
Copyright

by

Tarun Rambha

2012



The Thesis Committee for Tarun Rambha

Certifies that this is the approved version of the following thesis:

Adaptive Routing in Schedule Based Stochastic

Time-Dependent Transit Networks

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:
Stephen D. Boyles

Co-supervisor:
S. Travis Waller



Adaptive Routing in Schedule Based Stochastic

Time-Dependent Transit Networks

by

Tarun Rambha, B.Tech

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2012



To my parents



Acknowledgments

I take this opportunity to express my gratitude to my advisors Dr.Stephen Boyles and

Dr.Travis Waller. They have been truly inspiring in their own right. In particular, I

would like to thank Dr.Stephen Boyles for countless discussions on the various issues

that came up during the course of this work and for pointing out the analogy between

light cones and the proposed methodologies. I thank Dr.Waller for his encouragement

during the initial stages of my graduate studies and for giving me the time and freedom

to explore a topic of interest for my thesis.

I wish to thank Natalia Ruiz, Nezamuddin, Jennifer Duthie, Christopher Melson and

Shoupeng Tang with whom I enjoyed working with as a graduate research assistant.

In addition, I thank Lisa Cramer and Libbie Toler for their timely administrative

assistance. I appreciate the efforts of faculty at UT particularly, Dr.Anath Balakr-

ishnan, Dr.David Morton, Dr.Thomas Wiseman and Dr.Chandra Bhat whose courses

were intellectually stimulating and helped reinforce my interests. I would also like to

thank Dr.Karthik Srinivasan for introducing me to this wonderful field back at IIT

Madras.

My graduate experiences were enriched by the company of several friends whom I wish

to acknowledge; Roshan and Rajesh for being great mentors; GT for discussions on

various aspects of life; Prasad and Sundeep for comic relief; and Raghu, Pallu, Ravi,

Sriram, Moby, Gaurav, Chrissy and Jaggu for making my stay at Austin enjoyable.

Also, I would like to thank all forces of nature that left me with no choice but to

walk for half an hour and wait for the next show at a movie theater after missing a

transfer between buses on routes 10 and 311 on one fateful day. This incident later

motivated the thought of using more information to define better adaptive strategies.

I am greatly indebted to my parents, grandmother and sister for their love and sacri-

fices and for encouraging my pursuits. Lastly, I thank god for his grace and blessings.

v



Adaptive Routing in Schedule Based Stochastic

Time-Dependent Transit Networks

Tarun Rambha, MSE

The University of Texas at Austin, 2012

Supervisor: Stephen D. Boyles

Co-supervisor: S. Travis Waller

In this thesis, an adaptive transit routing (ATR) problem in a schedule based stochas-

tic time-dependent transit network is defined and formulated as a finite horizon

Markov Decision Process (MDP). The transit link travel times are assumed to be

random with known probability distributions. Routing strategies are defined to be

conditional on the arrival times at intermediate nodes, and the location and arrival

times of other buses in the network. In other words, a traveler in the network decides

to walk, wait or board a bus based on the real time information of all buses in the

network. The objective is to find a strategy that minimizes the expected travel time,

subject to constraints that guarantee that the destination is reached within a certain

threshold. The value of the threshold was chosen to reflect the risk averse attitude

of travelers and is computed based on the earliest time by which the destination can

be reached with probability 1. The problem inherits the curse of dimensionality and

state space reduction through pre-processing is achieved by solving variants of the

time dependent shortest path problem. An interesting analogy between the state

space reduction techniques and the concept of light cones is discussed. A dynamic

program framework to solve the problem is developed by defining the state space,

decision space and transition functions. Numerical results on a small instance of the

Austin transit network are presented to investigate the extent of reduction in state

space using the proposed methods.

vi



Table of Contents

Acknowledgments v

Abstract vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Adaptive routing in stochastic networks . . . . . . . . . . . . . . . . . 6

2.3 Adaptive routing in transit assignment . . . . . . . . . . . . . . . . . 8

2.4 Transit trip planning using real time data . . . . . . . . . . . . . . . 10

2.5 Other transit routing approaches . . . . . . . . . . . . . . . . . . . . 11

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Problem Description 14

3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Constructing individual states of a bus . . . . . . . . . . . . . . . . . 20

3.5 Formal definition of the ATR problem . . . . . . . . . . . . . . . . . 22

vii



4 Preprocessing 24

4.1 Algorithms for preprocessing . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Earliest Origin-to-All TDSP (EOA) . . . . . . . . . . . . . . . 26

4.1.2 Earliest All-to-Destination TDSP (EAD) . . . . . . . . . . . . 28

4.1.3 Latest Origin-to-all TDSP (LOA) . . . . . . . . . . . . . . . . 29

4.1.4 Latest All-to-Destination TDSP (LAD) . . . . . . . . . . . . . 33

4.2 Preprocessing procedure . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Elimination based on EAD/LAD labels . . . . . . . . . . . . . 36

4.2.2 Elimination based on EOA labels . . . . . . . . . . . . . . . . 42

4.2.3 Elimination based dominance . . . . . . . . . . . . . . . . . . 44

4.3 Remarks on the elimination procedure . . . . . . . . . . . . . . . . . 44

4.4 Light Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Dynamic Programming framework for the ATR problem 49

5.1 Components of Dynamic Program . . . . . . . . . . . . . . . . . . . . 49

5.1.1 State space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Decision space . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.3 Transition functions . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.4 Value functions . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Solving the Dynamic Program . . . . . . . . . . . . . . . . . . . . . . 57

6 Results and Conclusions 59

6.1 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Network Description . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Scope for future study . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68

viii



List of Tables

1.1 A priori strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Schedules on routes 1 EB and 1 WB . . . . . . . . . . . . . . . . . . 19

3.3 Schedules on routes 2 NB and 2 SB . . . . . . . . . . . . . . . . . . . 19

3.4 Itinerary of bus Ib1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 δead and δlad values for individual states of the bus . . . . . . . . . . . 38

6.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Results of individual state space elimination . . . . . . . . . . . . . . 61

ix



List of Figures

1.1 Illustration of adaptive routing in transit networks . . . . . . . . . . . 2

3.1 Physical transit network(top) and transformed network(bottom) . . . 18

3.2 Individual states of a bus . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Individual States of a bus present in the garage . . . . . . . . . . . . 22

4.1 Network to illustrate the preprocessing algorithms . . . . . . . . . . . 27

4.2 Application of the LOA algorithm . . . . . . . . . . . . . . . . . . . . 30

4.3 LAD labels of individual states of bus b1(left) and b2(right) . . . . . . 34

4.4 Elimination of the individual states of a bus . . . . . . . . . . . . . . 37

4.5 Acyclic network structure of states marked with w.p. > 0 labels . . . 39

4.6 Phase I(left) and Phase II(right) elimination of individual states . . . 40

4.7 Acyclic network structure of states marked with wp1 labels(left) and

the modified individual states from phase I(right) . . . . . . . . . . . 41

4.8 Drawbacks of the preprocessing techniques . . . . . . . . . . . . . . . 44

4.9 Light cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Light cones and indicator variables . . . . . . . . . . . . . . . . . . . 46

4.11 Relevant states of buses in the network . . . . . . . . . . . . . . . . . 47

5.1 Constructing the state space . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Routes (Source : http://www.capmetro.org/) . . . . . . . . . . . . . 60

6.2 Schedules on Route 10 (Source : http://www.capmetro.org/) . . . . . 60

6.3 A Plot of the individual state space reduction . . . . . . . . . . . . . 62

6.4 Comparison of individual state space reduction using EAD and LAD

labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Plot of individual state space reduction for another OD pair . . . . . 64

x



Chapter 1

Introduction

1.1 Background

Transportation networks are often subject to uncertainty in link travel times. Vari-

ability in the time taken to traverse a link could result from several factors such as

congested road conditions, presence of traffic signals, inclement weather, etc. Since

transit networks (particularly bus networks) use roadway links, the time taken for

travel in these networks is also pervaded by uncertainty. While randomness in tran-

sit networks might not have a bite in a traveler’s route choice when he/she has no

option but to board a single bus, it does play an important role for trips that involve

transfers and in cities with a large number of alternate transit options for traveling

between an origin-destination (OD) pair. However, most transit routing applications

seldom take this into account while providing routing policies. The a priori strategies

prescribed by these applications inform travelers where to board, get down or transfer

based on frequencies or schedules published by transit agencies.

1.2 Motivation

A priori strategies in stochastic networks are generally sub-optimal and by making

use of additional information, it is possible to construct adaptive strategies that are

optimal. Advances in Intelligent Transportation Systems (ITS) let us gather a large

amount of real time data related to location and travel time of buses in a network

which may be used for this purpose. This information also plays a vital role in

characterizing the distributions of uncertainty in the network. For instance, suppose

a traveler’s a priori strategy is to board bus A and transfer to another bus B at

1



some node in the network. If either of the two buses gets delayed, the possibility of a

transfer and the waiting time (if a transfer is feasible) can affect the optimality of the a

priori strategy. In such cases the travelers routing policy can be modified dynamically

using information related to the real time location of buses in the network. Thus,

the problem of traveling in transit networks in optimal time can be regarded as being

adaptive in nature, where decisions made at nodes are conditional on the location of

buses.

Consider a small example that illustrates the adaptive nature of the problem. Sup-

pose, buses A and B start at nodes 1 and 4 at t = 0 respectively, in the network shown

in figure 1.1. The time taken by the buses to traverse the transit arcs is indicated

in the figure. The travel time on the transit arc (4,5) may be 1 or 10 with equal

probability. Also, let the walking travel time on arcs shown in the network be 5.

Figure 1.1: Illustration of adaptive routing in transit networks

Suppose we wish to travel from node 1 to node 3. If we board bus A and reach node

2 at time t = 1, we can either walk or wait for bus 2. Hence, we have two a priori

strategies whose expected costs are shown in the table 1.1. If we decide to walk to

node 3 after boarding bus A, we would incur a cost of 1(time taken by bus A to reach

node 2) + 5 (walking travel time between nodes 2 and 3) = 6. On the other hand, if

we wait for bus B, the destination is possibly reached at t = 3 or t = 12 with equal

2



probability. Hence, the expected cost of travel is 3(0.5) + 12(0.5) = 7.5. Therefore,

the optimal a priori strategy is to board bus A and walk to the destination.

Table 1.1: A priori strategies

Strategy Expected cost
Board bus A and walk to node 3 6
Board bus A and wait for bus B 7.5

But if bus B reaches node 5 at t = 1, it is guaranteed to arrive at node 2 at t = 2

and hence waiting is optimal. However, if we received information that bus B failed

to reach node 5 at t = 1, walking from node 2 to node 3 is optimal. Such an adaptive

strategy would have an expected cost of 3(0.5) + 6(0.5) = 4.5, which is lower than

the optimal a priori solution.

1.3 Objectives

This research is applicable to schedule based transit networks which are subject to

uncertainty in link travel times with known pmfs. A major goal of this thesis is to

develop an adaptive route choice model in the presence of real time information. In

defining an adaptive strategy we use the notion of system states, which are character-

ized by the spatial and temporal locations of buses and the traveler in the network.

Travelers are assumed to choose least expected cost strategies which guarantee that

the destination is reached within a given threshold. Using this backdrop, the central

idea in finding an optimal strategy can be described as follows. For each choice avail-

able to a traveler at a particular state, the expected time to reach the destination

from possible future states can be used to determine the optimal decision at that

state. Given below is a list of the major objectives of this study.

1. Defining the Adaptive Transit Routing(ATR) problem:

This step mainly involves network transformations and creation of the state

space of buses in the network using the travel time distributions on links.

3



2. Reducing the size of the state space:

Since buses in the network can possibly be at different stops in the network at

various times, the size of the resulting state space is usually very large. For

instance, if a bus is scheduled to traverse 20 links on a particular trip and if the

size of the support of the travel time distributions on each link is 2, the number

of states at the last node is of the order 220 ≈ 106. This calls for algorithms and

preprocessing methods to refine the state space in order to ease the computation

of the optimal strategy. In addition, numerical experiments to determine the

effectiveness of these methods are to be conducted.

3. Development of a dynamic programming framework:

This involves formulating the problem of finding the optimal strategy as a

Markov Decision Process (MDP) using elements such as state space, decision

space, transition and value functions.

