in the network may be

modeled using different states (perhaps representing accident conditions, ve-

hicle breakdowns, special events, poor weather, rail-road crossings, temporary

bottlenecks due to freight deliveries etc.) with different congestion functions

(e.g., representing different capacity or free-flow speeds). However, such self-

ish routing of drivers is bound to be inefficient and the goal of this chapter is

to extend Pigouvian pricing (Pigou, 1920) to minimize the expected system

travel time in situations where users adaptively select links en route. When

tolls change as a function of network states, drivers arriving at a node typi-

cally learn the adjacent link-states (and tolls) and choose which of those links

to travel on to minimize their expected travel times. Although this assump-

tion may appear far-fetched in the context of human drivers, it is possible for

connected, autonomous vehicles to compute and rationally follow an optimal
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routing policy. Furthermore, connected autonomous vehicles would make it

feasible for a network manager to collect and vary tolls on each link depending

on the network conditions. Since generalized costs are a function of flows,

different drivers will use different policies, which is likely to lead to an equilib-

rium at which point all used policies between an origin-destination (OD) pair

have equal and minimal expected generalized costs. The objective is there-

fore to align this equilibrium flow solution, also dubbed as user equilibrium

with recourse (UER), with the system optimal solution. The UER model was

first formulated for acyclic networks (Unnikrishnan and Waller, 2009; Unnikr-

ishnan, 2008; Ukkusuri, 2005) and later extended to cyclic networks in Boyles

(2009) and Boyles and Waller (2010). Similar policy-based routing approaches

were studied within the framework of dynamic traffic assignment (DTA) mod-

els (Hamdouch et al., 2004; Gao, 2012; Ma et al., 2016). However, solution

algorithm correctness and properties such as equilibrium existence are difficult

to show with simulation-based DTA models. Furthermore, it is also unclear if

these models scale well with the problem size. The idea of policy-based routing

and assignment can also be found in literature on transit networks (Hamdouch

and Lawphongpanich, 2008, 2010; Trozzi et al., 2013; Hamdouch et al., 2014).

The probability that a link exists in a particular state is assumed known from

historic data and the proposed traffic flow model is static in the sense that

we ignore the time dimension and model a fluid version or the “steady state”

flow. This assumption is reasonable if the types of disruptions being modeled

are non-recurrent and short in duration relative to the modeling period. (e.g.,
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if we are modeling a three-hour peak period and a minor accident reduces

capacity for 15 minutes, it is reasonable to assume that 1/12 of the travelers

will observe the accident state and 11/12 of the travelers will not.) Hence, we

assume that the states observed by travelers arriving at a node are independent

of the states observed by any other traveler arriving at that node. Without

this assumption, it can be shown that even special cases of this problem are

NP-hard (Provan, 2003). However, this assumption may encourage cycling,

an unlikely phenomenon, as revisits to a node would reset the probabilities of

link-states. We avoid this issue by imposing restrictions on the class of policies

used in the proposed models.

The main contribution of this chapter lies in the formulation of a system opti-

mal counterpart to the UER model, which we will henceforth refer to as system

optimal with recourse (SOR) and the development of a marginal cost pricing

rule (with different tolls for different states), very similar to that used in tradi-

tional static traffic assignment, which can bring the UER and SOR states into

alignment. The state-dependent tolls in the SOR model address externalities

associated with non-recurring congestion just as static marginal tolls (Pigou,

1920) reflect externalities related to recurring congestion. In addition, we also

devise a convenient method to obtain solutions to these models when travelers’

policies are disallowed from having cycles up to a certain length.

The SOR model should be distinguished from two other models which are

superficially similar but in fact are substantially different. One other type of
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model defines stochastic states for the entire network, not individual links,

and then solves a deterministic system optimal traffic assignment for each of

these states. For instance, in the network in Figure 1.1 in Chapter 1, this

model would involve solving two deterministic system optimal problems. This

approach can quickly grow intractable for large networks (since the number of

network states is exponential in network size), and reflects a different behavior

assumption where all drivers are informed of the complete network state before

departing, rather than receiving information incrementally.

Another type of model would solve for the system optimal assignment under

expected conditions and have drivers begin following those paths, recalculat-

ing system optimal paths from their current location whenever information

is received. That approach assumes that drivers do not anticipate receiving

information and handle messages reactively, rather than proactively; an ex-

ample in Waller and Ziliaskopoulos (2002) shows how that strategy can lead

to suboptimal solutions.

The rest of the chapter is organized as follows. Section 2.2 introduces notation

and describes the stochastic network model. In section 2.3, we formally define

the UER and SOR problems, and in particular show that UER problem can be

formulated as a Beckmann-like convex program. We also introduce a marginal

cost pricing scheme that can internalize the congestion externalities in UER

and result in a SOR state. In Section 2.4, we detail the algorithms that can be

used to compute the SOR solution and the optimal tolls. We then propose a a
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more realistic SOR model that restricts cycling in the policies used by travelers

and suggest a network transformation for finding the optimal tolls. Section

2.5 contains some numerical experiments on the Sioux Falls test network and

in Section 2.6 we summarize the findings in this chapter.

2.2 Preliminaries

The approach to finding an equilibrium under supply-side uncertainty is similar

to that used in deterministic TAPs. We begin by loading travelers on to the

optimal policies, update the costs on all link states, recompute the optimal

policies, and shift a fraction of the travelers to the new policy. These steps are

repeated (see Figure2.1) until a certain convergence criteria is met. However,

computing optimal policies (or even finding the cost of a given policy) and

network loading are not as easy as with deterministic equilibrium problems.

In deterministic TAPs, given a path, its cost can be simply computed by adding

the costs of all the links that belong to the path. Further, loading travelers

onto a path is also easy as one needs to just increase the corresponding flow on

all the links belonging to the path. In the remainder of this section, we address

the problem of estimating policy costs and network loading more formally.

Consider a strongly connected transportation network G = (N,A) with sets

of nodes N and arcs A. Let Z ⊆ N represent the subset of nodes where trips

begin and end. Let Γ(i) and Γ−1(i) denote the downstream and upstream

nodes of node i respectively. For any (u, v) ∈ Z2, let duv be the demand
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Figure 2.1: Equilibrium framework involving policies.
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from origin u to destination v. Each arc (i, j) ∈ A is associated with a set of

states Sij the arc can exist in; the link performance function for state s ∈ Sij

is tsij(x
s
ij), assumed positive and strictly increasing, where xsij is the number

of travelers using link (i, j) in state s (often called the link-state). Let S =

∪(i,j)∈ASij represent the set of all link-states in the network. Let |N | and |S|

denote the number of nodes and the total number of link-states in the network

respectively.

Upon arriving at any node i, a traveler observes a message vector θ ∈ Θi =

×(i,j)∈ASij informing him or her of the state of each link leaving node i, where

Θi denotes the set of possible messages that can be received at node i. We will

denote the state of link (i, j) corresponding to message θ using θij or simply

as s when it is clear from the context. Let qθ be the probability of receiving

message θ ∈ Θi when arriving at node i. To simplify the notation, assume

that the state of each link is independent of the state of other adjacent links;

in this case, there exist p
θij
ij such that qθi =

∏
(i,j)∈A p

θij
ij .

Define the set of node-states Φ = {(i, θ) : i ∈ N, θ ∈ Θi}; these correspond

exactly to the decision points in the network, providing the location of a trav-

eler and the message he or she just received. A policy π : Φ→ N is a function

that maps each node-state to the node associated with the node-state (if we

wish to terminate a trip) or a downstream node.

Associated with each policy π is a Markov chain, on the set of nodes N , with

a transition matrix Rπ ∈ R|N |×|N |+ that represents the probabilities of moving
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from each node to any other;1 its elements are Rπ(i, j) =
∑

θ∈Θi:π(i,θ)=j q
θ. A

policy is said to be cyclic if the probability of revisiting any node is positive.

A cyclic policy is said to have a cycle of length m if there exist a node that can

be revisited with positive probability by traversing exactly m unique arcs. A

policy that is not cyclic is referred to as an acyclic policy. An optimal policy, as

we will see shortly, can be cyclic because of the full-reset assumption. However,

we believe that the phenomena of cycling is unlikely to occur in practice, and

we will address this modeling artifact in greater detail in Section 2.4.2.

A policy π terminates at i if the only eigenvector of Rπ is the i-th standard

basis eTi , and is non-waiting if π(i, θ) = i only if π terminates at i. For any

destination v ∈ Z, let Πv denote the set of non-waiting policies terminating

at v. From here, we restrict attention to non-waiting policies, that is, our

model does not allow waiting at intermediate notes except the destination.

Let Π = ∪v∈ZΠv.

Consider a policy π ∈ Πv. Define ρsπij =
∑

θ∈Θi:π(i,θ)=j,θij=s
qθ as the probability

of leaving node i via link (i, j) in state s ∈ Sij. Suppose the travel times for

each link-state were fixed and denoted using tsij. We will later consider the case

where the travel times depend on flows and until then write it without reference

to its flows. The expected travel time Cπ
i from each node i to the destination

1The transition probabilities are not defined between pairs of node-states but instead
represents the probabilities for moving between pairs of aggregated node-states which are
collections of all node-states associated with a node (Boyles and Rambha, 2016).
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v via routing policy π can be calculated using the following equations

Cπ
v = 0 (2.1)

Cπ
i =

∑
j∈Γ(i)

∑
s∈Sij

ρsπij (tsij + Cπ
j ) ∀ i ∈ N\{v} (2.2)

Introducing Csπij to be the expected travel time to the destination v for a

traveler starting at the upstream end of on link (i, j) in state s and following

routing policy π, we have

Csπij = tsij + Cπ
j ∀ (i, j) ∈ A, s ∈ Sij (2.3)

or, upon eliminating the C variables, as the system

Csπij = tsij +
∑
k∈Γ(j)

∑
s̄∈Sjk

ρs̄πjkC s̄πjk ∀ (i, j) ∈ A, s ∈ Sij (2.4)

This equation can be expressed in matrix form as

Cπ = t + PπCπ (2.5)

where Cπ ∈ R|S|×1
+ , t ∈ R|S|×1

+ , and Pπ ∈ R|S|×|S|+ .

For example, consider the following network from Waller and Ziliaskopoulos

(2002) in which a user is traveling from node 1 to 4. Suppose that the travel

times on all arcs except (3, 4) is deterministic. Arc (3,4) is assumed to exist

in two states. For now, the travel times are assumed to be fixed and are not

flow-dependent. Consider the policy in which the user takes arc (3,4) only if

its cost is 1 and returns to node 3 via nodes 1 and 2 otherwise.
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Figure 2.2: Computing the cost of a policy.

For the assumed policy, the Pπ matrix may be populated as shown in equation

(2.6).

Pπ =

(1, 2), [1] (2, 3), [1] (3, 1), [1] (3, 4), [1] (3, 4), [101]



(1, 2), [1] 0 1 0 0 0

(2, 3), [1] 0 0 0.9 0.1 0

(3, 1), [1] 1 0 0 0 0

(3, 4), [1] 0 0 0 0 0

(3, 4), [101] 0 0 0 0 0

(2.6)

Since, t = (1 1 1 1 101)T , the cost of the policy is Cπ = (I − Pπ)−1t =

(30 29 31 1 101)T . Thus, the expected cost of reaching the destination from

the origin is 30.

Let yπi denote the number of travelers originating at node i and choosing policy

π. (We set yπi to 0 if i /∈ Z or if i = v.) Flow conservation requires yπu ≥ 0
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for all origins u and policies π, and duv =
∑

π∈Πv
yπu . Note that we employ a

destination-based aggregation of policies; the origin of travelers is irrelevant

for describing their choice at each node-state. A vector yπ ∈ R|N |+ is feasible

if it satisfies flow conservation. Any feasible yπ defines a vector ηπ ∈ R|N |+ of

node-flows, with components ηπi denoting the number of travelers arriving at

node i using policy π, as well as the vector xπ ∈ R|S|×1
+ , whose components xsπij

denote the number of travelers on policy π who experience link (i, j) in state

s, through the linear system:

xsπij = ρsπij η
π
i ∀(i, j) ∈ A, π ∈ Π (2.7)

ηπi = yπi +
∑

h∈Γ−1(i)

∑
s̄∈Shi

xs̄πhi ∀i ∈ N, π ∈ Π (2.8)

Then, eliminating the η variables yields a system of equations in the link state

flows alone:

xsπij = ρsπij y
π
i + ρsπij

∑
h∈Γ−1(i)

∑
s̄∈Shi

xs̄πhi ∀ (i, j) ∈ A, s ∈ Sij, π ∈ Π (2.9)

This equation can be expressed in matrix form as

xπ = bπ + PT
πxπ (2.10)

where bπ = vec(ρsπij y
π
i ) ∈ R|S|×1

+ . Thus, we may write xπ = A−1
π bπ where

Aπ = (I−PT
π ). Note that the columns of A−1

π denote the expected number of

times each link-state is visited for a traveler starting at a specific link-state and

following policy π. This can be seen by solving (2.10) for xπ and substituting

standard basis vectors on the right-hand side. Given a policy π and feasible
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y, the corresponding ηπ and xπ values can be identified by either solving

the linear system directly (in transportation networks, this system is usually

sparse) or by applying a network algorithm such as that in Boyles (2009).

For example, in the network introduced in Figure 2.2, suppose that the demand

between nodes 1 and 4 is 1 and assume that all travelers follow the policy

described earlier. Then, the link flows can be computed by first sending the

1 unit of demand along arcs (1,2) and (2,3). Upon reaching node 3, 10% of

the travelers observe arc (3,4) in state s1 and head to the destination. The

remaining 90% take arc (3,1) as shown in the top panel of Figure 2.3. This

process can be repeated for the 0.9 units of demand that cycles back to node

3 and for the 0.81 units of demand that cycles twice (see middle and bottom

panels of Figure 2.3).

Since the policy followed by the travelers admits an infinite number of cycles,

the flow on each link can be represented as a sum of a geometric series as

shown in Figure 2.4.

Alternately, we can solve the flow conservation equations xπ = (I−PT
π )−1bπ,

described by equation (2.11), to obtain link-state flows.


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−


0 0 1 0 0
1 0 0 0 0
0 0.9 0 0 0
0 0.1 0 0 0
0 0 0 0 0



−1

1
0
0
0
0

 =


10
10
9
1
0

 (2.11)
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Figure 2.3: Network loading travelers iteratively.
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Figure 2.4: Link-state flows after network loading.

2.3 SOR and Marginal Cost Pricing

Let y denote the vector (yπ)π∈Πv and let x = (xsij)(i,j)∈S,s∈Sij denote link

flows for each state aggregated by policies. As described above, every feasible

policy flow vector y determines aggregate link flows by state x, which in turn

determine link travel times by state t through the link performance functions,

which finally determine the policy costs Cπ; thus we may write the policy costs

as a function of the policy flows: Cπ(y). The system-optimal with recourse

problem is to find y minimizing the TETT

TETT =
∑

(u,v)∈Z2

∑
π∈Πv

yπuC
π
u (y) (2.12)

=
∑
v∈Z

∑
π∈Πv

∑
i∈N

yπi C
π
i (y) (2.13)

=
∑
π∈Π

∑
i∈N

yπi
∑

(i,j)∈Γ(i)

∑
s∈Sij

ρsπij Csπij (y) [using (2.2) and (2.3)] (2.14)

=
∑
π∈Π

∑
(i,j)∈A

∑
s∈Sij

yπi ρ
sπ
ij Csπij (y) (2.15)
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=
∑
π∈Π

(Cπ(y))Tbπ (2.16)

=
∑
π∈Π

(Cπ(y))TAπA
−1
π bπ (2.17)

=
∑
π∈Π

(AT
πCπ(y))Txπ [using (2.10)] (2.18)

=
∑
π∈Π

∑
(i,j)∈A

∑
s∈Sij

tsij(x
s
ij)x

sπ
ij [using (2.5)] (2.19)

=
∑

(i,j)∈A

∑
s∈Sij

tsij(x
s
ij)x

s
ij (2.20)

Since x is related to y by a linear system, and since each tsij(·) is assumed

strictly increasing, this latter reformulation shows that the system-optimal

with recourse problem is a convex program with a strictly convex objective

function with a unique optimal solution. Specifically, the SOR problem can

be formulated as

min
y,x,xπ ,bπ

∑
(i,j)∈A

∑
s∈Sij

xsijt
s
ij(x

s
ij) (SOR) (2.21)

s.t.
∑
π∈Πv

yπu = duv ∀(u, v) ∈ Z2 (2.22)∑
π∈Π

xsπij = xsij ∀(i, j) ∈ A, s ∈ Sij (2.23)

Aπx
π = bπ ∀π ∈ Π (2.24)

yπu ≥ 0 ∀π ∈ Π, u ∈ Z (2.25)

The SOR state is one in which all routing choices are made to minimize ex-

pected travel time for the entire system. This state is not likely to arise

spontaneously, since drivers do not typically have enough information to de-

termine which routing policy they should follow to minimize total expected
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travel time, and furthermore have no incentive to do so even if such information

were available. The UER state corresponds to a decentralized, Nash equilib-

rium in which individual (nonatomic) drivers choose a policy which minimizes

their own expected travel time to the destination. The UER state is based on

a generalization of Wardrop’s principle: all used policies between any origin

and destination have equal and minimal expected travel time. That is, UER

policy flows y are feasible and satisfy

yπu > 0⇒ Cπ
u (y) = min

π′∈Πv
Cπ′

u (y) ∀v ∈ Z, π ∈ Πv . (2.26)

While intuitive, this definition is not particularly useful for finding UER policy

flows. To this end, the following convex program is provided:

min
y,x,xπ ,bπ

∑
(i,j)∈A

∑
s∈Sij

∫ xsij

0

tsij(x) dx (UER) (2.27)

s.t.
∑
π∈Πv

yπu = duv ∀(u, v) ∈ Z2 (2.28)∑
π∈Π

xsπij = xsij ∀(i, j) ∈ A, s ∈ Sij (2.29)

Aπx
π = bπ ∀π ∈ Π (2.30)

yπu ≥ 0 ∀π ∈ Π, u ∈ Z (2.31)

Proposition 2.1. The optimal solutions to the convex program (2.27)–(2.31)

correspond exactly to policy flows satisfying the UER definition (2.26).

Proof. The proof of this proposition generalizes the proof by Unnikrishnan and

Waller (2009) to cyclic networks and proceeds along similar lines as the proof
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that the Beckmann formulation yields user equilibrium solutions; however, the

use of policies presents some additional technicalities. Specifically, in UER,

link flows are obtained from policy flows by solving an implicit linear system,

rather than obtaining link flows by directly summing flows on paths which use

that link, as in Beckmann’s formulation.

