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Network Routing and Equilibrium Models for Urban

Parking Search

by

Shoupeng Tang, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Stephen D. Boyles

This dissertation focuses on modeling parking search behavior in traffic as-

signment models. Parking contributes greatly to urban traffic congestion. When

the parking supply is scarce, it is very common for a vehicle to circle around for a

considerable period just for an open parking spot. This circling or “cruising” add ad-

ditional traffic flow onto the network. However, traditional traffic assignment models

either ignore parking completely or simply treat it in limited ways. Most traffic as-

signment models simply assume travelers just directly drive from their origin to their

destination without considering the parking search behavior. This would result in a

systematic underestimation of road traffic flows and congestion which may mislead

traffic managers to give inappropriate planning or control strategies. Models which

do incorporate parking effects either constrain their implementation in limited small

networks or ignore the stochasticity of parking choice by drivers.

This dissertation improves upon previous research into network parking mod-

eling, explicitly capturing drivers’ behavior and stochasticity in the parking search

vi



process, and is applicable to general networks. This dissertation constructs three

types of parking search models. The first one is to model a single driver’s parking

search process, taking into account the likelihood of finding parking in different lo-

cations from past experience as well as observations gained during the search itself.

This model uses the a priori probability of finding parking on a link, which reflects

the average possibility of finding a parking space based on past experience. This

probability is then adjusted based on observations during the current search. With

these concepts, the parking search behavior is modeled as a Markov decision pro-

cess (MDP). The primary contribution of the proposed model is its ability to reflect

history dependence which combines the advantages of assuming “full reset” and “no

reset” . “Full reset” assumes the probability of finding a parking space on a link

is independent of any observations in the current search, while “no reset” assumes

the state of parking availability is completely determined by past observations, never

changing once observed. For instance, assume that the a priori probability of finding

parking on a link is 30%. “Full reset” implies that if a driver drives on this link and

sees no parking available, if he or she immediately turns around and drives on the

link again, the probability of finding parking is again 30% independent of the past

observation. By contrast, “no reset” implies that if a parking space is available on a

link, it will always be available to return to in the future at any point. This disserta-

tion develops an “asymptotic reset” principle which generalizes these principles and

allows past observations to affect the probability of finding parking on a link and this

impact weakens as time goes by. Both full reset and no reset are shown to be special

cases of asymptotic reset.
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The second problem is modeling multiple drivers through a parking search

equilibrium on a static network. Similar to the first type of problem, drivers aim to

minimize their total travel costs. Their driving and parking search behaviors depend

on the probabilities of finding parkings at particular locations in the network. On

the other side, these probabilities depend on drivers’ route and parking choices. This

mutual dependency can be modeled as an equilibrium problem. At the equilibrium

condition no driver can improve his or her expected travel cost by unilaterally chang-

ing his or her routing and parking search strategy. To accomplish this, a network

transformation is introduced to distinguish between drivers searching for parking on

a link and drivers merely passing through. The dependence of parking probability

on flow rates results in a set of nonlinear flow conservation equations. Nevertheless,

under relatively weak assumptions the existence and uniqueness of the network load-

ing can be shown, and an intuitive “flow-pushing” algorithm can be used to solve for

the solution of this nonlinear system. Built on this network loading algorithm, travel

times can be computed. The equilibrium is formulated as a variational inequality,

and a heuristic algorithm is presented to solve it. An extensive set of numerical tests

shows how parking availability and traffic congestion (flows and delays) vary with the

input data.

The third problem aims at developing a dynamic equivalent for the network

parking search equilibrium problem. This problem attempts to model a similar set of

features as the static model, but aims to reflect changes in input demand, congestion,

and parking space availability over time. The approach described in the dissertation

is complementary to the static approach, taking on the flavor of simulation more
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than mathematical formulation. The dynamic model augments the cell transmission

model with additional state variables to reflect parking availability, and integrates

this network loading with an MDP-based parking search behavior model.

Finally, case studies and sensitivity analysis are taken for each of the three

models. These analyses demonstrate the models’ validity and feasibility for practice

use. Specifically, all the models show excess travel time and flow on the transportation

networks because of taking into account the “parking search cruising” and can show

the individual links so affected. They all reflect the scattered parking distribution on

links while traditional traffic assignment models only assign vehicles onto specified

destination nodes.
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Chapter 1

Introduction

Transportation plays a critical role in our daily life. It not only transports peo-

ple to their destinations for work, entertainment, education, and shopping purposes

but also helps deliver critical goods such as food and fuel. Despite the importance

of the transportation system, it is also associated with congestion, pollution, noise,

and other negative impacts. Congestion is a root cause for many of these negative

impacts: for instance, excess congestion causes worse pollution as vehicles idle in

stopped traffic.

The direct reason that the congestion is becoming more common and longer-

lasting in most cities is that the increase in vehicle demand is not associated with

a corresponding increase in infrastructure. This is due to several reasons, including

financial constraints, environmental impacts, and availability of space in crowded

cities. Another reason for congestion is that current transportation system is not

running efficiently or in an optimum condition. For instance, signal timing plans may

need to be improved, or the travelers’ information system can do much more than it

does now.

Parking issues play a very important role in traffic congestions, especially at

locations in downtown areas, near universities, or near popular entertainment des-
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tinations. In urban centers where space is limited and cars are prevalent, parking

shortages cause drivers to “cruise” for parking, a frustrating endeavor both for drivers

and city planners. Clearly, there is a need for city planners to better manage park-

ing in their jurisdictions. While recent programs in San Francisco, Boston, Seattle,

Washington D.C., and elsewhere can provide much-needed data, sophisticated and

accurate parking models are needed to help forecast the effects of changes in capac-

ity, pricing, and strategies aimed at reducing the “cruising traffic”. Similarly, more

accurate parking guidance systems would would benefit from the models. With cur-

rent models for parking, it is difficult to quantify the impact of cruising on delay and

congestion even in the present state, let alone quantifying the benefits of proposed

policies or technologies.

These policy and technological strategies for improving parking-related con-

gestion can be classified into two types: supply-side and demand-side. Supply causes

mainly refer to the capability of providing transportation infrastructure and services

by the transportation systems, while demand causes refer to the number of trips or

other things that will use the transportation systems. Supply-side strategies could in-

clude providing additional parking, adjusting the price of parking (even in real-time

based on availability), adjusting the duration of allowable parking. Demand-side

strategies would attempt to reduce the travel demand or shift part of the demand

from a mode which requires parking search to another mode. For instance, encourage

more people to work at home will help reduce travel demand while provide better

transit service and attract people from driving a car to the transit can be also very

helpful for reducing parking-related congestion. There are also measures we can take
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to both improve the supply-side and the demand-side. For instance, one can monitor

parking availability in real time and disseminate this information to drivers via road-

side signs or mobile apps. This thesis focuses primarily on the modeling required to

support supply-side strategies. Nevertheless, assessing demand-side strategies would

require a similar modeling framework, and the models presented here can form a

useful foundation for demand-side modeling as well. Some of the numerical experi-

ments involve predicting impacts of changes in demand without explicitly modeling

the policies that would result in these demand reductions.

1.1 Background

Since the introduction of the automobile, cities have increasingly oriented

themselves towards personal vehicles as the dominant mode of transportation. Emerg-

ing from World War II, car ownership became cemented as part of the American

cultural fabric, acting not just as a symbol of independence and prosperity, but phys-

ically liberating middle-class families to travel when and where they pleased. Over a

span of four decades, vehicle ownership rates soared in the U.S., from less than 250

vehicles per 1,000 people in 1950, to over 700 vehicles per 1,000 people by 1990 (Shoup

and Association, 2011). To accommodate this rise in personal automobiles, cities and

states expanded their roads, highway networks, and supply of parking spaces.

This trend clearly has had negative consequences, which are becoming more

and more pronounced as populations rise. In urban centers where space is limited

and cars are prevalent, parking shortages cause drivers to cruise for parking. In the

hopes of finding cheap, available parking, drivers circle indefinitely. This practice
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significantly worsens congestion, increases carbon emissions, and makes the roadways

less safe for other drivers, pedestrians, and cyclists (Feeney, 1989). Averaging the

results of ten different international studies, it is estimated that during typical peak

hours, approximately 34% of congestion in urban areas is made up of people “cruising”

for parking (Shoup and Association, 2011). Analyzing the problem from a drivers

perspective, a study in Frankfurt showed that searching for a parking spot during

peak hours accounted for as much as 40% of the total travel time for journeys to

central urban areas (Axhausen et al., 1994).

The other major parking dilemma stems from an abundance of off-street park-

ing. In order to ensure that businesses and developers allocate enough parking to

satisfy the “demand” of the citizens, most cities place minimum requirements on the

amount of free parking that each type of business must provide, based on land use and

square footage. When deciding what these minimums ought to be, the vast majority

of cities derive their policies — either directly or indirectly — from the Institute of

Transportation Engineers (ITE) report Parking Generation. Shoup and Association

(2011) argues that the parking generation rates they produce are often overestimates,

derived from sparse amounts of data drawn from suburban areas with no transit rid-

ership. The practice of setting inflated parking minimum requirements creates two

problems: it hides the true cost of parking while worsening urban sprawl. Parking

lots use valuable land and cost a substantial amount of money to construct, maintain

and police. According to a Massachusetts developer, the construction of a parking

structure in Boston can cost $30,000 to $50,000 per space (Ross, 2013). Rather than

passing on these costs only to the individuals who choose to travel by car, the costs
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are often hidden, with business and developers instead passing on the costs to every-

one in the form of higher rents, lower wages, and higher costs for goods and services.

Moreover, the expansive free surface parking lots mandated by city codes only serve

to spread out and weaken the city as a whole. They destroy a citys aesthetic, lower

property values, limit density, and weaken the tax base. They also create a positive

feedback loop, where not only is there a lack of incentives for people to adopt alter-

native transportation, but the sprawling suburban blueprint necessitates the use of

personal vehicles, which in turn drives up the demand for more parking (Shoup and

Association, 2011).

Due to the huge impact that parking management has on urban development

and transportation networks, focus on parking policy has intensified over the past

several years. Numerous studies have analyzed the effects of changes in parking

capacity, pricing, and strategies aimed at reducing the number of single person trips

by car. While politically challenging, setting appropriate pricing for parking can serve

as the most effective tool for shifting peoples transportation choices and mitigating

urban congestion (Hensher and King, 2001). Of the cities who have instituted pricing

reforms, San Franciscos demand-based parking program has been arguably the most

innovative and comprehensive. Termed SFpark, the program launched in April 2011,

funded primarily by a $20 million federal grant. Beginning in 2010 the city installed

enough sensors to cover 7,000 metered parking spots (one fourth of all metered spots

in the city) as well as 12,250 spots in 15 of the 20 city-maintained garages. The city

then collected and published the occupancy data, lowering and raising parking rates

block by block. The goal of the project is to provide real-time price and availability
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data to the public while using straightforward and transparent pricing adjustments

to control turnover, availability, and to influence peoples travel decisions. Rates are

set as low as possible while still being high enough to provide at least 1 to 2 free spots

on each block at any given time, thus negating the need to cruise for parking. As of

May 2012, some meters had reached as high as $6 per hour, but in aggregate, the

average meter price fell 1% over the first year. The program also achieved its primary

goal, as congestion has decreased measurably, allowing public transit to run quicker

and more reliably. There is still room for improvement — pricing could become

more predictive than reactionary — but the program has been hailed as a success

thus far, with in-depth analysis to be conducted in the coming months (Pierce and

Shoup, 2013). Similar programs have been implemented in Seattle and Washington

D.C. at a much smaller scale. Despite relying on human observations since sensors

were prohibitively expensive, the projects yielded comparable results to the SFpark

program. Other successful strategies employed by urban planners include parking

taxes in central business districts, providing incentives for travel during non-peak

hours, extending parking meter hours, and installing electronic guidance systems to

direct drivers to available lots (Greenberg, 2012).

Using parking policy to combat urban sprawl as well as congestion, several

cities are reducing or even eliminating minimum parking requirements. The city of

Austin recently launched a pilot program to reduce parking requirements for expand-

ing businesses who commit to implementing measures designed to reduce individual

motor vehicle trips. Some of the potential strategies include providing services (cafe-

teria, daycare, etc.) for tenants so they dont have to go offsite, installing showers
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for tenants who choose to bike or walk to work, establishing preferential parking for

carpoolers, providing cash incentives for employees who dont use a personal vehicle

to get to work, guaranteeing rides home, and unbundling parking, whereby parking

spaces are offered at a fee, rather than provided for free.

Some cities, including San Francisco, Boston, Milwaukee, Seattle, and Port-

land, are going a step further by completely reversing policy and setting caps on the

number of parking spaces developers can provide (Ross, 2013). In San Francisco,

large new residential projects are not only governed by parking caps, but develop-

ers must also unbundle parking and provide car share spaces. A follow-up study

found that buildings which combined unbundled parking with car share availability

had significantly fewer occupants owning personal vehicles than did buildings which

had only one or neither of the measures in place (Greenberg, 2012). Policies which

limit parking capacity have received some backlash, with citizens arguing that the

plans ignore the present reality in the pursuit of an idealistic future (Ross, 2013).

However, several studies show a discernible decade-long trend away from personal

vehicles. Young Americans (aged 16-34) are driving 23% fewer miles than they were

in 2004 and are more committed to alternative forms of transit, even those with the

means to purchase a vehicle (Davis et al., 2012). Also, urban growth has just out-

paced suburban growth for the first time since the 1920s, fueled by a growing number

of people opting to live near their jobs, entertainment, and public transit (Yen and

Wyatt, 2012).
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1.2 Motivation

As discussed in the background section, parking has a significant impact on

urban transportation. Transportation planners, traffic engineers, and others in the

private sector are beginning to realize the importance of parking management. New

sensor and information provision technologies are being used as the basis for innova-

tive parking management strategies. For instance, parking garages can be equipped

with sensors to monitor the location and number of available spaces. Cities such

as Dallas and San Francisco are also equipping on-street parking spaces with sen-

sors. This information can be disseminated to drivers through variable message signs,

smartphone applications, or used to adjust the price of parking in real time based on

availability.

However, network models that can accurately assess the impact of parking

on urban congestion, and the effectiveness of these control strategies, have yet to

be developed. In particular, providing more information does not always improve

transportation conditions, partially due to latency effects but also due to the conflict

between drivers’ individual objectives and system objectives.

Existing network models either ignore parking search altogether, or treat it in

limited ways which fail to capture its full impacts. Most network models simply route

travelers from their origin node to the destination node, ignoring the parking search

process. Ignoring this will systematically underestimate congestion, potentially by a

significant amount. Current models which do incorporate parking effects are limited

in several ways. One class of parking models is simulation based, which has the advan-

tage of rich traffic flow modeling and modeling uncertainty in parking space location,
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but fails to capture the “gaming” behavior in parking choices — drivers choose a

searching strategy based on the likelihood of finding parking, but this likelihood de-

pends on the searching strategies used by other drivers. Another class of models adds

parking links to network models and imposes a flow-dependent impedance function to

reflect parking delay. While it is easy to incorporate an equilibrium principle into this

framework, this approach neglects stochasticity altogether and cannot predict which

roadway links will experience higher congestion due to parking search. Yet another

class of models derives exact mathematical results in stylized networks. While these

approaches can provide insights into specific policies and derive elegant results, they

are highly restricted by assumptions on the network topology (e.g., that the city is a

single link, or a homogeneous circle).

This dissertation develops network models for parking search which simulta-

neously (1) account explicitly for driver behavior in response to network conditions,

rather than simply simulating network performance with exogenous behavior; (2)

are stochastic, reflecting uncertainty in the locations of available parking spaces and

identifying the impacts of parking search on each network link; and (3) are scalable

to large networks without restrictive assumptions on the network topology. To the

author’s knowledge, this is the first time all three features have been combined in a

single modeling framework.