1.4 Organization of thesis

The rest of this thesis is organized as follows. The second chapter reviews existing

literature on adaptive shortest paths under uncertainty and route choice in transit

networks. Chapter 3 comprises of a description of the problem and the notation used.

Chapter 4 develops algorithms used for preprocessing and examines the elimination

of individual state space in detail. Chapter 5 explains the framework for solving the

ATR problem as an MDP and suggests possible solution methods. Chapter 6 contains

the computational results of an implementation of the state space reduction method

on a small instance of the Austin transit network and summarizes the findings and

limitations of this study, and discusses possible directions for future research.

4



Chapter 2

Literature Review

2.1 Introduction

Shortest path problems in public transportation systems have been of interest primar-

ily for a couple of reasons. First, it can assist a traveler in the decision making process

by optimizing his/her objectives. Secondly, knowing how people choose routes can

be used to obtain transit flows by solving a transit assignment problem. This may

further be applied in transit planning as it forms the basis for network design and

scheduling problems.

At the outset, finding shortest paths in transit networks may appear to be similar

to optimal routing in general traffic networks. However, the problem is relatively

difficult due to the possibility of waiting and the issue of common bus lines as noted

by Chriqui and Robillard [4]. A traveler at a node in a transit network is often faced

with the option of boarding multiple buses on different lines to traverse a link or a

section of a route. Also, presence of randomness in travel times and arrivals of buses

in the network adds an extra layer of complexity to the problem. These features have

motivated researchers in the past to develop adaptive routing algorithms for transit

networks.

Based on its applications, literature on adaptive shortest paths in transit networks can

be classified into stand-alone adaptive routing problems and adaptive transit route

choice in traffic assignment. While the former inspired research related to stochastic

and online shortest paths in general traffic networks, studies on the latter expanded to

5



include passenger capacity constraints, effects of queues, etc. Although, the objectives

of a traveler in these classes of problems are similar in most cases, subtle differences

in the underlying assumptions distinguish them from each other. For example, more

emphasis is laid on probabilistic link travel times in regular adaptive routing problems.

On the other hand, adaptive route choice models in traffic assignment seek an accurate

representation of waiting times under uncertainty in arrivals/headways of buses.

In the following sections, we review adaptive and online shortest paths in stochastic

time varying networks, transit route choice in the context of transit assignment, trip

planning models in the presence of real time information and a few other approaches

for transit routing. Finally, we position the contribution of this thesis with respect

to existing literature.

2.2 Adaptive routing in stochastic networks

The standard shortest path problem with deterministic non negative arc costs can

be solved by using the well-known label setting algorithm proposed by Dijkstra [7].

The Bellman-Ford algorithm (which falls under the category of a label correcting

algorithm), originally suggested by Ford [9], and independently by Bellman [2] can

handle a more general class of shortest path problems. Over the last few decades,

these problems have been extensively studied and several efficient implementations

were developed, details of some of which can be found in Ahuja et al. [1], and Deo

and Pang [6].

However, in most transportation networks, the travel time on an arc is not fixed, but is

dictated by the time at which one arrives at its tail node. Such a property is evident in

transit networks as the waiting time is a function of the arrival time of buses. Dreyfus

[8] extended Dijkstra’s algorithm to solve for the shortest path in networks with time

dependent arc costs in which certain FIFO assumptions hold. Ziliaskopolous and

6



Mahmassani [32] provide a label correcting approach for the time dependent shortest

path (TDSP) problem by maintaining multiple labels at each node. A comprehensive

summary of TDSP algorithms and their computational complexities can be found in

Chabini [3].

In networks with probabilistic and independent arc costs, the least expected time

path can be computed by formulating it as a static shortest path problem in which

the arc costs are replaced by their expected values. However, if the link travel times

are random and time dependent, or if the pmfs vary with time, standard shortest

path algorithms fail to find the optimal path. In fact, the optimal choice in such

networks is not a path but a strategy/hyperpath or a complete contingent plan of

action. This was first pointed out by Hall [11] in his seminal paper on this subject.

It was shown that a path chosen based on the arrival times at intermediate nodes

might result in lesser expected travel time. An algorithm for an a priori strategy and

a dynamic programming approach for finding the adaptive policy were presented and

demonstrated using a transit network.

Miller-Hooks and Mahmassani [19] developed modified label correcting algorithms

for finding the a priori least expected cost path and lower bounds on the expected

travel time of the optimal adaptive strategy in a network in which the pmfs of the

arc costs are independent and time varying. The latter was extended by Miller-

Hooks [18], and efficient modified label setting and correcting methods for finding

the optimal adaptive policy were suggested. Similar to the approach followed by Hall

[11], strategies were assumed to be conditional on the arrival time at intermediate

nodes. The performance of these algorithms was tested on transportation and data

networks. Based on shortest path algorithms in hypergraphs, derived by Nguyen and

Pallottino [21], Pretolani [24] solved a similar problem of finding the shortest adaptive

path using weighted hypergraphs.

7



Other variants of shortest path problems in stochastic networks are derived by mod-

ifying the assumptions of the source of uncertainty and the timing of observation.

Polychronopoulos and Tsitsiklis [22] formulated stochastic shortest path problems

with recourse using a dynamic programming framework in which, arc costs are ran-

dom with known distributions and the uncertainty is partly revealed as the network

is traversed (i.e. when a traveler reaches the tail node of an arc). The authors handle

both spatial dependence and independence among arc costs by constructing possible

realizations of the network. Among other related works, Waller and Ziliaskopoulos

[29], and Provan [25] extended the problem of finding adaptive strategies in networks

with arc cost dependencies under a reset assumption according to which, the arc cost

is realized every time its tail node is reached even if it was previously visited.

2.3 Adaptive routing in transit assignment

Finding the optimal adaptive route appears as a sub-problem in the transit assign-

ment problem. These problems have been studied in great detail and are usually

centered around frequency based transit networks. Most authors also presume that

the headway between bus arrivals is random with known distributions (typically ex-

ponential). In the presence of common bus lines, travelers are assumed to choose a

subset of available lines, also called as the attractive set, such that the total expected

travel time to the destination in minimized. A strategy is defined by the line chosen

at each stop (or a probability distribution over the attractive set) and the alighting

point given that a particular line was chosen. The optimal routing policy is then em-

ployed to obtain transit flows by solving for equilibrium using either time dependent

OD demands or by assuming probabilistic passenger arrivals.

Spiess and Florian [26], and Nguyen and Pallottino [20] were among the first to

make notable contributions to the assignment problem. The former consider a transit

network in which transit travel times are fixed but the waiting time at nodes depend

8



on the combined frequency of lines. They assume that the strategy of a traveler

is to board the first bus serving a line that belongs to the attractive set. A linear

programming formulation was used to find the optimal strategy, which was further

extended to model instances in which the in-vehicle travel time varies as a function

of passenger flows (referred to as discomfort functions) using a non-linear program.

The authors briefly discuss other possible strategies depending on the information

available during the course of travel. One such suggestion alludes to the idea of

defining strategies based on information acquired on buses spotted while riding a

bus. A manifestation of this thought is in a way similar to the concept of a strategy

used in this thesis, in which actions are conditional on the spatial and temporal

information of buses in the network.

Nguyen and Pallottino [20] on the other hand, used a graph theoretical framework,

in which travelers are assumed to choose hyperpaths instead of transit arcs. The

hyperpath of a traveler defines a strategy and provides the probability of boarding a

line that belongs to the attractive set. The cost of a hyperapth includes fixed transit

arc costs and waiting travel times weighted by appropriate probabilities. The authors

then use a variational inequality to formulate the transit assignment problem based

on the shortest hyperpaths chosen by travelers.

Broader classes of transit assignment problems which incorporate the effects of conges-

tion have also been examined by several researchers. Cea and Fernandez [5] analyzed

the transit assignment problem in which a traveler boards the first bus from the set

of attractive lines only if the capacity of the bus is not exceeded. Wu et al. [30] used

the concept of hyperpaths and extended the non-linear model of Spiess and Florian

[26] to include waiting times that depend on flows and frequencies in addition to the

discomfort functions. Gentile et al. [10] find the optimal strategy and the equilibrium

transit flows in the presence of online information at stops. Passengers are provided

9



with estimates of waiting time for each line and are assumed to have knowledge of

the total expected time to reach the destination (which may include waiting and

in-vehicle travel time for subsequent transfers) after choosing a particular line.

Strategies in transit assignment, in public transportation systems based on schedules

have received limited attention in literature. The waiting time in these problems is

a function of the arrival time of buses. Tong and Richardson [28] formulated the

problem of finding the optimal path in a transit network with schedules as a TDSP

problem using weighted costs of trip components. A branch and bound type algorithm

was developed to search for the shortest route.

Hamdouch and Lawphongpanich [12] present a transit assignment model with ca-

pacity constraints using travel strategies in a time expanded network. At each node

except the destination, a subset of downstream nodes (called the user-preference

set) ordered by their preference of being chosen is considered. A collection of user-

preference sets at all nodes in the network induces an acyclic subgraph or a strategy

subgraph. Given a particular strategy, the probability with which an arc is traversed

or a node is visited is calculated using the number of passengers assigned to all possible

strategies. The expected cost of a strategy is computed and a variational inequality

formulation is used to find the flows and the optimal strategies for each OD pair.

2.4 Transit trip planning using real time data

Significant contributions to route choice in stochastic time-dependent transit networks

in the presence of online information were made by Hickman [13], Hickman and Wilson

[16], and Hickman and Bernstein [15]. Two path choice models (static and dynamic)

were proposed for a schedule based public transportation network. Travel times of

trips are assumed to be governed by known continuous probability distributions. In

the static path choice model, a traveler chooses a set of paths, similar to the attractive

10



set in the common bus line problem. On the other hand, the dynamic path choice

model analyzes if a traveler at the origin has to board a bus or wait for a bus that

arrives later based on the information (i.e. actual departure times of buses at their

source nodes and the arrival time of the traveler at his/her origin) gained while

waiting. Simulation experiments on a small corridor were shown to exhibit modest

improvements in travel time but significant changes in optimal paths.

Hickman [14] suggested the use of historical real time data to obtain probability

distributions of transit arcs and consequently, the cumulative distributions of travel

time on a path. In addition, a procedure for generating paths and pruning dominated

ones based on the notion of stochastic dominance was studied.

2.5 Other transit routing approaches

In finding an optimal scheme, a variety of objectives different from minimizing cost

may be considered. For instance, a traveler might be interested in a trip plan with

fewer transfers or less walking/waiting. In fact, an increasing number of web based

services (such as Google Maps, websites of local transit agencies etc.) have begun to

incorporate such objectives in their route planning applications.

These problems have been widely addressed in the literature for networks with fixed

schedules. Tan et al. [27] describe a procedure to find the shortest route which satisfies

constraints on the arrival time and the walking distances. Huang and Peng [17]

developed forward and backward search algorithms for finding the optimal path for a

given departure time and an expected arrival time respectively. Xu et al. [31] devised

efficient algorithms for finding the K shortest paths in a schedule based transit system.

However, none of these approaches consider the effects of travel time uncertainty and

hence the routing plans are not adaptive in nature.

11



2.6 Summary

In this chapter, we surveyed literature on adaptive routing and its applications in

transit networks. Three major classes of problems, relevant to the current thesis,

were discussed at length. These include adaptive routing in regular traffic networks,

optimal paths in the context of transit assignment and trip planning in the presence

of real time information.

As mentioned earlier, strategies in transit assignment models are defined with regard

to frequency based public transportation systems unlike the schedule based approach

used in this thesis. These models focus on the estimating the expected waiting time

and assume deterministic vehicle travel times. Also, transfers are not explicitly mod-

eled. At this juncture, we reserve our comparisons of these studies with the current

work recognizing the fact that routing is a sub problem to the assignment problem,

which limits the extent of complexity that can be introduced in defining strategies.

Adaptive routing methods discussed in section 2.2 do extend the concept of a strategy,

but applications in literature on this topic (except for the ones presented by Hall [11])

are tailored to general traffic networks. Also, making decisions conditioned on the

arrival time at a particular node is not necessarily optimal in transit networks as seen

in section 1.2.