Begin by Lagrangianizing the flow conservation constraints (2.28) (with mul-

tipliers κ), and substitute constraints (2.29) and (2.30) into the objective

function, expressing it in terms of y alone (note that the bπ vector depends

only on y). This yields the Lagrangian

L(y,κ) =
∑

(i,j)∈A

∑
s∈Sij

∫ ∑
π∈Π(esij)

TA−1
π bπ

0

tsij(x) dx+
∑

(u,v)∈Z2

κuv(duv −
∑
π∈Πv

yπu)

(2.32)

with only non-negativity constraints on each yπ, where esij ∈ R|S|×1
+ is a stan-

dard basis vector. Referring to tsij
(∑

π∈Π(esij)
TA−1

π bπ
)

as tsij for brevity, the

resulting Karush-Kuhn-Tucker (KKT) conditions are∑
(i,j)∈A

∑
s∈Sij

tsij
∂

∂yπu

(∑
π̄∈Π

(esij)
TA−1

π̄ bπ̄

)
− κuv ≥ 0 ∀π ∈ Πv

(2.33)

yπu

 ∑
(i,j)∈A

∑
s∈Sij

tsij
∂

∂yπu

(∑
π̄∈Π

(esij)
TA−1

π̄ bπ̄

)
− κuv

 = 0 ∀π ∈ Πv, u ∈ Z

(2.34)∑
π∈Πv

yπ = duv ∀(u, v) ∈ Z2

(2.35)

yπu ≥ 0 ∀π ∈ Π, u ∈ Z
(2.36)
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In order to establish an equivalence between the KKT and UER conditions, we

proceed by showing that
∑

(i,j)∈A
∑

s∈Sij t
s
ij

∂
∂yπu

(∑
π̄∈Π(esij)

TA−1
π̄ bπ̄

)
= Cπ

u (y).

Therefore, equations (2.33) and (2.34) would translate to Cπ
u (y)−κuv ≥ 0 and

yπu(Cπ
u (y) − κuv) = 0, implying that κuv is the least expected time among all

policies terminating at v and a policy terminating at v is used by travelers

leaving u iff its expected travel time equals κuv.

Let d =
(

∂
∂yπu

(∑
π̄∈Π(esij)

TA−1
π̄ bπ̄

))
(i,j)∈A,
s∈Sij

be a vector in R|S|×1. We may

therefore write

∑
(i,j)∈A

∑
s∈Sij

tsij
∂

∂yπu

(∑
π̄∈Π

(esij)
TA−1

π̄ bπ̄

)
= tTd (2.37)

= ((I−Pπ)Cπ(y))T d [using (2.5)]
(2.38)

= (Cπ(y))T (I−Pπ)Td (2.39)

= (Cπ(y))TAπd (2.40)

Notice that elements of d can be simplified as

∂

∂yπu

(∑
π̄∈Π

(esij)
TA−1

π̄ bπ̄

)
=

∂

∂yπu

(
(esij)

TA−1
π bπ

)
(2.41)

= (esij)
T ∂

∂yπu

(
A−1
π bπ

)
(2.42)

which implies that d = I
∂

∂yπu

(
A−1
π bπ

)
= A−1

π

∂bπ

∂yπu
. Therefore, equation (2.40)

can be rewritten as

∑
(i,j)∈A

∑
s∈Sij

tsij
∂

∂yπu

(∑
π̄∈Π

(esij)
TA−1

π̄ bπ̄

)
= (Cπ(y))TAπA

−1
π

∂bπ

∂yπu
(2.43)
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= (Cπ(y))T
∂bπ

∂yπu
(2.44)

=
∑

(u,j)∈A

∑
s∈Suj

ρsπujCsπuj (y) (2.45)

= Cπ
u (y) [using (2.2) and (2.3)] (2.46)

Therefore, a solution to the convex program (2.27)–(2.31) satisfies the UER

condition. �

Notice that convex programs (UER) and (SOR) differ only in the objective

functions; the constraints are exactly identical.2 In the traditional traffic as-

signment problem, adding a “marginal cost” toll of xijt
′
ij(xij) to each link

brings the user equilibrium and system optimum states into alignment. Like-

wise, in the UER framework, adding a toll of xsij(t
s
ij)
′(xsij) to each link-state

brings the UER and SOR states into alignment, as shown in the following

result. In other words, to achieve the system optimum, the network manager

may employ a responsive tolling scheme in which the state of each link is

observed and the associated marginal toll is collected. Define the tolled link

performance functions t̂sij as t̂sij(x
s
ij) = tsij(x

s
ij) + xsij(t

s
ij)
′(xsij).

Proposition 2.2. An feasible solution to the convex program (UER) with re-

spect to tolled link performance functions t̂sij is an optimal solution to (UER) if

2Since we assume strictly increasing and positive link delay functions, the UER and
SOR objectives are strictly convex in link-state flows just like the Beckmann function in
deterministic traffic assignment models (see Sheffi, 1985, chap. 3). Thus, the optimal link-
state flows are unique but multiple policy flow solutions may exist.
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and only if it is optimal to (SOR) with respect to the original link performance

functions tsij.

Proof. Consider a generic term
∫ xsij

0 t̂sij(x) dx in the objective function (2.27).

Using the definition of t̂sij, this can be rewritten as∫ xsij

0

tsij(x) dx+

∫ xsij

0

x(tsij)
′(x) dx . (2.47)

Integrating the second term by parts, we have∫ xsij

0

xt′ij(x) dx = xsijt
s
ij(x

s
ij)−

∫ xsij

0

tsij(x) dx (2.48)

which, upon substitution into (2.47) shows that
∫ xsij

0 t̂sij(x) dx = xsijt
s
ij(x

s
ij).

That is, the objective functions for (UER) with respect to t̂ and (SOR) with

respect to t are identical. Since these programs have identical feasible regions,

the set of optimal solutions are also identical. �

2.4 Solution Methods

The UER and SOR models defined in Section 2.3 were formulated as con-

vex optimization problems. This lets us use standard algorithms such as the

method of successive averages (MSA) and the Frank-Wolfe (FW) algorithm

(Sheffi and Powell, 1982; Frank and Wolfe, 1956) for finding the optimal so-

lutions. Since these methods operate in the space of link-states, the memory

requirements are very modest and the SOR problem can be solved without

policy enumeration, much as the traditional system optimal problem can be

solved without path enumeration.
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In this section, we present the FW algorithm and the temporal dependence-

online shortest path (TD-OSP) algorithm of Waller and Ziliaskopoulos (2002).

The latter is used to find the optimal policies for an all-or-nothing assignment

within each FW iteration. We then illustrate the issue of cycling using a

small example and suggest a network transformation which eliminates cycles

of certain lengths from all routing policies. Furthermore, we calculate the

optimal state-dependent tolls for instances in which cycling is restricted by

applying the FW algorithm, with minor changes, to the transformed network.

2.4.1 Frank-Wolfe and Online Shortest Paths

The Frank-Wolfe method is a gradient descent-type algorithm for solving non-

linear convex optimization problems. We begin by initializing the travel times

on all links for all link-states to their free flow travel times and use the TD-OSP

algorithm (which we will explain shortly) for a given destination v to obtain

a policy π∗ ∈ Πv and cost vector (Cπ∗
i )i∈N which satisfies equations (2.1) and

(2.2). After repeating this step for all destinations, the resulting policies and

the OD-demand are used to construct the Aπ∗ and bπ
∗

matrices which help

determine the link flows for each state for each policy via xπ
∗

= A−1
π∗ b

π∗ . The

links flows are then aggregated to obtain x∗ using which the generalized travel

costs for different link-states are updated.

The TD-OSP algorithm is used again keeping these travel times fixed to obtain

a new policy and a cost vector, which is in turn used to compute new state-
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dependent link flows. This flow solution is a descent direction and an optimal

step size is used to compute a convex combination of the old and the new

state-dependent link flows.

Algorithm 1 Frank-Wolfe(G,d)

Step 1: Initialize
x← 0
t← t̂(0)
GAP ←∞

Step 2:
while GAP > ε do

x∗ ← 0
for v ∈ Z do . All-or-Nothing Assignment

π∗v ← TD-OSP(G, t, v)
x∗ ← x∗ + A−1

π∗v
bπ
∗
v

end for

GAP ← (t · x)
(∑

u∈Z
∑

v∈Z duvC
π∗v
u

)−1

− 1

ϕ∗ ← arg min
λ∈[0,1]

∑
(i,j)∈A

∑
s∈Sij

∫ (1−λ)xsij+λx
s∗
ij

0

t̂sij(x)dx . Optimal Step Size

x← (1− ϕ∗)x + ϕ∗x∗

t← t̂(x)
end while

The optimal step size ϕ∗ is obtained by finding the zeros of the function∑
(i,j)∈A

∑
s∈Sij t̂

s
ij((1 − ϕ)xsij + ϕxs∗ij )(xs∗ij − xsij) using the bisection or New-

ton’s method. The TD-OSP algorithm Waller and Ziliaskopoulos (2002) used

to compute an optimal policy for the all-or-nothing assignment is essentially

a value iteration approach, the pseudocode for which is reproduced in Algo-

rithm 2.
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A scan eligible list (SEL) containing a subset of nodes whose labels could

change is maintained at each iteration and is first initialized with the upstream

nodes of the destination. The algorithm also initializes the labels of all nodes

except the destination to a sufficiently large number. We then proceed by

picking an element of the SEL and computing the cost and probability of

choosing its downstream link-states (Step 2.1). The expected label of the

element is then updated in Step 2.2 if the optimality conditions are not met

and its upstream nodes are added to the SEL. Step 2 is carried out until the

SEL is empty, after which the optimal policy is constructed in Step 3 using

the converged labels.

Two main features of the algorithm make it very efficient compared to a regular

value iteration algorithm. (1) Instead of updating the values of all states in

each iteration, the algorithm maintains a scan eligible list similar to those used

in labeling methods for shortest paths. (2) The number of states at a node i is

Πj∈Γ(i)|Sij|, which is exponential. However, to compute the expected label of

node i it suffices to find the probabilities with which each downstream arc is

chosen in different states. The TD-OSP algorithm exploits this observation in

calculating the expected label of a node using a recursive procedure because

of which its complexity is pseudo-polynomial.

The notation [ ] in Algorithm 2 denotes an empty vector and ξ′ ← [ξ′ ξkp
s
ij]

is used to update the vector ξ′ by appending a new element ξkp
s
ij. Similar no-

tation is used to denote updates to λ′. The subroutine Reduce( ) removes
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duplicates from λ′ and adds up the probabilities in ξ′ to compute the probabil-

ity of occurrence of elements in λ′. For instance if λ′ = [5 7 8 8 5 1 6 1] and

all the elements of the associated probability vector ξ′ are equal to 0.125, then

function Reduce(ξ′,λ′) returns vectors ξ = [0.25 0.125 0.25 0.25 0.125] and

λ = [5 7 8 1 6].

2.4.2 Restricting Cycles

The TD-OSP algorithm described earlier assumes full-reset, i.e., upon revisit-

ing a node, a traveler sees a realization of the downstream states drawn from

their assumed probability distributions, irrespective of previously realized arc

costs. In other words, if there was a disruption on a link and the traveler

revisits its head node, he/she will find it in a disrupted state with the prior

probability of a disruption irrespective of the time between revisits. This as-

sumption can lead to cycling in the optimal policy since travelers may revisit

nodes in anticipation of an uncongested downstream arc.3

For example, consider the network in Figure 2.5. Suppose there are a total of

500 users traveling from node 1 to node 5. Assume that all links except (3,5)

exist in one state with a free flow travel time of 10. Suppose that the capacity

of links (1, 2), (1, 3), and (2, 3) is 100 and that of links (3, 2), (3, 4), and (4, 5) is

50. Let the arc (3,5) exist in two states s1 and s2 with free flow travel time 10

3Such behavior is unrealistic except in situations in which travelers search for parking
(Tang et al., 2014; Boyles et al., 2015).
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Algorithm 2 TD-OSP (G, t, v)

Step 1: Initialize Labels
Cv ← 0
Ci ←∞∀ i ∈ N\{v}
SEL ← Γ−1(v)

Step 2:
while SEL 6= ∅ do

Remove i from SEL
ξ ← [1], λ← [∞]
for j ∈ Γ(i) do . Step 2.1

ξ′ ← [ ], λ′ ← [ ]
for s ∈ Sij do

for k = 1, . . . , |ξ| do
ξ′ ← [ξ′ ξkp

s
ij]

if tsij + Ci < a then
λ′ ← [λ′ tsij + Ci]

else
λ′ ← [λ′ λk]

end if
end for

end for
(ξ,λ)← Reduce(ξ′,λ′)

end for

if ξ · λ < Ci then . Step 2.2
Ci ← ξ · λ
SEL← SEL ∪ Γ−1(i)

end if
end while

Step 3: Choose Optimal Policy
for i ∈ N, θ ∈ Θi do

if i = v then
π∗v(i, θ) = v

else
π∗v(i, θ) ∈ arg minj∈Γ(i){t

θij
ij + Cj}

end if
end for
return π∗v
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and capacities 400 and 50 with equal probability.4 Suppose that the delay on

each link for each state is given by the Bureau of Public Roads (BPR) function

tsij(x
s
ij) = τ sij(1+0.15(xsij/µ

s
ij)

4), where τ sij is the free flow travel time and µsij is

the capacity of link (i, j) in state s. The TETT of the UER solution and the

SOR solution at a gap of 10−4 are 113365 and 113183 respectively. The values

next to the links in the left panel indicate the SOR flows and the optimal

tolls are shown in the right panel. Notice that travelers arriving at node 3

can either reach node 5 via node 4 or cycle between nodes 2 and 3 before

choosing a downstream arc. The flow on link (3,2) indicates that a total of

59.83 units of flow cycles before reaching the destination. Since travelers are

unlikely to cycle, two alternate reformulations of the SOR and UER problems

can be defined (1) assuming no-reset or (2) by assuming that travelers choose

only acyclic policies. The no-reset model is however not realistic since different

travelers see different states that never changes over time whereas in practice,

supply-side changes are temporary. Note that in the optimal policies of the

no-reset version, travelers may cycle though the states of the arcs encountered

earlier do not change. In comparison, the second behavioral assumption is

more reasonable. However, solving the SOR problem with acyclic policies (we

will refer to the routing problem involving acyclic policies as the acyclic OSP

4Since the states s1 and s2 are observed only half the time, the µ values for these states
(in the BPR function) must be appropriately adjusted. Thus, the assumed capacities of
400 and 50 vehicles per hour correspond to µs1

35 = 200 and µs2
35 = 25 vehicles per 1/2 hour

respectively. Notice that changing units this way also ensures that the solution to a UER
model with identical link capacities in both states is consistent with that of the regular user
equilibrium assignment.
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Figure 2.5: Optimal flows (top) and tolls (bottom) in a network that
illustrates cycling.
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problem) is difficult due to Proposition 2.4.2.

Proposition 2.3. Acyclic OSP is NP-hard.

Proof. The proof for this proposition is similar to that by Polychronopoulos

and Tsitsiklis (1996) for the no-reset stochastic shortest path problem. We

proceed by establishing a reduction from the directed Hamiltonian path prob-

lem. Consider a directed graph Ḡ = (N̄ , Ā) with node set N̄ and arc set Ā with

arcs of cost 0. Let G′ = (N ′, A′) be an augmented graph with an additional

node v′ that can be reached directly from every node in N̄ via an arc of cost

0 or 1 with equal probability. The optimal acyclic OSP from any node in G′

would be to visit nodes in N̄ until a node i ∈ N̄ is found such that (i, v′) ∈ A′

has a cost 0 or all the other nodes in N̄ were visited and the arc cost to v′

from those nodes was 1. Hence, one can construct a Hamiltonian path (if it

exists) from the optimal policy of the acyclic OSP. �

To address this issue, one option is to use a heuristic for the acyclic OSP

problem by defining a bush using reasonable links. A reasonable link is one

whose head node is closer to the destination than the tail. Closeness to the

destination can be defined using distance or any other vector of node labels

(such as the regular OSP labels). A bush is an acyclic subgraph in which the

destination can be reached from all nodes. Solving the OSP problem on a

bush will yield an acyclic policy which can then be used for an all-or-nothing

assignment. However, there are two major problems with this approach. (1)
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Fixing the bush and using the FW method will result in an equilibrium with

respect to the subgraph and not the entire network. A similar issue can be

found in literature on the logit based stochastic user equilibrium (Sheffi, 1985;

Leurent, 1997). (2) Instead, if a different bush is used within each FW iteration

(by defining reasonable links either using the OSP labels or expected link

costs), a convergence criteria for equilibrium cannot be established since the

routing policies are often suboptimal and thus do not yield all-or-nothing flow

that is a descent direction. In fact, when we tested this method by defining

reasonable links using the OSP labels for the original network, the relative gap

was negative in several instances.5

Hence, solving the OSP subproblem to optimality is necessary to determine

the system optimal flows and the optimal tolls. Since, the acyclic OSP problem

is NP-hard, we instead compute policies which minimize expected generalized

cost while permitting cycles above a certain length. This is achieved by mod-

ifying the state of the traveler in the online shortest path problem include

a vector of m most recently visited nodes in addition to the node-message

pair. Using this state definition, the action space at each state is modified by

checking if one of the downstream nodes belongs to the set of m previously

visited nodes. We will refer to this variant of the SOR and UER problem as

the m-SOR and m-UER problems respectively. Thus, the used policies in the

5As an aside, notice that even if travelers used acyclic policies, a subnetwork with arcs
belonging to all used policies can contain a cycle (unlike the regular traffic assignment).
For this reason, faster equilibrium algorithms such as bush and origin based methods (Dial,
2006; Bar-Gera, 2002, 2010) cannot be easily modified to solve the UER and SOR problem.
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m-SOR and m-UER solutions will not have cycles with at most m+1 arcs. For

realistic problem instances, we suspect that one can completely avoid acyclic

policies using small values of m since cycling among a large number of arcs is

likely to result in increased expected travel time.

Solving the OSP problem with restrictions on the cycle length results in a

larger transition matrix (since the states associated with the online routing

problem also includes recently visited nodes) and for each policy and one

could redefine the network loading process, with some difficulty, to obtain an

equation similar to equation (2.10). Instead, in the remainder of this section,

we propose a simpler network transformation that enables us to use the existing

framework for the 0-SOR and 0-UER problems. The network transformation

is broken into the following two phases.

Phase I: The first step in the network transformation is carried out to enu-

merate, for any node i, the set of all feasible vectors of the last m nodes in

all paths that lead to node i. To this end, we add a dummy node X and

connect it to all the nodes in the network including itself (see Figure 2.6). We

then perform a breadth first search (BFS) for reaching node i and the distance

labels (which represent the shortest number of arcs required to reach a node i)

are used to enumerate the set of recently visited nodes Mi as proposed by Tang

et al. (2014) (see Algorithm 3). Let Mi(j) represent the set of nodes which

can reach node i by traversing at most j arcs. For instance, in the network in

Figure 2.6, when m = 2, M2(2) = {1, 2, 3, X}. The dummy node X is useful
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Figure 2.6: Network with dummy node to enumerate recently visited nodes.

in defining traveler states at the beginning sections of a trip when fewer than

m nodes are visited. We will continue to refer to N and A as the nodes and

arcs in the original network (before the addition of X).