1.3 Problem Statements

This dissertation addresses three parking-related network problems. The first

is to model an individual driver’s parking search behavior, taking into account the
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likelihood of finding parking in different locations from past experience as well as ob-

servations gained during the search itself. In this problem, the a priori probabilities

of finding parking are assumed fixed and known since the focus is on an individual’s

behavior, and a single driver has a negligible impact on the probability of finding

parking at a location. This problem is formulated as a stochastic shortest path prob-

lem with recourse, and described using the framework of Markov decision processes

(MDPs). In this MDP model, the state space consists of the most recently visited

nodes and the parking availability at each of these nodes. The decision variable is at a

link the driver can park and walk to the destination or continue to drive to one of the

adjacent nodes. The transition probability specifies the probability from one state to

another. Since the probability is calculated depending upon the time last since last

visit of the link and the current state, it can reflect the traveling history impacts on

the transition. The detailed calculation and explanation are given in Chapter 2.

The primary contribution of the proposed model is its ability to reflect history

dependence. Other recourse shortest path problems in the literature either assume

“full reset,” in which the state of a link is independent of its state in any past observa-

tion, or “no reset” in which the state of a link never changes once observed, completely

determined by past observation. For instance, assume that the a priori probability

of finding parking on a link is 30%. “Full reset” implies that if a driver drives on this

link and sees no parking available, if he or she immediately turns around and drives

on the link again, the probability of finding parking is again 30% independent of the

past observation. By contrast, “no reset” implies that if a parking space is available

on a link, it will always be available to return to in the future at any point. This dis-
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sertation develops an “asymptotic reset” principle which generalizes these principles

and allows past observations to affect the probability of finding parking on a link and

this impact weakens as time goes by. Both full reset and no reset are shown to be

special cases of asymptotic reset.

The second problem is modeling multiple drivers through a parking search

equilibrium on a static network. Similar to the first type of problem, drivers aim to

minimize their total travel costs. Their driving and parking search behaviors depend

on the probabilities of finding parkings at particular locations in the network. On

the other side, these probabilities depend on drivers’ route and parking choices. This

mutual dependency can be modeled as an equilibrium problem. At the equilibrium

condition no driver can improve his or her expected travel cost by unilaterally chang-

ing his or her routing and parking search strategy. To accomplish this, a network

transformation is introduced to distinguish between drivers searching for parking on

a link and drivers merely passing through. The dependence of parking probability

on flow rates results in a set of nonlinear flow conservation equations. Nevertheless,

under relatively weak assumptions the existence and uniqueness of the network load-

ing can be shown, and an intuitive “flow-pushing” algorithm can be used to solve for

the solution of this nonlinear system. Built on this network loading algorithm, travel

times can be computed. The equilibrium is formulated as a variational inequality,

and a heuristic algorithm is presented to solve it. An extensive set of numerical tests

shows how parking availability and traffic congestion (flows and delays) vary with the

input data.

The third problem aims at developing a dynamic equivalent for the network
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parking search equilibrium problem. This problem attempts to model a similar set of

features as the static model, but aims to reflect changes in input demand, congestion,

and parking space availability over time. The approach described in the dissertation

is complementary to the static approach, taking on the flavor of simulation more

than mathematical formulation. The dynamic model augments the cell transmission

model with additional state variables to reflect parking availability, and integrates

this network loading with an MDP-based parking search behavior model.

As stated above, all of these problems develop parking models which explic-

itly consider driver behavior, stochasticity in the parking search process, and are

applicable to general networks.

1.4 Organization

As mentioned above, this dissertation mainly incorporates stochastic parking

search behavior into traffic assignment problems. This work is divided into three

parts in this dissertation. The first part is to develop models of single vehicle’s

stochastic parking search process on a network with history dependence. The second

part constructs models for multi vehicles’ parking search process on a network and

calculate the static traffic equilibrium for them. The third part formulates dynamic

traffic equilibrium models for multi vehicle’s parking search behavior. A more detailed

outline of the remainder of the dissertation is as follows:

Chapter 2 Parking Search with History Dependence

Drivers have memory of parking availability on recently-traversed links and
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may use this information to reevaluate their route and parking choice every time

they get to a new network link. In our model drivers seek to minimize their total

expected travel time, driving plus walking, though this disutility function could easily

be adapted to incorporate fees, search time, or a host of other characteristics. We

name our approach an asymptotic reset model, as it generalizes the “reset” and “no

reset” formulations identified by Provan (2003). This model is actually an application

of MDPs the parking search process on a network. Finally a value iteration method

is designed to solve the MDP.

Chapter 3 Static Parking Search Equilibrium

A network transformation is introduced to differentiate common links that

for passing through traffic from dummy links that account for vehicles searching for

parking. Traffic flows will be loaded onto a network based on the parking space

availability probability and traffic equilibrium principles. The probability of parking

space availability and link flows are mutually dependent, which results in a set of

nonlinear flow conservation equations. The equilibrium is formulated as a variational

inequality and a heuristic algorithm is developed to solve it.

Chapter 4 Dynamic Traffic Assignment and Parking Search

The goal of this part is particularly aimed at the “cruising” phenomenon when

drivers are searching for parking. Therefore an equilibrium formulation accounting

for stochastic and dynamic parking search by routing drivers is developed based on

policies rather than paths, using the language and framework of Markov decision
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processes. The stochastic and dynamic nature of the parking search process is incor-

porated in the traffic flow model which is built on the cell transmission model (CTM)

with added state variables to represent the number of available parking spaces on

links.

Chapter 5 Conclusion

A summary of the three models mentioned in the previous chapters and the

contributions of this dissertation are detailed in this chapter. Based on current re-

search results, the future possbile research directions and topics are listed.
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Chapter 2

Parking Search with History Dependence

2.1 Introduction

Existing parking search models usually make extreme simplifying assumptions

and may not be able to capture real parking behavior. In reality, since drivers are

unaware of the exact likelihood of finding parking near their destination and circling

wastes time, they will typically pay attention to availability as they approach the area.

Their parking choice will then be a memory-influenced decision, where they circle

back to a previously seen spot if necessary. Furthermore, the realized probability of

parking availability depends on the memory. This chapter characterizes this memory-

influenced parking search behavior with the help of a Markov decision process model.

2.2 Literature Review

As mentioned in Chapter 1, parking search models can be classified into three

groups: discrete choice based approaches, simulation based approaches, and network

assignment based approaches.

Both discrete choice and simulation approaches examine parking choice ex-

plicitly. Discrete choice models work at the macro level, using random utility theory

to understand parking choice as a function of various driver and parking facility at-
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tributes. Such models differ in their complexity, with some utilizing the multinomial

logit model (Van der Goot, 1982; Axhausen and Polak, 1991; Lambe, 1996) and others

using mixed multinomial logit (Hess and Polak, 2004), or nested logit models (Hen-

sher and King, 2001). However, by neglecting the network structure, discrete choice

models are unable to model the stochastic and adaptive nature of the parking search

process, as drivers sequentially traverse roadway links which may or may not have

available parking.

In contrast with discrete choice models, simulation models try to capture the

parking search at the micro level. Thompson and Richardson (1998) developed an

analytical model to mimic the search process where the disutility of a car park location

was defined as a function of in-vehicle travel time, in-car park search time, waiting

time, fees, fines, and walk time. Other researchers (Thompson and Richardson, 1998;

Benenson et al., 2008; Martens and Benenson, 2008; Dieussaert et al., 2009) have

adopted agent-based approaches where the behavioral and parking decision making

rules were assigned to the drivers. An issue with micro-simulation models however,

is that their size must be restrained due to computational complexity and to date

none fully address the dynamic effects that congestion and parking choices have on

one another (Waraich and Axhausen, 2012).

Also working at the macroscopic level, network approaches based in equilib-

rium assignments are regarded for their ability to successfully model the interaction

between road traffic and parking choices (Waraich and Axhausen, 2012). Like non-

network models, network approaches are predicated on individuals choosing parking

locations which maximize their utility or minimize travel costs, though they try to
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simulate the parking choice implicitly (DellOrco et al., 2003). Hall (1986) developed

a recursive algorithm to solve shortest paths in networks where arc costs were ran-

dom and time-dependent. Introducing the concept of recourse, Polychronopoulos and

Tsitsiklis (1996) proposed a formulation where arc costs are learned progressively as

an end-node of an arc is visited, enabling policies to include cycling and corrective

actions where information gathering is beneficial.Waller and Ziliaskopoulos (2002)

analyzed networks with spatial dependence and temporal dependence of arc costs in

further detail, showing that online optimum paths outperform offline shortest paths

by up to 40% under certain conditions. Provan (2003) provided a polynomial-time

algorithm for solving shortest paths with recourse where arc lengths are determined

by a Markov process and reset upon each traversal. Even these models (Arnott and

Inci, 2010; Leurent and Boujnah, 2012; Provan, 2003; Hall, 1986; Polychronopoulos

and Tsitsiklis, 1996; Waller and Ziliaskopoulos, 2002) which capture the unknown and

stochastic nature of arc costs do not incorporate any kind of memory-based decisions,

a key feature of the individual parking search, and typically assume either full reset

or no reset conditions, to use the language of Provan (2003). Neither assumption

well-characterizes the parking search problem.

Therefore, the contribution of the model is to include a memory for the trav-

eler, in which the probability of finding parking after traversing a link gradually resets

to an a priori probability as the time since traversal increases, a formulation we term

asymptotic reset. This formulation generalizes the full reset and no reset formula-

tions, which can be obtained as special cases. Incorporating the concepts discussed

above, our model treats the individual parking search as a Markov decision process
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(MDP), examining whether a node has been visited previously, and then using that

information to influence the probability of finding parking at that link in the near

future.

2.3 Methodology

2.3.1 Notation and problem description

Let Go = (N o, Ao) be an undirected graph/network, where N0 represents the

set of nodes and Ao consists of arcs/links. The set N o is defined as N o
r ∪N o

d where N o
r

is the set of actual intersections in the network and N o
d denotes a set of dummy nodes.

Similarly, Ao is comprised of actual roadway links (Aor) and a set of dummy links (Aod).

The construction of dummy nodes and links, and their function will become evident

in the example discussed later. Assume G = (N,A) represents the dual graph of Go,

i.e., N = Ao and a link a = {i, j} ∈ A where i, j ∈ N = Ao ⇔ i and j have a common

end-point in Go. In other words, the nodes in G represent arcs in Go and the arcs in

G represent turn movements in Go. We also refer to Go as the original graph/network

and refer to the dual graph simply as graph/network. Usage of the dual graph to

model the parking search process is solely due to its relative ease in demonstrating

the proposed methods. Further, the formulation on the dual graph is consistent with

the widely used notion of making decisions at a node rather than on a link, in various

transportation network models.

The cost of an arc i ∈ Aor, is denoted by coi and is static and deterministic.

The corresponding node in the dual network is assumed to be equidistant from its

end-points. With the exception of the dual nodes and arcs created from the dummy

18



nodes and links of the original network, the cost of an arc a = {i, j} ∈ A is defined as

ca = (coi + coj)/2. The choice of the dummy link costs will be explained later using an

example. Let the walking travel time from node i ∈ N to the destination be wi. The

prior probabilities of finding parking at each node, i , in the network is also assumed

to be known and is denoted by ρi.

As drivers travel through the network, they are assumed to remember if a

previously traversed node had parking (P ) or not (NP ). However, this ability to

retain information is also assumed to be limited to the m nodes that were most

recently visited (excluding the current node of the traveler). The value of m, also

called the memory limit, is a parameter of the model. Let the set Ω = {P,NP}

represent the parking conditions at a node. The state of a driver s is then defined

using an (m+1)-dimensional vector of ordered pairs ((i1, p1), (i2, p2), ..., (im+1, pm+1)),

where i1, i2, ..., im+1 ∈ N, p1, p2, ..., pm+1 ∈ Ω and i1− i2− ...− im+1 represents a path

(with repetition and cycles allowed) of the most recent m-nodes visited. The current

node at which the traveler is present, i1, is also represented by η(s); and the current

parking availability, p1, is denoted by π(s). The set of all states or the state space

is denoted by S. At each state the driver may choose to park (only if π(s) = P )

or continue to drive. For each decision at s, the driver may find himself/herself at

a subset of states with some known probability. The parking search problem can

thus be formulated as an MDP in which drivers use an adaptive strategy that is

conditional on their current state. The objective of the problem is to find such an

adaptive strategy that minimizes the expected cost of reaching the destination. The

list of symbols used is shown in Table 2.1.
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Table 2.1: List of Symbols
Symbol Description
N Set of nodes in the dual network
A Set of links in the dual network
S State space
ca Cost of travel on link a, where a ∈ A
ρi Prior probability of finding parking at node i, where i ∈ N
wi Walk time to destination from node i, where i ∈ N
η(s) The current node at which the traveler is present in state s ∈ S
π(s) Parking availability at node η(s), where s ∈ S
N(i) Adjacency list of node i, where i ∈ N
X(s) Decision space at state s, where s ∈ S
λi Reset rate at node i, where i ∈ N
V (s) Value or reward of state s, where s ∈ S

2.3.2 Assumptions

In modeling the parking search process as an MDP the following assumptions

are made:

• The network is undirected and ρi represents the probability of finding parking on

either sides of a link in the original network. This assumption is not restrictive

and extending the proposed model to directed networks is straightforward.

• The traveler is experienced enough to have a knowledge of the arc costs and

prior probabilities of finding parking.

• The model does not explicitly capture the effect of parking costs. However, this

can be incorporated in a straightforward way by introducing node costs and

minimizing the expected generalized cost of travel.
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• Travelers are willing to walk to the destination from any node in the network.

In practice, we may select a small sub-network around the destination, only

considering nodes for which walking is feasible, or set the walking costs to a

sufficiently large value.

• The walking distance from a link in the original network to the destination does

not depend on the location at which the traveler parks. This simplification is

reasonable unless links in the original network are extremely long. If the links

are long, we can split a long link into shorter ones and model the search process

on the resulting network.

• The transition probabilities depend on whether a node that a driver considers

to visit features in his/her current state vector, the time elapsed since it was

last visited and a reset rate parameter (λi). The reset rate is a measure of

how quickly parking probabilities reset to their priors. In practice, this rate

could depend on factors such as land use of the neighborhood, parking meter

rates and occurrence of special events. This assumption is a key characteristic

in this chapter and is a generalization of the full reset and no-reset versions

of stochastic shortest path problems (SSP). A more detailed description of the

transition probabilities will follow later.

2.3.3 An illustration of parking search process

The following example illustrates the MDP formulation of the parking search

problem. Consider the network shown in Figure 2.1. The left panel contains the

original network. Assume that the traveler departs from node 1. The dummy nodes
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Figure 2.1: An illustration of the parking search process

and arcs are shown in dotted lines. The travel cost on each arc and the walking time

to the destination (within boxes) are shown on the links. We create m + 1 dummy

nodes and arcs (m is assumed to be 1 in this example) in series and connect it to

the source node, i.e., node 1. These dummy nodes and links are constructed because

when a traveler starts at the origin, he/she has no memory of links traversed. In

order to define the state of the traveler in such situations we assume that he/she had

traversed these dummy links before arriving at node 1.

The resulting dual network is shown in the right panel of Figure 2.1. Arc

{1, 2} in original network is node 1 in the dual network, arc {2, 3} is node 2, etc. The

origin node of the traveler in the dual network is node 5. The cost of arc {5, 1} in the

dual network is set to 10/2 = 5, as dual node 1 is assumed to be located midway of

arc {1, 2} in the original network. Since the dummy nodes are non-existent in reality,

the walking distances to the destination and the parking probabilities are set to ∞

and 0 respectively. Assume that the probability of finding parking at nodes 1, 2 and

4 in the dual network is 0.5 and the probability of finding parking at node 3 is 0.8.
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In the full reset case, the travelers state is defined using his/her current node and

the availability of parking at it. The optimal solution under the full reset version

prescribes a traveler to first choose path 5− 1− 2− 4 and park at node 4 and walk to

the destination if possible. However, if parking is unavailable at node 4, the strategy

suggests to cycle between nodes 4 and 2 until parking is found at node 4. The optimal

expected cost of the adaptive strategy was found to be 38.5 units. Although, this

variant of the parking search problem is easy to solve, the probabilities of finding

parking reset to the prior probabilities each time the driver revisits a node. This is

unrealistic as travelers would update their beliefs of finding parking based on their

previous experiences.