Research by Hickman [13], Hickman and Wilson [16], and Hickman and Bernstein [15]

investigate strategies in a stochastic time-dependent network with online information

which is to an extent similar to the ATR problem. Conceptually, their models can

be extended to handle situations involving transfers, in which strategies are not only

dependent on the arrival time at a node (the origin or transfer point), but also on the

information of buses serving the node, received until that node is reached. Yet, their

adaptive framework is still myopic in nature as the proposed extension considers only

12



the information of buses that arrive at a particular node at which the traveler boards

or transfers. Further, the use of continuous probability distributions raises concerns

about a possible implementation or development of an analytical solution for large

networks.

In this thesis, we attempt to develop an adaptive route choice model using a more

unrestrictive definition of a strategy, in the presence of vast information on all buses

in the network. A treatment of the ATR problem as an MDP is facilitated by the

definitions of the state of the system and the discretization mechanism. However, the

problem size can grow exponentially and hence more emphasis is laid on the reduction

of the state space in order to improve the tractability of the dynamic program.

13



Chapter 3

Problem Description

In this chapter, we first represent the public transportation network as a graph with

walking and transit arcs and present some useful notation. Assumptions used in

the ATR problem are outlined and are compared to those used by other authors

followed by a demonstration of the process of constructing the individual state space

of buses using a few examples. Finally, the objectives of a traveler and measures of

risk aversion are briefly discussed.

3.1 Notation

Let G(N,A) be a directed network, where N represents the set of nodes/bus stops.

A node which is the destination of a route and the origin of another is replicated

(explained in detail using an example in section 3.3). The set of arcs A is defined as

Aw∪Ar∪Ad, where Aw represents the set of shortest walking arcs between every pair

of nodes in N , Ar consists of links between bus stops along routes in the network and

Ad represents the set of dummy arcs used to connect node copies to model the slack

in schedules. Let b ∈ B and r ∈ R represent the set of buses and routes respectively.

The set of routes in the network is similar to those defined by transit agencies, except

that routes in opposite directions (for instance northbound (NB) and southbound

(SB)) are treated as different routes. The time period of interest T is divided into

unit intervals {0, 1, 2, .., t, ..|T | − 1} each of which denotes the time elapsed from a

fixed time (say the start of the first trip of first bus). For example, if the first bus

enters the network at say 6:00 AM, then 7:20 AM is represented as t = 120. Let tO

be the time at which a traveler departs at the origin node.

14



Table 3.1: List of symbols

Symbol Description

r ∈ R Set of Routes

b ∈ B Set of Buses

ρr ∈ Pr Set of trips along route r. The kth trip on a route is denoted by ρkr

Mr : Pr → B A mapping which assigns a bus to each trip on route r

βb ∈ Ib Itinerary of a bus b which is the set of trips made by the bus. A
trip is assumed to contain information related to the stops and the
scheduled arrival times. We reference the kth trip in Ib by βkb

nβb ∈ Nβb Set of nodes visited by bus b in trip βb. We reference the kth node
in trip βb by nkβb

tnβb ∈ Tnβb Set of times at which a bus reaches node nβb

fnβb Earliest possible time a bus b can reach node nβb

lnβb Latest possible time a bus b can reach node nβb

aβb ∈ Aβb Set of arcs included in a trip βb

Ωaβb
Distribution of time on arc aβb (Without loss of generality assume
the pmf is arranged in increasing order of time)

Cω
aβb

A particular realization of the cost on arc aβb

wij Walking arc cost between nodes i and j, where i, j ∈ N
order(sb) The number of nodes visited by bus b from the current state before

reaching the state sb

ñ(sb) Node associated with state sb, where b ∈ B
t̃(sb) Time associated with state sb, where b ∈ B

We define the set of individual states of a bus sb ∈ Sb using the ordered pair (nβb , tnβb ),

where nβb denotes the most recently visited bus stop and tnβb is the time at which

the bus b arrived at node nβb . The individual state of buses, in practice may be

determined by observing the actual arrival times of buses at bus stops in the network.

The system state space S is defined as the subset of the cartesian product of the

individual states, the set of nodes N and time periods T , i.e. S ⊆ S where S =

Sb1 × Sb2 × Sb3 ... × Sb|B| × N × T . The construction of the individual states Sb and

15



the state space S will be discussed later. The node n and time t in a state vector

(sb1 , sb2 , ...sb|B| , n, t) denotes the node and time where a traveler is present in the

network (also referred as individual state of the traveler).

3.2 Assumptions

Given below is a list of assumptions used in the ATR problem. These assumptions

not only assist in defining the states of the buses in the network but are also pivotal

to some of the assertions made in algorithms and preprocessing methods discussed in

later chapters.

1. Each bus can serve multiple routes. However, a bus can serve route r1 followed

by route r2, only if the final destination of r1 is the origin of r2.

2. Printed schedules for each trip ρr and the mapping Mr are assumed to be known

for all r ∈ R.

3. All buses have infinite capacity.

4. Travel times on all arcs are assumed to be integer-valued.

5. The time taken by buses during boarding and egress of passengers is neglected.

6. Buses begin and end trips/runs at a garage, i.e., a bus in the network is always

assumed to serve a route. This assumption is not restrictive as a bus that goes

out of the network and comes back at a later point of time may be considered

as a new bus.

7. Travel times on transit arcs are independent random variables with known prob-

ability distributions with finite support. It is also assumed that the lowest

possible travel time realization on a transit arc (i, j) is the difference of the

scheduled arrival times at j and i. Though the assumption seems restrictive, it

is reasonable in practice as drivers in several cities are instructed to wait at bus

16



stops if they are ahead of schedule. Higher travel time realizations of a transit

arc are assumed to occur under congested conditions.

8. We assume without loss of generality that travel time pmfs on transit arcs vary

only across trips of a route. However, the subject developed in this thesis can

be applied to cases in which pmfs vary with time.

9. The first trip made by a bus starts on time and buses begin new trips on schedule

if they can, by adjusting the slack provided in schedules between trips. Hence,

if a bus arrives at or after the scheduled departure time at the origin of the next

trip, the bus is assumed to proceed along the next trip immediately.

10. Bus bunching and overtaking is permitted, i.e., FIFO order need not be pre-

served.

Some of the assumptions made above can be found in existing literature. For instance,

assumptions 3 and 5 and are similar to the ones used by Hickman [13] and, Hickman

and Bernstein [15]. While these authors assume that the slack in the schedules is

utilized even if a bus is delayed, we use assumption 9 instead as it is more practical.

Assumptions 4, 7 and 8 are borrowed from Miller-Hooks [18] and, Miller-Hooks

and Mahmassani [19].

3.3 An Example

Consider the following example to illustrate the notation used and the network trans-

formations described in the previous sections. Suppose, two routes 1 EB/WB and 2

NB/SB serve stops shown in the figure 3.1. The arcs in the figure includes all transit

arcs (Ar). As mentioned earlier, routes in opposite directions are modeled as different

routes. If at least one bus serves two routes in succession and the destination of first

is the origin of the second, then the common node is replicated to model the slack

(for e.g. bus stop 3).

17



Figure 3.1: Physical transit network(top) and transformed network(bottom)

Tables 3.2 and 3.3 shows the schedules (which may be obtained from the local

transit agency) of trips on routes and the buses serving them. The values in the

tables indicate the arrival time of buses from the instant at which the first bus enters

the network.

18



Table 3.2: Schedules on routes 1 EB and 1 WB

Route r1 Route r2

ρr1 Mr1(ρr1)
Stop

ρr2 Mr2(ρr2)
Stop

1 2 3 6 5 4

ρ1
r1

b1 0 12 20 ρ1
r2

b3 30 44 58

ρ2
r1

b2 25 38 54 ρ2
r2

b2 60 72 80

ρ3
r1

b3 60 75 90 ρ3
r2

b1 80 96 108

Table 3.3: Schedules on routes 2 NB and 2 SB

Route r3 Route r4

ρr3 Mr3(ρr3)
Stop

ρr4 Mr4(ρr4)
Stop

9 2 3 3 7 8 9

ρ1
r3

b4 16 28 40 ρ1
r4

b1 24 36 40 44

ρ2
r3

b1 50 60 74 ρ2
r4

b4 48 64 70 76

Using this data, the itineraries of a bus in the network are created as shown in

table 3.4, which are then used to construct the individual states of the bus. Although

the notation employed is a bit cumbersome, it avoids ambiguity between the trips of

a bus and the trips on a route. But, when it is clear from the context, we suppress

the subscripts and simply refer to buses and states by arabic numerals (i.e., a bus is

written as 1 as opposed to b1).

As mentioned earlier, we use Nβb and Aβb to denote the nodes and arcs visited by

a bus while serving a particular trip. For instance in the following example, Nβ2
b1

=

{3′′, 7′, 8, 9′} and Aβ2
b1

= {(3′′, 7), (7′, 8), (8, 9′)}.

Table 3.4: Itinerary of bus Ib1

βb1 → β1
b1

β2
b1

β3
b1

β4
b1

nβb1 1 2 3 3” 7 ’ 8 9’ 9 2 3’ 6 5 4

fnβb1
0 12 20 24 36 40 44 50 60 74 80 96 108

19



3.4 Constructing individual states of a bus

In order to construct the individual states of a bus, we make use of the current state

vector, the set of trips Ib and the pmfs on arcs for a particular trip Ωaβb
. Note that

when a traveler departs at a node in the network, buses might either be present in

the network or at the garage. By convention, we assume that the state of a bus that

has not yet been in the network is represented by the node-time pair (0,−1) and a

bus in the garage that left the network is characterized by the state (0,−2).

If a bus is present in the network, the current state vector provides information about

the most recently visited stop and the time at which the bus visited it. This gives

us the first state of the bus and the states at subsequent nodes are obtained using

the travel time distributions. We assume that the travel time distributions of an arc

traversed by a bus on a particular trip remains the same for every possible arrival

time at its tail node. When route changes occur, the arc that connects the destination

of one route and the origin of the other is modeled to reflect the assumptions made

about the slack in schedules (see assumption 9). If successive routes served by a

bus are such that the destination of the first route is the same as the origin of the

next route, by construction we have a copy of the node for each route and the link

connecting these nodes is used to model the slack. The following figure illustrates

the process of construction of individual states of a bus, consistent with the assumed

pmfs. Note that the link travel times on arcs representing the slack depends on the

state and not on the trip of a bus.

Consider a bus b, which was scheduled to arrive at stop 1 at time t = 2 (see figure

3.2). Suppose, the current system state vector indicates that the bus was last seen at

stop 1 at time t = 3. Since the travel time on the first link is either 4 or 8, the possible

arrival time at the next stop is either 7 or 11. Proceeding in a similar manner, we

find the states at node 3, for each possible arrival time at node 2. Let node 3 be the

20



destination node of route r1 and the origin node of route r2. For the sake of brevity,

we drop the indices of tnβb and let t3 represent the arrival time of the bus at node

3. In order to model the slack, the cost of arc (3, 3′) is defined as (15 − t3)+. This

construct ensures that if the bus arrives at node 3 at t3 = 11 or 13, it waits for 4 or

2 min respectively, but if it arrives at t3 = 15 or 18, it proceeds immediately to serve

the next route. Starting with the initial state, the states of a bus are assumed to

spatially ordered based on the number of nodes visited by the bus along its trips. For

instance, order((1, 3)) = 1 as it is the first node visited by the bus from the current

state. Likewise, order of states (2,7) and (2,11) is 2 and so on.

Figure 3.2: Individual states of a bus

If a bus is found to be present in the garage in the current state, we append a node 0

(used to represent the garage) before the start of its first trip. For example, suppose

a traveler departs from his/her origin node at t = 3 and a bus b is scheduled to begin

its trips from node 1 at t = 14. Since the bus is not present in the network at t = 3,

we add a node 0 and an arc (0,1) as shown in figure 3.3. This network transformation

is necessary for the construction of the system state space. Alternatively, we could

model this by assuming that the bus is present at node 0 at times t = 3,.....14 and let

the arc cost on arc (0,1) be equal to 14− t0, where t0 is the time at which the bus is

found at node 0. However, this increases the number of states which can be avoided

using the earlier method (the details of which are discussed later).

21



Figure 3.3: Individual States of a bus present in the garage

3.5 Formal definition of the ATR problem

Unlike in regular traffic networks, a traveler in a public transportation system can

choose routes that minimize travel time, fares, number of transfers, walking distance

or take into consideration available capacity on buses. However, with regard to adap-

tive routing in stochastic networks, these objectives are themselves random variables.