Algorithm 3 Enumerate(G)

for i ∈ N do
Use BFS to find nodes that can reach i
for j = 0, 1, . . . ,m do

Populate Mi(j) using the BFS distance labels
end for
Mi ← ×mj=0Mi(j)
Scan each element of Mi and discard infeasible paths

end for

Phase II: Define a network G = (N ,A), whereN = ∪i∈NMi∪M and M = N .

We use an alias M for the set N so that the latter can be used to refer to

nodes in the original network. Throughout this section, we will use i and j to

represents nodes in the original network and k and l for nodes in ∪i∈NMi. A

regular arc in G is defined between node k ∈ Mi and l ∈ Mj if there is an arc
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Figure 2.7: Network transformation to restrict cycling.

(i, j) ∈ A (which we refer to as the parent arc) and if the first element of k

equals the last element of l. For example, for the network in Figure 2.6, when

m = 1, the network G (see Figure 2.7) contains arcs between nodes (2, 1) and

(3, 2) since the node 3 in the original network can be reached from node 2 (in

the original network) and the first element of (2,1) is the last element of (3,2).

Let Aij ⊂ A represent the set of arcs in A which share the same parent arc

(i, j) ∈ A.

Finally, dummy arcs are created in G to connect nodes in Mi and i ∈M . These

arcs are assumed to exist in a single state with zero free flow travel time and

infinite capacity. The subset of nodes M ∈ N play the role of destinations and

50



the nodes {(i,X, . . . , X) : i ∈ N} serve as origins. For instance, in Figure 2.6,

if d15 users travel from node 1 to node 5, then the demand between (1, X) and

5 in Figure 2.7 is set to d15.

We suppose that the regular arcs exist in the same number of states as their

parent arcs. However, the travel time on a regular arc is not solely a function

of its flow but also depends on the flow on other arcs which share the same

parent arc. More precisely, if (i, j) is the parent arc of (k, l), then tskl(xA) =

tsij(
∑

(k̂,l̂)∈Aij x
s
k̂l̂

), where xA represents the vector of state-dependent link flows

in G. For instance, the travel time on arc between (2, X) and (3, 2) in Figure 2.6

is a function of all travelers using arc (2, 3) in the original network, which is

obtained by adding the flow on arc between (2, X) and (3, 2) (which represents

travelers starting at 2 and headed to 3) and (2, 1) and (3, 2) (which represents

users traveling to 3 after reaching node 2 via node 1). While this construct

violates the separability assumption of the arc costs, the link delay functions for

arcs in G are symmetric, i.e., ∂tsk1l1
/∂xsk2l2

= ∂tsk2l2
/ ∂xsk1l1

∀ (k1, l1), (k2, l2) ∈ A

and hence the FW method can be applied to compute the equilibrium solution

and the optimal tolls (Vliet, 1987).

For the network in Figure 2.5, the 1-SOR problem can be used to eliminate

cycling between nodes 2 and 3. The system optimal flows and tolls are shown

in Figure 2.8. As expected, the flow and toll on link (3,2) is zero. However,

note that there is a wide variation in the tolls when compared to the 0-SOR

model.

51



1 
2 

3 5 

227.62 

272.38 

227.62 0.00 

𝑠1: 249.96 
𝑠2: 93.33 

1 
2 

3 

161.06 

330.26 

161.06 0.00 

𝑠1: 14.64 
𝑠2: 1165.43 

4 

5 

4 

Figure 2.8: Optimal flows (top) and tolls (bottom) for the 1-SOR problem.
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Table 2.1: Total expected travel time of UER and SOR solutions.

m No. of nodes No. of arcs UER SOR
0 24 76 8.6256E+06 8.3526E+06
1 125 378 8.7206E+06 8.4502E+06
2 379 1224 8.7211E+06 8.4502E+06
3 1237 3864 8.7213E+06 8.4502E+06

2.5 Demonstration

The FW algorithm for the SOR and UER problems was tested on the Sioux

Falls network consisting of 24 nodes and 76 links (see Figure 2.9). Each link in

the network was assumed to exist in two states: one corresponding to normal

operating condition and another representing disrupted condition due to sup-

ply side uncertainty (which was modeled using a 50% reduction in capacity).

The probabilities for these two link-states were set to 0.9 and 0.1 respectively

for all the links in the network. The arc data for the normal conditions was ob-

tained from https://github.com/bstabler/TransportationNetworks and

the BPR function was used to estimate the state-dependent travel times using

the state-dependent flows. The value of ε in the FW algorithm was set to

10−4. Table 2.1 shows the TETT values for the SOR and UER variants. The

TETT values for m = 0 and m = 1 are significantly different but the difference

between the TETT of variants with larger m is minimal. Since the Sioux Falls

network does not have many cycles of length exactly 3, the TETT values for

m = 2 are close to that for m = 1 as expected. However, the results for m = 3

indicate that many of the cyclic policies used by travelers in the 0-UER and

0-SOR assignment have cycles only of length 2.
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 Figure 2.9: Sioux Falls network.
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A comparison of the marginal tolls for different values of m is presented in

Table 2.2. The results reinforce the previous observation that restricting cycles

of length 2 has a noticeable effect on the equilibrium solution and optimal tolls.

However, optimal tolls for instances which disallows cycles of length less than

or equal to 3 or 4 are nearly the same as those for instances in which cycles of

length 2 are prohibited.

Table 2.2: Comparison of marginal tolls.

0-SOR vs. 1-SOR 1-SOR vs. 2-SOR 2-SOR vs. 3-SOR
RMS error 9.066 0.068 0.066
Maximum error 2.805 0.395 0.389
Minimum error -48.500 -0.199 -0.244

Figure 2.10 depicts the run-times in seconds for the four SOR problems. The

FW algorithm was implemented in C++ on a Linux machine with an Intel(R)

Core(TM) i5-4590 CPU @ 3.30GHz processor, 16 GB RAM, and 6 MB cache.

A deque data structure for the TD-OSP scan eligible list in which nodes are

removed from the front and added to its back was found improve the run-

times. Matrix inversion in the all-or-nothing assignment was performed using

the Eigen library. As the 1-SOR, 2-SOR, and 3-SOR problems are defined on

a transformed network with more number of arcs they take a longer time to

converge.

When roadway capacities are stochastic, one may estimate the expected capac-

ity and calculate a static marginal toll using traditional traffic assignment mod-

els. However, when travelers select links adaptively, charging static marginal
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Figure 2.11: Impact of static and state-dependent marginal tolls for different
disruption probabilities.

tolls will lead to suboptimal system performance. In fact, in some cases, it may

also lead to an increase in the TETT when compared to the no-tolls (UER)

or the do-nothing scenario. To highlight the advantage of state-dependent

marginal tolls over static tolls we compared the TETT values of 1-UER, 1-

SOR, and 1-UER with static marginal toll models in Figures 2.11 and 2.12.

In addition, sensitivity to input parameters such as the probability and sever-

ity of disruption were also studied. The 1-UER model with static marginal

tolls assumes that users adapt to en route link state information but the toll

is calculated using a traditional system optimum model with expected link

capacities.
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Figure 2.11 shows the TETT values for the three models for different link

disruption probabilities. The probabilities of disruption, which represents the

fraction of time links are disrupted, are plotted on the x-axis and the TETT

values (scaled down by a factor of 107) are represented on the y-axis. As

before, the link capacities in the disrupted state were reduced by 50%. The

results indicate that when disruption probabilities are low (i.e., when disrup-

tions occur for small durations), the static marginal tolls result in a state with

lower TETT than the no-tolls case but are still suboptimal when compared

to the SOR tolls. However, as the disruption probabilities increased, static

marginal tolls led to more congestion than the UER state. For instance, when

the links are disrupted for 30% of the time, using static tolls results in a TETT

of 13.3 million vehicle-minutes, which is nearly 5% higher than the TETT of

the no-tolls case (12.7 million vehicle-minutes).

Sensitivity analysis with respect to severity of disruptions revealed a similar

trend in the TETT values (see Figure 2.11). The SOR and UER models were

tested on three instances in which the disrupted link capacities was set to

25% (Low), 50% (Med), and 75% (High) of the normal operating capacity.

The probability of finding a link in a disrupted state was fixed at 0.1. As

the severity of disruption increased, the performance of the UER model with

static marginal tolls worsened when compared with the UER state.
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2.6 Summary

In this chapter, a congestion pricing model was proposed for networks in which

links exist in different states (representing non-recurring events such as poor

weather, incidents, and temporary bottlenecks) with probabilities that are

exogenous and independent of the flow variables. Traveler do not simply choose

paths but select policies which respond to en route information. Both the user

equilibrium and system optimum versions of this problem were defined and it

was shown that marginal cost pricing (with a different price for each link-state)

can align the UER and SOR solutions.

The optimal policies used by travelers at equilibrium are known to contain

cycles due to the reset assumption of link-states. In order to correct this mod-

eling artifact, a network transformation is proposed that restricts cycling in the

optimal policies. The intuition behind this comes from the fact that the SOR

and UER problems on acyclic graphs do not involve cyclic policies. Our net-

work transformation eliminates cycles of certain lengths and thus makes the

underlying graph relatively “acyclic”. The proposed methods were demon-

strated using the Sioux Falls network and the results indicate that problem

of determining the optimal marginal tolls is computationally tractable even

when cycles of certain lengths are avoided. In the next chapter, we formulate

the minimum revenue congestion pricing problem for system optimum with

recourse which may make the state-dependent pricing model more appealing

by potentially reducing or eliminating tolls, especially on disrupted links.
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Chapter 3

Within-Day Pricing: Minimum
Expected Revenue Tolls

3.1 Introduction

In the static traffic assignment models discussed in Chapter 1, marginal tolls

were shown to lead to a SO state. However, the set of tolls that improve sys-

tem efficiency are not necessarily unique. The same is true for state-dependent

tolls in the SOR model. For instance, consider the network that was used in

the previous chapter to illustrate techniques for restricting cycling (see Fig-

ure 3.1). The top panel shows the optimal marginal tolls which generate a

revenue of 393906.40 units whereas the bottom panel shows another set of

state-dependent tolls that also lead to an SOR state while collecting only a

total of 8266.93 units from the travelers in the network.

Minimum revenue congestion pricing models for deterministic TAPs (Bergen-

dorff et al., 1997; Dial, 1999a, 2000; Penchina, 2004) were developed to make

the concept of tolling more acceptable to the public. In a few cases, these

minimum revenue tolls were shown to be equitable because they ensure that

at least one of the paths between each OD pair remains untolled. As noted

in Chapter 1, a majority of governments and the public are averse to the idea
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of tolling. This is because tolls and fuel taxes are perceivable out-of-pocket

costs unlike the societal benefits of reduced network congestion. Although

tolls are considered to be transfer payments, in which case the revenue gener-

ated does not matter, having a tolling scheme that achieves a social optimum

state while collecting less money from travelers makes it an appealing network

improvement strategy.

In deterministic TAPs, the KKT conditions for the Beckmann formulation are

both necessary and sufficient. Using the SO link flow solution, these conditions

may be reduced to a set of linear inequalities involving the tolls and the La-

grangian multipliers associated with the flow conservation constraints. Thus,

one can formulate a linear program with the revenue (i.e., flow on each link

times the toll) as the objective subject to linear equilibrium constraints. In the

same spirit, this chapter explores the problem of determining state-dependent

minimum expected revenue tolls under supply-side uncertainty. Throughout

this chapter, for the purpose of brevity, we will refer to the objective simply

as revenue instead of expected revenue.

The only caveat is that the user equilibrium and system optimum model with

recourse discussed in the previous chapter involve link-state and policy flow

variables. While this formulation uses the least amount of memory, link flows

are aggregated over all OD pairs and hence cannot be directly used in con-

structing the constraint set of the minimum revenue pricing problem. Mo-

tivated by this fact, we propose a reformulation of the UER/SOR problem
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Figure 3.1: Marginal tolls (top) and minimum revenue tolls (bottom) for the
0-SOR problem.
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in this chapter that will help derive accurate solutions without using policy

flow variables. This formulation also has the potential to improve convergence

for large problems as they can eliminate residual flows unlike the link-based

methods.

Throughout this chapter, we will discuss methods to solve the 0-SOR and

0-UER models. Extending the proposed methods to other recourse variants

remains beyond the scope of this dissertation. The rest of this chapter is or-

ganized as follows. In Section 3.2, we propose an alternate UER formulation,

derive the first order optimality conditions, and establish equivalence between

the first order conditions and the UER principle. We then propose a solution

method that tracks the split proportions at each node-state in Section 3.3.

Section 3.4 discusses two linear programming formulations for computing the

minimum revenue tolls that are based on the UER reformulation and solution

methods discussed in Sections 3.2 and 3.3. Algorithms for the UER reformu-

lation and linear programs for minimum revenue are tested on the Sioux Falls

network in Section 3.5. Finally in Section 3.6, we summarize the findings of

this chapter.

3.2 Multiple Origin, Single Destination Problem

Consider a network G = (N,A) with a single destination v but multiple origins

belonging to the set Z. The methods discussed in this section can be repeated

for different destinations iteratively to solve the multiple OD pair problem. Let
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the demand from origin u ∈ Z to v be duv. Let, as before, the set of messages

at a node i be denoted by Θi and qθi be the probability of observing message θ.

Assume that zθij is the number of travelers who observe message θ ∈ Θi at node

i and take arc (i, j). The link-state of arc (i, j) is denoted using θij. Notice

that xsij =
∑

θ:θij=s
zθij. Suppose z = (zθij)(i,j)∈A,θ∈Θi and x = (xsij)(i,j)∈A,s∈Sij .

Also suppose that
∑

(i,j)∈A |Sij| and
∑

(i,j)∈A |Θi| are denoted as |S| and |M |,

respectively. Then, the UER problem can also be formulated as

min f(z) =
∑

(i,j)∈A

∑
s∈Sij

∫ ∑
θ:θij=s z

θ
ij

0

tsij(z)dz (3.1)

s.t. qθi

ηi +
∑

(h,i)∈A

∑
θ̄∈Θh

zθ̄hi

 =
∑

(i,j)∈A

zθij i ∈ N, θ ∈ Θi (3.2)

zθij ≥ 0 ∀(i, j) ∈ A, θ ∈ Θi (3.3)

where ηi is the demand entering/leaving the node i and is defined as

ηi =


duv if i = u

−
∑

u∈Z duv if i = v

0 otherwise

(3.4)

In order to formally establish an equivalence between the above formulation

and the UER conditions, we first derive the KKT conditions of the above

non-linear program. Lagrangianizing the flow conservation constraints,

L(z) =
∑

(i,j)∈A

∑
s∈Sij

∑
θ:θij=s z

θ
ij∫

0

tsij(z)dz + λθi

 ∑
(i,j)∈A

zθij −
∑

(h,i)∈A

∑
θ̄∈Θh

qθi z
θ̄
hi − qθi ηi


(3.5)
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Denoting t
θij
ij

(∑
θ:θij=s

zθij

)
as tθij, the KKT conditions for all (i, j) ∈ A, θ ∈ Θi

are

∂L(z)

∂zθij
≥ 0⇒ tθij +

∑
θ̄∈Θj

qθ̄jλ
θ̄
j − λθi ≥ 0 (3.6)

zθij

(
∂L(z)

∂zθij

)
= 0⇒ zθij

tθij +
∑
θ̄∈Θj

qθ̄jλ
θ̄
j − λθi

 = 0 (3.7)

Notice that the above conditions hold even if a fixed real number is added to

some of the λ values. Hence, we set

λθv = 0 ∀ θ ∈ Θv (3.8)

Equations (3.6)–(3.8) are first order necessary conditions, i.e., for any opti-

mal solution to the non-linear program defined by equations (3.1)–(3.3), there

exists a vector of unrestricted λs that satisfy equations (3.6)–(3.8).

The following proposition proves that the optimal solution to this formulation

can be used to construct policies that satisfy the UER conditions (i.e., at

equilibrium, all used policies have equal and minimal expected costs). Suppose

that a policy π carries flow from origin u to destination v. If a node i is

accessible from u, i.e., if the probability of reaching i from node u is positive,

which we denote using u→ i, then π(i, θ) = j ⇒ z̄θij > 0, where z̄θij is a solution

to the non-linear program (3.1)–(3.3). In such cases, we say that the policy

π is used by travelers from origin u. Any policy that does not carry demand

from origin u is said to be unused by travelers starting at u. Throughout

this chapter we assume that all policies terminate at the destination with

probability 1.
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Proposition 3.1. Every used policy constructed from z̄θij has the same expected

cost from all origins. All unused policies are at least as expensive as the used

policies.

Proof. Let u be an arbitrary origin. Suppose a policy π is used by travelers

starting at u. The value function (distance labels) associated with states (i, θ),

denoted by µθi (π), can be estimated uniquely by solving the following system

of equations.

µθi (π) = tθi,π(i,θ)+
∑

θ̄∈Θπ(i,θ)

qθ̄π(i,θ)µ
θ̄
π(i,θ)(π) ∀ i ∈ N\{v}, θ ∈ Θi (3.9)

µθv(π) = 0 ∀ θ ∈ Θv (3.10)

In order to compute the labels associated with the origin µθu(π), it suffices to

solve a subset of the above equations. More specifically, we can ignore the

nodes that cannot be reached from u with positive probability, while using

policy π, as shown in the following equations.

µθi (π) = tθi,π(i,θ) +
∑

θ̄∈Θπ(i,θ)

qθ̄π(i,θ)µ
θ̄
π(i,θ)(π) ∀ i ∈ N\{v} : u→ i, θ ∈ Θi (3.11)

µθv(π) = 0 ∀ θ ∈ Θv (3.12)

Since policy π is used by travelers from u, z̄θiπ(i,θ) > 0∀ i ∈ N\{v} : u→ i, θ ∈

Θi. Notice that equations (3.11) and (3.12) are a subset of the KKT conditions

(3.6)–(3.8). Hence, for any vector of λs satisfying the KKT conditions, λθu =

µθu(π)∀ θ ∈ Θu. Therefore, by defining λu =
∑

θ∈Θu
qθλθu, we conclude that all

used policies have the same expected cost from u.
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Now consider a policy π that is unused by travelers from u. The expected cost

to reach v from u can be obtained by solving equations (3.11) and (3.12) as

before. However, we cannot conclude that zθiπ(θ) = 0 for any i ∈ N\{v}, θ ∈

Θi and simplify the KKT conditions since travelers using other policies may

choose π(i, θ) when at state (i, θ). From equation (3.7),

tθi,π(i,θ) +
∑

θ̄∈Θπ(i,θ)

qθ̄jλ
θ̄
π(i,θ) − λθπ(i,θ) ≥ 0 ∀ i ∈ N\{v} : u→ i, θ ∈ Θi (3.13)

Using equations (3.11) and (3.13), for all i ∈ N\{v} : u → i, θ ∈ Θi, we may

write

λθi − µθi (π) ≤
∑

θ̄∈Θπ(i,θ)

qθ̄π(i,θ)

(
λθ̄π(i,θ) − µθ̄π(i,θ)(π)

)
(3.14)

which in matrix form can be represented as (I −Qπ)(λ − µ) � 0, where Qπ

represents a transition probability matrix and � denotes a component-wise in-

equality. We proceed by left-multiplying both sides with (I−Qπ)−1. However,

one must make sure that this preserves the component-wise inequality. Since

Qπ is a transition probability matrix, all of its eigenvalues have a magnitude

less than 1 which implies that

(I−Qπ)−1 = I + Qπ + Q2
π + . . . (3.15)

Since each of the elements of Qπ is non-negative, it follows from the above

equation that the all the elements of (I−Qπ)−1 are non-negative. Hence,

(I−Qπ)(λ− µ) � 0 (3.16)
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⇒ (I−Qπ)−1(I−Qπ)(λ− µ) � (I−Qπ)−10 (3.17)

⇒ λ− µ � 0 (3.18)

⇒ λ � µ (3.19)

Thus, µθu(π) ≥ λθu ∀ θ ∈ Θu ⇒ µu(π) ≥ λu. Hence, the cost of all unused

policies are at least λu. �

3.3 A Solution Method using Split Proportions

The previous section established that a solution to the new formulation satisfies

the UER principle. In this section, we describe a method similar to origin-

based assignment (OBA) (Bar-Gera, 2002) to compute the optimal z values.