Hence, we propose an asymptotic reset version which assumes that the proba-

bility of finding parking depends on the state vector. For instance, if a driver cannot

park at node 4; when at node 2, the probability of finding parking at node 4 is up-

dated to a value that is less than 0.5 since he/she could not find parking at an earlier

point in time. This value is modeled to be dependent on the time taken to travel back

and forth between node 4, i.e., 13 units and the reset rate of node 4. However if node

4 does not appear in the current state of the traveler, even if it was previously visited

(i.e., the traveler forgets having visited node 4), the probability of finding parking at

node 4 is reset to its prior value. The optimal expected cost for the asymptotic reset

version was found to be 46.78 units and can be obtained from the value/reward of

any one of the states ((5, p1), (6, p2)), where p1, p2 ∈ Ω. Unlike the full-reset case the

optimal strategy is harder to describe as it explores node 3 and suggests to park on

nodes 2 and 3 if parking was unavailable at node 4.
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2.3.4 Dynamic programming formulation of the parking search process

In this section, we discuss the components of the Markov decision process

used to model the parking search problem: the state space, decision space, transition

probabilities and the value functions. The value iteration algorithm used to compute

the optimal strategy is also explained.

State Space

As discussed earlier, the state space consists of the most recently visited nodes

and the parking availability at each of these nodes. Populating the state space requires

enumeration of all paths of size m. An efficient way to enumerate such paths using

repeated breadth first search (BFS) is outlined in the following pseudo code. Let

Γi(j) represent the set of nodes which can be reached from node i by traversing j arcs

or less. Suppose the set of all paths of size m is denoted by Γ. The state space can

then be written as S = Γ× Ωm+1.

Algorithm 1 State Space Contruction

for all i ∈ N do
Perform BFS with i as the origin
Store the BFS distance labels (shortest number of arc required ro reach each
node)
for j = 0 to m do

Populate Γi(j) using BFS labels
end for
Γi = ×mj=0Γi(j)
Scan each element of Γi and discard infeasible paths

end for
Γ = ∪iΓi
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Decision Space

The set of decisions available at state s, denoted by X(s), can be defined by

classifying the states into the following types:

X(s) =

{
N(η(s)) ∪ {Destination} if π(s) = P
N(η(s)) otherwise

In the first case, the driver can park and walk to the destination or continue to

drive to one of the adjacent nodes. However, if parking is unavailable at the current

state (second case), the driver has no option but to drive to a node in N(η(s)).

Transition Probabilities

Given a state s = ((i1, p1), (i2, p2), ..., (im+1, pm+1)), and a decision i ∈ N(η(s)),

the transition probabilities, denoted by Pr(s′ | s, i), specifies the probability of reach-

ing state s′ = ((i, P ), (i1, p1), ..., (im, pm)). Notice that the probability of reaching

state s′′ = ((i, NP ), (i1, p1), ..., (im, pm)), Pr(s′′ | s, i), is simply 1 − Pr(s′ | s, i).

Pr(s′ | s, i)depends on whether node i appears in s and if it does; it is a function of

the time elapsed between recent revisits to node i which is equal to the cost of path

i − i1 − i2 − ... − ik = i, where k in {1, ...,m + 1} and il 6= i∀l ∈ {2, ..., k − 1}. Let

t = ci,i1 + ci1,i2 + + cik−1,ik represent the cost of this path. The transition probabilities

are assumed to be governed by the following equations:

Pr(s′ | s, i) =

{
ρi(1− exp−λit) if pk = NP
ρi + (1− ρi) exp−λit if pk = P
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Figure 2.2: Asymptotic reset of transition probability

Figure 2.2 shows the variation of the transition probability with time. The

probability of finding parking is reset to the prior probabilities in an asymptotic

manner. As mentioned earlier, these equations help us formulate an intermediate

version of the full and no-reset SSP models. If node i does not appear in state s, the

conditional probability of finding parking Pr(s′ | s, i) is simply assumed to be ρi.

Value Functions

The value or reward of a state V (s) is the expected cost of reaching the desti-

nation from state s. Using the notation defined in the previous section, the optimality

criteria for the dynamic program can be expressed as follows:

V (s) =

 min
i∈N(η(s))

{
cη(s),i + Pr(s′ | s, i)V (s′) + Pr(s′′ | s, i)V (s′′)

}
if π(s) = NP

min
i∈N(η(s))

{
cη(s),i + Pr(s′ | s, i)V (s′) + Pr(s′′ | s, i)V (s′′), wη(s)

}
if π(s) = P
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If π(s) = NP, V (s) = min
i∈N(η(s))

{
cη(s),i + Pr(s′ | s, i)V (s′) + Pr(s′′ | s, i)V (s′′)

}
If π(s) = P, V (s) = min

i∈N(η(s))

{
cη(s),i + Pr(s′ | s, i)V (s′) + Pr(s′′ | s, i)V (s′′), wη(s)

}
The optimal values of the states can be computed using the value iteration

method, a pseudo code for which is presented below. The algorithm iteratively up-

dates the values of each state using the above optimality criteria and terminates if

the change in values across successive iterations is less than a given threshold ε.

Algorithm 2 Value Iteration

Step 0: Initialization
V 0(s) = wη(s)∀s : π(s) = P
V 0(s) = 0 ∀ s : π(s) = NP
k = 1
Step 1:
for all s ∈ S do

if π(s) = NP then
V k(s) = min

i∈N(η(s))

{
cη(s),i + Pr(s′ | s, i)V k−1(s′) + Pr(s′′ | s, i)V k−1(s′′)

}
else
V k(s) = min

i∈N(η(s))

{
cη(s),i + Pr(s′ | s, i)V k−1(s′) + Pr(s′′ | s, i)V k−1(s′′), wη(s)

}
end if

end for
Step 2:
if |V k(s)− V k−1(s)| < ε∀s ∈ S then

Terminate and V k(s) is the optimal value of s
else
k = k + 1 and go to Step 1

end if
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2.4 Case Study

This section contains a case study of the parking search model. A network

representing the main campus of the University of Wyoming (UW), Laramie, WY,

was used for this demonstration. The network consists of 34 nodes and 56 arcs (see

Figure 2.3), and the destination is closest to node 31(represented by a black circle in

Figure 2.3). All results are discussed using the original network and not its dual. The

probabilities of finding parking were found from previous parking studies. A graduate

student estimated the prior parking probabilities by riding his bicycle on these streets

for 10 days, which suffices for the purpose of this demonstration. A constant reset

rate λ was used for all links in the network. The implementation was carried out in

C++ (using the g++ compiler with -O3 optimization flags) on a Linux machine with

a 4 core Intel Xeon processor (3.47 GHz) and 12 MB Cache.

2.4.1 Excess cost of parking

Most transportation models assume that trips begin and end at nodes and

parking is not explicitly modeled. However, in reality one is likely to drive around

the destination until a suitable parking spot is found, resulting in an increase in

trip duration. In this section, we quantify the expected increase in trip duration by

comparing the shortest path cost of reaching the destination and the optimal expected

cost of parking using an adaptive strategy. The values of m and λ were set to 4 and

1 respectively.

Figure 2.3 shows the links used in the shortest path and the optimal adaptive

strategy for two origins 1 and 6. As expected the optimal adaptive strategy explores
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Figure 2.3: Impact of Parking on Trip Costs

more links either because of the lack of parking or due to the anticipation of finding

a better parking spot. The expected cost of the adaptive strategy was found to be

approximately twice as much as the shortest path cost. Notice that most of the arcs

that are revisited are centered around the destination.

2.4.2 Effect of memory

From a theoretical standpoint, it would be ideal to compute an adaptive strat-

egy based on an infinite memory. One could assume that the driver is assisted by

a navigation system which keeps track of parking conditions on all traversed links.

However, as the memory limit is increased, the size of the state space grows expo-

nentially and the problem ends up being computationally intractable. For instance,

as can be seen from Table 2.2, the size of the state space for a memory limit of 5

was found to be nearly 6.5 million and the wall clock time for computing the optimal
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Table 2.2: Results of the MDP for Different Memory Limits

Memory
limit

Optimal
solution

MC estimate
of the opti-
mal strategy

Estimate
of standard
deviation

95% CI
Computation
time (in
second)

State
space
size

1 4.0698 7.212 6.008 (7.045, 7.378) 0.0076 556
2 4.55252 5.584 3.676 (5.482, 5.686) 0.0853 5640
3 4.55252 5.591 3.644 (5.490, 5.692) 1.2840 58352
4 4.64639 5.223 3.095 (5.137, 5.309) 17.6006 611424
5 4.72688 5.061 2.516 (4.991, 5.130) 231.4460 6457664

solution was found to be approximately 4 minutes.

We explored the performance of the optimal strategy for different memory

limits in an infinite memory setting using Monte Carlo (MC) simulations. Specifically,

at each state, the probabilities of finding parking were drawn from a distribution that

is a function of the infinite memory (which comprises of the parking conditions on

nodes visited since the start of the trip), but the adaptive strategy used prescribes

a decision only based on the state of the traveler. The following table shows the

expected cost of the optimal policy for memory limits 1 through 5 and an estimate

of expected cost of the policy under the infinite memory setting. A sample size of

5000 was used for the MC simulations. The confidence intervals for the estimated

expected costs are reported. The computational time for the MDP in seconds and

the sizes of the state space are also shown. As the memory limit increases, the gap

between the optimal solution and the MC estimate of the optimal strategy reduces

as expected. This gap decreases with increase in the memory limit and captures the

trade-off between the optimal solution and its computational cost.

30



Figure 2.4: Percentage Distribution of Trip Ends

2.4.3 Location of trip ends

Lack of parking at a desired parking spot that is close to the destination forces

drivers to park on nearby links and walk to the destination. Figure 2.4 shows the

percentage of trips that end of links in the network for two values of λ and was

computed by simulating the adaptive strategy in an infinite memory setting. It is

interesting to note that as the value of λ increases, travelers are more likely to park

closer to the destination. This is because for higher λ (which could be the case in

the presence of special events) the probabilities reset to their prior values faster and

mimics the full-reset version. Hence, it is advantageous to revisit links that are closer

to the destination, even if parking has not been available on past visits.
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2.5 Conclusions

This chapter formulates the parking search process as an online shortest path

problem, developing the asymptotic reset model to incorporate memory of the parking

status of links visited before. This online shortest path problem identifies a routing

policy specifying whether drivers will choose to park at an available space or continue

to search. Unlike previous research in this area, this approach simultaneously rec-

ognizes the stochasticity inherent in the parking search process, and represents the

spatiotemporal characteristics of the underlying network structure. The case study

demonstrates this model in a network representing a neighborhood near the Univer-

sity of Wyoming, analyzing the sensitivity of the solution to memory size and the

value of the reset rate parameter.

This chapter lays the foundation for future research in several directions. First,

spatial correlations can be accounted for, in that parking availability or lack of avail-

ability on particular links provides partial information on the likely parking availabil-

ity on other links. More sophisticated cost functions could account for parking fees,

consecutive parking time limitations, and other factors. More broadly, this stochastic

shortest path formulation may be usable as the basis for an equilibrium algorithm

involving many drivers, in which the probability of finding parking on a link depends

on the search patterns used by all drivers.
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Chapter 3

Static Parking Search Equilibrium

3.1 Introduction

The previous chapter explored the parking problem from the perspective of an

individual driver. Because the impact of a single driver on the parking availability

probabilities is small, we could assume those values constant and exogenous. However,

planners are more concerned with aggregate travel patterns. When there are many

drivers simultaneously searching for parking, however, this assumption is no longer

reasonable.

Assuming that drivers aim to minimize the time spent traveling (including both

driving and walking from the parking space to the destination), drivers’ route and

parking search behaviors depend on the probabilities of finding parking at particular

locations in the network; however, these probabilities depend on the route and search

strategies employed by drivers in the network. A natural model for this mutual

dependency is an equilibrium framework in which no driver can improve his or her

expected travel time by adjusting their strategy.

As discussed in the literature review, the model presented in this chapter

builds on existing network parking models in the following ways. First, it is explic-

itly stochastic and reflects the dependence of parking probability on searching rates.
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Second, it applies to general networks of any topology, and directly allows planners

to identify which specific links and regions are particularly affected by increases in

volume due to parking search. Third, the concepts of route choice and parking search

are unified in a natural way which does not require assumptions such as drivers “tran-

sitioning” from driving towards the destination to searching for parking. Fourth, the

introduction of an equilibrium concept captures the dependency between searching

strategies and parking availability.

To accomplish this, a network transformation is introduced to distinguish be-

tween drivers searching for parking on a link and drivers merely passing through.

The dependence of parking probability on flow rates results in a set of nonlinear

flow conservation equations. Nevertheless, as shown below, under relatively weak as-

sumptions the existence and uniqueness of the network loading can be shown, and an

intuitive “flow-pushing” algorithm can be used to solve for the solution of this nonlin-

ear system. Built on this network loading algorithm, travel times can be computed.

The equilibrium is formulated as a variational inequality, and a heuristic algorithm

is presented to solve it.

Unlike the models in Chapter 2, in this chapter, we do not consider history

dependence in the formulation process. This is because including history dependence

makes the equilibrium model would complicate the presentation considerably. This

would distract from the main focus of the chapter, which is developing equilibrium for

the parking search behavior. Future research will investigate this direction to refine

the static assignment and parking search model.

The remainder of the chapter is organized as follows. Section 3.2 reviews rele-
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vant literature on the impact of parking in urban areas, along with network modeling

approaches which have been proposed. Section 3.3 introduces the network transfor-

mation used to represent the stochastic nature of the parking search and notation

which will be used throughout. Network loading and flow conservation are described

in Section 3.4, along with the flow-pushing algorithm; this section describes the impact

of travel choices on parking availability and link flows. Next, Section 3.5 introduces

the complementary perspective of the impact of parking availability on travel choices,

leading to an equilibrium definition to reconcile both perspectives. A solution heuris-

tic is presented in this section as well. Section 3.6 demonstrates the algorithm’s per-

formance numerically and conducts sensitivity analyses, while Section 3.8 concludes

and discusses future directions.

3.2 Literature Review

Network models that incorporate parking can be broadly classified into simulation-

based approaches and analytic approaches. Readers may refer to Section 2.2 in Chap-

ter 2 to find some finished research on simulation-based approaches. While simulation

has the advantage of explicitly modeling parking dynamics and accommodating be-

havioral heterogeneity, they are limited in their ability to model large networks and

are generally not amenable to exact results regarding the network loading and the

equilibrium state. A further limitation is that in the absence of field data, there is an

arbitrary element to the behavior rules, such as assuming that drivers will not cruise

for parking if vacant spaces are available (Arnott et al., 1991), or that drivers will

route deterministically to a preferred parking location; if that choice is unavailable,
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they will proceed to a second choice, third choice, and so on (Leurent and Boujnah,

2012). While some degree of arbitrariness is inevitable without field data, we pre-

fer to build a model on a more fundamental principle. As described below, in our

model the route choice and choice whether to take an available space if one exists are

both governed by the principle of expected cost minimization, without the need to

introduce a distinction between “driving toward the destination” and “searching for

a parking space.”

Analytical approaches, by contrast, are based on traffic assignment concepts

and transform the network by adding new links to represent parking options. Typ-

ically these links are equipped with an impedance function to reflect delay due to

parking search as more drivers attempt to park on that link. These approaches in-

clude Nour Eldin et al. (1981), Lam (2002), Lam et al. (2006), and Li et al. (2007a),

and incorporate features such as endogenous mode choice accounting for parking,

bilevel models for parking price. The main advantage of these approaches is their

tractability, and ability to incorporate well-known results from the traffic assignment

literature. However, by assuming a deterministic impedance for parking, the models

are unable to reflect additional delay or volume on specific network links as drivers

search for parking (possibly traversing a link multiple times as they cycle). Discrete

choice concepts have also been used to study parking choice (Hunt and Teply, 1993),

without explicit reference to a network, but using a nested logit model to account for

similarities in on-street and off-street alternatives.