Although, it is commonly assumed that the choice of a traveler is purely governed

by minimization of the expected cost of travel, such an objective might lead to unfa-

vorable outcomes with a small probability. For instance, in minimizing the expected

travel time, a traveler could potentially deviate from his/her path significantly, or

cycle several times (note that since we have a finite horizon it is not possible to cycle

indefinitely) before reaching the destination. Thus, travelers could be deterred from

the risks involved in using the expected value as the sole criterion for choosing routes.

In such situations, other objectives such as minimization of the worst possible out-

come or the weighted sum of expected value and the variance etc. are usually used

to model the risk averse attitude of decision makers.

The objective and the measure of risk aversion for the ATR problem is defined as

follows. Let X be a random variable that denotes the cost of the adaptive strategy.

We wish to minimize the expected value of X such that P(tO +X ≤ cutoff ) = 1, for

some given value of cutoff. In our experience, trying to find a least expected cost path

22



with a high probability (instead of 1) of arriving at the destination before a given time

or threshold is harder to solve using the state space reduction techniques developed

in this thesis. Although we might find a policy that results in a better objective

function value in the absence of such a constraint, incorporating these behavioral

measures makes it more practical and further helps in the reduction of the state

space.

Based on the above discussion, we now formally define the ATR problem. Given a

stochastic transit network (in which the link travel times are time dependent and

random with known discrete distributions), the initial state of the system and a

destination, we intend to find an optimal policy conditional on the current state of

the system that minimizes the total expected travel time subject to a measure of risk

aversion. The problem can be easily extended to include other modes of transit such

as rail by including the set of the train lines and trains in the set of routes and buses

respectively.

Clearly, the number of individual states grows exponentially with increase in the

number of trips made by the bus, which in turn results in an exponential number

of system states and thus the ATR problem exhibits the curse of dimensionality.

Solving the ATR problem as an MDP by application of the Bellman’s principle or

other approximation techniques thus becomes extremely difficult unless we find ways

to reduce the size of the state space, which is discussed in the next chapter.

23



Chapter 4

Preprocessing

Using the individual states of buses, shortest path algorithms are developed in this

chapter, the advantages of which are twofold. First, they provide a rationale for

defining the value of the cutoff which characterizes the risk averse attitude of a

traveler. Secondly, they help in the development of the elimination procedure which is

discussed in later sections. In the last section, the elimination methods are compared

to the principle of light cones, a concept used in physics to describe causality.

4.1 Algorithms for preprocessing

The algorithms used for the preprocessing methods comprise of variants of the TDSP

problem. In this section, we define and solve these algorithms using labeling ap-

proaches. More specifically, the following sets of problems are considered.

(a) Earliest Origin-to-All TDSP (EOA):

Given the departure time at the origin, the EOA problem involves computation

of shortest path labels, where the label of a node represents the earliest possible

time at which we can reach the node with positive probability (w.p. > 0).

(b) Earliest All-to-Destination TDSP (EAD):

This involves finding shortest path labels which specify the earliest we can reach

the destination from all nodes w.p. > 0, for all possible departure times.

(c) Latest Origin-to-All TDSP (LOA):

In this problem, given the departure time at the origin, we find labels which

represent the earliest we can reach a node with probability 1 (wp1).

24



(d) Latest All-to-Destination TDSP (LAD):

Given an individual state of a bus, the LAD problem determines the earliest we

can reach the destination wp1, assuming that the individual state of the traveler

is same as that of the bus. The all in LAD refers to individual states and should

not be confused with nodes in the network.

In order to provide a road map for the subject developed in this chapter let us briefly

review the use of these algorithms before discussing them in detail. The first step in

the preprocessing procedure involves defining the risk averse measure or the cutoff.

As different individuals are known to have different risk attitudes, the value of cutoff

for each traveler could be different, and in some cases difficult to define. For travelers

with hard constraints (for e.g. the traveler has to board a flight) the arrival time can

be used as the cutoff. In other cases, one might think along the lines of guaranteed

returns to define the value of cutoff i.e., if a traveler is guaranteed a strategy that

ensures that the destination is reached within cutoff, he/she might not be inclined

to follow a strategy which could potentially take longer to reach the destination. A

naive cutoff that can be used is the shortest walking time between the origin and

the destination. Although finding this is easy, it might still be very high for long

trips and is thus impractical. In this thesis, a cutoff defined by the LOA label to the

destination, which represents the earliest time by which we are guaranteed to reach

the destination is used. Note that this value of the cutoff also ensures that there

exists at least one feasible solution to the ATR problem.

After fixing the value of the cutoff, an elimination procedure is developed to discard

states of buses that do not affect the optimal strategy. Since the traveler has to reach

the destination within a threshold wp1, the above labels (particularly the EAD and

LAD labels) may be used to verify if boarding a bus at a specific individual state

violates the risk aversion constraint. Additionally, we use the EOA labels to check if

we can catch a bus at an individual state. The conditions under which an individual

25



state can be ignored are then developed which is examined in detail in later sections.

Let us now turn our attention to the algorithms for computing these labels. Let

O and D be the origin and destination node respectively and let SE represent a

scan eligible list. In addition, let Γ(i) denote the set of nodes adjacent to node i

and let Γ−1(i) denote the set of nodes from which we can reach node i directly (i.e.,

j ∈ Γ−1(i)⇔ (j, i) ∈ A).

4.1.1 Earliest Origin-to-All TDSP (EOA)

In this section, a label correcting algorithm for computing the EOA labels is presented.

Suppose that µn represents the EOA label of a node n, where n ∈ N . In order to find

the earliest time by which a node in the network can be reached w.p. > 0, we define

a time dependent cost parameter ζij(t) ∀ t ≥ tO as follows:

ζij(t) = min

 min
b∈B, βb∈Ib, aβb∈Aβb
: t∈Tiβb& aβb=(i,j)

C [1]
aβb
, wij



The cost of arc (i, j) for a departure time t is set to the minimum of the walking travel

time between i and j and the lowest possible transit cost on the arc (i, j) among all

buses that reach node i w.p. > 0 at time t.

Consider the network shown in figure 4.1 to illustrate the EOA problem. Suppose

two buses b1 and b2 start at nodes 1 and 4 at t = 0 on routes r1 and r2 respectively.

Let the cost of transit arcs be as shown in the figure and let the walking travel times

on these arcs be 40. Assume a traveler headed to node 5 departs from node 1(origin)

at t = 0.

26



Figure 4.1: Network to illustrate the preprocessing algorithms

The earliest a traveler can reach the destination is 20, provided bus b1 takes 5 minutes

to travel on arcs (1,2) and (2,3) and bus b2 takes 15 minutes to travel on arc (4,3).

It is easy to see that the proposed algorithm, achieves this result by solving a TDSP

with time dependent arc costs as described earlier.

Algorithm 1 Pseudocode for EOA

Step 0: Initialize Labels
µO = tO
µn =∞ ∀ n ∈ N\{O}
SE = {O}
Pred(O) = 0

Step 1:
while SE 6= ∅ do

Remove a node i from SE
for each j ∈ Γ(i) do

for all t ≥ µi do
if µj > t+ ζij(t) then

µj = t+ ζij(t)
Pred(j) = i
If j /∈ SE add j

end if
end for

end for
end while

27



The pseudocode described above is a label correcting algorithm for TDSP with waiting

allowed, in which the time dependent link costs are defined by ζij(t). Starting with

the origin, the algorithm scans downstream nodes and updates their labels if the

optimality condition is not satisfied. Nodes whose labels change are added to the

SE list and are examined later. The algorithm also keeps track of predecessor labels

which can be used to construct the optimal path to a node.

Observe that the EOA labels cannot be calculated by assuming that all buses in the

network travel at their fastest pace. For instance, if the cost of the arc (4,3) was 5

or 10 and if buses take the lowest possible time to traverse arcs, the traveler would

miss bus b2. However, the traveler might get lucky if bus b2 is delayed, in which case

he/she can reach the destination at t = 15.

4.1.2 Earliest All-to-Destination TDSP (EAD)

The EAD problem is a straight forward extension of the EOA problem. The time

dependent arc costs ζij(t) defined earlier are used to compute labels γn(t), which

represent the earliest we can reach the destination w.p. > 0, given that we depart

from node n at time t.

The algorithm first adds the destination to the scan eligible list and updates the labels

of the upstream nodes in order to satisfy the optimality criterion. Successor labels

are modified when updates occur and can be used to construct the optimal path. We

assume ∀ t ≥ T, γn(t) = γn(T − 1), which is reflective of a steady state (i.e., arc

costs are no longer time dependent) after time T . This assumption is not restrictive

as long as T is sufficiently large, in which case the arc costs equal the walking travel

times. Given below is the routine for estimating the EAD labels which is similar to

an all-to-one TDSP algorithm with waiting allowed.

28



Algorithm 2 Pseudocode for EAD

Step 0: Initialize Labels
γD(t) = 0 ∀ t ∈ T
γn(t) =∞ ∀ n ∈ N\{D}, t ∈ T
SE = {D}
SuccD(t) = 0 ∀ t ∈ T

Step 1:
while SE 6= ∅ do

Remove a node j from SE
for each i ∈ Γ−1(j) do

for all t ≥ tO do
if γi(t) > ζij(t) + γj(t+ ζij(t)) then

γi(t) = ζij(t) + γj(t+ ζij(t)))
Succi(t) = j
If i /∈ SE add i

end if
end for

end for
end while

4.1.3 Latest Origin-to-all TDSP (LOA)

This problem involves finding the earliest time by which we are guaranteed to reach

a node, given the departure time at the origin. Let us denote the LOA labels by λn,

where n ∈ N . To compute these labels, a modified label setting method is applied

that ensures all transfers are made wp1 by checking if the latest arrival time at a

transfer or boarding node is lesser than or equal to the earliest possible departure time

of a bus serving that node. Consider the network shown in figure 4.1 on page 27.

Clearly, it may be inferred from the figure that the traveler can reach node 3 at

t = 20 wp1. However, the traveler might miss bus b2 (if it arrives at 3 at t = 15)

and hence the LOA label of node 5 is 20+40=60. Note that the LOA labels cannot

be computed using a TDSP on a network with the longest possible travel time on

the transit arcs. Fixing the travel time on transit arcs to the largest possible values

incorrectly updates the label λ1 to 30, as we can catch the second bus after reaching

29



node 3 at t = 20.

Consider the following approach. Starting from the origin let us scan the downstream

arcs (assuming waiting is allowed) and if a particular bus can be caught wp1, we use

a time dependent arc cost which is the minimum of the walking travel time and the

largest possible transit arc cost, experienced by a bus, assuming that it arrives at

its last possible state (temporally). We then check for the optimality of labels of the

downstream nodes and proceed till the algorithm terminates. However, this approach

may fail in some cases as demonstrated in the network in figure 4.2.

Figure 4.2: Application of the LOA algorithm

Let two buses b1 and b2 start on route r1 and r2 at t = 0 and t = 5 respectively.

Assume the LOA labels are computed for a traveler departing at t = 0 from node

1. Following the procedure described earlier, the label of node 2 is first updated to

10. Upon examination of arc (2,3), the algorithm concludes that b2 cannot be caught

with wp1 and hence, the label of 3 is modified to 30 using the walking arc (2,3). The

problem with this approach lies in the fact that sub-path optimality does not hold.

The traveler can board b2 after walking to node 3 wp1 and hence reach the destination

at t = 15 wp1. Therefore, when an arc is used to update the label of a downstream

node, it is also important to check if the a bus that traverses the arc can be boarded

at some other node in the network wp1.

30



In order to account for such cases, we define a variables ϕb, which is set to 1 if a bus

b can be boarded wp1 and ϕ′b, which represents the first stop among the stops in its

itinerary at which it can be boarded wp1. When a node is examined, we update the

variable ϕb to 1 if a bus traversing one of its downstream arcs can be boarded wp1.

We then check for the optimality of labels of the downstream nodes and if a transit

arc served by b is used, we make sure ϕb is 1 before updating the label. Let us now

apply this method to the network in figure 4.2. When node 3 is observed, we update

ϕb2 to 1 as we know that b2 can be surely boarded. Thus, when 2 is examined, the

transit arc (2,3) can be used to update the label of node 3. However, the validity

of this method is still questionable as examining node 2 before 3 will not guarantee

optimal labels.

Now suppose nodes are scanned in increasing order of labels. While this modification

ensures that 3 is scanned before 2, it may fail if the labels of nodes 2 and 3 are tied.