Let αθij represent the proportion of travelers arriving at node i in node-state

(i, θ) and choosing link (i, j). Denote α = (αθij)(i,j)∈A,θ∈Θi . Thus, the following

equations hold:

qθiα
θ
ij

ηi +
∑

(h,i)∈A

∑
θ̄∈Θh

zθ̄hi

 = zθij ∀(i, j) ∈ A, θ ∈ Θi (3.20)

which in matrix form can be expressed as (I−QT
α)z = aα, where QT

α ∈ R|M |×|M |+

and aα ∈ R|M |×1
+ . The flow conservation equations can also be written in terms

of the split proportions α as follows:

∑
(i,j)∈A

αθij = 1 ∀i ∈ N\{v}, θ ∈ Θi (3.21)

αθvj = 0 ∀j ∈ Γ(v), θ ∈ Θv (3.22)
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αθij ≥ 0 ∀(i, j) ∈ A, θ ∈ Θi (3.23)

Further, since xsij =
∑

θ∈Θi:θij=s
zθij, the following equations are satisfied.

xsij =
∑
θ∈Θi:
θij=s

qθiα
θ
ij

ηi +
∑

(h,i)∈A

∑
s̄∈Shi

xs̄hi

 ∀ (i, j) ∈ A, s ∈ Sij (3.24)

⇒ xsij −
∑
θ∈Θi:
θij=s

∑
(h,i)∈A

∑
s̄∈Shi

qθiα
θ
ijx

s̄
hi =

∑
θ∈Θi:
θij=s

∑
(h,i)∈A

∑
s̄∈Shi

ηiq
θ
iα

θ
ij ∀ (i, j) ∈ A, s ∈ Sij

(3.25)

These equations can be compactly written in matrix form as
(
I−PT

α

)
x = bα,

where PT
α ∈ R|S|×|S|+ and bα ∈ R|S|×1

+ . Thus, given α, one can use equations

(3.20) and (3.24) to compute z and x respectively. (Since x and z are functions

of α, we could denote them as xα and zα, but we ignore the subscripts to keep

the notation simple.)

The solution to equations (3.20) and (3.24) is unique as one can interpret α to

represent a stochastic policy, i.e., at every node state, each of the downstream

arcs is chosen with a certain probability. Thus, Qα and Pα can be viewed

as transition probability matrices of an absorbing Markov chain. Unlike the

UER formulation in the earlier chapter, in which different number of travelers

used different policies, every traveler in the network is now assumed to follow

the same stochastic policy. Since travelers are non-atomic, the probabilities

of choosing the downstream links at each node state coincide with the split

proportions.

Treating the split proportions α as a vector of decision variables, we now focus
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on obtaining a descent direction to the optimization model described earlier.

This would let us use a gradient projection-like algorithm to solve the problem.

The elements of the Jacobian ∇αf can be computed as follows

∂f

∂αθij
=
∑

(k,l)∈A

∑
s∈Skl

∂f

∂xskl

∂xskl
∂αθij

(3.26)

=
∑

(k,l)∈A

∑
s∈Skl

tskl
∂xskl
∂αθij

(3.27)

To estimate ∂xskl/∂α
θ
ij, we partially differentiate equations (3.24) with respect

to αθij. The following cases arise:

Case 1:(k, l) 6= (i, j) or (k, l) = (i, j), s 6= θij

∂xskl
∂αθij

=
∑
θ̄:θ̄kl=s

∑
(h,k)∈A

∑
s̄∈Shk

qθ̄kα
θ̄
kl

∂xs̄hk
∂αθij

(3.28)

Case 2:(k, l) = (i, j), s = θij

∂xskl
∂αθij

= qθkηk +
∑

(h,k)∈A

∑
s̄∈Shk

∂

∂αθij

(
qθkα

θ
klx

s̄
hk

)
+
∑
θ̄:θ̄ 6=θ
θ̄kl=s

∑
(h,k)∈A

∑
s̄∈Shk

qθ̄kα
θ̄
kl

∂xs̄hk
∂αθij

(3.29)

= qθkηk +
∑

(h,k)∈A

∑
s̄∈Shk

(
qθkx

s̄
hk + qθkα

θ
kl

∂xs̄hk
∂αθij

)
+
∑
θ̄:θ̄ 6=θ
θ̄kl=s

∑
(h,k)∈A

∑
s̄∈Shk

αθ̄kl
∂xs̄hk
∂αθij

(3.30)

= qθk

ηk +
∑

(h,k)∈A

∑
s̄∈Shk

xs̄hk

+
∑
θ̄:θ̄kl=s

∑
(h,k)∈A

∑
s̄∈Shk

qθkα
θ̄
kl

∂xs̄hk
∂αθij

(3.31)

Thus, equations (3.28) and (3.31) form a system of equations in ∂xskl/∂α
θ
ij as
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shown below.

∂xskl
∂αθij

−
∑
θ̄:θ̄kl=s

∑
(h,k)∈A

∑
s̄∈Shk

qθ̄kα
θ̄
kl

∂xs̄hk
∂αθij

= 0∀ (k, l) 6= (i, j)or(k, l) = (i, j), s 6= θij

(3.32)

∂xskl
∂αθij

−
∑
θ̄:θ̄kl=s

∑
(h,k)∈A

∑
s̄∈Shk

qθkα
θ̄
kl

∂xs̄hk
∂αθij

= qθk

ηk +
∑

(h,k)∈A

∑
s̄∈Shk

xs̄hk

 ∀ (k, l) = (i, j), s = θij (3.33)

From the above equations and equation (3.25), one may notice that the co-

efficient matrix of the unknown partials is the same, i.e.,
(
I−PT

α

)
. In fact,

the coefficient matrix is the same for every arc (i, j) and message θ. The only

thing that changes for a different αθij is the right hand side. Thus, the par-

tial derivatives of the link-state flows with respect to αθij can be written as(
I−PT

α

)−1
bα ((i, j), θ), where bα ((i, j), θ) ∈ R|S|×1

+ and is defined as

bsαkl ((i, j), θ) =


qθk

ηk +
∑

(h,k)∈A

∑
s̄∈Shk

xs̄hk

 if (k, l) = (i, j), s = θij

0 otherwise

(3.34)

Let Csαij be the expected travel time to reach the destination for a traveler

following the stochastic policy α and starting at the upstream end of link

(i, j) in state s. Then, the policy costs are related to the link costs by the

equation Cα = tα + PαCα, where Cα ∈ R|S|×1
+ and t ∈ R|S|×1

+ .

Thus, we can rewrite equation (3.27) as

∂f

∂αθij
= (tα)T

(
I−PT

α

)−1
bα ((i, j), θ) (3.35)
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= ((I−Pα)Cα)T
(
I−PT

α

)−1
bα ((i, j), θ) (3.36)

= (Cα)T (I−Pα)T
(
I−PT

α

)−1
bα ((i, j), θ) (3.37)

= (Cα)T bα ((i, j), θ) (3.38)

= Cθijαij qθi

ηi +
∑

(h,i)∈A

∑
s̄∈Shi

xs̄hi

 (3.39)

We will henceforth refer to Cθijαij simply as Cθαij as long as it is clear from the

context. Once the descent direction is known, we can choose an appropriate

step size and project the new α onto the feasible region described using equa-

tions (3.21) and (3.23). To simplify the projection part we can define basic and

non-basic split proportions analogous to those in standard gradient projection

algorithms. Consider a node-message pair (i, θ), where i 6= v. Let βθi represent

the head node of an arc adjacent to node i. We will refer to (i, βθi ) as the basic

arc at (i, θ). All the remaining arcs will be referred to as non-basic arcs at

state (i, θ). Let the vector of all non-basic arc-message proportions be referred

to as α(NB). Then, the flow conservation constraints (3.21) and (3.23) can be

expressed as

αθiβθi
= 1−

∑
(i,j)∈A,j 6=βθi

αθij(NB) ∀i ∈ N, θ ∈ Θi (3.40)

αθvj = 0 ∀j ∈ Γ(v), θ ∈ Θv (3.41)

αθij(NB) ≥ 0 ∀(i, j) ∈ A, θ ∈ Θi (3.42)

For j 6= βθi and i 6= v, we can compute the derivatives of the Beckmann

objective function with respected to the non-basic alphas using the following
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equations:

∂f

∂αθij(NB)
=

∂f

∂αθij
− ∂f

∂αθ
iβθi

(3.43)

= (Cθαij − Cθαiβθi )q
θ
i

ηi +
∑

(h,i)∈A

∑
s̄∈Shi

xs̄hi

 (3.44)

Remark. The expression for the gradient of the objective with respect to the

non-basic split proportions is reminiscent of mixed strategy equilibria in game

theory. In mixed strategy equilibria, all strategies with positive weight have

equal expected utility. The same is true with split proportions in that all

downstream arcs that are chosen with positive probabilities must have equal

C values (assuming that the basic arc at each node-state belongs to the least

cost policy).

Algorithm 4 outlines the pseudocode for a destination-based assignment using

the split proportions for a single destination v. In the first step, we initialize

the travel times for all link-states to their free flow travel times and find the

online shortest path. The optimal policy is then used to initialize basic arcs

at each node-state. Subsequently, the alpha values of the basic arc at each

node-state are set to 1. Finally the link-state flows are computed and the link

costs are updated.

The algorithm then equilibrates flow by computing new online shortest paths,

updating the basic arcs, and shifting the split proportions from non-basic arcs

to basic arcs at each node-state. The split proportions are adjusted using the
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gradient of the objective as calculated in equation (3.44). However, the exact

step size that reduces the objective is slightly difficult to obtain. We employ

a method similar to the OBA algorithm proposed by Bar-Gera (2002) and

compute the social pressure associated with a step size ϕ. The social pressure

associated with updating α to α + ∆α is given by −∆x · t(x + ∆x), where x

and x + ∆x are the link-state flows that correspond to the split proportions α

and α + ∆α respectively. We set ϕ to 1 and reduce it by half until the social

pressure becomes positive. The details of updating the split proportions are

shown in Algorithm 5.

The reason for computing the social pressure to update the split proportion

is that the Beckmann objective is not convex in α. Therefore, the first or-

der optimality conditions are necessary but not sufficient. Hence, we find the

link-state flows after each split proportions update and verify if the Beckmann

function has improved. Bar-Gera (2002) showed that, at every sub-optimal so-

lution of the OBA, there exists a ϕ > 0 that results in positive social pressure,

and we hypothesize that the same is true for the equilibrium with recourse

problem.

For a given ϕ, if the inflow to a node in the network is positive, the non-basic

split proportions are first reduced by an amount ϕ∂f/∂αθij(NB). However, if

the reduced split proportion is negative, we project it back to the feasible region

by setting it to zero. When the inflow is zero, the non-basic split proportions

are set to zero. In this particular case, other update rules that depend on the
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Algorithm 4 DBA (G, t, v)

Step 1: Initialize Flows
α← 0
GAP←∞
π∗ ← TD-OSP(G, t(0), v)
for i ∈ N\{v}, θ ∈ Θi do

βθi ← π∗(i, θ)
αθ
iβθi
← 1

end for
x← (I−PT

α)
−1

bα

Step 2: Equilibrate Flows
while GAP > ε do

π∗ ← TD-OSP(G, t(x), v)

GAP ← (t · x)
(∑

u∈Z
∑

v∈Z duvC
π∗
u

)−1 − 1

for i ∈ N\{v}, θ ∈ Θi do
βθi ← π∗(i, θ)

end for
Update the set of non-basic arcs-messages NB
Compute ∇αf and ∇α(NB)f using equations (3.39) and (3.44)
α← UpdateAlpha

(
G, v,α,∇α(NB)f

)
end while

expected costs C such as those defined in Bar-Gera (2002) (see equation (36))

may also be used. For the numerical experiments discussed later, in order to

speed up convergence, we sometimes update the split proportions at a single

node-state instead of updating them at all node-states using a single value of

ϕ, estimate the new link-state costs, and recompute the online shortest paths.

Algorithm 4 provides a solution to the multiple origin, single destination prob-

lem. To solve the UER and SOR problems for multiple destinations, one can

simply keep track of the destination dependent split proportions and link-state
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Algorithm 5 UpdateAlpha
(
G, v,α,∇α(NB)f

)
ϕ← 1
α̂← α
x̂← x
Social Pressure ← −∞
while Social Pressure < 0 do

α← α̂
for (i, j) ∈ A, θ ∈ Θi : i 6= v, j 6= βθi do . Update non-basic variables

if (ηi +
∑

(h,i)∈A
∑

s̄∈Shi x
s̄
hi) > 0 then

αθij ← max
{
αθij − ϕ∂f/∂αθij(NB), 0

}
else

αθij ← 0
end if

end for

for i ∈ N\{v}, θ ∈ Θi do . Update basic variables
αθ
iβθi
← 1−

∑
(i,j)∈A,j 6=βθi

αθij(NB)

end for

x← (I−PT
α)
−1

bα

Social Pressure ← −(x− x̂) · t(x)
ϕ← ϕ/2

end while
return α

flows, and equilibrate the flows for each destination iteratively while treating

the flows associated with other destinations as background traffic. Thus, a

detailed exposition of the multiple destination case will not presented.

3.4 Minimum Revenue Tolling

As discussed at the beginning of this chapter, multiple toll vectors may result

in the same SOR state. In order to find the toll pattern that minimizes the
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total revenue using a linear program, it is first necessary to establish that the

KKT conditions to the UER reformulation (3.1)–(3.3) are not just necessary

but are also sufficient. The following proposition helps prove this fact.

Proposition 3.2. The objective of the non-linear program (3.1)–(3.3) is con-

vex. Hence, the KKT conditions (3.6)–(3.8) are both necessary and sufficient.

Proof. Let, as before,

g(x) =
∑

(i,j)∈A

∑
s∈Sij

∫ xsij

0

tsij(x) dx

f(z) =
∑

(i,j)∈A

∑
s∈Sij

∫ ∑
θ:θij=s z

θ
ij

0

tsij(z)dz

Since xsij =
∑

θ:θij=s
zθij, g(x) = f(z), and the vector x can be written as linear

function of z, x = Mz, where M is a state-message incidence matrix of zeros

and ones.

Consider two distinct points z1 and z2. Let z = ϕz1 + (1 − ϕ)z2 for some

ϕ ∈ (0, 1). Multiplying both sides of this equation by M, we get Mz =

ϕMz1 + (1 − ϕ)Mz2, which implies x = ϕx1 + (1 − ϕ)x2. However, note

that x1 and x2 are not necessarily distinct as multiple link-message flows may

produce the same link-state flows much like the relationship between path flows

and link flows in deterministic TAPs. Since g(·) is a strictly convex function

and g(x) = f(z),

g(x) ≤ ϕg(x1) + (1− ϕ)g(x2) (3.45)
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⇒ f(z) ≤ ϕf(z1) + (1− ϕ)f(z2) (3.46)

Therefore, f is convex and the KKT conditions (3.6)–(3.8) are both necessary

and sufficient. �

Note that since f is not strictly convex the optimal solution is not necessarily

unique in link-message flows.

Equations (3.6)–(3.8) are the KKT conditions for the multiple origin, single

destination UER model. We can extend this to the multiple OD case in the

following way

tθvij +
∑
θ̄∈Θj

qθ̄jλ
θ̄v
j − λθvi ≥ 0 ∀ v ∈ Z, (i, j) ∈ A, θ ∈ Θi (3.47)

zθvij

tθvij +
∑
θ̄∈Θj

qθ̄jλ
θ̄v
j − λθvi

 = 0 ∀ v ∈ Z, (i, j) ∈ A, θ ∈ Θi (3.48)

λθvv = 0 ∀ v ∈ Z, θ ∈ Θv (3.49)

Suppose the vector ᾱ represents the multi-commodity SOR solution. Let

that the resulting flow variables be represented as x̄ and z̄. Using the split

proportions and link-state flows, we can determine if z̄θvij is strictly positive or

zero. From equation (3.20), notice that z̄θvij is strictly positive only if both ᾱθvij

and the inflow to node i for destination v are positive. This information helps

us simplify the KKT conditions and formulate the minimum revenue problem

79



as a linear program (see equations (3.50)–(3.54)).

min
c,λ

∑
v∈Z

∑
(i,j)∈A

∑
θ∈Θi

z̄θvij c
θv
ij (MINREV-1) (3.50)

s.t. λθvi − cθvij −
∑
θ̄∈Θj

qθ̄vj λ
θ̄v
j = t̄θij ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi : z̄θvij > 0 (3.51)

λθvi − cθvij −
∑
θ̄∈Θj

qθ̄vj λ
θ̄v
j ≤ t̄θij ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi : z̄θvij = 0 (3.52)

λθvv = 0 ∀v ∈ Z, θ ∈ Θv (3.53)

cθvij ≥ 0 ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi (3.54)

Equations (3.51) and (3.52) are identical to equations (3.47) and (3.48) except

for an additional term cθvij , which represents the toll paid by travelers heading

to v when they choose to travel on arc (i, j) after receiving a message θ at

node i. The objective represents sum total of the tolls paid by the travelers

in the network. Clearly, the marginal tolls are feasible for the MINREV-1

formulation.