By contrast, the model described in this chapter is explicitly stochastic and

can be used to identify specific links with increased volume due to parking search.
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Furthermore, the network loading can be described analytically, and the equilibrium

principle can be formulated mathematically. Furthermore, the behavior model relies

on a fairly simple principle (travel time minimization) and does not require exogenous

assumptions on when drivers begin searching for parking (which are common in agent-

based simulation models). In this way it is similar to the model of Arnott and Rowse

(1999), but allows for general network topologies, as opposed to assuming the network

is a homogeneous circle, and does not require introducing a “cruising distance” from

the destination, where drivers accept any vacant space within this threshold and

reject any vacant space outside it. However, in contrast to Arnott and Rowse (1999)

this chapter does not attempt to quantify the value of parking information systems

or other parking-related policies, which seems challenging in more general network

topologies.

Similarly, other researchers have studied parking-related policies, such as op-

timal pricing and control of parking spaces (Qian and Rajagopal, 2014), more general

pricing problems with a single bottleneck for congestion (Zhang et al., 2008; Qian

et al., 2012; Yang et al., 2013), distribution of permits for parking (Zhang et al.,

2011). In order to focus on these policies, these researchers studied the parking prob-

lem in relatively stylized settings, such as a single bottleneck, a linear homogeneous

city, or with two parallel alternatives. This chapter presents a complementary ap-

proach by focusing on the issues associated with a generic network topology, and

aims to provide a foundation for extending the results of these earlier papers to more

general networks.

An analogy can be drawn between the parking model developed in this chap-
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ter and the user equilibrium with recourse model (Unnikrishnan and Waller, 2009),

in which travelers are routed stochastically based on realized network states. In-

deed, both models have as a subproblem the online shortest path problem (Waller

and Ziliaskopoulos, 2002; Provan, 2003), as recognized in Tang et al. (2014). The

primary distinction is that the routing probabilities in user equilibrium with recourse

are flow-independent, whereas in the parking model routing probabilities depend on

flow to reflect the dependence of parking availability on searching intensity. This

results in nonlinear flow conservation equations, which require more finesse. There is

also a passing similarity to the equilibrium model developed in Nie (2011), in which

the probability distributions of link travel times are flow-dependent; the primary dis-

tinction is that in this chapter the flow-dependent stochasticity affects the routing

of vehicles, not just the time experienced. The following sections describe the model

and modifications in more detail.

3.3 Network Structure

Consider a transportation network G = (N,A) with node and arc sets N and

A, respectively. The parking process is modeled using a network transformation (Fig-

ure 3.1) to represent potential parking availability. To represent this transformation,

the node and arc sets are partitioned: the nodes N are divided into disjoint subsets

NR, NP , ND, and NT : NR represents the “regular” intersection nodes (the traditional

nodes in most transportation network models), NP represents the parking nodes (one

for each link), ND the destination nodes, and NT the transition nodes connecting

parked flows to the respective destinations. Notice that the destination nodes are
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Figure 3.1: Linkages and layers between nodes and arcs for modeling parking.

connected to the intersection nodes only through parking and transfer nodes.

Similarly, the arcs A are divided into disjoint subsets AR, AS, AP , ANP , and

AT . These arcs can represent both on-street parking and off-street lots or garages.

AR represents “regular” or thru links, the traditional arcs in network models (the

physical roadway infrastructure), and flow on this arc represents drivers who are not

looking for parking. Each arc (i, j)R ∈ AR is associated with one arc in each of the

remaining subsets: flow on the corresponding arc (i, j)S ∈ AS represents drivers who

are searching for parking on link (i, j) and will park there if a space is available. The

arc (i, j)P ∈ AP is used to represent drivers who are actually able to find a space,

and (i, j)NP ∈ ANP drivers who are unable to find a space. Finally the links (i, j)dT

connect flow parked on link (i, j) to destination d. As a notational convention, we

use (i, j) ∈ A and the subscript ij in equations whenever the type of arc (regular,

parking, etc.) is irrelevant or when multiple types of arcs are meant. When only a

single type of arc is intended, the links (i, j)R, (i, j)S, (i, j)P , and (i, j)dT are referred

to with the subscripts ij, R; ij, S; ij, P ; and ij, T, d, respectively.
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Notice that each node in N may have incoming links from AR and ANP and

outgoing links from AR and AS; each node in NP has a single incoming link from

AS and two outgoing links, one from AP and one from ANP ; each node in ND has

incoming links from AT and no outgoing links; and each node in NT has a single

incoming link from AP and outgoing links from AT . We further assume that an arc

exists between each transfer node and every destination. The interpretation is that

it is always possible to walk from any link to the destination, although perhaps with

high disutility.

Each link is associated with the steady-state flow rate of vehicles on this link:

this value is denoted xij. Each node is associated with a flow conservation constraint

relating the flow values on the incoming and outgoing links. These flow conservation

constraints for our model differ from standard flow conservation constraints in two

ways: (1) flow is split at parking nodes NP based on the (flow-dependent) availability

of parking spaces; and (2) flow is proportionately split at intersection nodes N to

reflect the parking search process. The first component is discussed in Section 3.4,

the second in Section 3.5.

Each link is also equipped with a generalized cost tij intended to reflect the

total disutility of travel on that link (including time, cost, and other factors). For

instance, additional disutility may be added to searching links to represent slower

travel or more mental exertion and stress compared to thru driving. To simplify the

notation these values are assumed constant and independent of flow. This is not

restrictive and all of the algorithms and results in this chapter immediately transfer

to the case of flow-dependent costs, even when the mapping from flow to cost is not
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separable (since congestion on searching and the corresponding regular link should

be identical), as long as it is continuous.

Flow conservation equations have slightly different form for different types

of nodes. Flow conservation for nodes in NP is described in Section 3.4.1 along

with the model for parking availability probabilities. Flow conservation for nodes in

NR is described in Section 3.4.2 along with the description of user behavior. Flow

conservation for NT and ND nodes are straightforward and found in that subsection

as well.

Our behavior model assumes that drivers make all parking-related choices to

minimize the expected total cost of travel. In this chapter we assume that drivers can

be aggregated by destination, which is consistent with this assumption. By linearity,

any travel which has occurred between the origin and a driver’s current location is

a “sunk cost” which should not affect the decisions between this current location

and the destination; therefore at any location, under the steady-state assumption, all

drivers with the same destination face the same set of choices with the same set of

costs.

Furthermore, the only place in our transformed network where drivers exercise

“choice” is at the intersection nodes NR. At parking nodes, the split of drivers is

determined entirely by the parking probabilities, and at transfer nodes, all drivers

head to the appropriate destination, as specified below. We model behavior through

the use of splitting proportions, in which the fraction of drivers arriving at a node and

heading to a common destination, and departing on a link (either a parking search

or thru link), is specified.
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These have a similar interpretation to the flow proportions in Bar-Gera (2002)

and Gentile (2009), but differ because these works identify acyclic bushes in which

these proportions identify path flows directly. The parking search process described

here may involve cycles, because parking availability on any link is stochastic and can-

not be predicted in advance. This issue is discussed in more detail in the following

sections. As a preview, Section 3.4 introduces the notion of strong feasibility, which

ensures that a unique solution exists to the nonlinear flow conservation equations.

Section 3.5 then introduces a new feasibility notion which proves more practical for

formulating and solving the equilibrium version of the problem, although the behav-

ioral interpretation is slightly less elegant.

3.4 Network Loading

This section has three major goals: (1) formally provide the set of flow conser-

vation equations (including representations of the probability of successfully finding

parking on a link and user choice at nodes); (2) define the notion of strong feasibility

and show existence and uniqueness of solutions to the flow conservation equations,

which is nontrivial since they are nonlinear; and (3) provide a simple “flow-pushing”

algorithm for solving this nonlinear system and demonstrate its correctness under

nonrestrictive assumptions.

3.4.1 Parking availability probability

Associated with each searching link (i, j)S ∈ AS is a function pij : R+ → [0, 1]

representing the probability that a vehicle seeking to park on this link will find an
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available space. Particularly, pij(x
S
ij) reflects the proportion of vehicles seeking to park

on (i, j) that are able to, and xSijpij(x
S
ij) reflects the rate at which vehicles are parking

on this link. (If parking is not allowed on this link pij(x) ≡ 0.) This is expressed

through the flow conservation constraints which apply to each parking node:

xPij = xSijpij(x
S
ij) ∀(i, j)P ∈ AP (3.1)

xNPij = xSij − xPij ∀(i, j)NP ∈ ANP (3.2)

The formulation is general and given in terms of an arbitrary function pij.

However, it is reasonable to assume that each function pij is nonincreasing (the more

vehicles searching for parking, the lower the chance each will find an available space),

but that xpij(x) is strictly increasing (the more vehicles searching for parking, the

higher the total rate of parking vehicles will be even as the probability any specific

vehicle can find a space decreases). Furthermore, these assumptions are used to es-

tablish uniqueness of the solution to the flow conservation equations and convergence

of the network loading algorithm. If pij(x) is differentiable, then 0 < d
dx
xpij(x) ≤ 1

is sufficient for these assumptions to be satisfied. While we believe this assumption

to be reasonable, the specific results given below will use weaker conditions when

possible.

For each parking link (i, j)P , define its parking capacity to be

Cij,P = sup
x
{xpij(x)} (3.3)

reflecting an upper bound on the rate at which vehicles can leave this link.

In practice, this function is likely related to the number of available parking

spaces on a link and the duration vehicles remain parked there. For instance, if a
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link has S parking spaces, and the parking duration is distributed exponentially with

mean µ, then the probability a given vehicle will find an available space when vehicles

are searching for parking on that link at rate x is

p(x) =

∑S−1
k=0 (µx)k/k!∑S
k=0(µx)k/k!

(3.4)

as derived in the Appendix, which also includes an approximation to facilitate com-

putation when S is large.

3.4.2 Routing and parking search strategies

As introduced above, both route choice and the choice of parking in a vacant

space (if available) are described with splitting fractions at each node. In particular,

let αdij reflect the fraction of travelers arriving at node i en route to destination d who

choose to exit on link (i, j). If this link is a regular link, the driver will not park on

this link even if an available space is found (presumably in hopes of parking on a link

with a shorter walking distance), and this driver will not affect the probability of a

parking space being available. On the other hand, if (i, j) is a searching link, then

the driver will park on this link should a space become available.

Define the set of weakly feasible splitting proportions

Ω =

α ∈ R|ND|(|AR|+|AS |)+ :
∑

(i,j)∈A

αdij = 1 ∀i ∈ NR, d ∈ ND

 (3.5)

As the name suggests, there are additional feasibility concerns beyond these obvious

requirements on α, discussed in the next section.

Let qid denote the demand for travel to destination d ∈ ND from node i ∈ NR,

expressed as a rate in the same units as x. Let the superscript d on a flow variable
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index the destination-disaggregated flow; for instance xdij is the flow on link (i, j)

destined for node d ∈ ND. Clearly

xij =
∑
d∈ND

xdij (3.6)

for all (i, j) ∈ A. The flow proportions are given by αdij, representing the fraction

of drivers arriving at node i and heading for destination d which will choose link

(i, j) ∈ A. This gives the disaggregate flow conservation equations for intersection

nodes:

xdij = αdij

qid +
∑

(h,i)∈A

xdhi

 ∀i ∈ NR, (i, j) ∈ A, d ∈ ND (3.7)

Flow conservation equations for transfer nodes and destination nodes follow

trivially:

xdij,T,d = xdij,P ∀(i, j) ∈ AT , d ∈ ND (3.8)

xdij,T,e = 0 ∀(i, j) ∈ AT ; d, e ∈ ND; d 6= e (3.9)∑
(i,j)T∈AT

xdij,T,d =
∑
i∈NR

qid ∀d ∈ ND (3.10)

In what follows, references to “the flow conservation equations” are to the collection

of equations (3.1), (3.2), (3.7), (3.8), (3.9), and (3.10).

As an example of these concepts, refer to panels (a) and (b) of Figure 3.2.

Panel (a) shows a network with two parking options from the origin i to destination d:

parking along link (i, j) is closer to the origin, but vehicles can only park successfully

with probability of 1/2 (for illustrative purposes, assumed constant and independent

of searching intensity). Link (k,m) is further away, but parking is assured. Panel (b)
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Figure 3.2: Example network for demonstration purposes. (a) Problem data, with
link travel times and parking probabilities indicated. (b) Network loading (α and
x). (c) The induced graph Ĝ. (d) Travel time labels T . Non-labeled links have zero
values.
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shows the network loading corresponding to αij,S = 2/3, αik = 1/3, αji = αkm,S = 1,

and all other components of α zero. The reader may verify that the flow conservation

equations are satisfied for each link in this network, and note that half of the vehicles

park in on link (i, j), and the other half on (k,m).

3.4.3 Feasibility

As the name weak feasibility suggests, existence of a solution to the flow

conservation equations requires a subtler approach because the pij functions in-

volve make the system of equations nonlinear. As an example, consider the net-

work in Figure 3.3, and assume that there is a single destination, the inflow qi is 1,

αij,S = αji = αkm,S = αmk = 1 and all other components of α are zero. The proba-

bility of finding parking on link (i, j) is half the reciprocal of the amount of searching

flow; this means that the rate at which vehicles park on this link is xij,Spij(xij,S) = 1/2

if xij ≥ 1/2. By contrast, link (k,m) has unlimited parking capacity. The numbers

on links indicate costs; links with no adjacent number have zero cost.

Clearly, the given solution is weakly feasible. However, the flow conservation

equations for this solution include xij,S = 1 + xji and xji = xij,NP = xij,S − 1/2;

by substitution this requires xij,S = xij,S + 1/2 which is a contradiction. Intuitively,

vehicles are attempting to park on (i, j) at a rate exceeding its capacity and not

considering any other options; thus there is no steady-state solution. (There is no

issue if the splitting proportions are modified to αij,S = αik = 1/2, and all vehicles

successfully park.) It is clear that cycling is at the root of possible nonexistence of

solutions; in an acyclic network a solution can always be constructed by proceeding
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Figure 3.3: Not all weakly feasible solutions are strongly feasible.

in topological order.

Behaviorally, cycles represent the case where a driver returns to a node visited

earlier. Traditional equilibrium models exclude this possibility, but modeling parking

requires it for several reasons. First, it is common knowledge that drivers searching

for on-street parking may “circle the block” several times looking for a convenient

space. Second, because parking availability is not deterministic, in general there is no

a priori route which ensures an available parking space is found, and nodes may need

to be revisited. Third, even when such routes do exist, it is likely that routing policies

involving cycles may lead to a lower expected travel times than deterministic ones.

If the example in Figure 3.3 is modified so that pij ≡ 1/2 and the original splitting

proportions αij,S = 1 is used, drivers experience a faster travel time by cycling on

(i, j) and (j, i) until a space is found, compared to driving a longer distance to the

link (k,m) with guaranteed parking.
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The use of constant splitting proportions can be thought of as each driver

choosing the next link (and whether to accept an open parking space or not) in-

dependent of any such choices in the past, including the current location. This is

also consistent with the “sunk cost” interpretation above, but does imply the reset

assumption (cf. Provan, 2003; Tang et al., 2014).

Hence, we define a further condition on α called strong feasibility : the vector

α is strongly feasible if it is weakly feasible, and if the flow conservation equations

have a finite solution in x. Let ΩS be the set of strongly feasible splitting proportions.

Below, we characterize this set further and show that under a weak assumption (the

functions xpij(x) are strictly increasing and differentiable) the solution to the flow

conservation equations is unique when α ∈ ΩS.

If the parking probabilities pij were constants, the flow conservation equations

would form a linear system and strong feasibility would follow in a simple way from a

nonsingularity condition. However, in the more interesting variants of the problem the

parking probabilities do depend on the intensity of drivers searching for parking, and

in such cases the flow conservation equations form a nonlinear system which is harder

to characterize. Particularly, strong feasibility depends not only on the α values

themselves but also the parking probability functions. Nevertheless, in this section

we provide a few results on the existence of strongly feasible solutions, including a

necessary condition and a sufficient condition. The issue of strong feasibility will be

discussed further in Section 3.5.3 on solution algorithms.

Recall that Cij,P was previously defined as the parking capacity of a link.