Breaking ties arbitrarily can result in incorrect labels as one may examine node 2

ahead of 3. Therefore, we scan all downstream arcs of all nodes with the minimum

label to update ϕb after which we select a node, remove it from the scan eligible list

and check for the optimality criteria.

We first define parameters ςbij(t) as shown below. ςbij(t) ∀ t ≥ tO is set to the largest

possible travel time on arc (i, j) when a bus b on a particular trip is at its last possible

individual state at node i.

ςbij(t) =

C
|Ωaβb |
aβb

if ∃ βb ∈ Ib, aβb ∈ Aβb : aβb = (i, j) & t = liβb

∞ otherwise

Also, assume Φn,t ∈ B is a subset of buses that can be caught wp1 at node n at a

time ≥ t and let Φ′n,t(b) denote the order of the earliest possible state at which a bus

31



b ∈ Φn,t can be boarded at node n wp1. An indicator variable εi is used to check if

node i has been previously examined to update the ϕ values. Using these parameters

and definitions, we hypothesize that the following algorithm computes the optimal

LOA labels. However, a proof of correctness has not yet been established.

Algorithm 3 Pseudocode For LOA

Step 0: Initialize Labels
λO = tO
λn =∞ ∀ n ∈ N\{O}
SE = {O}
ϕb = 0 ∀ b ∈ B
ϕ′b =∞ ∀ b ∈ B
εn = 0 ∀ n ∈ N

Step 1:
while SE 6= ∅ do

for all i : λi = min{λk : k ∈ SE} & εi 6= 1 do . Step 1.1
for all b ∈ Φi,λi do

ϕb = 1
ϕ′b = min{ϕ′b, Φ′i,λi(b)}

end for
εi = 1

end for

Remove a node i : λi = min{λk : k ∈ SE} . Step 1.2
for each j ∈ Γ(i) do

for all t ≥ λi do
dij(t) = wij
for all b ∈ B, βb ∈ Ib, iβb ∈ Nβb : t = liβb & ϕ′b ≤ orderb ((i, t)) do

dij(t) = min{ςbij(t), wij}
end for

if λj > t+ dij(t) then
λj = t+ dij(t)
If j /∈ SE add j

end if

end for
end for

end while

32



In step 1.1, the algorithm updates the information of buses that can be caught wp1

from all nodes which have the least label and in step 1.2, it picks a node with the

smallest label and scans all of its adjacency list and updates their labels using the

walking travel time or the largest possible travel time on transit arcs served by buses

that can be boarded wp1. In the above algorithm, order(sb) is indexed by buses as

orderb((i, t)) to avoid ambiguity when two or more buses have the same state.

Alternately, the LOA labels can be computed using a recursive application of a TDSP

algorithm by varying the time dependent arc costs. We first assume that the time

dependent arc costs are same as the shortest walking arc travel times and solve

a TDSP to obtain the earliest time by which we can reach a node in the network.

Using these labels, we find the first stop at which a bus in the network can be boarded

wp1. The time dependent arc costs are then updated assuming that the bus takes

the longest possible time to traverse links on trips beyond the stop at which it could

be boarded wp1. The TDSP labels are computed again and this process is repeated

until the labels do not change.

4.1.4 Latest All-to-Destination TDSP (LAD)

The LAD problem finds the earliest we can reach the destination wp1, for each indi-

vidual state of a bus, assuming that the state of a traveler is same as that of the bus.

Let η(sb) denote the LAD labels, where sb represents the individual state of a bus

b. To compute these labels, we make minor modifications to the input parameters of

the LOA algorithm and solve it repeatedly for each individual state.

Let us revisit the example shown in figure 4.1 on page 27. The individual states and

LAD labels of each state for both buses are shown in the figure 4.3. Consider the bus

on the first route. Assume the state of the bus is (2,5), i.e. it is at node 2 at t = 5.

As the traveler can board bus b1, he/she can reach node 3 at t = 15 wp1, and can

33



successfully transfer to bus b2 and reach the destination at t = 30 wp1.

Figure 4.3: LAD labels of individual states of bus b1(left) and b2(right)

Since, the traveler’s individual state is same as that of the bus b, he/she can board

bus b wp1. Therefore, in the initialization step of the algorithm we set ϕb = 1

and ϕ′b = order(sb). Note that the origin of the traveler is ñ(sb) and hence we set

λñ(sb) = t̃(sb). The LOA algorithm may then be used to calculate the label of the

destination (which is also the LAD label for state sb).

4.2 Preprocessing procedure

The optimal strategy of the ATR problem is not necessarily influenced by all buses

in the network. For instance, while traveling between an OD pair, buses that ply

on routes far away from the OD pair may not have an impact the optimal policy.

Further, as the trips made by buses beyond a certain point of time are not relevant,

only a limited number of individual states are useful in solving the problem. The

preprocessing steps described in this section aims at identifying the buses and indi-

vidual states that could affect travel between an OD pair using the concept of risk

aversion and the algorithms described earlier and significantly reduces the size of the

state space. Given below is a summary of the preprocessing procedure followed by a

detailed discussion of the steps involved.

1. Solve for the LOA labels and obtain the value of λD

2. Perform initial elimination of individual states

3. Redefine the size of T - the time period of interest

34



4. Solve for EOA, EAD and LAD labels

5. Define indicator variables using these labels, eliminate states and create absorb-

ing/sink states

Solve for the LOA labels:

In this step we use algorithm 3 to compute λD, the earliest time by which we can

reach the destination wp1. This is used to define the cutoff as explained earlier.

Clearly, the size of state space reduces with decrease in the value of the cutoff, but

the methods for preprocessing described in later sections do not depend on the value

used.

Perform initial elimination:

In order to ensure P(X+tO ≤ λD) = 1, we discard all individual states of a bus beyond

a certain point. More precisely, if the earliest time at which a bus reaches a node is

greater than λD, we eliminate all individual states associated with the remainder of

its journey. Although this step is not necessary, it speeds up the estimation of other

labels as the complexity involved in their computation is a function of |T |.

Redefine T - time period of interest:

We can now reduce the time period of interest T to a much smaller set. However, at

this stage we may have cases in which buses reaches individual states at t > λD and

hence we can’t use |T | − 1 = λD. Instead, we choose |T | to be sufficiently large such

that it is greater than or equal to the time corresponding to the individual state of

any bus in the network.

Solve for EOA, EAD and LAD labels:

In this step we use algorithms 1, 2 and 3, to find the EOA, EAD and LAD labels

respectively.

Define indicator variables, eliminate states and create absorbing states:

The final stage of the preprocessing procedure aids in the elimination of extraneous

35



individual states and buses. The ideas behind this step are primarily motivated by

the following questions:

1. Suppose the destination of a traveler is to the south of the origin node. Should

he/she consider the states of a bus heading in the opposite direction (i.e., north

bound)? If yes, do all the individual states of the bus play a role in finding the

optimal strategy?

2. Suppose a traveler missed a bus. Can we exclude it from the set of buses to be

considered while populating the system states?

3. Buses b1 and b2 have the same itinerary and are such that b1 is ahead of b2. If

a traveler at a bus stop can board bus b1, can the individual states of bus b2 be

ignored?

While the first two questions prompt us to utilize the labels computed in step 4 to

eliminate individual states, the third question helps us understand the limitations of

using a dominance argument. Let us now examine the elimination process in detail.

4.2.1 Elimination based on EAD/LAD labels

Consider the first question. A traveler heading south might reach the destination

faster by transferring to another bus after boarding the north bound bus, thus mak-

ing a case for its inclusion in constructing the system state space. In other words,

a traveler may travel away from the destination geographically, in the process of

minimizing the travel time.

Let us now address the second part of the question. We might be able to limit the

individual states of a bus by discarding the ones from which we cannot make it to

the destination before the cutoff. This is accomplished using the EAD or LAD labels

by defining indicator variables δead and δlad as shown below.

36



δlad(sb) =

1 if η(sb) > λD

0 otherwise

δead(sb) =

1 if γñ(sb)(t̃(sb)) > λD

0 otherwise

It is obvious that δead(sb) = 1⇒ δlad(sb) = 1 and δlad(sb) = 0⇒ δead(sb) = 0. Let us

analyze the case where δlad(sb) = 1 and δead(sb) = 0. The value of δlad(sb) implies that

by boarding the bus at the individual state sb we cannot reach the destination within

cutoff wp1, but for some particular state/states of the system the destination can

be reached before the cutoff. Under such circumstances, based on the system state,

the algorithm might direct the traveler to catch the bus if it foresees that taking

the bus does not violate the risk aversion condition and might provide a different

strategy otherwise. Hence, by using LAD labels one might eliminate more states

than required. Although we study the properties and results of elimination based

on both, EAD and LAD labels, it is beyond the scope of this thesis to explore the

trade-off between the computational advantages of dealing with smaller state space

(obtained by using elimination based on LAD labels) and the value of the objective.

Figure 4.4: Elimination of the individual states of a bus

Let us study the elimination process using the example shown in figure 4.4. Table 4.1

contains the delta values in addition to the list of individual states of the bus (exclud-

ing the garage state). Assume that the cutoff obtained by solving the LOA algorithm

37



is 40. Therefore, states beyond node 4 can be discarded according to the second step

of the preprocessing procedure.

Table 4.1: δead and δlad values for individual states of the bus

State(sb) Node(ñ(sb)) Time(t̃(sb)) δead δlad
1 1 2 0 1
2 2 12 0 1
3 2 18 1 1
4 3 20 0 1
5 3 24 0 1
6 3 26 1 1
7 3 30 1 1
8 4 32 0 0
9 4 36 0 1
10 4 38 1 1
11 3 42 1 1
12 4 44 1 1
13 4 48 1 1

We first discuss the elimination methods based on the EAD labels and later extend

it to the LAD labels. Let the set of individual states of a bus be represented as an

acyclic network as shown in figure 4.5. A node in the network denotes an individual

state and arcs are used to connect adjacent states. Let all states that can be reached

from an individual state and all states from which a particular state can be reached

be referred to as descendant and ancestor states respectively.

For the ease of illustration a few states have been replicated (indicated by the dashed

connectors). All states with δead = 1 are marked in gray. Note that if for a particular

state δead = 1, we cannot reach the destination within the cutoff with positive proba-

bility from all descendant states. The elimination of individual states can be divided

into the following two phases.

38



Figure 4.5: Acyclic network structure of states marked with w.p. > 0 labels

Phase I:

From figure 4.5, observe that if a bus at state (1,2) takes 16 minutes to travel to

node 2, we can be certain that it does not influence the optimal strategy. Thus if the

travel time between nodes 1 and 2 is 16, we assume the bus exits the network. This

is achieved by creating an absorbing/sink state (0,−2) which indicates that the bus

is back in the garage. The phase I elimination procedure can be described as follows.

In the acyclic network of individual states, delete arcs that connect marked states

(shown by the dotted lines in figure 4.5) and then delete all marked states. Arcs

orphaned after the removal of marked states are then connected to the garage state

(0,−2). If multiple arcs are created between an individual state and the sink state,

replace them with a single arc between the two states. Finally, connect all unmarked

states (excluding the garage states) with outdegree 0 to the state (0,−2). Buses from

these states are assumed to incur a cost of 0 to reach the sink. The resulting network

of individual states is shown to the left of the following figure.

39



Figure 4.6: Phase I(left) and Phase II(right) elimination of individual states

Phase II:

Suppose a traveler is about to board the bus at node 3 at t = 20. Although the

destination can be reached within the cutoff with positive probability, the risk aver-

sion condition may be violated if the bus takes 18 minutes to travel on its next arc.

Hence, the state (4,32) can be eliminated and the bus may be assumed to proceed

immediately to the garage from state (3,20). The state (4,36) can also be eliminated

using a similar argument.

In general, assuming the state with the highest order is denoted by ymax we proceed

as follows. If ymax is 1 the bus is completely ignored. Else, pick individual states

with order ymax. If at least one of the outgoing arcs from each predecessor state of

the state with order ymax is connected to the garage state (0,−2), we delete the state

40



being examined and the orphaned arcs. If no state is eliminated we terminate, else

ymax is recalculated and the procedure is repeated.