The tolls on links in this formulation are a function of the destination and

the message received at the tail node. However, from a practical standpoint,

to implement such a tolling mechanism, the system manager would require a

lot of information from travelers, some of which may be difficult to obtain for

privacy reasons. Alternately, by imposing additional constraints, it is possible

to estimate minimum revenue tolls for each link-state as shown below.

min
c,ς,λ

∑
(i,j)∈A

∑
s∈Sij

x̄sijς
s
ij (MINREV-2) (3.55)
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s.t. λθvi − cθvij −
∑
θ̄∈Θj

qθ̄vj λ
θ̄v
j = t̄θij ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi : z̄θvij > 0 (3.56)

λθvi − cθvij −
∑
θ̄∈Θj

qθ̄vj λ
θ̄v
j ≤ t̄θij ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi : z̄θvij = 0 (3.57)

ςsij = cθvij ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi : θij = s (3.58)

λθvv = 0 ∀v ∈ Z, θ ∈ Θv (3.59)

cθvij ≥ 0 ∀v ∈ Z, (i, j) ∈ A, θ ∈ Θi (3.60)

Equation (3.58) in the formulation MINREV-2 is an additional constraint that

ensures that the toll paid by travelers on each link is purely a function of the

link-state. Note also that in both MINREV-1 and MINREV-2, we disallow

tolls from being negative. Negative tolls have been used in minimum revenue

pricing models as they act as an instrument for providing incentives to travelers

(Hearn and Ramana, 1998). In deterministic TAPs, one would just need to

design incentives such that there are no negative cycles because a negative cycle

would incentivize travelers to infinitely cycle and exploit the system. However,

designing negative tolls or incentives is more complicated in the presence of

supply-side uncertainty because detecting an unbounded instance in which

travelers cycle indefinitely is not trivial (Provan, 2003; Boyles and Rambha,

2016). Hence, we stick to the minimum revenue problem with non-negativity

constraints in this dissertation.

Remark. For formulating MINREV-1 and MINREV-2, knowledge of the signs

of z̄θijs would suffice. In this chapter, we described a solution method using

split proportions to estimate z̄. Alternately, one can also construct a feasible
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z̄ from a vector of optimal link-state flows x̄ that solves the SOR formulation

discussed in the previous chapter, and use it to populate the constraints of

the minimum revenue pricing problem. Additionally, a maximum entropy like

objective can be used to find a vector of z̄ from the optimal link-state flows x̄.

This would maximize the number of non-zero elements in z̄ and in turn result

in a tighter constraint set when solving MINREV-1 and MINREV-2. However,

since the link-state flows from the methods discussed in the previous chapter

are aggregated across all destinations, in order to compute a disaggregated

solution, one would need to reformulate the equilibrium model in a manner

similar to that proposed by Nie (2012).

3.5 Results

In this section, we illustrate the results of minimum revenue formulations

MINREV-1 and MINREV-2 on the Sioux Falls test network that was intro-

duced in the previous chapter. Algorithm 4 was used to solve the SOR problem

to a gap of 10−6 and the optimal split proportions were used to construct the

constraints of the LPs. Since the optimality gap is not exactly zero, we relax

the equality constraints (3.52) and (3.57) as suggested by Dial (2000) and al-

low the left hand sides to lie in an ε-neighborhood of 0. The linear programs

were solved using CPLEX’s dual simplex algorithm (v12.6.2). The optimal

objective values, problem sizes, and computation times are shown in Table

3.1.
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Table 3.1: Summary of Minimum Revenue Results.

Marginal Tolls MINREV-1 MINREV-2
Revenue 1.88e+07 77547.50 5.93e+06
No. of Variables - 27264 27416
No. of Constraints - 21312 42624
Computation Time (sec) - 0.23 4.25
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Figure 3.2: Histogram of the percentage decrease in tolls.
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As expected the solutions to the linear program outperform the revenue from

the marginal tolls. It was also found that the extent of improvement due

differential tolls from MINREV-1 is orders of magnitude greater than that due

to MINREV-2 tolls. Tables 3.2 and 3.3 show the SOR flows, marginal, and

minimum revenue tolls from MINREV-2 for the two possible states on each

link. A histogram of the percentage decrease in tolls is demonstrated in Figure

3.2. For most link-states the tolls are reduced by a significant fraction. The

minimum revenue tolls for 7 link-states (shown in green) were however higher

than that of the marginal tolls.

3.6 Summary

In this chapter, the SOR model was extended by computing tolls that opti-

mize flow and minimize revenue, using two linear programming formulations.

Such socially optimal, minimum revenue tolls can improve the acceptability

of congestion pricing since they are not as burdensome as marginal tolls. In

order to construct the constraints of the LPs, the flow on each arc, stratified

by destinations and the message vector at the tail node was required. Since

this information is not readily available from the output of a link-state based

SOR formulation, a new convex optimization model was suggested.

We first established that any set of policy flows constructed from the output

of this new optimization model satisfies the UER principle. This was followed

by the development of a solution method that involved estimating the optimal
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Table 3.2: Comparison of marginal and minimum revenue tolls.

Arc
Normal State Disrupted State

Flow Marg. Toll Min Toll Flow Marg. Toll Min Toll
(1, 2) 7266.20 0.034 0.000 807.36 0.544 0.000
(1, 3) 10572.20 0.152 0.000 1174.68 2.437 0.000
(2, 1) 7453.55 0.038 0.000 794.57 0.510 0.000
(2, 6) 6479.31 13.335 6.056 417.54 24.140 16.711
(3, 1) 10665.60 0.158 0.000 906.65 0.865 0.000
(3, 4) 15826.60 2.678 0.703 1233.95 10.386 7.782

(3, 12) 13032.30 0.352 0.000 1419.20 5.193 0.656
(4, 3) 15496.60 2.461 0.000 1289.92 12.403 7.490
(4, 5) 18494.90 2.140 2.763 1179.70 3.719 4.064

(4, 11) 6261.72 14.528 10.594 396.31 24.470 18.062
(5, 4) 17721.10 1.804 0.000 1793.11 19.849 7.780
(5, 6) 6870.10 13.595 7.463 387.64 14.466 7.884
(5, 9) 15948.90 29.585 5.093 941.35 37.692 11.832
(6, 2) 6663.79 14.919 5.986 407.62 21.927 12.386
(6, 5) 6703.30 12.322 8.439 447.24 25.632 16.977
(6, 8) 11740.10 60.341 22.240 733.17 96.344 47.055
(7, 8) 12559.30 18.051 0.000 741.46 23.019 3.546

(7, 18) 16364.80 0.437 0.000 1706.28 5.425 3.541
(8, 6) 11862.50 62.897 0.000 678.18 70.532 6.634
(8, 7) 12512.50 17.783 11.187 782.80 28.598 16.601
(8, 9) 7187.85 37.527 0.000 476.60 76.148 14.608

(8, 16) 7636.67 23.991 14.314 424.25 23.989 14.314
(9, 5) 15761.50 28.219 0.000 1075.57 64.239 21.032
(9, 8) 7275.35 39.388 19.015 452.20 61.712 31.896

(9, 10) 20638.00 13.272 13.987 1566.59 46.258 35.788
(10, 9) 20978.60 14.170 0.000 1336.01 24.468 7.399

(10, 11) 16569.00 34.462 0.000 1101.40 70.635 21.120
(10, 15) 21929.80 38.071 11.399 1376.24 61.990 25.345
(10, 16) 10092.00 68.300 33.383 576.36 76.276 37.342
(10, 17) 7904.38 45.932 19.408 473.21 61.937 29.377
(11, 4) 6240.72 14.334 2.094 403.61 26.323 7.537

(11, 10) 16464.00 33.596 13.159 1012.25 50.396 23.544
(11, 12) 7173.61 25.025 9.298 398.53 25.024 9.298
(11, 14) 8869.80 40.037 12.525 579.67 76.670 34.911
(12, 3) 13405.00 0.394 0.000 1145.97 2.208 0.425

(12, 11) 7055.94 23.423 17.584 400.75 25.587 18.996
(12, 13) 14410.30 0.263 0.000 1601.14 4.206 0.000
(13, 12) 14565.50 0.274 0.000 1529.96 3.507 2.670
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Table 3.3: Comparison of marginal and minimum revenue tolls (continued).

Arc
Normal State Disrupted State

Flow Marg. Toll Min Toll Flow Marg. Toll Min Toll
(13,24) 9930.22 52.939 21.269 567.57 59.307 26.591
(14,11) 8894.13 40.478 2.478 562.93 68.188 19.749
(14,15) 8518.09 34.825 14.079 498.26 42.799 23.458
(14,23) 7276.71 17.435 10.430 472.28 32.476 35.785
(15,10) 21833.50 37.407 0.000 1345.74 56.675 10.045
(15,14) 8495.05 34.450 0.000 527.66 53.830 10.096
(15,19) 17191.60 5.325 0.000 1230.59 14.677 9.558
(15,22) 15400.60 18.177 5.550 1013.98 35.857 14.756
(16,8) 7635.49 23.976 2.746 424.24 23.986 2.743

(16,10) 10184.40 70.836 19.094 586.50 81.784 24.846
(16,17) 10006.60 24.512 17.468 609.74 35.474 23.238
(16,18) 18611.00 2.194 0.000 1570.77 11.688 2.414
(17,10) 8134.11 51.510 2.034 471.85 61.231 7.647
(17,16) 9892.43 23.412 11.805 646.13 44.731 25.089
(17,19) 7766.72 12.290 0.000 567.85 36.865 19.923
(18,7) 16465.70 0.448 0.000 1610.83 4.309 0.192

(18,16) 18957.20 2.362 0.000 1403.78 7.456 3.927
(18,20) 20274.90 2.060 0.000 1537.55 7.154 3.938
(19,15) 16885.80 4.957 2.946 1453.28 28.548 16.651
(19,17) 7940.36 13.426 13.665 544.75 31.222 23.333
(19,20) 8276.59 27.407 19.952 499.67 38.219 25.416
(20,18) 20112.60 1.995 0.135 1784.51 12.980 7.124
(20,19) 8369.29 28.656 13.340 474.51 31.083 14.799
(20,21) 6284.35 13.056 0.000 411.68 25.239 7.666
(20,22) 7113.59 17.641 0.000 443.91 28.084 7.701
(21,20) 6201.49 12.381 12.989 432.03 30.612 23.137
(21,22) 8024.87 10.139 3.814 607.86 35.039 18.887
(21,24) 9128.31 33.441 0.000 586.96 60.014 16.481
(22,15) 15210.60 17.296 16.712 1066.51 43.885 32.843
(22,20) 7232.12 18.847 17.912 440.06 27.122 24.207
(22,21) 8098.50 10.516 7.822 506.54 16.896 7.382
(22,23) 8759.53 34.458 7.531 554.32 58.007 22.173
(23,14) 7264.19 17.316 9.057 486.03 36.429 20.211
(23,22) 8721.51 33.863 6.525 541.88 52.976 17.679
(23,24) 7677.91 9.555 0.000 555.92 27.568 11.449
(24,13) 9873.47 51.739 7.314 608.35 78.280 24.137
(24,21) 9116.70 33.271 13.920 563.75 51.067 24.078
(24,23) 7631.40 9.326 10.802 553.21 27.035 18.846
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split proportions, i.e., the fraction of travelers choosing different downstream

arcs at each node-state. The proposed models were tested on the Sioux Falls

test network and the results indicate a 68% decrease in the total toll collected.

87



Chapter 4

Day-to-Day Pricing: Closed Form
Route Choice Dynamics

4.1 Introduction

In the equilibrium models discussed so far, it has been assumed that travelers

are rational and have a perfect knowledge of the network topology and its

response to congestion. However, when a large number of humans interact,

the extent of reasoning required to arrive at an equilibrium solution is beyond

one’s ability. Two alternate concepts which do not rely on these assumptions

exist in literature − stochastic user equilibrium (SUE) and day-to-day dynamic

models or Markovian traffic assignment models. Both these approaches infuse

uncertainty into travelers’ choices and the uncertainty is assumed to result

from randomness in users’ perceived travel times. However, they differ from

each other in a vital way. Stochastic user equilibrium models (Dial, 1971;

Daganzo and Sheffi, 1977; Sheffi, 1985), which are formulated as fixed point

problems, define equilibrium as a state in which users’ perceived travel times

are minimized.

On the other hand, day-to-day models (Cascetta, 1989; Friesz et al., 1994;

Cantarella and Cascetta, 1995) are deterministic or stochastic dynamic pro-
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cesses in which states/feasible flows evolve over time. In discrete time models

with stochastic dynamics, travelers select paths each day based on historical

information of network travel times and a probabilistic route choice mecha-

nism which induces transitions from one state to another. Under certain mild

conditions, the stochastic process can be modeled as a Markov chain with a

unique steady state distribution. Thus, although the system is never at rest,

it attains an ‘equilibrium’ in the probability distribution of flow patterns.

Since paths are selected randomly on each day, the total system travel time

is no longer deterministic but is a random variable. Using the steady state

distribution of the stochastic process, one can compute the expected total

system travel time (TSTT), which can be used as a metric for studying the

extent of congestion in the network. An immediate question of interest is

the following. Just as congestion pricing is used to achieve SO flows in traffic

assignment, can a system manager do the same to reduce the expected TSTT?

Selecting the right tolls in a day-to-day setting would thus require us to esti-

mate the steady state distribution for each admissible toll pattern and select

one that minimizes the expected TSTT. However, one can do better than such

static tolling schemes by dynamically varying tolls. While dynamic tolling has

received some attention in literature, most existing research focuses primarily

on continuous time models. These studies use control theory to determine the

optimal time varying toll as the system state evolves with time according to

some deterministic dynamic (Friesz et al., 2004; Xiao et al., 2014). However,
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continuous time formulations are not really ‘day-to-day’ models and their so-

lutions cannot be used to dynamically price a network over different days. A

major contribution of this research is in addressing this gap by proposing a

dynamic day-to-day pricing mechanism in a discrete time setting that com-

putes the optimal link tolls to reduce the expected TSTT. We formulate this

problem as an infinite horizon average cost Markov decision process (MDP)

and seek stationary policies that inform us the tolls as a function of the state

of the system. In other words, the system manager observes the state or flow

pattern and sets tolls, which are then revealed to the travelers. Travelers pick

paths the next day in a probabilistic manner depending on the current state

and revealed tolls.

Tolls in real world transportation networks are largely levied on freeways and

hence the path choice set for travelers may be assumed to be small. However,

even in sparse networks, presence of a large number of travelers results in an

exponential number of states. Therefore, as with most MDPs, we are faced

with the curse of dimensionality that prevents us from using this model on

practical networks. To address this problem, we also propose simple approx-

imation techniques using state space aggregation to handle instances with a

large number of travelers and demonstrate its performance on a small test

network. For the most part, we will restrict our attention to a single OD pair

and the logit choice model for route selection. Extensions to more general

settings are conceptually straightforward. In the next chapter, we will relax

the assumption of the knowledge of closed form expressions for route choice
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and explore learning based approaches.

The rest of this chapter is organized as follows. In Section 4.2, we describe

the two approaches (discrete and continuous) to model the evolution of traffic

as a stochastic process. We also discuss existing literature on dynamic pric-

ing. Section 4.3 describes an average cost MDP model for finding a dynamic

pricing policy that minimizes the expected TSTT. In Section 4.4, we propose

an approximate dynamic programming method using state space aggregation

and test its performance on a simple network in Section 4.5. In Section 4.6 we

formulate other variant MDPs such as those that optimize the probability of

convergence to a flow solution and those that involve incentives and summarize

our findings.

4.2 Literature Review

Day-to-day traffic models can be classified into two categories − discrete and

continuous. Both these categories of models appear in literature in two flavors

− deterministic and stochastic. The nomenclature is sometimes misleading

as continuous time route switching processes are also referred to as ‘day-to-

day’ models. In this section we review existing literature on these models and

dynamic pricing. The reader may refer to Watling and Hazelton (2003) and

Watling and Cantarella (2013) for a more comprehensive summary of day-to-

day dynamics and for their connections with UE and SUE.
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4.2.1 Discrete Time Day-to-Day Models

Cascetta (1989) formulated the evolution of traffic as a discrete time Markov

chain. The number of travelers was assumed to be finite. Extensions to model

an infinite number of travelers also exist (see Watling and Cantarella, 2013).

Under the following assumptions on the path choice probabilities, it was shown

that the stochastic process has a unique steady state distribution: (1) time

invariant path choice probabilities, (2) the probability of selecting any path

between an OD pair is non-negative, and (3) the probability of choosing a path

depends on the states (flow patterns) of the system on at most m previous days

(which ensures that the process is m-dependent Markovian). Commonly used

path choice models in literature include the logit and probit choice models. In

logit choice models, the probability of selecting a path is additionally assumed

to depend on a parameter θ which defines the extent of making a mistake or

the extent of irrationality.

This model was extended by Cascetta and Cantarella (1991) to account for

within day fluctuations in traffic. Travelers were assumed to have access to

travel time information in periods prior to their departure and condition their

choices based on historic day-to-day information and also within-day informa-

tion. Watling (1996) studied day-to-day models for asymmetric traffic assign-

ment problems (i.e., for ones in which the Jacobian of the cost functions is not

symmetric and multiple equilibria may exist). The stationary distributions in

such problems were found to have multiple modes at the stable equilibria or a
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unimodal shape if one of the equilibrium dominated the others.

Several efforts have been made to estimate the expected route flows and the

correlations among flow patterns in day-to-day models (Davis and Nihan, 1993;

Hazelton and Watling, 2004) as the computation of steady state distributions

of Markov chains for cases with a large number of travelers can be intensive

even when using Monte Carlo simulations. For networks with a large number

of travelers, the expected flows may be approximated to an SUE solution

(Davis and Nihan, 1993). Discrete time day-to-day models (see Cantarella

and Cascetta, 1995) with deterministic dynamics have also been studied in

literature. These models employ a deterministic mapping, e.g., best response

mechanism (see Brown, 1951; Robinson, 1951), that provides the state of the

system on the next day as a function of the flows observed on previous days.

4.2.2 Continuous Time Day-to-Day Models

Continuous time day-to-day dynamics may also be modeled as continuous time

Markov chains in a manner similar to discrete time day-to-day models. This

approach is relatively more common in behavioral economics (see Sandholm,

2010, Chapters 10-12). Travelers are assumed to be atomic (i.e., flows are

integral) and their choices are characterized by − inertia, myopic behavior,

and mutations. Inertia implies that travelers do not frequently change paths

but do so only when they are given a strategy revision opportunity, which

presents itself at random times. The sojourn times for each traveler (time be-
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tween two successive revision opportunities) are assumed to be exponentially

distributed. Myopic behavior implies that travelers choose actions to optimize

their present travel times rather than infinite-horizon discounted travel times.

Mutations reflect the assumption that travelers may “tremble” or make mis-

takes while choosing a path. Depending on the probabilities that are assigned

to the strategies that are not best responses, different learning algorithms can

be constructed (Young, 1993, 2004; Kandori et al., 1993; Kandori and Rob,

1995; Blume, 1996; Rambha and Boyles, 2013). Under certain assumptions,

existence of a unique steady state/limiting distribution can be ensured. Blume

(1996) showed that for logit choice models, as θ tends to zero, the set of states

with positive limiting probabilities (called a stochastically stable set) coincides

with the set of NE. Further, for cases with a large number of players, it may

be shown that deterministic and stochastic approaches are equivalent to each

other when observed for a finite period of time (Sandholm, 2010).