Further define the network capacity C =
∑

(i,j)P∈AS Cij,P and the total demand to
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be D =
∑

i∈N
∑

d∈ND qid. The section concludes with four results concerning ΩS:

a necessary condition for the existence of a strongly feasible solution, a sufficient

condition for the same, a condition for uniqueness of flows corresponding to a strongly

feasible solution, and an analytic result which will serve as a lemma for later results.

Proposition 1. (Necessary condition.) If the problem instance (defined by G, the p

functions, and q) is such that D > C, then no strongly feasible solution exists.

Proof. Assume that such an α exists, and let x be the corresponding feasible solution

to the flow conservation equations. By the definition of Cij,S, we have xij,P ≤ Cij,S

for all (i, j)P ; summing over all (i, j)P yields

∑
(i,j)P∈AP

xij,P ≤ C (3.11)

Substituting (3.6) and (3.8), we have

∑
d∈ND

∑
(i,j)∈AT

xdij,T,d ≤ C (3.12)

However, by (3.9) and (3.10) we have

∑
d∈ND

∑
(i,j)∈AT

xdij,T,d =
∑
d∈ND

∑
i∈NR

qid = D (3.13)

contradicting D > C.

Proposition 2. (Sufficient condition.) If the problem instance satisfies D < C, the

function xpij(x) is strictly increasing for all (i, j) ∈ A, and the network is strongly

connected in the sense that a path exists between any two regular nodes, then at least

one strongly feasible solution exists.

50



Proof. We create such a strongly feasible solution by construction, first identifying x

which satisfy flow conservation and then constructing α. Under the stated assump-

tions xpij(x) is an invertible function on [0, Cij,P ); denote this inverse by χij. Choose

values yhdij such that
∑

(i,j)∈A y
hd
ij = qhd and

∑
h∈N

∑
d∈ND y

hd
ij ≡ Xij < Cij,P (such

a choice is always possible when D < C; say by solving an assignment problem).

Further define ξij = χij(Xij)/Xij. Now, for each positive yhdij , identify some path Π

from h to i and some cycle Γ from i to itself, only using links in AR (such a path and

cycle exist from the assumption of strong connectivity) and define

zhdk` = qhd ([(k, `) ∈ Π] + ξij [(k, `) ∈ Γ]) (3.14)

where the square brackets denote indicator functions using the Iverson notation (equal

to one if the quantity in brackets is true, and zero otherwise) Now generate xdij =∑
h∈N z

hd
ij for all d ∈ ND, and xij from (3.6). This solution satisfies each of the flow

conservation equations and is thus strongly feasibile.

If D = C, then solutions may or may not exist depending on the problem

instance.

Proposition 3. If α is strongly feasible and xpij(x) is a strictly increasing function for

all links (i, j), then there is exactly one solution x to the flow conservation equations.

Proof. Assume not, and let x and y be two distinct solutions to the flow conservation

equations for a given strongly feasible α. Without loss of generality choose some link

(i, j) and destination d where xdij > ydij. We can always find such an (i, j) which is

a regular link since xij,T,d > yij,T,d implies xdij,P > ydij,P , which (by the assumption
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that xpij(x) is strictly increasing) implies xdij,S > ydij,S; equation (3.7) thus implies

xdij > ydij; a similar argument holds if xdij,NP > ydij,NP .

Equation (3.7) thus implies that xdhi > ydhi for some link (h, i) ∈ A. This

argument can be iterated until a complete, finite set of links A+(i) ⊆ A has been

obtained for which (i′, j′) ∈ A+(i) implies xdi′j′ > ydi′j′ and for which a path exists

from i′ to i in G with strictly postiive αd components for each link in the path. Sum

up the flow conservation equations for each link in A+(i); the resulting equations

show that the inflows and outflows must balance. Since xpij(x) is increasing, the

difference in outflows (xd − yd) on all links (completed trips plus trips routed to

other regular or searching links outside of A+(i)) must be strictly positive. However,

by the completeness of A+(i), the corresponding terms of x − y for incoming links

must be nonpositive, which is a contradiction.

If α0 is strongly feasible and xpij(x) is strictly increasing for all links, then

the corresponding flows x are such that xij,P is strictly less than Cij,P for all (i, j)P .

Proposition 4. If α0 is strongly feasible, xp(x) is differentiable, and d
dx
xp(x) > 0 for all

links, then there exists some neighborhood B around α0 such that for all α ∈ B∩Ω,

α is strongly feasible.

Proof. Under the hypotheses of the proposition, the Jacobian matrix of the flow

conservation equations is continuous and irreducibly diagonally dominant (thus non-

singular) in some neighborhood B around α0. Then, by the implicit function theorem

the function x(α) exists and is continuous in B. Thus, any weakly feasible α in this

neighborhood is strongly feasible.
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3.4.4 A network loading algorithm

Consider the “flow-pushing” network loading algorithm, depicted in Algo-

rithm 3, which attempts to find a solution to the flow conservation equations. It

uses variables ηdi to reflect the flow conservation “imbalance” (inflow minus outflow)

at each node at the time of processing. In the following algorithm ηi is used as a

shorthand for
∑

d∈ND η
d
i . Likewise xij is always understood in the sense of (3.6) as a

shorthand for the sum of the current destination-specific xdij values.

Proposition 5. When line 9 of LoadNetwork is first executed (and then for the

remainder of the algorithm), ηi ≥ 0 for all i if all xpij(x) are nondecreasing.

Proof. The result is clearly true when line 9 is executed for the first time. By induc-

tion, assume that it is true at some point when line 9 is executed and consider the

next steps of the algorithm until line 9 is executed again. The only η values which

change until line 9 is executed the next time are those selected in lines 14, 23, and 25.

In line 14, ηj is increased by αdijη
d
i which is nonnegative; in line 23, xdij,NP ≥ ydij,NP if

xpij(x) is nondecreasing; and line 25 simply sets ηi to zero. In all cases the induction

hypothesis holds.

Proposition 6. Algorithm LoadNetwork always terminates in finitely many itera-

tions if α is strongly feasible, xp(x) is differentiable, and 0 < d
dx

(xp(x)) ≤ 1 for all

links.

Proof. To simply notation, assume there is a single destination; the logic of the proof

generalizes naturally to the case of multiple destinations. Define the potential function
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Algorithm 3 LoadNetwork(G,α, ε)

1: {Arguments are a graph G (as defined in Section 3.3 and equipped with pij(x)
functions), an exogenous vector of splitting proportions α and a convergence
tolerance ε > 0.}

2: {Initialization}
3: for all (i, j) ∈ A, d ∈ ND do
4: xdij ← 0
5: end for
6: for all i ∈ NR do
7: ηdi ← qid
8: end for
9: while maxi {ηi} > ε do

10: Choose i such that ηi is maximal.
11: {Push flow not searching for parking}
12: for all (i, j)R ∈ AR, d ∈ ND do
13: xij,R ← xij,R + αdij,Rη

d
i

14: ηj ← ηj + αdij,Rη
d
i

15: end for
16: {Push flow searching for parking}
17: for all (i, j)S ∈ AS do
18: ydij,NP ← xdij,NP {Temporary value for updating imbalance at j}
19: xdij,S ← xdijS + αdij,Sη

d
i ∀d ∈ ND

20: xdij,P ← xSijpij(x
S
ij)
(
xdij,S/

∑
d′∈ND x

d′
ij,S

)
∀d ∈ ND

21: xdij,T,d ← xdij,P
22: xdij,NP ← xdij,S − xdij,P ∀d ∈ ND

23: ηdj ← ηdj + xdij,NP − ydij,NP ∀d ∈ ND

24: end for
25: ηi ← 0
26: end while
27: return x
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U =
∑

i ηi. Since the ηi are nonnegative at each step of the algorithm, showing

U → 0 implies ηi → 0 for all nodes and that flow conservation equations (3.7)

are satisfied. Equations (3.1), (3.2), (3.8), and (3.9) are obviously satisfied during the

updates “push flow searching for parking.” Furthermore, it is not difficult to show that∑
i∈NR qid −

∑
(i,j)T∈AT d

d
ij,T,d =

∑
i η

d
i is an invariant after line 23 is performed, and

thus U = 0 implies (3.10) is satisfied as well. Since α is strongly feasible and xpij(x)

is strictly increasing, at the unique solution x∗ to the flow conservation equations we

have 0 < δij ≡ d
dx

(xijpij(xij))
∣∣
x∗ij

Whenever node i is selected for “pushing,” flow potentially increases on all

regular and searching links emanating from i. Flow pushed onto a regular link (i, j)

does not affect U (the imbalance is simply shifted from i to j), whereas some of the

flow pushed onto searching links may end up parking and reaching the destination.

Consider one such searching link (i, j)S; after performing line 18 the flow xdij,S increases

by αij,Sη
d
i . The change in parking flow on (i, j)P is thus

(xSij + αSijη
d
i )pij(x

S
ij + αSijη

d
i )− xij,Spij(xSij) (3.15)

which is positive since xpij(x) is strictly increasing. Likewise, the change in flow in

(i, j)NP is

xij,NP − yij = αSijη
d
i −

[
(xSij + αSijη

d
i )pij(x

S
ij + αSijη

d
i )− xSijpij(xSij)

]
(3.16)

and it is this amount which is added to ηj. Since δij <
d
dx

(xp(x)) ≤ 1 we have 0 ≤

xij,NP − yij < αSijηi(1− δij) by the mean value theorem. Therefore, the increase in U

from performing lines 16–23 of the algorithm is no greater than ηi
∑

(i,j)S∈A α
S
ij(1−δij).
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When step 24 is performed, U decreases by ηi; therefore the total change ∆U in U

from performing steps 10–24 is given by

∆U ≤ ηi

 ∑
(i,j)∈A

αij +
∑

(i,j)S∈AS
αSij(1− δij)− 1

 (3.17)

Since
∑

(i,j)∈A αij +
∑

(i,j)∈AS α
S
ij = 1 this simplifies to

∆U ≤ −ηi

 ∑
(i,j)S∈AS

αSijδij

 (3.18)

For any node i, let ᾱi =
∑

(i,j)∈A αij denote the total fraction of flow searching

for parking on a link leaving node i. (In particular, if ᾱi = 0, all vehicles passing

through node i are not immediately searching for parking.) Further define P =

{i ∈ ND : ᾱi > 0}, ᾱ = mini∈P ᾱi, and δ = min(i,j)∈A δij. Let i(k) denote the node

selected during the k-th execution of step 10 of the algorithm, and let Uk be the value

of U at this point. Whenever i(k) 6∈ P , we have Uk+1 = Uk; otherwise

Uk+1 = Uk + ∆U

≤ Uk − ηi(k)

 ∑
(i(k),j)∈AS

αSi(k),jδi(k),j


≤ Uk −

Uk
|N |

 ∑
(i(k),j)∈AS

αSi(k),jδi(k),j


= Uk

(
1− ᾱδ

|N |

)
where the second inequality follows because i(k) is a node with maximal η value.

Thus limk→∞ Uk = 0 unless i(k) ∈ P only finitely many times. However, in that

56



case, there is a cycle of nodes which does not send any flow onto searching links and

the flow conservation equations cannot be satisfied, contradicting the assumption of

strong feasibility.

At termination, the algorithm clearly produces a flow x which deviates from

the flow conservation equations by no more than ε for each link. A trivial corollary

is that if the potential function U does not convege linearly to zero, then the given

solution is not strongly feasible. This can be used as a strong feasibility test, much in

the same way that nonconvergence of label-correcting shortest path algorithms can

be used to test for existence of negative-cost cycles.

3.4.5 Interpretation from a driver’s perspective

The parking model described in this chapter is formulated in terms of aggregate

flows x. However, this model can be viewed through the perspective of an individual

driver as well. This section formulates this as a Markov chain, and shows that if the

aggregate flows x are induced by a strongly feasible α, then the probability that each

driver reaches his or her destination asymptotically approaches 1 after a sufficient

amount of driving and searching time.

In this subsection, consider an individual driver who departs origin node

o ∈ NR destined for node d ∈ ND (thus qod > 0). Also assume that the splitting

proportions α are strongly feasible, so the aggregate flow vector x is well-defined

and uniquely determined. The progression of this driver through the network can be

expressed as a Markov chain, where the states are the set of all nodes N, the initial

state is o, and the transition probabilities are given as follows: for each regular node
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i ∈ NR and outgoing link (i, j) ∈ A, the probability of transitioning from i to j is

given by αij. For each parking node ijP corresponding to link (i, j), the probability of

transitioning from ijP to the corresponding transfer node ijT is pij and to the regular

node j is 1− pij. For each transfer node, the transition probability to the destination

d is 1, and 0 for all other nodes. The destination node d is an absorbing state.

We aim to show that if α is strongly feasible, the Markov chain reaches d with

probability asymptotically reaching 1. To assist with this, define the set N̂ denoting

all states of the Markov chain reached with positive probability when starting from

o. More formally, N̂ is defined as the smallest set satisfying o ∈ N̂ and the condition

i ∈ N̂ ⇒ j ∈ N̂ for all (i, j) ∈ A with xdij > 0. The asymptotic result is obtained in

two steps, first showing that strong feasibility of α implies that the destination d is

part of the reachable set N̂, then showing that this probability approaches 1 as the

driver spends longer searching.

Proposition 7. If α is strongly feasible, then d ∈ N̂.

Proof. The flow conservation equations above are given in terms of links; however

together with weak feasibility they imply the following relations for nodes in NR, NP ,
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NT , and ND, respectively:

qid +
∑

(h,i)∈A

xdhi =
∑

(i,j)∈A

xdij ∀i ∈ NR, d ∈ ND

xdij,S = xdij,P + xdij,NP ∀(i, j)S ∈ AS, d ∈ ND

xdij,P = xdij,T,d ∀(i, j)P ∈ AP , d ∈ ND∑
(i,j)dT∈AT

xdij,T,d =
∑
k∈NR

qkd ∀d ∈ ND

The left-hand side of each equation represents the “inflow” to a node, while the right-

hand side represents the “outflow.” Summing these equations over a subset of nodes

thus equates the total inflow to the subset to the total outflow. The flow xdij on

links connecting two nodes of such a subset appears on both sides, and thus can be

canceled. By definition of N̂, in such a sum, no positive xdij appears on the right-hand

side without also appearing on the left-hand side. We thus have

∑
i∈NR∩N̂

qid +
∑

(i,j)∈A:i/∈N̂

xdij =
[
d ∈ N̂

] ∑
i∈NR

qid (3.19)

again using the bracket notation for the indicator function. Since qod > 0, the left-

hand side of the equation is positive. Strong feasibility implies that this equation is

consistent and thus the right-hand side must be positive as well; this is only possible

if d ∈ N̂.

Proposition 8. Let P (t) be the probability that the (absorbing) destination state d has

been reached after t transitions from the initial state o, with transition probabilities

based on a given α. If α is strongly feasible, then limt→∞ P (t) = 1.
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Proof. Let Ĝ be the subgraph ofG induced by the node set N̂. (See Figure 3.2(c), with

transition probabilities for the Markov chain indicated on the links.) By Proposition 7

and the definition of N̂ there is at least one simple path in Ĝ from each node i ∈ N̂

to the destination d, and the probability of successivly transitioning from state i to

d by traversing this path is given by the product of the transition probabilities along

successive arcs (the relevant α value for regular or searching links, and p or 1 − p

for parking and no parking links, respectively). Again by definition of N̂ at least one

such path has strictly positive traversal probability. Let K be the maximum length

of such a simple path, and let p̂ > 0 be the least traversal probability of any such

path. Regardless of the initial state, after K transitions we have P (K) ≥ p̂ since

the destination may be reachable via multiple paths in Ĝ. After nK transitions, we

have P (nK) = 1− (1− P (nK)) ≥ 1− (1− p̂)n with the inequality following because

every K steps the probability of reaching d is at least p̂. Since d is absorbing, P (t)

is nondecreasing and P (t) ≥ P (Kbt/Kc) ≥ 1 − (1 − p̂)bt/Kc which asymptotically

approaches 1 when t is large.