So far we have discussed the use of EAD labels to eliminate individual states. In a

similar vein, a stronger but approximate elimination method using the LAD labels

can be developed. We begin by marking states using the δlad values, but unlike before,

a state is marked if at least one of its descendants is marked. Further, we unmark all

marked ancestor states of unmarked states to prevent loss of information. Finally, we

employ phase I and phase II techniques to eliminate individual states. The following

figure shows the acyclic network in which states have been marked using δlad values

and the resulting network from phase I. As explained earlier, we unmark states (3,20),

(2,12) and (1,2) before beginning phase II as the state (4,32) is unmarked. Upon using

phase II, all states can be eliminated, thus leading to the exclusion of the bus while

populating the system state space.

Figure 4.7: Acyclic network structure of states marked with wp1 labels(left) and the
modified individual states from phase I(right)

41



Effects of elimination on the labels and delta values:

The elimination of individual states of each bus was carried out independently with-

out regard to its impact on the labels. It is thus necessary to check if the elimination

changes the labels to an extent that it compromises the validity of the entire proce-

dure. Suppose we eliminate states based on EAD labels. In phase I, if a particular

state is removed, we know that by boarding the bus at that state we cannot reach the

destination within the cutoff. If this state was used in finding the optimal EAD label

of another individual state (of the same or different bus), δead of the later state would

still be 1. Thus, eliminating the former state might increase the EAD labels but the

delta values remain unaffected. Using LAD labels for reducing individual state space

can be similarly justified.

Now consider phase II of elimination using the EAD labels. Since we may eliminate

unmarked states, the delta values are likely to change in addition to the EAD labels.

Depending on the new EAD labels, states which were originally unmarked (i.e. δead =

0) can get marked. For example, in the network from phase I shown in figure 4.6 on

page 40, removing state (4,32) and the arc between (3,20) and (4,32) may preclude the

possibility of reaching the destination within the cutoff w.p. > 0 from some or all of

its ancestors. Thus we may iterate between the calculation of the EAD labels and the

elimination phases until no states are excluded. Although we have not investigated

the advantages of doing so in our computational experiments, we believe that this

can further reduce the individual state space significantly. It is easy to see that the

δlad values do not undergo any change after the second phase of elimination if LAD

labels are used.

4.2.2 Elimination based on EOA labels

Let us now try to address the second question. If a traveler misses a bus, it might

still be possible to catch the missed bus at a later stop using some faster service.

42



On this line of thought, we can employ the EOA labels to find the earliest possible

arrival time at every node. If the latest time at which the bus arrives at a node is

lesser than the EOA label, then the states of the bus at that node do not have any

bearing on the optimal policy. This can be mathematically translated by defining a

new indicator variable δeoa as follows:

δeoa(sb) =

1 if t̃(sb) < λñ(sb)

0 otherwise

Consider the network shown in figure 4.4 on page 37 to illustrate the use of the δeoa

indicator variable. Let the vector [15 25 35 50] represent the earliest we can reach

nodes 1, 2, 3 and 4 respectively(note that the states at node 5 were discarded). The

δeoa values for all states are set to 1 and hence we can disregard the bus while finding

the optimal policy. Now consider another scenario in which the EOA labels are [15

25 30 42]. Clearly, we cannot arrive before the last possible states of the bus at nodes

1 and 2, but since the bus can be reached at node 3 w.p. > 0, it can be boarded at

any other node along the remainder of its journey with positive probability. However,

the states at node 1 and 2 cannot be eliminated as it leads to a loss of information

(i.e., knowledge of the actual travel time on links (1,2) and (2,3) sheds more light on

the state of the bus at subsequent nodes).

In such situations, we can completely ignore the bus if for each individual state,

either δeoa or δead is 1. Intuitively, this implies that we cannot catch the bus at

some individual states, and in cases in which we can board the bus, the destination

cannot be reached within the cutoff. A similar stronger but approximate scheme for

elimination can be formulated by using the values of δlad instead of δead.

43



4.2.3 Elimination based dominance

The third question posed earlier suggests the use of a dominance argument to elimi-

nate the bus b2. If FIFO order is preserved, bus b2 can never arrive at a stop sooner

than bus b1. This idea can be traced back to first-order stochastic dominance as the

probability of arriving at a node at a particular time using bus b1 is always higher or

equal to that of bus b2. However, the fallacy of using such an argument stems from

the fact that in minimizing the expected travel time, a traveler need not necessarily

board a dominating bus. For instance, in the case of the two buses b1 and b2, the

traveler could walk to another stop to board a faster service to the destination and

return back to board bus b2 in the event of missing the faster bus and still reduce the

expected value. Thus elimination based on dominance is purely approximate.

4.3 Remarks on the elimination procedure

The methods to eliminate states descried earlier are not completely tight in the sense

that they do not fully eliminate all the buses/states that do not affect the optimal

policy. Consider the example shown in figure 4.8. Assume a traveler at node 1 at

t = 0 is headed towards node 4. Let a bus start on each of the two routes at t = 0. It

is easy to see that the value of λD is 20. Since the destination can be reached within

the cutoff w.p. > 0 and wp1 from all individual states of the buses, no states are

eliminated irrespective of the method used.

Figure 4.8: Drawbacks of the preprocessing techniques

44



However, in trying to board bus on route r2 (which might be the optimal strategy

for some particular pmfs) we risk reaching the destination beyond t = 20. Although

we evade this issue by removing the walking arc between nodes 3 and 4 (explained

later), we still have to deal with redundant states. Note that eliminating the states

of the bus on route r2 on the basis that it cannot be boarded wp1 might serve our

purpose in this case. However, if a second bus on route r1 starts at node 1 at t = 10

and takes 10 minutes to traverse arc (1,2), then for some particular pmfs, trying to

catch the bus on route r2 might be optimal.

4.4 Light Cones

The preprocessing methodology discussed in the previous section is heavily inspired

from the idea of light cones in physics. A light cone is a flash of light from an event

(E) that travels in spacetime. It comprises of two cones, a past and a future light

cone. While, the past light cone represents events/points in spacetime from which a

flash of light can be observed at E, the future light cone includes all points that can

be reached by a light pulse from E.

Figure 4.9: Light cones

45



Light cones serve as a perfect tool to understand causality, i.e., only the events which

occur in the past light cone can possibly affect event E and event E can possibly

influence only the events in the future light cone. Light cones in a two dimensional

space can be represented as shown in the figure 4.9.

Finding buses/individual states that do not affect the optimal routing policy and

eliminating them can be treated to be analogous to the concept of light cones. For

illustrative purposes, we assume that the shape of a diagram based on how fast a

traveler reaches other nodes in the network is a cone. Let us now draw a parallel

between light cones and the elimination procedure using the example in figure 4.10.

Suppose that the network comprises of a single bus and a traveler starting at the

origin at t = 0 (having more buses in the network makes it impossible to pictorially

represent higher dimensions). The cone at the origin can be obtained using the EOA

labels.

Figure 4.10: Light cones and indicator variables

46



Consider three individual states of a bus (1, 2 and 3) as shown in the figure. Let the

cones at these states represent the earliest possible time taken to travel through the

network. Individual state 3 lies outside the cone at the origin and hence cannot be

reached. This corresponds to δeoa(3) = 1. On the other hand, individual states 1 and

2 can be reached from the origin as they lie within the cone (i.e. δeoa(1) = δeoa(2) = 0).

While the point represented by the destination and the cutoff lies inside the cone of

state 2, it falls outside the cone of state 1. This is equivalent to the values of δead

being 1 and 0 for individual states 1 and 2 respectively.

Another abstract approach to visualize the same is to construct of a future cone from

the origin at t = 0 and a past cone from the destination at t =cutoff as shown in

figure 4.11. Buses whose individual states lie in the intersection of the two cones (see

gray region) can be expected to influence the optimal strategy.

Figure 4.11: Relevant states of buses in the network

47



In a similar manner, we can relate the δlad variables and light cones. The cones

obtained using the LAD labels can be imagined to be narrower compared to the ones

resulting from the EAD labels, indicative of the fact that using LAD labels leads to

the elimination of more states.

48



Chapter 5

Dynamic Programming framework for the

ATR problem

In this chapter, we define the elements required to model the ATR problem as an

MDP. The components of the dynamic program comprise of the state space, deci-

sion/action space, transition and value functions. Although an actual computation

of the optimal strategy is not an objective of this thesis, we briefly discuss possible

exact and approximation methods to solve this problem. Let us now examine these

aspects in detail.

5.1 Components of Dynamic Program

5.1.1 State space

As defined earlier, the state space (S) is a subset of S where S = Sb1 × Sb2 × Sb3 ...×

Sb|B| × N × T . Note that the preprocessing methods reduce the sizes of the sets B

and Sb and thus results in a smaller system state space. We may further redefine

the set T to be {tO, tO + 1, ....., λD}. Let the states (0,−1) and (0,−2) be referenced

as the source and sink respectively. Additionally, let tsourceb and tsinkb denote the

time at which the bus b enters the network and the earliest possible time at which it

reaches the garage respectively. If a bus is already present in the network, the source

is irrelevant and tsourceb is set to 0.

Consider the individual state network (see figure 5.1) obtained as a result of elim-

inating states using EAD labels. The network is identical to the one in figure 4.6

on page 40, but includes the time taken to travel between states. Let the cost of

49



an arc from state sb, where sb ∈ Sb to state s′b, where s′b ∈ Γ̂(sb)(the set of succes-

sor/downstream states) be defined as follows.

α(sb, s
′
b) =



0 if Γ̂(sb) = {(0,−2)}

t̃(s′b)− t̃(sb) if neither sb ors′b denotes the source or the sink

max
s′′b∈Γ̂(sb)\{s′b}

α(sb, s
′′
b ) if |Γ̂(sb)| ≥ 2 and s′b = (0,−2)

tsourceb if (0,−1) ∈ Sb and sb = (0,−1)

The first and the second cases in the above definition are trivial. Consider the third

case in which a state is directly connected to the sink and has more than one outgoing

arc. For example consider the arc between states (1,2) and (0,−2) in figure 5.1. We

know that if the travel time on arc between bus stops 1 and 2 is not 10, the destination

cannot be reached within the cutoff and hence we assume the bus leaves the network.

By convention, we set the cost of this arc to the maximum of the cost of all other

outgoing arcs from state (1,2). The fourth case is again a convention we follow to

simplify the computation of transition functions.

Associated with each arc is a parameter π(sb, s
′
b) which is probability with which

state s′b can be reached from sb. This may be calculated using the distribution of

Ωaβb
. However, if one of the states is the sink or source state then we write π(sb, s

′
b)

as follows:

π(sb, s
′
b) =



1 if Γ̂(sb) = {(0,−2)}

1 if (0,−1) ∈ Sb and sb = (0,−1)

1−
∑

s′′b∈Γ̂(sb)\{s′b}
π(sb, s

′′
b ) if |Γ̂(sb)| ≥ 2 and s′b = (0,−2)

50



Figure 5.1: Constructing the state space

Notice that if a traveler is in the network at some node at say t = 15, the bus in the

above figure cannot be at states (1,2), (3,20) and (3,24). It cannot be at the latter two

states as they represent points in future. A bus at state (1,2) would have advanced

to one of its successor states by t = 12. Hence the bus can only be present at either

(2,12) or (0,−2). More generally, for any time t ∈ T the procedure in algorithm 4

may be used to mark the individual states at which the bus is likely to be present.

The algorithm first compares t with the time at which the bus enters the network. If

t < tsourceb , the bus is still at the garage. Hence, we mark the source and stop. For

example, in the network shown in figure 5.1, at t = 1, the bus can only be present at

(0,−1). As mentioned earlier, we could have multiple source states for each time step

before the bus enters the network, but we find it unnecessary to do so as it increases

the size of the state space.

51



Algorithm 4 Marking individual states

if t < tsourceb then . Condition I
Mark source and stop

else
for all states sb ∈ Sb\

{
{(0,−1), (0,−2)} ∪ {sb : Γ̂(sb) 6= {(0,−2)}

}
do

if t = t̃(sb) then . Condition II
Mark state sb

else if t > t̃(sb) and t < t̃(sb) + max
s′b∈Γ̂(sb)

(α(sb, s
′
b)) then . Condition III

Mark state sb
end if

end for

if t ≥ tsinkb then . Condition IV
Mark sink

end if
end if

Next, we scan all states except the source, sink and the states from which the bus

immediately proceeds to the sink. If t coincides with the time at which the bus is

present at a state we mark it using condition II. Condition III ensures that a state

in future is never marked and the bus at a particular state is marked if it doesn’t

advance to one of its descendant states wp1. Finally, if t happens to be greater than

or equal to tsinkb , the bus is likely to be present in the garage and hence we mark the

sink using condition IV.