The deterministic version of continuous day-to-day models assumes that the

state of the system evolves with time as an ordinary differential equation and

has been widely studied in transportation literature. Travelers are usually as-

sumed to be infinitely divisible (non-atomic). One of the most commonly used

dynamic is the Smith’s dynamic (?) in which users shift between routes at a

rate proportional to the difference between their current travel times. Other

deterministic dynamics that have appeared in literature in transportation and

behavioral economics include replicator dynamics (Taylor and Jonker, 1978;

Smith and Price, 1973), projection dynamics (Nagurney and Zhang, 1997),

94



and Brown-von Neumann-Nash dynamic (Brown and Von Neumann, 1950).

The common objective in studying these models is to verify if the rest points

of the dynamic are unique and coincide with the UE solution. Most deter-

ministic dynamical systems are formulated using path flows. However, from a

practical standpoint, as the number of paths may increase exponentially with

the network size, researchers have recently developed more practical link based

dynamic models (Zhang et al., 2001; He et al., 2010; Han and Du, 2012; Guo

et al., 2015). In this context, Yang and Zhang (2009)and Guo et al. (2013)

proposed a class of dynamic route choice models called rational adjustment

processes (whose stationary states are at UE) in continuous and discrete time

settings respectively.

4.2.3 Dynamic Pricing

In the context of day-to-day models, existing methods usually focus on con-

tinuous time versions and are formulated as optimal control problems (Wie

and Tobin, 1998; Friesz et al., 2004; Yang, 2008). The system is assumed to

be tolled for a finite period of time and, using boundary conditions, it is en-

sured that the network remains in a SO state at the end of the finite time

horizon. Friesz et al. (2004) developed such a pricing model in which the ob-

jective was to maximize net social benefits while ensuring that a minimum

revenue target is met. Several other alternate objectives may be modeled us-

ing this framework such as minimizing travel costs and minimizing the time

required to guide the system to an SO state (Xiao et al., 2014). Other re-
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lated pricing literature includes studies to achieve SO flows using static tolls

when users route according to SUE (Smith et al., 1995; Yang, 1999); piecewise

constant pricing mechanisms that ensure the convergence of the multiplicative

update rule and replicator dynamics to an SO state (Farokhi and Johansson,

2015); self-learning and feedback learning controller for tolling managed lanes

(Yin and Lou, 2009); and time-varying tolls in dynamic traffic assignment or

within-day dynamic models (Joksimovic et al., 2005).

4.2.4 Summary

As noted in the previous subsections, there is a huge body of literature on dif-

ferent versions of day-to-day dynamic models. The congestion pricing meth-

ods developed in this chapter optimize network performance in the presence

of daily fluctuation in traffic flows. Hence, we use a discrete time stochas-

tic day-to-day dynamic model along the lines of those developed by Cascetta

(1989).

4.3 Dynamic Pricing – Average Cost MDP Formulation

In this section, we introduce the four components of the MDP − the state

space, the action space, transition probabilities and the costs and discuss a

commonly used method for solving it.
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4.3.1 Preliminaries

We make the following assumptions for the day-to-day traffic model with tolls:

1. The network has a single origin-destination (OD) pair with r routes. The

formulation may be extended to include multiple OD pairs but has been

avoided to simplify the notation.

2. There are a total of n travelers (assumed atomic and finite). Throughout

this chapter and the next, the number of travelers will be assumed to

be integral and fixed. Although finiteness is limiting because of demand

uncertainty in networks, the treatment of models with elastic demand

is a topic in itself and can be justly studied only if the problem with a

fixed number of travelers is fully understood.

3. Tolls can be collected in discrete amounts and along routes in the net-

work. The discretization is mainly to assist the computation of optimal

tolling policies and is realistic since currencies have a lowest denomi-

nation. The assumption that tolls are collected at a route level is not

restrictive because the problem may be easily reformulated using link

level tolls (in which case the action space is a vector of link tolls).

4. Users make route choice decisions on a day-to-day basis based on a given

route choice model in which travel times are replaced by generalized

costs. Decisions are conditioned on the previous day’s travel times. All

travelers are also assumed to be homogenous with the same value of

travel time.
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5. The objective of the system manager is to minimize the expected TSTT.

Other objectives that may be of interest are discussed in Section 4.6.1.

State space

Let R = {1, . . . , r} denote the set of routes. We define the state space S as the

set of all feasible route flow solutions, i.e.,
{

(x1, x2, . . . , xr) ∈ Zr+ :
∑

i∈R xi = n
}

.

The vector x = (x1, x2, . . . , xr) ∈ S contains the flows on each of the paths

between the OD pair. Since we are dealing with a network with r routes and

n travelers, there are a total of ( n+r−1
n ) feasible flow solutions/states. We use

xk to denote the state of the system at time step/day k.

Action space

We will represent an action using a toll vector u = (u1, u2, . . . , ur), which

denotes the tolls on the paths in the network. Assume that the action space

at state x is U(x). Also suppose that the action space for each state x is the

Cartesian product {τ1, τ2, . . . , τl}r where τ1, . . . , τl are some allowable prices.

Transition probabilities

Let ti : S → R be the travel time on path i ∈ R as a function of the state. We

assume that the travel time functions are bounded. No further assumptions

such as separability or monotonicity are needed. We suppose that the path

choice probability qr(x,u) for each traveler is a function of x and u and is

positive for all routes for all state-action pairs. We further suppose that each

traveler independently chooses a path using this distribution. Thus, the prob-

ability of moving from state x to y when action u ∈ U(x) is taken in state x
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is given by the following multinomial probability distribution

Pr [y = (y1, y2, . . . , yr)|x,u] = pxy(u) =
n!

y1!y2! . . . yr!
q1(x,u)y1 . . . qr(x,u)yr

(4.1)

If travelers use the logit choice model with parameter θ, we may write qr(x,u)

as follows:

qr(x,u) =
e−θ[tr(x)+ur]∑r
i=1 e

−θ[ti(x)+ui]
(4.2)

where ti(x) + ui is the generalized cost on route i. Then, the transition prob-

abilities take the form

pxy(u) =
n!

y1!y2! . . . yr!

(
e−θ[t1(x)+u1]∑r
i=1 e

−θ[ti(x)+ui]

)y1

. . .

(
e−θ[tr(x)+ur]∑r
i=1 e

−θ[ti(x)+ui]

)yr
(4.3)

=
n!

y1!y2! . . . yr!

r∏
j=1

(
e−θ[tj(x)+uj ]∑r
i=1 e

−θ[ti(x)+ui]

)yj
(4.4)

Remark. Route choice processes in day-to-day models can be made more

general than what has been described above. The system state on day k

usually includes historical information and is defined as a vector of flows on

previous m days
(
xk,xk−1, . . . ,xk−(m−1)

)
. Travelers are assumed to compute

perceived travel times t̃i(.) for each path i between their OD pair as the sum

of a weighted average of travel times on route i on previous m days and a

random term that accounts for perception errors or unobserved factors.

t̃i
(
(xk, . . . ,xk−(m−1))

)
=

m−1∑
j=0

wjti (xk−j) + ε̃ (4.5)

The terms wj represent the weights associated with the observed travel times
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on previous days. The probability of choosing path i is thus given by

Pr
[
t̃i
(
(xk, . . . ,xk−(m−1))

)
< t̃i′

(
(xk, . . . ,xk−(m−1))

)
∀ i 6= i′, i′ ∈ R

]
(4.6)

Depending on the assumed distributions of the error terms, different route

choice models such as logit and probit may be obtained. Logit choice models

are relatively widely used as the path choice probabilities have a closed form

expression.

Costs

Let g(x,u) denote the expected cost incurred every time decision u is taken

in state x. In order to minimize the expected TSTT, we define the cost as

g(x,u) =
∑

y∈S pxy(u)TSTT(y), where TSTT(y) is the total system travel

time of state y. Note that g(x,u) is bounded because the travel time functions

ti are assumed to be bounded.

4.3.2 Objective and Algorithms

The system manager observes the state on a particular day and chooses the

tolls based on some policy
(
µ(x)

)
x∈S, which specifies the action µ(x) ∈ U(x)

to be taken when in state x and reveals them to the travelers before the

next day. Travelers make decisions based on the previous day’s state and the

revealed tolls as shown in Figure 4.1.

Decisions are made over an infinite horizon but at discrete intervals of time

0, 1, 2, . . . , k, . . . . Let Jµ(x) be the average cost per stage or the expected
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Day 𝑘 Day 𝑘 + 1 

Travelers make decisions 𝒙𝑘  

Tolls for the next day are decided 𝝁 𝒙𝑘  

Travelers make decisions 𝒙𝑘+1  
based on 𝒙𝑘  and 𝝁 𝒙𝑘  

Figure 4.1: Timeline for the pricing mechanism

TSTT for policy µ assuming that the system starts at state x, i.e., x0 = x.

Thus, we may write

Jµ(x) = lim
K→∞

1

K
E

{
K−1∑
k=0

g (xk,µ(xk))
∣∣∣x0 = x

}
(4.7)

Remark. A majority of infinite horizon MDPs are formulated as discounted

cost problems. In this chapter, assuming that the system manager minimizes

the expected TSTT, we use the average cost version instead for a couple of

reasons. First, average cost MDPs are mathematically attractive as their ob-

jective values, as we will see shortly, do not depend on the initial state of

the system. On the other hand, discounted cost problems are often extremely

sensitive to both initial conditions and the discount factor.

Second, and more importantly, discounted cost models are appropriate when

the costs associated with state-action pairs have an economic value. In such

cases, the discount factor can simply be set to the interest rate. Although

estimating the monetary value of system wide travel time savings in trans-
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portation networks appears difficult, one may still use the discounted cost

framework to place more weight on near-term savings in TSTT, especially

when the Markov chains associated with optimal average cost policies visits

states with high TSTT initially and converges to states with low TSTT only

after a long time. However, for the problem instances we tested (see Section

4.5), the Markov chains associated with the optimal policies were found to mix

quickly and the time averages of TSTT over a finite number of initial days for

different sample paths were fairly close to the optimal expected TSTT, and

thereby did not motivate the need for discounting.

We restrict our attention to time-invariant or stationary policies (since we

are only dealing with stationary policies, the above limit always exists). The

advantages of stationary policies are two-fold. First, an optimal stationary

policy is relatively easy to compute. Second, since the policies do not directly

depend on the day k, implementing a stationary policy is much easier. Note

that stationarity of policies does not imply that the tolls are static. It implies

that the tolls are purely a function of the state and as the states of the network

vary over time, so do the tolls. We seek an optimal policy µ∗ such that

J∗(x) ≡ Jµ∗(x) = min
µ∈Π

Jµ(x) (4.8)

where Π denotes the set of all admissible policies. We now state some standard

results concerning average cost per stage MDPs that are relevant to the current

chapter and the next. A more detailed account of these can be found in

Puterman (2005) and Bertsekas (2007).
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Definition 1. For a given stationary policy µ, state y is said to be accessible

from x, and is denoted by x→ y, if for some k > 0, y can be reached from x

with positive probability in k days, i.e., Pr[xk = y|x0 = x,µ] > 0. Further, if

x→ y and y→ x, we say that x communicates with y. If y is not accessible

from x, we denote it by x 9 y.

Definition 2. For a given stationary policy µ, a subset of states S ′ ⊆ S is a

recurrent class or a closed communicating class if

(a) All states in S ′ communicate with each other.

(b) x ∈ S ′ and y /∈ S ′ ⇒ x 9 y.

Definition 3. An MDP is said to be ergodic if the Markov chain induced by

every deterministic stationary policy is irreducible, i.e., has a single recurrent

class.

For the logit choice model described in this chapter, the path choice proba-

bilities and the transition probabilities between every pair of states, defined

using (4.2) and (4.4) respectively, are positive for all policies. Thus, using

Definitions 1 and 2, we conclude that all states communicate with each other

and belong to a single recurrent class. Therefore, by Definition 3, the MDP is

ergodic.

Proposition 4.1 (Equal costs). If an MDP is ergodic then the average cost

problem has equal costs, i.e,

J∗(x) = J∗(y), ∀x,y ∈ S (4.9)
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Proof. Consider a stationary policy µ. Clearly, the cost incurred up to a finite

number of stages do not matter when computing the expected TSTT Jµ(x)

under the policy µ assuming that we start at state x, i.e., suppose K ′ < ∞,

then

lim
K→∞

1

K
E

{
K′−1∑
k=0

g (xk,µ(xk))
∣∣∣x0 = x

}
= 0 (4.10)

Suppose the random variable K̃ represents the time taken for the Markov

chain to move from x to y for the first time under policy µ. Since the state y

is accessible from x under the policy µ, it follows that E[K̃] <∞. Therefore,

using (4.7),

Jµ(x) = lim
K→∞

1

K
E


K̃−1∑
k=0

g (xk,µ(xk))
∣∣∣x0 = x


+ lim

K→∞

1

K
E


K−1∑
k=K̃

g (xk,µ(xk))
∣∣∣xK̃ = y

 (4.11)

= 0 + lim
K→∞

1

K
E


K−1∑
k=K̃

g (xk,µ(xk))
∣∣∣xK̃ = y

 (4.12)

= Jµ(y) (4.13)

Since the expected TSTT is independent of the initial state for every stationary

policy, the same is true for the optimal policy. Hence, J∗(x) = J∗(y), ∀x,y ∈

S. �

Thus, Proposition 1 implies that the optimal expected TSTT is independent

of the initial conditions, i.e., state of the system on day 0.
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Proposition 4.2 (Bellman’s equation). Suppose λ∗ = J∗(x). Then exists

h∗(x)∀x ∈ S (not necessarily unique) that satisfies the following Bellman’s

equation

λ∗ + h∗(x) = min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)h∗(y)

}
∀x ∈ S (4.14)

Also, if some λ and a vector of h’s satisfy (4.14), then λ is the optimal average

cost per stage. Further, a policy µ∗(x) defined as follows is optimal

µ∗(x) ∈ argmin
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)h∗(y)

}
∀x ∈ S (4.15)

Proof. See Bertsekas (2007). �

Since the problem has a finite state space and a finite action space, the optimal

J values and policies can be computed using value iteration, policy iteration

or linear programming (LP). The value iteration method updates J ’s in the

following manner and λ∗ = J∗(x) is obtained by evaluating limk→∞
Jk(x)
k

(k

denotes the iteration number).

Jk+1(x) = min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)Jk(y)

}
∀x ∈ S (4.16)

where J0(x) can be initialized to any arbitrary value for all x ∈ S. However,

such an iterative procedure can lead to numerical instability as Jk(x) → ∞.

This issue is typically avoided using relative value iteration in which we define

a differential cost vector hk as hk(x) = Jk(x) − Jk(s)∀x ∈ S, where s is an

arbitrary state in S. Hence for all x ∈ S,

hk+1(x) = Jk+1(x)− Jk+1(s) (4.17)
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= min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)Jk(y)

}
− min

u∈U(s)

{
g(s,u) +

∑
y∈S

psy(u)Jk(y)

}
(4.18)

= min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)hk(y)

}
− min

u∈U(s)

{
g(s,u) +

∑
y∈S

psy(u)hk(y)

}
(4.19)

The iterates generated by (4.19) and λk+1 defined according to (4.20) converge

and satisfy the Bellman’s equation as defined in Proposition 4.2 (Puterman,

2005; Bertsekas, 2007).

λk+1 = min
u∈U(s)

{
g(s,u) +

∑
y∈S

psy(u)hk+1(y)

}
(4.20)

The pseudocode for relative value iteration is summarized in Algorithm 6. Let

ε > 0 denote the required level of convergence. Suppose that M > ε and sp(·)

represents the span semi-norm which is defined as sp(h) = maxx∈S h(x) −

minx∈S h(x). The span semi-norm is used to compute the difference between

the upper and lower bounds of the optimal expected TSTT λ∗.

4.4 Approximate Dynamic Programming – State Space
Aggregation

The model formulated in the previous section, while being theoretically ap-

pealing, may not be suited for practical implementation especially when there

are a large number of travelers or if there are many routes to choose from. For

instance if 1000 travelers make route choices each day in a network with 10

routes, the size of the state space is equal to ( 1000+10−1
1000 ) ≈ 1021. The problem
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Algorithm 6 Pseudocode for relative value iteration

Step 1:
Initialize h0(x)∀x ∈ S to any arbitrary values
error ←M
k ← 0

Step 2:
while error > ε do

for each x ∈ S do

(Thk)(x)← min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)hk(y)

}
hk+1(x)← (Thk)(x)− (Thk)(s)

end for
if k ≥ 1 then error ← sp(Thk − Thk−1)
k ← k + 1

end while

Step 3:

Choose µ∗(x) ∈ arg min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)(Thk−1)(y)

}
∀x ∈ S
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further gets compounded when we extend the model to multiple OD pairs. In

this section, we address this issue by developing approximation methods that

involve state space aggregation.1

When dealing with networks with a large number of travelers, several states

may not be significantly different from each other. For instance, if there are

a 1000 travelers in a network with two parallel links, the states (1000,0) and

(999,1) are likely to be indistinguishable both in terms of the associated travel

times and the optimal policies. This motivates us to develop approximate

dynamic programming methods by aggregating states in order to reduce the

computational times. Thus, we need to address the following questions: (1)

how should states be aggregated? and (2) what are the transition probabilities

between states in the aggregated system?

A simple attempt to aggregate states may be made using intervals of some

chosen width. For instance, in the network with two parallel links, we may

group states for which the flow on one of the links (say the top link) is between

0 and 10, 11 and 20 and so on. For any such aggregation/partition of the set

S, transition probabilities between aggregated states may be computed by

adding the transition probabilities between every pair of original states within

two aggregated states. Although we save on the time required to compute

1State space aggregation was preferred over other approximate dynamic programming
methods such as rollout algorithms (Bertsekas et al., 1997) and approximate linear program-
ming (de Farias and Van Roy, 2006) because it avoids the enumeration of states and the
computation of multinomially distributed transition probabilities.
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the optimal policy, we would still have to enumerate all states and calculate

the transition probabilities associated with states in the original state space

as given by the expressions derived in (4.4).

Alternately, we can exploit the fact that for large n, a multinomial distributed

random variable may be approximated to have a multivariate normal distri-

bution (Sheffi, 1985). In order to do so, we first assume that the state space

is continuous by supposing that travelers are infinitesimally divisible (non-

atomic). Let y represent a vector of random variables (path flows) when action

u is taken in state x. In (4.1) we saw that y|x,u is multinomially distributed.