3.5 Equilibium

This section introduces the equilibrium framework built upon the network

loading from Section 3.4. Its major goals are (1) expressing the expected travel time

to the destination as a function of the choices made at each node; (2) developing

a preliminary variational inequality formulation of the equilibrium problem; (3) es-

tablishing a more practical approach to feasibility than strong feasibility, and its

suitability for equilibrium; and finally (4) a convex combinations heuristic for solving
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the equilibrium problem.

3.5.1 Cost labels

As a first step toward development of the equilibrium model, we calculate the

costs associated with each choice travelers can make. These calculations are made

separately from the network loading, so we can assume that a flow vector x satisfying

the flow conservation equations is given and held constant. For each destination d and

regular link (i, j)R, let T dij,R represent the expected remaining cost among travelers

from node i to the destination d, including the cost on link (i, j)R and remaining costs

to the destination:

T dij,R = tij,R +
∑

(j,k)∈AR∪AS

αdjkT
d
jk (3.20)

where T djk reflect downstream costs from d. For searching links, the corresponding

labels are defined as:

T dij,S = tij,S + pij (tij,P + tij,T,d) + (1− pij)
∑

(j,k)∈AR∪AS

αdjkT
d
jk (3.21)

Note that pij can be treated as constant in (3.21) since x is given and fixed.

Hence (3.20) and (3.21) form a linear system in T dij and T dij,S with |ND|(|AR|+ |AS|)

equations and variables. While this linear system can be solved directly and without

excessive difficulty (since transportation networks are relatively sparse), a network

algorithm similar to LoadNetwork performs even better. This algorithm, Calcu-

lateCostLabels is presented as Algorithm 4. In this algorithm, α and p are to be

calculated from the flow vector x provided as an argument. Given a vector T of cost

labels which do not necessarily solve (3.20) and (3.21), the “imbalance” ζi of node i is
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calculated by summing the absolute difference between the left and right hand sides

of (3.20) and (3.21) across all outgoing links and destinations:

ζi =
∑
d

 ∑
(i,j)R∈AR

|RHS(3.20) - LHS(3.20)|+
∑

(i,j)S∈AS

|RHS(3.21) - LHS(3.21)|


(3.22)

At each iteration a node i with maximum ζi is chosen, and the labels T dij of outgoing

links are calculated using (3.20) and (3.21). Convergence of this algorithm is not

difficult to show, since each iteration reduces the distance between the current T and

the solution T∗ of the linear system by as least as much as the Gauss-Seidel method,

which is sure to converge since the linear system is irreducibly diagonally dominant

(as follows from strong feasibility).

Algorithm 4 CalculateTimeLabels(G,x, ε)

1: {Arguments are a graph G (as defined in Section 3.3), an exogenous vector of link
flows x satisfying flow conservation, and a convergence tolerance ε > 0.}

2: {Initialization}
3: T dij ← 0 ∀(i, j) ∈ AR ∪ AC , d ∈ D
4: T dij,S ← 0 ∀(i, j)S ∈ AS, d ∈ D
5: ζi ← (3.22) ∀i ∈ NR

6: while maxi {ζi} > ε do
7: Choose i such that ζi is maximal.
8: {Update labels for i}
9: T dij,R ← RHS(3.20) ∀(i, j)R ∈ AR, d ∈ ND

10: T dij,S ← RHS(3.21) ∀(i, j)S ∈ AS, d ∈ ND

11: ζj ← (3.22) ∀ {j ∈ N : (i, j)R ∈ AR}
12: ζi ← 0
13: end while
14: return T
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3.5.2 Equilibrium formulation

The cost labels defined in the previous subsection lead to formulating an equi-

librium principle, that a given alternative will be used only if its cost is minimal among

all alternatives (implying equality of cost when multiple alternatives are used). Let

α be strongly feasible; then there is a unique network loading x(α) based on the

flow conservation equations, and a unique set of travel time labels T(x(α)) based

on (3.20) and (3.21); for brevity, this latter relation is abbreviated T(α).

A strictly positive αdij value suggests that some travelers heading to d and

passing through node i are leaving via node j; at equilibrium this is only possible if

T dij is no greater than T dij′ for any other outgoing link (i, j′). That is, a strictly feasible

α is defined to be an equilibrium if

αdij > 0⇒ T dij = min
(i,j′)∈AR∪AS

{
T dij′
}

(3.23)

is satisfied for all (i, j) and d.

Proposition 9. If xp(x) is differentiable and d
dx
xp(x) > 0, then a strongly feasible

vector of splitting proportions α∗ is an equilibrium if T(α∗) · (α∗ − α) ≤ 0 for all

α ∈ ΩS.

Proof. Assume that α∗ is not an equilibrium. Then there exist two distinct links

(i, j) ∈ A and (i′, j′) ∈ A and some d ∈ ND such that α∗dij > 0 and T dij < T di′j′ .

By Proposition 4, the vector α = α∗ + δ∆ is strongly feasible for sufficiently small

positive δ, where ∆ has two nonzero components: +1 for (i′, j′) and d, and −1 for

(i, j) and d; in this case T(α∗) ·α∗ > T(α∗) ·α and the variational inequality is not

satisfied.
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Unfortunately, the utility of this formulation is limited by the irregular struc-

ture of ΩS: Proposition 4 suggests that ΩS is not a closed set, unless it includes the

entire boundary of Ω; and in any case, ΩS need not be convex. This is demonstrated

in Figure 3.4, where the left and right parking links have capacity 5, the center park-

ing link has capacity 1, and the total demand is 4. Panel (a) shows the network with

relevant parameters (link styles are the same as in Figure 3.3), and panels (b) and

(c) respectively illustrate two strongly feasible solutions in which all vehicles park

either at the left or right links. Panel (d) illustrates the average of these two strongly

feasible solutions; in this solution, 1 vehicle attempts to park at the left link, 1 vehicle

attempts to park at the right link, and 2 vehicles attempt to park at the middle link.

The number of vehicles attempting to park at the middle link exceeds its capacity, and

the network structure forces drivers to continue searching on the link they initially

chose, so this solution is not strongly feasible.

These properties of ΩS are not favorable. The vast majority of variational

inequality results and algorithms, including fixed-point theorems to establish equilib-

rium existence, require the feasible set to be closed and convex (cf. Facchinei and

Pang, 2003). To address this, the following subsection describes a modification to the

network structure and feasible set which are more useful.

3.5.3 A practical approach to feasibility

As shown in the previous section, ΩS need not be a closed or convex set,

which poses difficulties both for demonstrating existence of an equilibrium solution

and for finding such a solution if it exists. Since Ω is closed convex, the difficulty
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Figure 3.4: The set ΩS is not convex.
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is introduced by requiring a finite solution to the flow conservation equations. An

alternative method is to transform the network further by adding a direct link from

each node i to each destination d; let each such link have a high, but finite travel

time t̄. Denote the collection of these links Ā, and the new network Ḡ. Given a small

positive parameter ε, define the set Ωε =
{
α ∈ Ω : αij ≥ ε ∀(i, j) ∈ Ā

}
.

Intuitively, the new links in Ā create direct connections to the destination

with high cost. One possible behavioral interpretation is that these links represent

“failed trips” where travelers give up searching for parking; the connection to the

destination is only enforced to maintain flow conservation. Whenever travelers pass

through a node, a fraction ε of the drivers will give up searching and terminate their

trips. This explanation is not perfect (since the vehicles disappear from the network

at this point in time), but facilitates the solution process — as shown below, any set

Ωε is closed convex and admits a unique solution to the flow conservation equations.

Furthermore, link flows x and travel time labels T corresponding to α ∈ ΩS in G can

be approximated arbitrary closely by splitting proportions in Ωε and Ḡ as ε→ 0.

Proposition 10. Given any ε > 0 and α ∈ Ωε, at least one solution exists to the flow

conservation equations in Ḡ.

Proof. Apply algorithm LoadPolicy. When processing node i, at least εηi units of

flow reach the destination; since i is the node with maximal ηi value, the reduction in

the potential function U is at least εU/|N | (even neglecting any flow which may find

parking), and the algorithm converges linearly to a solution of the flow conservation

equations.

66



Proposition 11. Given any ε > 0 and α ∈ Ωε, the solution to the flow conservation

equations in Ḡ is unique.

Proof. Identical to Proposition 3.

Proposition 12. Let T0 and x0 correspond to α0 ∈ ΩS in G. For any δ > 0, there

exists an ε > 0 and Tε and xε corresponding to some αε ∈ Ωε in Ḡ such that

||Tε −T0|| < δ and ||xε − x0|| < δ.

Proof. Define the projection operator Π(z, K) returning the point z∗ in K minimizing

||z∗−z||; this point is unique if K is convex. Consider some sequence {εk} converging

to zero, and let αk = Π(α0,Ωεk). Clearly as k →∞, ||αk−α0|| → 0. By the implicit

function theorem, the function x(α) is continuous when α is strongly feasible, so as

αk → α0 we have xε ≡ X(αk)→ x0. Finally, since T is obtained from x by solving

a nonsingular linear system, the mapping T(x) is continuous and Tε ≡ T(αk) →

T0.

Proposition 13. For any ε > 0, there exists at least one equilibrium solution in Ωε.

Proof. The variational inequality T(α∗) · (α∗ − α) ≤ 0 for all α ∈ Ωε is defined on

a closed, convex set. Furthermore the mapping T is continuous in α as shown in the

proof of Proposition 12. Theorem 2.1.1 of Facchinei and Pang (2003) thus applies

and the variational inequality has at least one solution.
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3.5.4 An equilibrium heuristic

Although T is a continuous function of α on Ωε, ensuring existence of an equi-

librium solution, the function lacks other favorable properties (such as monotonicity).

Nevertheless, a convex combinations heuristic seems to work well; this is shown in

Algorithm 5. This algorithm involves iteratively performing a network loading, cal-

culating travel time labels, identifying a “target” flow proportions vector α∗ placing

maximal weight on minimum-cost choices for each node and destination, and updat-

ing the flow proportions by taking a convex combination of the current and target

vectors.

Convergence is determined with a gap function measuring deviation from the

equilibrium principle. One such gap function is the average excess cost

AEC =

∑
i∈N
∑

d∈ND

∑
(i,j)∈A∪AS

(
T dij −min(i,j′)∈AR∪AS T

d
ij′

)
D

(3.24)

As shown in the demonstrations below, the simple choice of λ = 1/k appears

to work satisfactorally, where k is the number of times algorithm LoadNetwork

has been performed when step 8 is executed.

3.6 Demonstration

The model is demonstrated using the well-known Sioux Falls network (Bar-

Gera, 2014) with 24 nodes, 76 links, and 24 origins and destinations. A schematic of

this network is shown in Figure 3.5. An instance of the parking search equilibrium

problem was generated from this network using the following procedure. First, a

destination was created for each zone centroid; the walking time from any link to
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Algorithm 5 ConvexCombinations(Gε, εx, εT , εAEC)

1: {Arguments are a graph Gε (as defined in Section 3.5.3), and tolerances εx, εT ,
and εAEC for the network loading, travel time calculation, and master algorithm
respectively.}

2: {Initialization}
3: Choose some α ∈ Ωε

4: x← LoadNetwork(Gε,α, εx)
5: T← CalculateTimeLabels(Gε,x, εT )
6: while AEC > εAEC do
7: Choose some α∗ ∈ arg minα∈Ωε{α · T }
8: α← λα∗ + (1− λ)α for some λ ∈ [0, 1].
9: x← LoadNetwork(Gε,α, εx)

10: T← CalculateTimeLabels(Gε,x, εT )
11: end while
12: return x

each destination is proportional to the Euclidean distance between the origin and

destination nodes, using the node coordinates associated with the Sioux Falls network.

We assume parking is allowed on each link in the network, with the number of spaces

proportional to the physical length of the link. The mean duration of parking and

parking cost are uniform on all links.

The algorithms were implemented in C and run on a 2.60 GHz Intel machine

with 4 GB memory running Windows 7. Figure 3.6 shows the convergence rate

of the algorithm, reporting the average excess cost obtained after a given amount

of computation time has elapsed. The convex combinations method with step size

inversely proportional to iteration count seems to function acceptably, at least in this

small network, and the gap function decreases steadily as the solution stabilizes.

Figure 3.7 shows the importance of considering parking in the assignment and
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Figure 3.6: Progress of the convex combinations heuristic

equilibrium process. The left panel of the figure shows the link volumes when parking

search is neglected1 and trips can park at any location with probability 1 (setting

pij(x) ≡ 1 in the algorithms). The right panel shows link volumes after accounting

for parking search; there is a significant increase in these volumes. Network-wide,

the total vehicle-hours traveled (VHT) increased from 24310 to 29059, an increase of

19.5%. Figure 3.8 shows the fraction of flow on each link searching for parking (as

opposed to driving through) and probability of finding parking at different links. In

particular, notice how available parking is scarcer in the city center, and more plentiful

around the network perimeter. This model thus provides quantitative estimates of

1All links in the Sioux Falls network have a “mirror” with the tail and head node reversed; for
clarity in the figures, the higher value of the two mirror links is shown.
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Figure 3.7: Traffic volumes (a) without considering parking search and (b) considering
search

parking availability in different regions of the network.

Two sensitivity analyses were conducted to the input parameters. In the

first, the mean parking duration is varied, perhaps reflecting changes in parking time

limits. As shown in Figure 3.9, increasing the duration of parking results in increases

in both average driving time (as vehicles search longer before finding an available

space) and average walking time (as some drivers accept parking spaces further from

their destination). These trends are roughly convex, indicating greater sensitivity to

parking duration when parking is scarcer than when it is more plentiful. The second

sensitivity analysis varies the relative cost of walking time to driving time, perhaps
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Figure 3.8: (a) Fraction of link volume searching for parking and (b) probability of
successfully finding parking
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Figure 3.9: Sensitivity analysis of travel times to mean parking duration

reflecting changes due to weather (in poor weather, drivers may prefer to spend more

time searching inside the vehicle and less time walking). (Figure 3.10.) As walking

becomes onerous, the amount of driving time increases and the average amount of

walking time decreases, but only slightly; this suggests that in the base conditions,

drivers are already parking relatively close to their destinations.

3.7 Model Validity and Sensitivity Analysis

Introducing parking behavior into traffic assignment models, we expect this

new type of traffic assignment model can reflect much more realistic flow distribution

and parking behaviors. Compared to those without considering parking search, we

expect the following conditions and behaviors for the new model: First, because of
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Figure 3.10: Sensitivity analysis of travel times to value of walking time

cycling for parking spaces, the total system travel time should be higher, and most of

the links should have some “extra” flow. Second, vehicles should park relatively close

to their final destination. Third, if the supply of parking on some links is reduced,

some of the vehicles parking on these links will likely to park on nearby links, while

increasing parking supply may cause an increased parking rate on those links.

The sensitivity analysis focuses on how the assignment results will change if

travel demand, parking price, parking space capacity and link status change. As with

classic traffic assignment models, when we change these parameters, the link flow

patterns may change. For instance, if we increase the parking rate of a link, we would

expect less vehicles parking on this link. If the total travel demand becomes less, we

expect the total vehicles that are searching for parking would also be less. However,
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for some special links, the parking searching flows may increase because the increased

flows may be transfered from other links. Another issue this section deals with is

what the impact range and quantity that a parameter change has. For instance, if we

increase the parking rate on a link which usually has many vacant parking spaces, the

impact on flow patterns and parking distributions could be very little. If the increase

happens on a very crowed link, the impact may be large on nearby links, but still

very little on links that are far away.

All the tests that are used to check if our model can successfully reflect the

parking search behavior are taken on the Sioux-Falls network as in Figure 3.5 and

listed in Table 3.1. In the Sioux-Falls network each node and link has been labeled.

3.7.1 Demand Change Test

Several concepts need to be clarified before we discuss the demand impacts.

By “demand impacts” we mean the impacts that are caused by the change to the

origin-destination matrix. The trip demand for an origin and destination pair is the

number of trips generated from the origin to the destination. In our model, trip

demands are constants. The total parking flow is equal to the total trip demand

because all the trips need to end with parking at some location. The parking demand

on a link equal the searching flow on that link and it is a variable. The parked vehicles

on a link are part of the searching-parking flow which successfully find parking spaces

and parked on that link. The concept of parking distribution describes on which link

a vehicle parks and it also shows the number of vehicles that park on a link.