Using the algorithm we first mark states for each bus. The set of system states at

time t are then created by taking the cartesian product of the set of all marked states

of each bus and the set N . Finally, we repeat this procedure for all t ∈ T to obtain

the entire the system state space S.

5.1.2 Decision space

We now move on to the next component of the dynamic program - the decision space.

The decision space consists of the set of available actions at a particular state. Let us

52



denote the decision at a particular state by x(s) and the set of all available actions

by X(s). At each state, recognize that a traveler can walk, wait or board a bus when

it arrives. Thus, we define X(s) as Xw(s) ∪Xp(s) ∪Xr(s), where Xw(s), Xp(s) and

Xr(s) comprise of the walking, waiting (loops of cost 1) and transit arcs available at

state s. The set of available walking arcs, Xw(s) may be defined as follows:

Xw(s) =
{

(i, j) : (i, j) ∈ Aw, i = n & t+ wij ≤ λD
}

The condition i = n ensures that only walking arcs that emanate from node n are

included. Additionally, to satisfy the risk aversion condition, we make sure that the

arrival time at node j is less than the cutoff. An example of this has been discussed

earlier using figure 4.8 on page 44 in which we exclude the walking arc between nodes

3 and 4 for all states at node 3. Using the shortest walking arcs between every pair of

nodes is limiting in the sense that a traveler is expected to traverse the entire walking

arc before making his/her next decision. In practice, one might choose an alternate

strategy while walking between a pair of nodes based on the latest information of

buses in the network. This feature can be easily modeled by considering a denser

walking arc network. The set of waiting arcs can be similarly defined as shown below.

Xp(s) =
{

(n, n) : t+ 1 ≤ λD
}

Now consider the transit options available at state s. Clearly, a transit arc can be

traversed only if the individual states of a bus and that of a traveler match. Note that

in choosing a transit service at a node, a traveler might not only choose the arc but

also the bus which serves the arc. Hence we write Xr(s) as
⋃
b∈B

Xb
r(s), where Xb

r(s) is

the transit arcs available using bus b.

Xb
r(s) =

{
(i, j) : (i, j) ∈ Ar, i = n = ñ(sb), t = t̃(sb), (0,−2) /∈ Γ̂(sb), sb 6= (0,−1)

}

53



In the above definition, conditions n = ñ(sb) and t = t̃(sb) imply that the traveler

can catch bus b. Additionally, we also ensure that after boarding bus b, the traveler

can get off at a node in the network wp1 by checking if the sink state isn’t one of the

successors of state sb. For example, in the acyclic network of individual states shown

in figure 5.1 on page 51, we may observe that arc (2,3) is the only transit arc that

may be chosen if a traveler and the bus are at node 2 at t = 12.

Having defined the decision space, we now turn our attention to the cost of making

a decision. While the cost of choosing to walk/wait is known deterministically, the

actual travel time incurred by choosing a transit arc is random and is defined by the

distributions Ωaβb
. In general, let ξ̃x(s) be a random cost variable associated with a

decision x(s). Further, let ξx(s) and Ξx(s) denote a generic realization and the support

of ξ̃x(s) respectively.

5.1.3 Transition functions

Given the decision made at a state, the transition functions for an MDP are used to

describe the evolution of the system. More precisely, it gives the probability of ending

up in a state s′, assuming that a decision maker incurs a cost of ξx(s) by choosing

x(s) at a state s. We denote the transition functions by P
[
s′|(s, x(s), ξx(s))

]
, where

s, s′ ∈ S, x(s) ∈ X(s) and ξx(s) ∈ Ξx(s).

The fact that the uncertainty in travel time of the buses in the ATR problem is as-

sumed to be independent of each other (see assumption 7) can be exploited in calcu-

lating the probabilities of future states of each bus separately, i.e. P
[
s′b|(sb, x(s), ξx(s))

]
where sb, s

′
b ∈ Sb. Further, owing to its repeated use it would be wise to calculate

these probabilities and store it as a lookup table before solving the MDP.

We now briefly describe the process of finding the transition functions using backward

induction on the network shown in figure 5.1 on page 51. In the following discussion,

54



successor states of a particular state sb has been denoted with a hat and successors of

successors of sb are represented with a double hat. Assuming that the time elapsed

from the instant a bus b arrives at a state sb is denoted by te, let Pr
[
s′b|(sb, te, ŝb)

]
,

where s′b ∈ Sb and ŝb ∈ Γ̂(sb) denote the probability with which the bus can be found

in state s′b given that π
[(
sb, ŝ

′
b

)
|
(
sb, te, ŝb

)]
= 0 ∀ ŝ′b ∈ Γ̂(sb) : α(sb, ŝ

′
b) < α(sb, ŝb).

In order to better understand the process of calculating these probabilities let us

consider a few examples. Let the traveler be at some node in the network at t = 15,

when the state of the bus is (2,12). Based on this information we can be certain that

none of the downstream states of (2,12) are realized. Instead, if the traveler was at

some node at say t = 22, we know that the bus will reach node 3 at t = 24 wp1. In

other words, we may think of this as a scenario in which the state (3,20) is realized.

Suppose the downstream states of an individual state are ordered in the increasing

order of α (which is simply referred as arc costs), then π
[(
sb, ŝ

′
b

)
|
(
sb, te, ŝb

)]
denotes

the probability of reaching one of the successor states of state sb, given that all states

with arc costs less than the arc cost of reaching a particular state ŝb are realized. In

the example under consideration, assuming that π
(
(2, 12), (3, 20)

)
= p, we may write

π
[(

(2, 12), (3, 20)
)
|
(
(2, 12), te, (3, 20))

]
= p

π
[(

(2, 12), (3, 24)
)
|
(
(2, 12), te, (3, 20))

]
= 1− p

π
[(

(2, 12), (3, 20)
)
|
(
(2, 12), te, (3, 24))

]
= 0

π
[(

(2, 12), (3, 24)
)
|
(
(2, 12), te, (3, 24))

]
= 1

The first two equations correspond to the case where no downstream states are real-

ized, while the next two equations corresponds to the situation in which one of the

states i.e., (3,20) is realized. Clearly, for all te, Pr
[
s′b|
(
(0,−2), te, ŝb)

]
= 1 if s′b is the

sink state and 0 otherwise. Proceeding backwards (examining states with the largest

order first), for all sb ∈ Sb\{(0,−2)} we can write a recursive equation as follows:

55



Pr
[
s′b|(sb, te, ŝb)

]
=

∑
ŝ′b∈Γ̂(sb):

α(sb,ŝ
′
b)≥α(sb,ŝb)

π(sb, ŝ
′
b)

1−
∑

ŝ′′b∈Γ̂(sb):

α(sb,ŝ
′′
b )<α(sb,ŝb)

π(sb, ŝ′′b )
Pr
[
s′b|(ŝ′b, (te − α(sb, ŝ

′
b)), ˆ̂sb)

]

where ˆ̂sb ∈ Γ̂(ŝ′b), is a successor state of ŝ′b, such that α(ŝ′b, ˆ̂sb) has the lowest cost

among all arcs from state ŝ′b. Also, we follow the convention that if
(
te−α(sb, s

′
b)
)
< 0,

Pr
[
s′b|
(
ŝ′b, (te − α(sb, ŝ

′
b)), ˆ̂sb

)]
=

1 if s′b = sb

0 otherwise

Let us now try to parse the above expressions. Assuming that the bus is allowed to

travel for te minutes from a state sb, we consider only downstream states (ŝ′b) which

aren’t realized. The posterior probabilities of reaching these states are then computed

using the first expression in the summation. If the cost of an arc that connects sb to

a state that hasn’t been realized is higher than te, we assume that the bus travels for

te−α(sb, ŝ
′
b) minutes from state ŝ′b. Using the state ˆ̂sb, we ensure that the none of the

successor states of state ŝ′b are realized. The probabilities of reaching other states are

then obtained using the previously calculated values of Pr
[
s′b|(ŝ′b, te − α(sb, ŝ

′
b), ˆ̂sb)

]
.

The case in which the time elapsed is less than the cost of arc from state sb to ŝ′b is

taken care by the assumed convention.

Using precomputed values of the above probabilities (for all te bounded by the largest

possible travel time on any arc), for all buses that are not involved in the decision x(s),

assuming t̃(sb) is set to 0 if sb = (0,−1) or (0,−2), the values of P
[
s′b|(sb, x(s), ξx(s))

]
,

where sb, s
′
b ∈ Sb can be looked up from Pr

[
s′b|
(
sb, (t − t̃(sb) + ξx(s)), ŝb

)]
where

ŝb = argmin
ŝ′b∈Γ̂(sb):

α(sb,ŝ
′
b)+t̃(sb)≥t

[
α(sb, ŝ

′
b) + t̃(sb)− t

]
.

56



5.1.4 Value functions

The value function of a state (denoted by V (s)) is the expected time taken to reach

the destination from that particular state. The value function for all states in which

n is the destination node is set to 0 and the value of all other states is set to ∞.

5.2 Solving the Dynamic Program

Using the definitions and notation described so far, the Bellman’s equation of opti-

mality can be expressed as follows:

V (s) = max
x(s)∈X(s)

[
EΞx(s)

[
ξ̃x(s) +

∑
s′∈S

P
[
s′|(s, x(s), ξ̃x(s))

]
V (s′)

]]
In order to solve for the optimal labels, one can use the value iteration method (see

Powell [23]), which may be described as follows:

Algorithm 5 Pseudocode for Value Iteration

Step 0: Initialize value functions
V (s) = 0 ∀ s : n = D
V (s) =∞ ∀ s : n 6= D
τ = λD

Step 1:
while τ ≥ tO do

for all s ∈ S : t = τ do

V (s) = max
x(s)∈X(s)

[
EΞx(s)

[
ξ̃x(s) +

∑
s′∈S

P
[
s′|(s, x(s), ξ̃x(s))

]
V (s′)

]]
end for
τ = τ − 1

end while

The size of the state space might still be large after the preprocessing stage making it

unattractive for using the value iteration method to solve the ATR problem. In such

cases it could be worthwhile to explore approximate dynamic programming methods

57



in which value functions may be approximated using sampling methods or aggregation

of arcs and pmfs.

58



Chapter 6

Results and Conclusions

In this chapter, the results of the numerical experiments are presented along with

conclusions and scope for future work. The computational analysis comprised of a

study of the state space reduction on a small instance of the Austin transit network.

6.1 Computational experiments

6.1.1 Network Description

Eight routes on the Austin transit network were chosen, and information available

on the Capital Metropolitan Transportation Authority’s (Capital Metro) website was

used for this study. The following table shows the summary of the input data.

Table 6.1: Input Data

Network Characteristics
No. of Routes 8
No. of Buses 48
No. of Nodes 78

Routes 3, 5, 7, 10 (NB and SB)
Period of Interest 6:00 AM - 12:00 PM

The figure 6.1 shows the routes and time points and figure 6.2 shows the schedules at

various time points along routes 10 NB and 10 SB. All trips that begin between 6:00

AM and 12:00 PM were included in the model. A total of 78 stops were considered,

and the shortest walking arc time between each pair of nodes was obtained using

the Google Distance Matrix API. The implementation was carried out in C++ on a

Linux machine with a 6 core Intel Xeon processor (3.33 GHz).

59

http://www.capmetro.org/


Figure 6.1: Routes (Source : http://www.capmetro.org/)

Trips on routes were manually assigned to buses (as this information was not avail-

able), using which itineraries for each bus were constructed. In some cases, buses

were assigned to trips across several routes (for example buses on route 10 also serve

route 3, see fig 6.2). A current state vector and pmfs on transit arcs were randomly

generated (the size of the support of pmfs on each transit link was restricted to two)

and were used to construct the individual states of each bus in the network.

Figure 6.2: Schedules on Route 10 (Source : http://www.capmetro.org/)

6.1.2 Numerical results

Table 6.2 shows the number of individual states of buses in the network at the end

of each step in the preprocessing procedure for an instance in which the origin and

60



departure time of the traveler were randomly chosen.