When n is large, we can approximate it with the multivariate normal y|x,u ∼

N (α(x,u),Σ(x,u)), where α(x,u) =
(
nq1(x,u), nq2(x,u), . . . , nqr(x,u)

)
and Σ(x,u) = [Σij(x,u)] is the covariance matrix with elements given by

Σij(x,u) =

{
−nqi(x,u)qj(x,u) if i 6= j

nqi(x,u)(1− qi(x,u)) otherwise
(4.21)

The density function of y, f(y|x,u), is given by

1√
(2π)r det Σ(x,u)

exp

(
−1

2
(y −α(x,u))T Σ(x,u)−1 (y −α(x,u))

)

State space

The theory of infinite horizon MDPs is well established for problems with

finite state and action spaces. In order to take advantage of existing methods

to solve them, we construct a finite number of states from a continuous state

space by generalizing the idea of aggregating states using intervals. Let us first
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define the set I =
{

[0, n
δ
], [n

δ
, 2n
δ

], . . . , [ (δ−1)n
δ

, n]
}

. Notice that Ir is the set of

all hypercubes formed by dividing the flow on each route into δ intervals. We

then consider the space S = {X ∈ Ir : |X ∩ {x ∈ [0, n]r :
∑r

i=1 xi = n}| > 1},

where | · | represents the cardinality of a set. Figure 4.2 helps visualize this

construct. Suppose there are 100 travelers and three routes, and the flows on

each route are represented on the three axes. Assume that we divide the each

axis into 10 intervals. This divides the space [0, 100]3 into 1000 hypercubes

as shown in Figure 4.2a. We then pick only those hypercubes which intersect

the set of feasible flows (i.e, the simplex x1 + x2 + x3 = 100) at more than

one point, which gives the 100 hypercubes in Figure 4.2b. We exclude the

hypercubes that intersect the simplex at exactly one point as we can always

find another hypercube belonging to S that contains the point.

Let the state space for the approximate method be S. For any state X ∈ S,

let Xc ∈ Rr be the center of the hypercube X . We evaluate the properties of

the state X such as the TSTT at this point. Notice that the point Xc may or

may not satisfy the flow conservation constraint depending on the choice of r

and δ. However, when we consider a sufficiently large number of intervals (δ),

Xc may be assumed to be close enough to the simplex so that the errors in

approximating the TSTT are small. We now define the remaining components

of the MDP.

Action space

The action space for the approximate MDP at each state is same as before,
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(a) Set of all hypercubes Ir

(b) Hypercubes that intersect the simplex

Figure 4.2: State space for the approximate methods
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Figure 4.3: Transitions between aggregated states

i.e., U(X ) = {τ1, τ2, . . . , τl}r.

Transition probabilities

Let the transition probabilities of moving from state X to Y under action u be

denoted as pXY(u). The transition probabilities may be approximated using

the cumulative densities of the multivariate normal but this may lead to values

that do not add up to 1. Hence, we first define p′XY(u) as

p′XY(u) =

∫
y∈Y

exp
(
−1

2
(y −α(Xc,u))TΣ(Xc,u)−1(y −α(Xc,u))

)√
(2π)r det Σ(Xc,u)

dy (4.22)

where α(Xc,u) and Σ(Xc,u) are defined as mentioned earlier. Next, we nor-

malize these values by setting pXY(u) = p′XY(u)/
∑
Y ′∈S p

′
XY ′(u).

Costs

The cost incurred in choosing u in state X , g(X ,u), is defined as g(X ,u) =∑
Y∈S pXY(u)TSTT(Yc).

The objective for the approximate MDP is defined similarly as in Section 4.3.2.

Let Jν(X ) be the average cost per stage for policy ν when the system starts at
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state X . Assuming that Xk represents a state on the kth day in the aggregated

system,

Jν(X ) = lim
K→∞

1

K
E

{
K−1∑
k=0

g (Xk,ν(Xk))
∣∣∣X0 = X

}
(4.23)

where
(
ν(X )

)
X∈S specifies the action ν(X ) ∈ U(X ) to be taken when the

system is in state X . Let the optimal policy be denoted by ν∗, i.e., J∗(X ) ≡

Jν∗(X ) = minν∈Φ Jν(X ), where Φ is the set of all admissible policies. Since

the state and action spaces are finite, Algorithm 6 can be applied to solve the

approximate MDP.

Let Γ : S → S be a mapping that gives the aggregated state to which a

state in the original state space belongs (ties are broken arbitrarily). Then an

approximate optimal policy for the original MDP can be defined as
(
µ(x)

)
x∈S,

where µ(x) = ν∗
(
Γ(x)

)
.

4.5 Demonstration

The method described in the previous section provides a policy that is optimal

for the approximate MDP and an immediate question of interest is if it is close

to the optimal policy for the original MDP. One possible way to answer this

question is by tracking the errors involved. However, this is extremely difficult

as we are making several approximations to the transition probabilities and in

aggregating states. Instead, we resort to numerical experimentation to make

claims about the approximate policy. While computing the optimal expected
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TSTT for large n is difficult, for small values of n, we can use relative value

iteration or other methods to exactly compute the optimal expected TSTT

which can thus be used to ascertain how far we are from the optimal.

For any n, clearly the expected TSTT of the no-tolls case (or the do-nothing

option) gives an upper bound to the optimal TSTT. Calculating the expected

TSTT of a given policy is relatively easy and can be done by estimating the

steady state distribution of the Markov chain under that policy or by sim-

ulation. Thus, we can estimate the expected TSTT under the approximate

policy ν∗(Γ(x)) and check if is an improvement over the no-tolls option, i.e.,

if it provides a better upper bound.

As n increases, the quality of approximations made to the state space and

transition probabilities improves and depending on the available computing

power, one can pick larger δ to develop finer partition schemes. Hence, we

claim that this empirical line of analysis is proof enough that this method

may be applied to problems with large state spaces.

For the numerical results presented in this chapter, we consider the network

in Figure 4.4. Each traveler has three routes 1-2-4, 1-2-3-4, and 1-3-4. The

link level travel times are assumed to be a function of the link flows and are

shown in the figure. We assume that the set of possible tolls on each route

can be enumerated as {0, 2, 4, . . . , 8}, i.e., the action space for each state is

{0, 2, 4, . . . , 8}3. The methods described were implemented in C++ (using

the g++ compiler with -O2 optimization flags) on a Linux machine with 24
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Figure 4.4: Network used to test the approximations

core Intel Xeon processors (3.33 GHz) and 12 MB cache. The cumulative

densities for the multivariate normal distribution were obtained using a Fortran

function available at http://www.math.wsu.edu/faculty/genz/software/

software.html. The termination criterion for relative value iteration was set

to 1E-07. The value of the dispersion parameter θ was fixed at 0.1. Most of

the code was implemented in a parallel environment using OpenMP except for

function calls to the Fortran code.

Solution quality

Table 4.1 compares the expected TSTT of the optimal and approximate poli-

cies for different number of travelers. It can be observed that the approximate

policies perform better than the no-tolls option and the quality of approxima-

tion gets better with increase in δ. In all four cases, the approximate policies

were found to be optimal or nearly optimal for large δ.
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Table 4.1: Comparison on expected TSTT of policies

n Optimal exp. TSTT
Exp. TSTT of approx. policy

No-tolls exp. TSTT
δ = 5 δ = 10 δ = 20

50 200.012 200.012 200.012 200.012 233.966
100 720.506 746.378 720.520 720.510 830.267
150 1532.220 1658.040 1532.930 1532.530 1730.410
200 2618.180 2881.280 2619.450 2618.750 2932.050

Computational performance

Table 4.2 indicates the wall-clock time in seconds for the steps involved in

solving the exact and approximate MDPs. As mentioned earlier, the algo-

rithms were implemented in a parallel environment with 24 cores except for

the computation of transition probabilities of the approximate MDPs. Since

these probabilities can be computed independently of each other, one can ex-

pect near linear speedup if implemented in a parallel manner. Notice that for

n = 100, the value iteration for the exact method takes nearly 50 minutes and

on the other hand the approximate methods provide near optimal solutions

within a few seconds. For the exact MDP, when n = 150 and n = 200, the

memory requirements for storing the transition probabilities exceeded avail-

able computing resources and hence they were not stored but were recomputed

within each value iteration step. The run times for these instances were around

3 to 5 hours and have been left out of Table 4.2 in order to provide a fair com-

parison.

The results appear promising and for problems with much larger n, we may

choose a value of δ according to the available computational resources. As the

quality of the approximations get better with increase in n, the approximate
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Table 4.2: Wall-clock times (in seconds) for exact and approximate methods

Number of Travelers → 50 100 150 200

Exact MDP

No. of states 1326 5151 11476 20301
State space 0.023 0.193 0.561 1.316
Trans prob 5.370 229.614 - -
Value itn 2.597 3056.490

Approx. MDP No. of states 25 25 25 25
State space 5.80E-05 7.40E-05 5.70E-05 6.00E-05

(δ = 5) Trans prob 293.713 198.249 145.295 103.442
Value itn 0.210 1.558 0.013 0.040

Approx. MDP No. of states 100 100 100 100
State space 5.13E-04 3.69E-04 3.36E-04 3.04E-04

(δ = 10) Trans prob 1351.90 1785.57 1461.96 1163.03
Value itn 0.189 0.346 0.388 0.016

Approx. MDP No. of states 400 400 400 400
State space 3.79E-03 3.77E-03 2.60E-03 2.53E-03

(δ = 20) Trans prob 9538.21 9505.30 9606.38 9733.46
Value itn 0.377 0.451 0.243 0.425

policies can be expected to perform better than the no-toll policy.

Mixing times

The Markov chain associated with any given policy is irreducible and aperiodic

and hence has a steady state distribution. However, it takes a certain amount

of time for the Markov chain to get “close” to its the stationary distribution.

While, this is not a major concern for the average cost MDP, from a theoretical

perspective, since we let k → ∞, it would be useful to know how long it

takes the Markov chain to reach its stationary distribution from a practical

standpoint.

This question can be answered by analyzing the mixing time of the Markov
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chain associated with the optimal policy. In order to do so, a few definitions

are in order. Let ‖ · ‖TV represent the total variation distance, which is a

measure of the distance between two probability distributions. For any two

probability density functions π and π′, the total variation distance is defined

as ‖π − π′‖TV = maxA⊂S |π(A) − π′(A)|. Further, if S is discrete, it can be

shown that ‖π − π′‖TV = 1
2

maxx∈S |π(x)− π′(x)| (Levin et al., 2009).

Now let P represent the transition probability matrix associated with the opti-

mal policy µ∗, i.e., P (x,y) = pxy(µ∗(x)) and let π(x) denote the steady state

probability of observing state x. We define the maximum variation distance

d(k) between the rows of P and π after k steps as follows:

d(k) = max
x∈S
‖P k(x, ·)− π(·)‖TV (4.24)

Since a steady state distribution exists, d(k) → 0 as k → ∞. Further, for

irreducible and aperiodic Markov chains, the rate at which d(k) shrinks to

zero is exponential and is bounded below by 1
2
(1−γ)k, where γ is the absolute

spectral gap which equals one minus the second largest magnitude eigenvalue

(Montenegro and Tetali, 2006). Thus, the higher the value of gamma, the faster

the rate at which the Markov chain converges to its steady state distribution.

Another way to analyze the mixing times is by observing the least number of

time steps before d(k) falls below an arbitrary threshold ε.

tmix(ε) = min{k : d(k) ≤ ε} (4.25)
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Table 4.3: Spectral gap and mixing times for different problem instances

Number of travelers (n) Spectral gap (γ) Mixing time (tmix(0.01))
50 0.767 3
100 0.530 6
150 0.491 7
200 0.560 6

Table 4.3 shows the spectral gap and mixing times for the Markov chains as-

sociated with the optimal policy for the four cases tested earlier. The spectral

gap is not close to 0 and hence the Markov chains mix fairly quickly.

Finite Markov chains are often known to abruptly convergence to their station-

ary distributions. This feature, also known as the cutoff phenomena (Diaconis,

1996; Chen, 2006), results in a sudden drop in the d(k) values. Figure 4.5 shows

the maximum variation distance across consecutive days for different problem

instances. While no evidence of the cutoff phenomenon was found, it may be

interesting to see if such phenomena occur in problems with larger state spaces.

We, however, observed that the mixing times of Markov chains increase with

increase in the size of the state space.

4.6 Discussion

In this section, we first present some other objectives that may be of inter-

est to a system manager or a private tolling agency. We then conclude by

summarizing the methods proposed in this chapter.
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Figure 4.5: Variation distance of Markov chains associated with the optimal
policy
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4.6.1 Variants

Other network-wide objectives

By defining the average costs/rewards for a state-action pair differently we can

find dynamic pricing policies that optimize other objectives.

Maximizing the probability of convergence to a target state: Suppose

we wish to increase the probability of finding the system in a particular state

in the long run. We will henceforth refer to this state as the target state.

While a SO flow solution is an obvious choice for the target state, one could

think of other target states based on other network wide objectives such as

emissions. Also, in the presence of multiple NE solutions, one equilibrium may

be favored over another and be chosen as the target state. In order to achieve

this objective, we define the rewards (instead of costs) as follows:

g(x,u) =

{
1 if x is the target state

0 otherwise
(4.26)

Thus, every time the system leaves the target state we receive a reward of 1

unit and therefore the long run probability of being in the target state is the

average reward per stage. Instead, if we want to increase the probability of

finding the system in set of states (i.e., we have a set of target states), we

could just set g(x,u) = 1 for all x that belong to such a set and 0 otherwise.

One can think of extensions to these problems in which tolls are disallowed

at the target state, i.e., if the network is at the target state on a particular

day, then the system manager may choose to not collect any tolls for the next
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day. This mechanism has the same flavor as that of punishment strategies

in repeated games that are used to force players to cooperate. This feature

can easily be modeled by setting the action space at the target state to the

empty set. The objective is likely to be lower when tolls are disallowed. Yet,

by pricing all states except the target state, this formulation can lead to an

increase in the probability of reaching the target state.

Minimizing the expected deviation from TSTT(xSO): Suppose we want

to minimize the deviation from the TSTT of the SO state. This objective could

be useful in the context of improving travel time reliability as it can help reduce

the variance in travel times and may be achieved by defining the stage costs

as follows:

g(x,u) = (TSTT(x)− TSTT(xSO))2 ∀u ∈ U(x) (4.27)

Incentives and revenue maximization

Assume that the system manager can incentivize travelers in addition to col-

lecting tolls. Suppose that we model incentives as negative tolls. The optimal

policy in such cases may require the system manager to pay something to trav-

elers on an average. We can avoid this by adding side constraints (4.31) to the

LP model (see Bertsekas (2007) for details) for the average cost MDP as shown

below. Let b(x,u) be the expected revenue/cost for the system manager when

u is chosen at state x. The idea behind adding the side constraints is similar

to budget balance mechanisms that are studied in mechanism design in which
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payment schemes that ensure zero net payments to all players are sought.

λ∗ = min
∑
x∈S

∑
u∈U(x)

z(x,u)g(x,u) (4.28)

s.t.
∑

u∈U(y)

z(y,u) =
∑
x∈S

∑
u∈U(x)

z(x,u)pxy(u) ∀y ∈ S (4.29)

∑
x∈S

∑
u∈U(x)

z(x,u) = 1 (4.30)

∑
x∈S

∑
u∈U(x)

z(x,u)b(x,u) ≥ 0 (4.31)

z(x,u) ≥ 0 ∀x ∈ S,u ∈ U(x) (4.32)

In the above LP model, equation (4.29) represents the balance equations and

equation (4.30) is the normalization constraint. The optimal values of z∗(x,u)

can be used to construct the steady state distribution and the optimal policy.

More precisely, for ergodic MDPs, for every state x ∈ S, there exists exactly

one u ∈ U(x) for which z∗(x,u) > 0. Setting µ∗(x) to u ∈ U(x) for which

z∗(x,u) > 0 gives the optimal policy. Further, z∗(x,µ∗(x)) denotes the steady

state probability of finding the system in state x under the optimal policy.

Hence, the objective represents the expected TSTT and the left hand side of

constraint (4.31) computes the expected revenue/cost.

However LP models are well suited for problems with small state and ac-

tion spaces. We may therefore use the approximation methods developed in

Section 4.4 and formulate the LP using the aggregated state space. Also,

since travelers do not perceive incentives and tolls the same way, one can use

prospect theory (Kahneman and Tversky, 1979) to distinguish between these.
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In addition, if the system manager wishes to achieve a certain target revenue

(which could in turn be used for maintaining the tolling infrastructure), we

can set the right hand side of constraint (4.31) to the expected profit or target

value.

4.6.2 Summary

In this chapter, we studied a dynamic day-to-day pricing model that can help

a system manager minimize the expected TSTT. Specifically, we formulated

the problem as an infinite horizon average cost MDP which provides stationary

policies that are a function of the state of the system. Since practical problems

involve a large number of travelers and exponential state spaces, we proposed

approximate solution methods and performed a few numerical experiments to

test their quality.

The results indicate that (1) for a large number of travelers, the approximate

policies obtained by state space aggregation methods result in a significant

reduction of expected TSTT compared to the no-toll case and (2) the com-

putation times for obtaining an approximate optimal policy are reduced to

a tractable degree after aggregating states. In the next chapter, we explor-

ing scenarios which relax some of the assumptions made in this chapter and

compute pricing policies using reinforcement learning techniques.
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Chapter 5

Day-to-Day Pricing: Inferred Route
Choice Dynamics

5.1 Introduction

In the previous chapter, the dynamic pricing problem in a day-to-day setting

was described and formulated as an average cost MDP. A few key assumptions

allowed us to compute the optimal toll policy. First, we assumed that all

travelers have the same value of time. Second, travelers’ day-to-day decisions

were assumed to fit a route choice dynamic (such as the logit model) known

to the system manager.

In practice, both these assumptions may not hold. Literature on congestion

pricing has explored the possibility of differences in travelers’ values of time

by assuming a distribution for VOT (Dial, 1999b,c). It is also possible that

travelers’ decisions are not accurately captured by a model with closed form

expressions for path choice probabilities such as the logit and C-logit model

(Koppelman and Wen, 2000), but other models such as the probit may fit the

data better. Furthermore, instead of using a single route choice model, the

choices of different travelers may be better represented using different models

and it may be hard for a planner to guess what model(s) to use for each
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traveler.

In such cases, model-free MDP approaches may be used which do not need

the explicit knowledge of the underlying transition probabilities but infers or

simulates them while computing the optimal policy simultaneously. Model-

free methods appear in two flavors – off-line and online. In the off-line version,

we develop a simulator that mimics travelers’ choices and when these choices

are aggregated, a sample future state is obtained. On the other hand, online

methods gather information on future states from real world experiments after

an action is taken at the current state. In both cases, however, we need

assumptions to ensure that the MDP is ergodic. Hence, we continue to suppose

that travelers’ route choice processes places positive weight on every path for

every toll vector so as to ensure that the Markov chain induced by every

stationary policy is irreducible.