As described in Table 3.1, we want to see how changes to the travel demand
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Table 3.1: Sensitivity Analysis of the Static Parking Model on Sioux-Falls Network

Test Type Test Goal Test Detail
Demand
change test

Test how the changes to demand
would impact the parking distribu-
tion, link flow pattern and the prob-
ability of successfully finding park-
ing

Reduce the demand to destination
10, 15, 16, 17 and 19 by 10, 30,
50 and 80 percent. The reason of
choosing these destinations is that
the parked vehicles and passing
flows are concentrated on the links
near to these destinations. Notice
that the destinations are not the
nodes, but they are close to the
nodes that are with the same num-
bers

Price test Check how the parking price would
impact parking distribution, link
flow pattern and the probability of
successfully finding parking

only increase the cost on links con-
necting nodes 10 and 16 by 10, 30,
50, 80, and 100 percent.

Parking space
capacity test

Check if increase the parking ca-
pacity on some specific links, how
it will impact the flow pattern and
parking distribution

Increase the number of parking
spaces on link 1 and 3 by 10, 30,
50, 80 and 100 percent; Increase the
number of parking spaces on link 29
and 48 by 10, 30, 50, 80 and 100
percent.
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will impact the flow pattern and the parking distribution. The links chosen in this

test have high flows and parking demands with the original travel demand. We expect

that if the parking demand on these links are reduced, both the parked vehicles and

the passing through flows should be decreased or at least not be increased. First

we check how the flows and parking demands change on the whole network, then we

choose several different types of links to compare the impacts.

Figure 3.11 shows the link flow change distribution with the impact of demand

decrease. The sub-figures correspond to 10%, 30%, 50% and 80% decrease in demand

to destinations 10, 15, 16, 17, 19, respectively. The horizontal axis indicates the link

flow change range in terms of percentage while the vertical axis means how many

links fall into that range. This figure shows that when the travel demand to these

destinations is decreased, most of the links on this network have lower link flows.

However, there are still some links even have higher flows, but with a mild increase.

These four figures also tell that when the demand reduction is low, say 10 percent, the

distributions of the links are more concentrated with a negatively skewed distribution,

while when the reduction is very large the distribution is scattered more widely. This

means if we reduce the demand to some destination a little, most of the links have

little change in link flows, but if we reduce it very much, the impact will be big

and very different among links. With further check we found that the flows on the

links near to these destinations are decreased a lot. On the other hand, the flows

on the links that are far from these destinations do not change much. Figure 3.12

demonstrates this effect more clearly. The left sub figure shows that flows on links

(1,3),(3,12) and (12,13) do not change much even those destinations have a 80 percent
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demand reduction because these links are far from the demand-reduced destinations.

The right sub figure just shows the opposite, since the links in this figure are near

to the demand-reduced destinations, their link flow highly depend on their travel

demand.

Generally speaking, reducing demand to a destination causes less flows on links

near to that destination. However, there are still several links having more flows than

the original case. For instance, link (11,10) and link (11,12) have more flows after

reducing travel demand. The reason is that the demand change reduces congestion

level on the links that are near to destination 10, 15, 16 and 17 which attracts more

passing through traffic onto the two links.

Reducing demand can also increase the probability of successfully find a park-

ing space. Figure 3.13 shows that reducing demand to destination 10, 15, 16, 17 and

19 causes increasing the probability of successfully finding a parking spot on nearby

links (10,16), (16,17), (17,19), (19,15) and (15,10). The horizontal axis indicates the

reduction percentage while the vertical axis means the probability of finding a parking

space.

Intuitively, reducing the flow searching for parking on a link will increase the

probability of successfully parking on that link. Another expected result of reducing

some demand to some specific destination is that some vehicles which originally park

on links that are far from that destination may have chance to park nearer to their

destination. As a result, the reduction rate of parked vehicles on the links near to

the destination may be less than the reduction rate of searching parking vehicles on

those links. We are more interested in the area that near by the destinations with
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Figure 3.11: Link traffic flow change distributions in response to travel demand re-
duction
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Figure 3.13: The probability of finding a parking space with different demand values
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reduced demand. Thus, we check the how the searching parking flow and parked

vehicles change on these links.

In Figure 3.14, sub-figure (a) shows how the number of parked vehicles change

and(b) shows how the searching-parking flow change. This figure clearly tells us that

the number of parked vehicles does not change as much as the searching-parking

flow. The reason is when we reduce the demand, less vehicles will search around, so

the searching-parking drops much, but because it is easier to find a parking space,

the ratio between the parked vehicles and the total searching-parking flow is actually

higher. This effect is more clearly seen in Figure 3.15, which shows how the link flows,

searching-parking flows and the parked vehicles change in response to a 30 percent

demand reduction to destinations 10, 15, 16, and 17. In this figure, the horizontal axis

identifies the three types of flow, and the vertical axis gives the change rate value.

It is obvious that if the demand changes, the searching-parking flow will change

most, while the total link flow and the parked vehicles do not change much. This is

especially true for links that usually bear a large amount of parking flow and cannot

accommodate the searching flow at all times.

Travel demand changes affect travel time sa well as the flow pattern and park-

ing distribution. Generally, with lower travel demand, lower travel time is expected.

This is not only because lower demand reduces congestion level, but also because lower

demand can improve the parking condition so vehicles need less time to find available

parking spaces. However, much of the impact depends on the destination’s location.

If it is far from the destinations which have reduced demand, the travel times of trips

toward this destination may not be impacted very much. On the other hand, if a
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Figure 3.14: Parking flow change in response to different demand reduction rate
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Figure 3.15: Comparison of the impact of demand change on link flow, searching-
parking flow and parked vehicles
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destination is very near to demand-reduced destinations, the trips to this destination

may have much less travel time than the conditions before demand reduction.

Figure 3.16 shows how the link travel times change in response to reducing

the travel demand to destination 10 by 10, 30, 50 and 80 percent, respectively. For

the sake of presenting clearly, only three typical links aer chosen in this figure. Link

(1,2) represents links far from demand-reduced destinations, link (10,16) represents

links that are very near to these destinations, while link (5,6) represents those with

middle distance to the destination. Apparently, for all types of links, the lower the

travel demand, the less travel times for trips to destination 10. Nevertheless, for some

destinations, reducing the demand to them may not have much impact on the travel

times. For instance, Figure 3.17 shows if we reduce the demand to destination 1 by

10, 30, 50 and 80 percent, respectively, there is almost no impact on travel times for

any type of the links. (In this case, link (1,2) represents the nearby ones, while link

(10,16) represents the further links.)

3.7.2 Pricing Test

Common sense suggests that increasing the parking price would always reduce

driver’s willingness to park. The truth is more complex. For links where the probabil-

ity of finding parking is very small due to congestion, slightly increasing the parking

price may not have a significant impacts on parking occupancy. Or, if the probability

of finding parking a link is close to 1always has many opening parking spaces, it may

be not a good place to park. For such link, increasing pricing rate will also have little

impact on parking occupancy. Increasing parking rate can also cause flow shifting.
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Traffic flows that are usually searching parking on a link may transfer to other links

because of a parking rate increase on this link.

Since we are mostly interested in the pricing change impacts on links that

have relatively high parking demand, we chose links (10,16) and (16,10) to increase

their parking rate by 10, 30, 50, 80 and 100 percent to see how it will influence the

flow pattern and the probability of successfully find a parking space. Figure 3.18

shows how the probability of finding a parking space would change as parking price

increases. It is obvious that it is getting easier to find a parking space on links (10,16)

and (16,10) as increasing the parking rate. One interesting thing is that we did not

increase the parking rate on link (16,18), but as a neighbor link it also has higher

probabilities of finding a parking space as parking rate increases on links (10,16) and

(16,10). Figure 3.19 shows that compare to the increased probability of finding a

parking space, the parking searching flow decreases on the two links. This makes

sense as people want to reduce their total trip cost by avoiding paying extra parking

fee. However, for other links, such (4,11), the parking searching flow increased because

of the “flow shift.”

3.7.3 Parking Capacity Test

Increasing the number of parking spaces on a link would allow vehicles to

find parking spaces more easily. The question is how much this capacity change

can increase the probability of finding a parking space. If the parking availability

probability on a link is high, increasing the number of parking spaces would have

little impact. However, if a link always have a high demand of parking, the increasing
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Figure 3.18: The probability of finding a parking space as parking rate increases

might change searching and parking flows on this link and on nearby links. For

links far from the capacity changed link, we would not expect much change in the

probability of finding a parking space.

Figure 3.20 and Figure 3.21 show how the increase in parking capacity would

impact the probability of successfully find a parking space on links. Figure 3.20

is for link (1,3) and (3,1) which originally has nearly 100% chance of an available

parking space. After increasing the number of parking spaces on these two links, the

probability of finding a parking space on any link changes little. This is because,

even increasing the number of parking spaces, these two links cannot attract vehicles

originally parking on other links to park on them, so there is very little impact on the

parking distribution and trip time pattern. Contrarily, Figure 3.21 demonstrate how
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Figure 3.19: Parking searching flow on links as parking rate increases
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Figure 3.20: The probability of finding parking spaces with parking capacity increase
on links (1,3) and (3,1)

the parking capacity change on link (10,16) and (16,10) would impact the probabilities

of finding a parking space on the links. Apparently, the parking capacity change

on these two links does not only increase the chance of finding a parking space on

themselves, it also increases the chances on other link. For instance, after the capacity

increase, the first two links which have the highest probability increase are link (10,16)

and link (16,18) which is immediately connected to link (10,16). Figure 3.22 shows

that if the parking capacity is increased, the probability of finding a parking space

also increased, roughly in proportion to the increase in capacity.

Since parking capacity increased, a link which used to have a high parking

demand should attract more vehicles to park on it. This should result in a flow

increase on neighboring links. The reason is that increasing parking capacity on a

link will attract more vehicles to park on it which result in more flow passing through

some of the neighbor links, while it also decreases the searching flow on the other
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Figure 3.21: The probability of finding parking spaces with parking capacity increase
on links (10,16) and (16,10)
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Figure 3.22: The impacts of parking capacity increase on link (10,16) and link(16,18)

93



 

0

50

100

150

200

(1,2) (1,3) (2,1) (2,6) (3,1) (3,4) (3,12) (4,3)

Se
ar

ch
in

g 
p

ar
ki

n
g 

fl
o

w
s

Original 10 percent increase 30 percent increase

50 percent increase 80 percent increase 100 percent increase

Figure 3.23: Searching parking flow change in response to parking capacity increase
on links (10,16) and (16,10)

links. Figure 3.23 shows almost all the links have lower searching parking flows with

the increasing of parking capacity. Among those which have higher searching flows,

link (16,10) has a very obvious jump in searching flow when its parking capacity is

increased. This actually mean more vehicles wish to park on this link. unexpectedly,

link (10,16) has lower searching flow even when its capacity has been increased.

Figure 3.24 can explain this in one aspect. It shows that with the capacity

increasing, the probability of finding a parking space on link (16,10) does not change

much. Considering the searching parking flow increased a lot, this means more ve-

hicles parked on this link compared to the original case. ON the other hand, the

probability of finding a parking space on link (10,16) changes dramatically when in-

creasing the capacity. Even the searching parking flow decreased, the actually parked

vehicles does not decrease. Figure 3.25 shows the number of parked vehicles on the

two links. We can see that even they have very different searching flow and total link
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Figure 3.24: Changes to the probability of parking availability in response to parking
capacity increase on links (10,16) and (16,10)

flow changing direction, both of them have similar changing direction and quantity

in the number of parked vehicles.

We are also interested in how the travel time would change after increasing

the parking capacity. Figure 3.26 shows that trips from all types of links (as afore-

mentioned,the types are classified in terms of its distance to the capacity-increasing

link) to destination 10 have lower values if increasing the parking capacity on links

(10,16) and(16,10). It is because after parking capacity increased, on average vehicles

are more easily to find a parking space which in turn reduce the searching time and

the congestion level.
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3.8 Conclusions

This chapter presented an equilibrium model for the parking search process.

Notable features of the model are its ability to model the probability of parking

availability as a function of searching intensity; the introduction of an equilibrium

framework to account for the dependence of searching intensity on parking availability

probabilities; and a formulation admitting general networks, allowing the increases in

flow on specific links due to parking search to be seen.

There are many directions for future research. As the focus of this chapter

was on formulating the basic model, it would be fruitful to search for more efficient

algorithms or algorithms which provably converge to equilibrium, or to more fully

develop practical case studies using field data on parking availability and destina-

tions. The model itself can also be extended to account for congestion in link travel

times, dynamic evolution in demand and congestion, or destination choice or demand

elasticity depending on parking availability.
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Chapter 4

Dynamic Traffic Assignment and Parking Search

4.1 Introduction

The model in this chapter is particularly aimed at the “cruising” phenomenon

when drivers are searching for parking. Although as mentioned in Chapter 1 park-

ing search traffic account for a considerable amount of traffic volume, typical traffic

assignment models based on equilibrium and shortest path concepts do not consider

additional delay or stochasticity due to parking at the destination; a preliminary in-

vestigation in Tang et al. (2014) show that for short trips, this can underestimate

travel times by up to 50% when parking delays are included.

As discussed in more detail in the literature review section, most methodologi-

cal approaches for modeling parking delay on networks are generally based on discrete

choice concepts, or the introduction of artificial parking links. In our opinion, both of

these approaches have serious shortcomings: neither approach explicitly models the

additional congestion caused by cruising behavior, and do not reflect the stochastic

and adaptive choices drivers make as they pass multiple parking options en route

to a destination. Simulation-based approaches have also been proposed, but these

generally lack the behavioral foundations expected of modern planning models (e.g.,

appropriate generalizations of the equilibrium concept).
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By contrast, this chapter develops an equilibrium formulation accounting for

stochastic and dynamic parking search by routing drivers based on policies rather than

paths, using the language and framework of Markov decision processes. The mean

features of this dynamic traffic assignment model are (i) incorporation of a stochastic

parking model into the cell transmission model to represent traffic flow and (ii) a

policy-based stochastic routing model to reflect driver behavior and adaptive choices

regarding available parking spaces (for instance, if a driver sees an available space,

should he or she take it or continue driving in hope of finding a more convenient

space further downstream). In this way, the stochastic and dynamic nature of the

parking search process can be explicitly modeled while still building on behavioral

assumptions common to planning models.

These concepts are united in an equilibrium framework. While the notions

of equilibrium and stochastic networks may seem mutually exclusive, this chapter

adopts a similar framework as the recourse equilibrium formulations of Unnikrishnan

and Waller (2009) and Boyles (2009), in which the equilibrium is formulated in terms

of policies (containing a set of contingent plans based on observed network conditions)

rather than paths. However, in contrast to these two earlier works, the state prob-

abilities depend on flows in addition to the state travel times, as explained in more

detail below. In this way, the model developed in this chapter is a generalization of

these recourse equilibrium models. This model is amenable to implementation in the

form of agent-based simulation, although specific details of such an implementation

are not described in this chapter.

Similar to the static model in Chapter 3, the model in this chapter also pur-
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sue traffic assignment equilibrium while incorporating parking search behavior. The

difference is that this chapter uses simulation based approach which can reflect the

changes to the input data, demand, congestion level and parking space capacities

over time. This dynamic approach can give intuitive results about how the network

performance will change over time with time-dependent variable inputs.

The remainder of this chapter is organized as follows. Section 4.2 presents

prior research in the areas of parking search modeling and policy-based routing and

equilibrium. Section 4.3 provides an overview of the proposed parking model, with ad-

ditional details on its specific components in the following three sections: Section 4.4

discusses the extensions to the cell transmission model and the parking dynamics,

Section 4.5 discusses the routing policies used by drivers, and Section 4.6 explains

the equilibrium concept which ties them together. Finally, Section 4.9 concludes this

chapter and provides discussion of some practical considerations.