Table 6.2: Results of individual state space elimination

Bus ID
Before Risk Phase I Phase II Phase I Phase II

elimination aversion (EAD) (EAD) (LAD) (LAD)
1 1178 19 11 8 8 8
2 5308 26 15 10 15 10
3 3625 19 - - - -
4 3750 4 - - - -
6 5200 22 18 14 18 14
7 5299 15 - - - -
8 3476 5 - - - -
9 3887 31 8 8 8 8
10 4978 26 11 5 11 5
11 2724 18 - - - -
12 2798 5 - - - -
14 4769 12 7 6 7 6
15 2779 8 - - - -
16 2888 4 - - - -
17 220 2 - - - -
18 3649 2 - - - -
20 2628 30 4 4 4 4
21 3752 15 10 8 10 8
22 3983 5 - - - -
23 3115 19 8 8 8 8
24 3844 19 - - - -
25 4218 3 - - - -
26 672 15 10 9 5 -
27 4584 11 - - - -
28 2979 12 - - - -
29 2908 5 - - - -
30 2882 4 - - - -
33 4199 15 8 8 8 8
34 2547 17 16 16 16 16
35 1093 14 - - - -
36 2843 7 - - - -
37 2930 3 - - - -
38 2885 2 - - - -

Product 4.26E+148 9.99E+31 7.49E+11 7.93E+10 2.72E+11 8.81E+09

61



It was found that the destination could be reached within 48 minutes wp1. Buses

which were completely eliminated based on the risk aversion criteria are not shown in

the table. Although, the results of the phase I and II elimination procedure appears

promising when compared to the total number of initial individual states, it would

be only be fair to compare them with the size of the individual state space obtained

after the risk aversion constraints are imposed. The plot in figure 6.3 shows the

logarithm of the cardinality of the cartesian product of the individual state space

(which is proportional to the size of the actual state space) for various preprocessing

steps. While the magnitude of reduction in state space is significant using the phase

I, further reduction due to phase II appears to be marginal. As mentioned earlier it

might be possible to further reduce the state space by recursive application of the

Phase I and Phase II methods. Note that the actual state space is constructed as

discussed in section 5.1.1 on page 49 and is much smaller than the values used for

comparison.

Figure 6.3: A Plot of the individual state space reduction

62



We further tested the reduction in the individual state space using the LAD labels and

found that this method aids in eliminating more states as expected. A comparison of

the EAD and LAD elimination procedure is shown in the following graph.

Figure 6.4: Comparison of individual state space reduction using EAD and LAD
labels

The experiments were repeated for another instance in which the destination was

guaranteed to be reached within 216 minutes (two extreme ends of the city were

chosen for this purpose). Since the cutoff was higher, relatively lesser states were

eliminated using the risk aversion condition and the elimination methods, but more

states were found to be eliminated using the LAD labels when compared to the

elimination based on EAD labels. We did not observe any reduction in the state

space using arguments based on the EOA labels. A summary of the results for this

scenario is shown in the following plot.

63



Figure 6.5: Plot of individual state space reduction for another OD pair

The results in general are influenced by several factors such as the OD pair, density

of buses in the network and the probability distributions, which in turn affect the

cutoff and the EAD and LAD labels. The numerical results presented here serve as a

rough reflection of the abilities of these approaches and it is difficult to expect similar

results if these methods are replicated on a different network. For instance, one might

assume that having a denser network of buses makes it easier to reach the destination

from individual states within the cutoff and hence, lesser number of states may be

eliminated. But the LOA algorithm in a dense transit network might yield a smaller

cutoff in the first place. The computation time for both examples was observed to

be well under a minute.

6.2 Conclusions

In this thesis, an adaptive transit routing problem in which a traveler seeks a strategy

that minimizes the expected cost of travel and ensures that the destination is reached

64



within a certain threshold was addressed. A strategy is a set of actions that are

conditional on the state of all buses and the traveler in the network. The state of

a bus is defined by the most recently visited stop and the time at which the bus

visited it. Using discrete probability distributions of link travel times a framework

for formulating the problem as an MDP was developed.

In practice, a major challenge in using this approach involves working with a large

system state space. This has been widely referred to as the curse of dimensionality in

the field of dynamic programming. In this thesis, attempts were made to reduce the

system state space by independent reduction of the individual state space of each bus.

This process was facilitated by some algorithms and assumptions on the behavioral

attitudes of travelers. Further, some numerical experiments were performed to gauge

the potential of these methods.

The ATR problem addresses the effects of congestion and its impacts on route choice

and transfers using adaptive strategies in a stochastic time dependent transit network.

Some of the major contributions of this thesis include ability of using a vast amount

of real time information that can potentially result in lower expected travel times

compared to an a priori strategy. In addition, state space reduction methods that

may be applied independently on each bus in the network were developed along the

lines of causality and the concept of light cones. Also, the bus based approach and

assumptions made let us model the strategies and the slack in schedules between trips

in a much broader and realistic manner.

However, the proposed model is limited by the assumptions made, some of which are

restrictive in nature. For instance, the travel time distributions on links are assumed

to be independent of each other. While this may be true for delays caused due

to passenger boarding and alighting, buses on routes that share links are likely to

65



be affected in a similar manner in the presence of congestion. Another assumption

that limits the scope of the ATR problem has to do with a traveler’s reluctance

in transferring multiple times before reaching the destination. However, enforcing

constraints on the number of transfers in the present model is extremely difficult.

Further, the effects of fares and congestion are ignored in the decision making process.

6.3 Scope for future study

The study of the ATR problem presents some useful pointers for future research on

this topic. While the preprocessing methods look attractive, an exact estimation of

the optimal strategy may be hindered by the size of the state space depending on

factors such as the number of buses, the origin and the destination, the pmfs on

links, etc. In such cases, one would have to resort to approximation techniques, in

which case it is necessary to investigate the quality of solutions obtained using these

methods.

Another approach to address the ATR problem is to treat it as a Knapsack Problem

in which buses may be regarded as items. Each bus may not only contribute to a de-

crease in the expected value, but the combination of buses chosen might further bring

us closer to the optimal solution. Cardinality constrained versions of this problem

can restrict the size of the state space to an extent that the ATR problem may be

approximately solved using exact methods. Although, greedy algorithms that exploit

the sub modular nature of such problems are known to exist, quantifying the benefits

of including a bus or a subset of buses can be quite challenging.

It is also of prime interest to determine the travel time savings in using these methods

in comparison with an a priori strategy or other simpler trip planning approaches.

As noted earlier in the case of the benefits of the state space reduction, the savings

in travel time are also dependent on the OD pair, pmfs and the density of the transit

66



network, etc. For instance, in the example used to illustrate the adaptive nature of

the ATR problem in chapter 1(see figure 1.1 on page 2), the travel time savings is

3 min, which is a 40 percent decrease over the expected travel time of the optimal

a priori strategy. Instead, if the travel time on the link (4,5) is either 1 or 2, the

optimal cost of the a priori strategy and the adaptive solution are the same. Hence,

it is very difficult to judge the benefits of using this model which calls for extensive

testing on transit networks with accurate probability distributions and information

of bus itineraries.

The elimination process offers scope for parallelization as the procedure developed

may be independently applied to each bus. Also, there exists more room for reduc-

tion of the state space as noted in discussions on the limitations of the preprocessing

methods in chapter 4. The ATR problem may further be extended to incorporate

correlations in the link travel time distributions, which offers a more realistic represen-

tation of the problem. While this complicates the transition functions of the dynamic

program, it may result in higher the EAD and EOA labels, and aid in the process

of elimination of states to a greater extent. Although the ATR problem remains to

be explored in greater detail, this study develops a sound theoretical framework and

novel state space reduction techniques that contribute significantly to the study of

adaptive routing in transit networks.

67



Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,

and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90,

1958.

[3] I. Chabini. Discrete dynamic shortest path problems in transportation applica-

tions: Complexity and algorithms with optimal run time. Transportation Re-

search Record, 1645:170–175, 1998.

[4] C. Chriqui and P. Robillard. Common bus lines. Transportation Science,

9(2):115, 1975.

[5] J. de Cea and E. Fernndez. Transit assignment for congested public transport

systems: An equilibrium model. Transportation Science, 27(2):133–147, 1993.

[6] N. Deo and C.-Y. Pang. Shortest-path algorithms: Taxonomy and annotation.

Networks, 14(2):275–323, 1984.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[8] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Re-

search, 17(3):395 – 412, 1969.

[9] L. R. Ford. Network flow theory. Technical Report P-923, Rand Corporation,

Santa Monica, CA, 1956.

[10] G. Gentile, S. Nguyen, and S. Pallottino. Route choice on transit networks with

online information at stops. Transportation Science, 39(3):289–297, 2005.

68



[11] R. W. Hall. The fastest path through a network with random time-dependent

travel times. Transportation Science, 20(3):182 – 188, 1986.

[12] Y. Hamdouch and S. Lawphongpanich. Schedule-based transit assignment model

with travel strategies and capacity constraints. Transportation Research Part B:

Methodological, 42(78):663 – 684, 2008.

[13] M. D. Hickman. Assessing the impact of real-time information on transit pas-

senger behavior. PhD thesis, Massachusetts Institute of Technology, 1994.

[14] M. D. Hickman. Robust passenger itinerary planning using transit avl data. In

Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th Interna-

tional Conference on, pages 840 – 845, 2002.

[15] M. D. Hickman and D. H. Bernstein. Transit service and path choice models in

stochastic and time-dependent networks. Transportation Science, 31(2):129–146,

1997.

[16] M. D. Hickman and N. H. Wilson. Passenger travel time and path choice implica-

tions of real-time transit information. Transportation Research Part C: Emerging

Technologies, 3(4):211 – 226, 1995.

[17] R. Huang and Z.-R. Peng. Schedule-based path-finding algorithms for transit

trip-planning systems. Transportation Research Record, 1783:142– 148, 2002.

[18] E. D. Miller-Hooks. Adaptive least-expected time paths in stochastic, time-

varying transportation and data networks. Networks, 37:35–52, 2001.

[19] E. D. Miller-Hooks and H. S. Mahmassani. Least expected time paths in stochas-

tic, time-varying transportation networks. Transportation Science, 34(2):198–

215, 2000.

[20] S. Nguyen and S. Pallottino. Equilibrium traffic assignment for large scale transit

networks. European Journal of Operational Research, 37(2):176–186, 1988.

69



[21] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths Combinatorial

Optimization. In Combinatorial Optimization, volume 1403 of Lecture Notes in

Mathematics, chapter 10, pages 258–271. Springer Berlin / Heidelberg, 1989.

[22] G. H. Polychronopoulos and J. N. Tsitsiklis. Stochastic shortest path problems

with recourse. Networks, 27:133–143, 1996.

[23] W. B. Powell. Approximate Dynamic Programming : Solving the Curses of

Dimensionality. John Wiley & Sons, Hoboken, New Jersey, 2007.

[24] D. Pretolani. A directed hypergraph model for random time dependent shortest

paths. European Journal of Operational Research, 123(2):315–324, 2000.

[25] J. S. Provan. A polynomial-time algorithm to find shortest paths with recourse.

Networks, 41(2):115–125, 2003.

[26] H. Spiess and M. Florian. Optimal strategies: A new assignment model for

transit networks. Transportation Research Part B: Methodological, 23(2):83–102,

April 1989.

[27] M. C. Tan, C. O. Tong, S. C. Wong, and J. M. Xu. An algorithm for find-

ing reasonable paths in transit networks. Journal of Advanced Transportation,

41(3):285–305, 2007.

[28] C. O. Tong and A. J. Richardson. A computer model for finding the time-

dependent minimum path in a transit system with fixed schedules. Journal of

Advanced Transportation, 18(2):145–161, 1984.

[29] S. T. Waller and A. K. Ziliaskopoulos. On the online shortest path problem with

limited arc cost dependencies. Networks, 40(4):216–227, 2002.

[30] J. H. Wu, M. Florian, and P. Marcotte. Transit equilibrium assignment: A model

and solution algorithms. Transportation Science, 28(3):193–203, 1994.

70



[31] W. Xu, S. He, R. Song, and S. S. Chaudhry. Finding the k shortest paths in a

schedule-based transit network. Computers and Operations Research, 39(8):1812

– 1826, 2012.

[32] A. K. Ziliaskopoulos and H. S. Mahmassani. Time-dependent, shortest-path

algorithm for real-time intelligent vehicle highway system applications. Trans-

portation Research Record, 1408:94–100, 1993.

71