5.2 Q-Learning for Average Cost MDPs

Reinforcement learning methods have been of interest to the optimization

and computer science community for over two decades. Q-learning is one

such model-free approach that was first proposed for discounted cost MDPs

(Watkins, 1989; Watkins and Dayan, 1992). Several researchers extended it to

the average cost MDP problem and performed empirical analysis (Schwartz,

1993; Singh, 1994; Mahadevan, 1996). Abounadi et al. (2001) and Gosavi

(2004) proposed update rules that were shown to theoretically convergence to
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the optimal values using ODE methods. In this thesis, we use the relative value

iteration Q-learning algorithm proposed by Abounadi et al. (2001). Recall that

the Bellman’s equation for the average cost MDP problem takes the form

λ∗ + h∗(x) = min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)h∗(y)

}
∀ x ∈ S (5.1)

Define Q-factors Q(x,u) for all state-action pairs as follows

Q(x,u) =

{
g(x,u) +

∑
y∈S

pxy(u)h∗(y)

}
− λ∗ (5.2)

Notice that from the above two equations, h∗(x) = minu∈U(x) Q(x,u). Re-

writing Bellman’s equations in terms of the Q-factors,

Q(x,u) =

{
g(x,u) +

∑
y∈S

pxy(u) min
u′∈U(y)

Q(y,u′)

}
− λ∗ (5.3)

The relative value iteration algorithm that was discussed in Chapter 4 can

now be reformulated using Q-factors. The update rule for such an algorithm

would be

Qk+1(x,u) =

{
g(x,u) +

∑
y∈S

pxy(u) min
u′∈U(y)

Qk(y,u′)

}
−Qk(s,v), (5.4)

where (s,v) is a state-action pair that is arbitrarily chosen.

Equation (5.4) still contains the transition probability term pxy(u) which may

be unknown to the system manager. In order to derive an update rule without

pxy(u), we sample the state to which the system goes to when an action u

is taken in state x using a simulator or data from a real world experiment.

127



The intuition behind Q-learning, which is briefly discussed next, can be ex-

plained using Robbins and Monro (1951)’s method for estimating the mean of

a random variable from observations or samples (see Gosavi, 2014).

Consider a random variable X. Suppose we wish to estimate the expected

value of the random variable E[X] in an iterative manner by collecting samples

x0, x1, . . . , xk, . . .. Define, Xk = 1
k

∑k−1
i=0 xi. Using the strong law of large

numbers, E[X] = limk→∞Xk. Therefore,

Xk+1 =
1

k + 1

k∑
i=0

xi (5.5)

=
k

k + 1
Xk +

1

k + 1
xk (5.6)

=
(

1− 1

k + 1

)
Xk +

1

k + 1
xk (5.7)

Let us now rewrite equation (5.4) in the following manner.

Qk+1(x,u) =
∑
y∈S

pxy(u)

{
min

u′∈U(y)
Qk(y,u′) + g(x,u)−Qk(s,v)

}
(5.8)

For a fixed (x,u) pair, the right hand side computes the expected value of

some random variable with support S and the term inside the curly braces

can be treated as a realization or a sample (analogous to xk in equation (5.7)

of Robbins and Monro’s algorithm). Thus, in order to update the Q-factors,

we draw a sample future state ξ(x,u) after choosing u in state x and use the

following equation.

Qk+1(x,u) =
(
1−γk

)
Qk(x,u) +γk

(
min
u′

Qk
(
ξ(x,u),u′

)
+ g(x,u)−Qk(s,v)

)
(5.9)
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where γk is a diminishing sequence of step sizes satisfying
∑

k γk = ∞ and∑
k γ

2
k <∞ (e.g., γk = 1/(k + 1)).

Equation (5.9) represents the synchronous Q-learning algorithm (Abounadi

et al., 2001) in which at each iteration k, the Q-factors for all state-action pairs

(x,u) are updated. This Q-learning version is more useful in an off-line setting

in which the state transitions are complicated to be expressed analytically but

can be simulated. For the dynamic pricing framework proposed in this chapter,

the synchronous Q-learning algorithm can be used in the following scenarios:

• Travelers’ choices are be represented by a closed form route choice model

such as the logit model, but on each day, a fixed number of users sampled

from a population of agents having a VOT distribution decide to travel.

• Travelers’ choices are better described using other discrete choice mod-

els such as the probit model. In fact, since an individual’s probability

of selecting routes is being simulated, one could relax the usual assump-

tions on the independence of error terms in the utility expressions and

instead assume that they are correlated. Capturing correlations between

unobserved factors such as number of signals or left turns along a route

could lead to models with better fit.

However, if the only source of information on travelers’ route choices is tran-

sitions observed from the field over different days, an online asynchronous

Q-learning algorithm which is also known to converge asymptotically can be
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used. In the asynchronous version, the system manager observes a state and

picks a toll vector from the action space randomly (usually with uniform prob-

ability) and observes the state to which the system moves on the next day.

The Q-values are then updated and another toll vector is randomly picked for

the next day and the process is repeated.

When implementing the asynchronous version, one must realize that the Q-

factors are not updated for all state-action pairs for the same number of times.

In order to guarantee convergence, it is necessary that all state-action pairs

are visited infinitely often. Hence, when in state x, we choose u from U(x)

with probability 1/|U(x)|. The update step for asynchronous Q-learning (see

Algorithm 7) is very similar to that of the synchronous version except for the

step sizes which take into account the number of times the Q-factors were

updated for a state-action pair (represented using η(x,u)). The Q-values are

updated for kmax iterations after which Step 3 is used to construct a policy

that is used at the end of the learning period.

While Q-learning does not require the knowledge of the transition probabilities,

its major drawback is that the convergence is asymptotic and requires sufficient

exploration of the state and action spaces. Hence, the number of iterations

required to learn the optimal strategy are large and are proportional to the

number of state-action pairs. Synchronous Q-learning, however, uses an off-

line method to find a policy and also does not compute and store the transition

probabilities and hence can be a very effective method to solve the day-to-day
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Algorithm 7 Pseudocode for asynchronous Q-learning

Step 1:
k ← 0
On day 0, suppose the state of the system is x0

Arbitrarily select a state-action pair (s,v)
Q(x,u)← 0 ∀x ∈ S,u ∈ U(x) (they could be initialized to arbitrary values)
η(x,u)← 0 ∀x ∈ S,u ∈ U(x)

Step 2:
while k < kmax do

Select uk randomly from U(xk) with uniform probability
Q(xk,uk)←

(
1− γη(xk,uk)

)
Q(xk,uk)

+γη(xk,uk)

(
minu′ Q

(
ξ(xk,uk),u

′)+ g(xk,uk)−Q(s,v)

)
η(xk,uk)← η(xk,uk) + 1
xk ← ξ(xk,uk)
k ← k + 1

end while

Step 3:
Construct the Q-learning policy µ(x) ∈ arg minu∈U(x) Q(x,u)
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dynamic pricing problem. Asynchronous methods on the other hand work only

when the state and action spaces are small. In order to circumvent this issue,

we work with an aggregated state space as described in the previous chapter.

5.3 Demonstration

In this section, we apply Q-learning to the Braess network with three routes

that was introduced in Figure 4.4. Since Q-learning is not well suited for

problems with large state-action pairs, we restrict our action space to {0, 4}3,

i.e., we either collect a toll of 0 or 4 units on each of the three routes. A demand

of 100 travelers is assumed between node 1 and 4. The expected TSTT for

the no-tolls case is 830.27 and the optimal policy yields an expected TSTT of

767.61.

In order to simulate the route choices of travelers, we assume that the trav-

elers follow the logit model with a unit value of time. Note that transition

probabilities are not directly used by the system manager and are only used

to draw a sample future state when a toll vector is chosen at the current state.

Although different values of time and other route choice models could be used

for the purpose of simulating the evolution of the system, the logit model was

chosen because we can compute the exact optimal solution and benchmark the

performance of the Q-learning algorithms.

The values of the transition probabilities for the aggregated state space are

obtained directly using equation 4.4 and are not derived using the multivariate
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Gaussian distribution. In this process, we make a minor modification to the

aggregated state space and define it as S = {X ∈ Ir : X ∩ S 6= ∅} to ensure

that at each aggregated state contains at least one original state (a feasible

integral flow solution). As before, let the transition probabilities of moving

from state X to Y under action u be denoted as pXY(u). The transition

probabilities for the aggregated state space may be expressed in terms of the

transition probabilities of the original state space in the following manner.

pXY(u) =

∑
x∈X

∑
y∈Y pxy(u)∑

x′∈X
∑

y′∈S px′y′(u)
(5.10)

5.3.1 Synchronous Q-learning

The synchronous Q-learning algorithm is suited for instances in which traveler

choices may be simulated using complicated route choice models or when the

VOT is not constant across the population. In order to test the performance

of this algorithm, we first construct a policy using the Q-factors obtained after

kmax iterations. Given an aggregated state, this policy prescribes an action

to be taken when in that state. Note that the same action is taken for all

states in the original state space that belong to the aggregated state. In this

way, one can define a Markov chain on the original state space. Finally, the

transition probabilities of the Markov chain (which are known from the logit

choice model) are used to estimate the expected TSTT for the Q-learning

policy.

Since the actions at every state in each iteration leads to a future state that
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Table 5.1: Results of synchronous Q-learning

kmax δ = 4 δ = 8
5 (794.8,805.5) (809.5,815.7)
10 (779.3,787.7) (800.0,804.7)
20 (771.5,776.5) (790.5,794.6)
30 (771.1,776.5) (789.7,793.9)

is random, the policy obtained at the end of kmax iterations need not be the

same if the experiment is repeated. Hence, in order to compare the solution

quality with the TSTT of the optimal solution or the no-tolls case, we run

the Q-learning algorithm multiple times (100 for the results in this chapter)

and construct a confidence interval for the expected TSTT associated with the

Q-learning policy. Table 5.1 shows the 95% confidence interval for different

learning periods and two levels of state space aggregation.

The mean estimate of expected TSTT is plotted in Figure 5.1. Notice that the

algorithm converges to the optimal solution as kmax increases and does better

than the no-tolls case even if terminated after a few iterations. However, the

results for the δ = 4 case were superior to that for δ = 8 probably because the

latter case involved more states, and hence learning the transition probabilities

along with the optimal policy might have been difficult.

5.3.2 Asynchronous Q-learning

The asynchronous Q-learning algorithm described in Algorithm 7 was tested

for kmax ranging from 103 to 105. The expected TSTT of the policy obtained
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Figure 5.1: Expected TSTT for of the synchronous Q-learning policy.
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at the end of the learning period is evaluated as explained in Section 5.3.1.

Note again that policies from asynchronous Q-learning are dependent on the

initial state and the sample path followed up to day kmax. Hence, we construct

confidence intervals as before with random initial conditions (see Table 5.2)

Figure 5.2 shows the expected TSTT for varying levels of δ averaged over dif-

ferent runs. Unlike the results presented in the previous chapter, the solution

quality does not necessarily improve as we move from a coarser to finer level

of aggregation. The plot indicates that the Q-learning algorithm discovers a

policy that is close to the optimal only for aggregation levels of δ equal to 4 and

5. In fact, in some cases, the resulting policy can do worse than the do-nothing

(no-tolls) case. The reason for this behavior is straightforward. As δ increases,

the learning algorithm has to deal with a large number of state-action pairs

which makes it difficult for it to learn the optimal policy. At the same time,

having a very small δ induces errors as we are forced to take the same action

at all route flow patterns belonging to an aggregated state. Hence, there is a

trade-off between possibility of discovering an optimal solution and difficulty

associated with learning it.

We also studied the performance of the Q-learning policy by varying the num-

ber of iterations for the learning period. Table 5.3 shows the 95% confidence

intervals for the expected TSTT of the Q-learning policy for different values

of kmax. Two levels of aggregation δ = 4 and δ = 8 were considered.

Figure 5.3 shows the sample mean of the expected TSTT as kmax increases.

136



Table 5.2: 95% confidence intervals for expected TSTT of the Q-learning
policy for different levels of aggregation.

δ kmax = 2000 kmax = 40000 kmax = 100000
3 (866.8,874.8) (876.0,882.0) (888.7,888.7)
4 (810.2,819.5) (771.8,776.7) (769.6,770.4)
5 (808.1,816.5) (796.4,804.9) (777.9,785.3)
6 (836.8,844.2) (808.2,815.7) (802.5,810.0)
7 (842.2,846.9) (831.8,835.6) (831.1,836.1)
8 (845.1,850.0) (832.1,835.2) (828.1,831.5)
9 (842.3,846.7) (832.2,836.0) (827.1,830.8)
10 (843.7,848.3) (834.7,837.4) (831.5,834.6)
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Figure 5.2: Expected TSTT for different levels of aggregation.
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Table 5.3: 95% confidence intervals for the expected TSTT of the Q-learning
policy for different learning periods.

kmax (in ’000) δ = 4 δ = 8
2 (810.2,819.5) (845.1,850.0)
4 (805.6,815.3) (844.5,849.7)
8 (785.9,795.8) (841.6,846.1)
12 (784.4,793.8) (837.7,842.4)
16 (778.2,785.8) (836.1,839.8)
20 (774.2,779.7) (834.4,837.9)
40 (771.8,776.7) (832.1,835.2)
60 (771.2,775.5) (830.3,832.7)
80 (769.9,773.1) (826.9,831.8)
100 (769.6,770.4) (828.1,831.5)
200 (770.0,770.7) (828.2,829.8)
300 (770.3,770.5) (825.5,828.5)
400 (770.3,770.4) (823.0,826.8)
500 (770.4,770.4) (821.5,825.7)

As expected, the performance of the Q-learning policy is close to the optimal

solution for larger kmax. When δ = 4, the Q-learning policy performs better

than the no-tolls case even for lower values of kmax. However, as kmax increases,

it can only provide a solution with an expected TSTT equal to 770.424 whereas

the optimal solution is 767.61. This difference is a result of the error induced

due to aggregation which may be reduced using a finer aggregation scheme at

the cost of longer learning periods. For instance, when δ = 8, the algorithm

can find an optimal policy with an expected TSTT of 767.61 but only after

about 107 iterations.
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5.4 Summary

In this chapter, we addressed the problem of pricing when the system manager

lacks explicit closed form knowledge of route choice mechanisms employed by

users in a day-to-day setting. Standard Q-learning approaches for the average

cost MDP were explained and demonstrated on a small network. Two types of

algorithms were implemented. First, we discussed a synchronous Q-learning

algorithm which could be of use when users’ route choices are difficult to

express mathematically but can be simulated or when users are sampled from

a population with heterogeneous values of time. Since the policy is computed

off-line, these methods can find the optimal policy without much difficulty.

However, it is necessary to ensure that users’ route choices are accurately

captured by the simulation framework that is used to draw samples of future

states.

The asynchronous version which can be applied in real-time was also tested.

Although the assumptions in this learning model are least restrictive, we found

that this algorithm is sensitive to the level of aggregation and may take a

staggeringly large number of iterations before discovering the optimal policy.

Thus, using this method can be quite challenging but may still be of use

in small networks in which travelers choose between managed and general

purpose lanes.
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Chapter 6

Conclusion

6.1 Summary

Two dynamic congestion pricing models were developed in this dissertation.

The first one, discussed in Chapters 2 and 3, addressed the externalities asso-

ciated with non-recurring within-day congestion by setting tolls that depended

on the network state. Travelers were assumed to be fully-rational and made

online routing decisions to minimize their expected travel times. Supply-side

uncertainty was modeled using probabilistic link performance functions and

a static equilibrium with recourse model was formulated to understand the

steady-state conditions. It was mathematically shown that state-dependent

marginal tolls minimize the total expected travel times of all the users in

the network. The sub-optimality of static tolls was demonstrated on the

Sioux Falls test network using the Frank-Wolfe algorithm and a value iter-

ation method was used to compute the optimal routing policies. Interestingly,

in many cases, fixed tolls were found to perform worse than the no-tolls or the

do-nothing scenario.

Like in deterministic TAPs, the set of tolls that leads to a socially optimum

state is not unique. Hence, a minimum expected revenue pricing problem was
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formulated to compute an alternate optimal toll vector that also generates

the least expected revenue. This problem was formulated as a linear program

using data from the solution to a reformulation of the equilibrium with re-

course model. Such solutions have the potential to not only minimize system

inefficiency but can also make congestion pricing more acceptable.

In the second pricing framework, discussed in Chapters 4 and 5, the problem

of setting dynamic tolls in day-to-day traffic models was studied. Traveler be-

havior was assumed to be captured using route choice models that minimize

expected disutility. The uncertainty in the route choices are assumed to result

from perception errors or unobserved factors. Tolls are revealed to the trav-

elers on each day before they make their trips and are set using the state of

the network on the previous day(s). Travelers’ route choice probabilities are a

function of historic travel times and the toll on the current day. The problem

of setting dynamic state-dependent tolls was formulated as an average cost

MDP with an aim to minimize the total expected system travel time over an

infinite horizon. However, finding the optimal tolling policy was computation-

ally expensive as one needs to enumerate the state space. Hence, approximate

state space aggregation methods were suggested to improve tractability for

small networks with a large number of travelers.

This dynamic tolling framework was first studied in a setting in which all users

follow the logit choice model. Existence of a closed form route choice dynamic

helped us formulate and compute the optimal tolling policy. We then extended
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this approach to instances in which route choices cannot be mathematically

described but can either be simulated or observed from practice. Our findings

indicate that it is efficient to first construct an appropriate route choice model

and then compute the optimal tolling policy using an off-line simulator.

6.2 Future Work

The pricing models developed in this dissertation motivate several topics for

future research. On the topic of state-dependent tolls under supply-side uncer-

tainty in within-day traffic models, (1) the sub-optimality of static tolls call

for accurately estimating supply-side variables and their distributions using

historic incident and weather data. (2) Improving the run times using more

advanced algorithms such as origin-based assignment and conjugate and bi-

conjugate Frank-Wolfe can help compute marginal tolls for regional networks

with more link-states and is another potential topic for exploration. (3) While

travelers’ actions were assumed to be conditioned on the downstream link-

states, with V2X technologies, travelers will have access to reliable real-time

state and toll information at a network level. Also, the current work assumes

that the state of each link is independent of other link-states which may be

restrictive depending on the type of disruption and the scale of the network.

Thus, it would be worthwhile to develop more sophisticated policy-based rout-

ing and tolling models along the lines of this dissertation. (4) Also allowing

only a fraction of travelers to replan can help model more practical scenar-

ios that include both human and autonomous drivers. (5) Finally, one could

143



explore methods such as Dantzig-Wolfe decomposition (Bai et al., 2004) for

solving the minimum expected revenue linear programs more efficiently.

On the other hand, day-to-day pricing models can be extended to (1) larger

networks in which threshold type tolling policies may be sought which are not

necessarily optimal but perform better than the no-tolls scenario. (2) It would

be of interest to explore situations in which dynamic tolls are levied from a

subset of regular travelers or “members”, while the remaining users pay a fixed

but higher fee for choosing a route. This way, the route choices of the regular

set of travelers can be influenced to improve system efficiency. (3) For models

in which no route choice data is available and the optimal tolls are learnt from

experimentation, it might be fruitful to investigate more promising reinforce-

ment learning algorithms (Kearns and Singh, 2002; Brafman and Tennenholtz,

2002; Strehl et al., 2006) and other randomized schemes for selecting actions at

each state, which may improve the rate of convergence by efficiently addressing

the tradeoff between exploration and exploitation.

In both pricing models, the traffic flow component was simplified by assuming

that the travel time on each link is a function of its flow or the number of

travelers on it. Relaxing this assumption can improve traffic predictions and

make the dynamic state-dependent pricing models more realistic.
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