4.2 Literature Review

Parking plays a surprisingly large role in traffic operations in dense urban areas,

near universities or other demand centers, and in managing special events. Shoup

(2006) reviewed parking search studies from 1927 to 2001 and found that between

8% and 74% of the traffic in congested downtowns were drivers cruising in search of

parking locations. Recognizing the impact of parking searches on urban congestion,

several studies have been conducted using economic, statistical, and optimization

frameworks on various aspects of parking such as parking choice and pricing. Parking

choice models can be classified into network assignment-based approaches, discrete
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choice-based approaches and simulation-based approaches.

Network assignment-based approaches model the parking choice in conjunc-

tion with the route choice. Nour Eldin et al. (1981) used an incremental assignment

approach to solve the traffic assignment problem which models the interaction be-

tween route choice, resulting vehicular flows, and parking choices. Bifulco (1993)

developed a network level stochastic user equilibrium model to model parking search

cost as a function of parking level occupancy as well as the route choice. Li et al.

(2007a) consider mode choice between auto and transit and the simultaneous route

and parking choice for automobile users using the user equilibrium framework. Lam

et al. (2006) developed a variational inequality formulation for a multi-class network

assignment model which considers departure time, route, parking location choice with

drivers classified based on parking durations. Li et al. (2008) develop a fixed point

based assignment model to study the impact of time dependent and normally dis-

tributed uncertain travel times and parking search time on network level reliability.

Gallo et al. (2011) developed a stochastic user equilibrium based fixed point formu-

lation which modeled car trip, cruising for parking, and walking to final destination

in multiple network layers. Several network assignment based models were used to

evaluate pricing based parking policies. Lam (2002) and Li et al. (2007b) adopted a

bilevel programming framework where the upper level determines the optimal tolls

and parking charges and the lower level models the equilibrium assignment in re-

sponse to the tolls and parking charges. D’Acierno et al. (2006) developed several

optimization models to determine the parking prices taking into account the transit

connectivity between origin-destination pairs with a network using a multi-modal net-
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work assignment model. However, in the these models parking is generally modeled as

a deterministic phenomenon imposing a known cost to drivers, and not contributing

to congestion or delay for other drivers not searching for parking.

Discrete choice models neglect the network structure and use random utility

theory to understand parking choice as a function of various driver and parking loca-

tion attributes. Van der Goot (1982), Axhausen and Polak (1991), and Lambe (1996)

use multinomial logit model to model parking location choice. Other discrete choice

model forms considered include the mixed multinomial logit model (Hess and Polak,

2004; Hess and John, 2004) and the nested logit model (Hensher and King, 2001).

However, these models do not directly incorporate parking costs into the network

loading and assignment.

The third category of parking choice studies has adopted an agent-based ap-

proach to model parking search. Readers may refer to Section 2.2 in Chapter 2 to

find previous works on this.

In contrast to all of the above, the model presented here is based on the concept

of stochastic shortest paths with recourse, an approach pioneered for parking search

in (Tang et al., 2014). Also known as the online shortest path problem (Cheung, 1998;

Waller and Ziliaskopoulos, 2002; Provan, 2003), in this problem drivers progressively

learn the realizations of stochastic network costs and adapt their chosen path en route.

Although not explicitly noted in these papers, the online shortest path problem with

reset takes the form of a classical Markov decision process (Bertsekas, 2012). This was

adapted to parking modeling by using the recourse concept to model driver choices

upon learning the state of a link (whether parking is available or not); these choices
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can include parking if a spot is available, or a choice of successor link to follow if no

spot is available.

4.3 Modeling Overview

This section presents a general overview of the modeling components and moti-

vating concepts using a simple example, before defining them in more general mathe-

matical terms in the sections that follow. For illustrative purposes, the simple network

in Figure 4.1 will be referred to throughout this section. In this network, drivers are

ultimately attempting to reach the destination D. Unlike traditional transportation

planning models, D is not a node in the transportation network (which represents

the transportation infrastructure itself). Rather, drivers must park on a network link

and then walk to D, incurring a walking cost. Each of the three links A, B, and C has

a uniform travel time of 1 unit, but represents a different parking situation. Links A

and B represent free on-street parking, while link C represents a paid lot with cost c.

Link B is closest to the destination, while links A and C are further away and have a

higher walking time w > 1. Assuming a uniform value of time and measuring costs in

time units, we can incorporate any monetary cost into the walking time, and simply

say that the walking times from A, B, and C are w, 0, and w + c, respectively.

Drivers clearly prefer to park on link B. Assuming that the arrival rate of

vehicles is smaller than the departure rate of parked vehicles on link B, all drivers’

desires can be accommodated. However, if this arrival rate increases, not all drivers

will be able to park on this link. Assume that drivers have no information on the

locations of available parking spaces until they traverse a link, but from experience
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Figure 4.1: Small cell network to demonstrate model concepts
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know that the probability of finding parking on link B is p. The question is, upon

seeing an available parking space on link A, will the driver choose to park there or

continue in hopes of being able to park at B. Assuming that drivers wish to minimize

expected travel time, they will park on link A whenever w < 1 + (1 − p)(1 + w + c)

(the expected additional time for continuing to link B, including driving and walking

time), or equivalently p < (2+c)/(1+w+c). Likewise, whenever p > (2+c)/(1+w+c)

expected travel time is minimized by continuing to link B, and then parking at link

C if no space is available at B.

However, the probability p depends on these choices drivers make, and the

only stable solution occurs when p = (2 + c)/(1 + w + c), and the fraction of drivers

choosing to park on link A is exactly the right amount for this value of p to occur. In

this case, the expected travel times are equal from parking at A or continuing on to

B, and drivers are indifferent between these two options. (Figure 4.2). For any other

p value, drivers would switch their behavior at link A, with more drivers seeking to

park at A if p falls below this threshold and fewer seeking to park at A if p exceeds

this value, and these behavioral switches would move p closer to (2 + c)/(1 +w + c).

In this way, the stable states correspond to equilibria in terms of policies, where the

policy concerns the choice drivers make when an available space is found on link A.

To specify this model in a way that applies to general networks, we need

to represent both (i) the traffic flow and parking dynamics, given driver policies;

(ii) a policy selection model representing drivers’ desire to minimize expected travel

times; and (iii) the equilibrium framework uniting the first two. Each is respectively

described in the following three sections.
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Figure 4.2: Optimal decisions at A as a function of parking availability at B
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4.4 Supply-side: Networks and Traffic flow

The flow model is built upon the cell transmission model (CTM), developed

by Daganzo (1994, 1995) as a discrete solution method for the LWR hydrodynamic

model (Lighthill and Whitham, 1955; Richards, 1956) based on a Godunov scheme.

To implement CTM, each link must be divided into a finite number of cells whose

length is the distance a vehicle travels at free-flow in one simulation tick of length

∆t. Briefly recapitulating, each cell c is associated with parameters representing its

capacity Qc, the maximum number of vehicles which can fit into the cell Nc, and the

ratio of backward-to-forward wave speeds δc, and a state variable xc(t) denoting the

number of vehicles in cell c during the t-th time interval. τc(t) is used to indicate

the time necessary for a vehicle to traverse cell c when entering during time interval

t ∈ {0, 1, . . . , T}.

To propagate flow, at each time interval define the sending flow Sc(t) =

min{xc(t), Qc} and receiving flow Rc(t) = min{δc(Nc − xc(t)), Qc}. A variety of

intersection models exist mapping the sending flows of incoming links and receiving

flows of outgoing links to transition flows between cells. For instance, if cells c and d

are in series, the number of vehicles moving between these cells during the t-th time

interval is the lesser of Sc(t) and Rd(t). Multiple diverge and merge models have been

formulated in the literature (Daganzo, 1995; Nie et al., 2008; Yperman, 2007), along

with models for more general intersection types (Yperman, 2007; Tampre et al., 2011;

Corthout et al., 2012). These are not discussed here for brevity, and any of these can

be used as the basis for the parking model presented below, in which each cell is

equipped with additional state variables used to represent the number of available
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parking spaces.

Consider a time-dependent network with node and arc sets N and A, respec-

tively, and let C denote the set of cells; Γ(c) is the set of cells immediately downstream

of cell c. Let S denote the set of destinations. Unlike most network equilibrium mod-

els, the destinations S are distinct from the network nodes N , and are not directly

connected to the links. Instead, for each cell c and destination s, define wcs to be

the walking time between cell c and destination z. Monetary and other generalized

costs can easily be incorporated into this term. If parking is not permitted on cell c,

by convention define wcs = ∞ for all s. Let the parameters Pc and µc respectively

denote the number of parking spaces associated with cell c and the mean duration

vehicles park on this cell, and let the state variable ac(t) the number of available

parking spaces on this cell at the start of interval t (0 ≤ ac(t) ≤ Pc). Demand is

specified by the parameters dcs(t), denoting the number of vehicles beginning trips at

cell c during the t-th time interval, traveling towards destination s.

Let xc(t) denote the number of vehicles in cell c at time t; these vehicles

are distinguished by whether they would park at this cell if a space is available,

or whether they would choose to keep driving to find a parking space closer to the

destination. Denote these numbers of vehicles as xPc (t) and xNPc (t), respectively, so

that xc(t) = xPc (t) + xNPc (t). These values are determined by the policies drivers

choose, as described in the next section.

After propagating flow already on the network in the t-th time interval, any

vehicles originating at cell c are loaded onto that cell if space permits (otherwise, they

are held back until the next time interval), along with the vehicles vacating parking
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spaces (denoted dc(t)). Modeling parking departures as a Poisson process, the prob-

ability that any occupied space will be vacated in a simulation tick is approximately

∆t/µc, assuming ∆t is sufficiently small. Following this, the number of parking ve-

hicles ec(t) is calculated as the lesser of xPc (t) and ac(t) + dc(t); the vehicles which

can park are randomly sampled from xPc (t) and the probability of finding parking on

this cell at time t is pc(t) = ec(t)/[ac(t) + dc(t)].
1 Note that this ordering implies

that vehicles already on the network have priority over vehicles attempting to enter

the network or leave parking spaces, and that vehicles seeking to park are willing

to wait to allow vehicles vacating parking spaces to do so. This process is shown in

Figure 4.3.

4.5 Demand-side: Parking Policies and Choices

Each vehicle is assigned a parking policy which determines its route and actions

whenever an available parking space is found. Formally, define the state space S =

C × T × {P,NP}, whose elements σ = (c, t, ρ) ∈ S indicate the current cell c, time

interval t, and parking status ρ (P for parking, NP for no parking) for a vehicle. The

notation c(σ), t(σ), or ρ(σ) is used to refer to these elements of state σ. A policy is

a mapping π : S → C ∪ {P} associating with each state s a corresponding action to

take — either a downstream cell to move towards, or the parking action P. A policy

is feasible if for all σ (i) π(σ) ∈ C implies π(σ) ∈ Γ(c) and (ii) π(σ) = P only if

ρ(σ) = 1.

1This intentionally violates first-in/first-out ordering; a parking space opening just upstream of
a lead vehicle may be taken by a following vehicle.
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1. Initialize all cell occupancies xc ← 0, t ← 0,
and parking availability ac = Pc.

2. Propagate flow at time t using cell transmis-
sion model.

3. For each cell c and each occupied parking
space, generate a random real number ξ by
uniformly sampling the interval [0, 1]; if ξ <
∆t/µc, increment ac.

4. For each cell c identify the number of vehicles
searching for parking xPc based on policies as-
sociated with each vehicle.

5. For each cell c randomly select ec =
min{xPc , ac} vehicles among the xPc searching
for parking, move them to parking spaces and
ac ← ac − ec

6. Update cell travel times and parking proba-
bilities.

7. If t < T increment t and return to step 2.

Figure 4.3: Cell transmission model algorithm with parking added.
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That is, each driver in a cell chooses whether or not to park on that cell if

a space is available; if no space is available or if the driver chooses not to park,

then the driver must choose which downstream cell to traverse next. If the driver

chooses action P for a feasible policy, their trip is complete because a parking space

is available. If the driver chooses a downstream cell, so π(σ) = d ∈ Γ(c) when

σ = (c, t, ρ), then they enter cell d at time t + τc(t). With probability pd(t + τc(t)),

the driver is next in state (d, t+ τc(t), P ), and with probability 1− pd(t+ τc(t)) they

are in state (d, t+ τc(t), NP ).

Given fixed values of travel times τ and parking probabilities p, the expected

travel time corresponding to a feasible policy π can be calculated as follows. Let

Lπ(σ, s) denote the expected remaining travel time from the current state σ = (c, s, ρ)

to destination s when using policy π. These labels satisfy the recursion Lπ(σ, s) = wcs

if π(σ) = P and Lπ(σ, s) = τc(t)+pd(t+τc(t))L(d, t+τc(t), P )+(1−pd(t+τc(t))L(d, t+

τc(t), NP ) otherwise, where d = π(σ) for brevity. The first case corresponds to the

parking action, while the second corresponds to driving to the next cell.

Finding an optimal policy π∗ for a given destination s and values of p and

τ is not difficult, and is accomplished by a standard label-correcting algorithm such

as that in Figure 4.4. In our behavior model, we assume that each driver chooses a

policy so as to minimize his or her expected travel time.

4.6 Equilibrium

The models presented in the previous two sections exhibit the mutual depen-

dency which is typical of transportation network models: travel times and parking
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1. Initialize all labels L(σ) =∞, create new policy π∗, set t← T .

2. For each cell c:

(a) Update L(c, t, NP ) ← mind∈Γ(c){pd(t + τc(t))L(d, t +
τc(t), P ) + (1− pd(t+ τc(t)))L(d, t+ τc(t), NP )}

(b) Update π∗(c, t, NP )← arg mind∈Γ(c){pd(t+ τc(t))L(d, t+
τc(t), P ) + (1− pd(t+ τc(t)))L(d, t+ τc(t), NP )}

(c) If wcs ≤ L(c, t, NP ) then update L(c, t, P ) ← wcs
and π∗(c, t, P ) = P ; else L(c, t, P ) ← L(c, t, NP ) and
π∗(c, t, P )← π∗(c, t, NP ).

3. If t > 0 decrement t and return to step 2.

Figure 4.4: Label correcting algorithm for finding optimal policies given destination
s.

probabilities depend on the policies used by drivers, but the optimal policies chosen

by drivers depend on the travel times and parking probabilities obtained from the

flow model. As suggested in Section 4.3, these perspectives are harmonized by the

introduction of an equilibrium principle. In particular, an equilibrium solution asso-

ciates a policy with each vehicle such that each vehicle’s assigned policy is optimal for

its destination, given cell travel times and parking probabilities consistent with this

policy assignment.

The model, as formulated above, assumes that vehicles are discrete; this is

necessary because the parking spaces are modeled as discrete entities. Therefore,

an exact equilibrium solution may not exist. Furthermore, equilibrium existence

arguments generally require assumptions on the cost mapping, such as continuity,
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1. Initialize travel times to free-flow and parking
probabilities to 1, iteration counter k ← 1.

2. Identify optimal policies π∗(s) for each des-
tination s, and assign to all vehicles. (Fig-
ure 4.4)

3. Increment k

4. Simulate cell transmission model for given
policies. (Figure 4.3)

5. (Optional.) Repeat previous step multiple
times to generate empirical distribution of t
and p based on repeated simulation.

6. Identify optimal policies π∗(s) for each desti-
nation s. (Figure 4.4)

7. For each vehicle heading to destination s,
switch its policy to π∗(s) with probability 1/k

8. Unless gap sufficiently small, return to step 3.

Figure 4.5: Method of successive averages equilibrium heuristic.

which may not be satisfied with the model presented in the previous sections, which

is both discrete and stochastic — owing to the random departures from parking

spaces, multiple samples may be needed to obtain reliable estimates for the parking

probabilities p. For these reasons, we present only a heuristic which aims to produce

a near-equilibrium solution with a small gap (as defined by the difference between the

labels of the chosen policies and optimal policies for those travelers). This heuristic is

based on the well-known method of successive averages, and is presented in Figure 4.5.

113



4.7 Demonstration

This section shows a simple example of the parking search simulation based on

CTM. Figure 4.6 presents the network structure and its attributes of this example.

In this network, all travelers are attempting to park to attend a special event at

the location of the star. The network consists of two ring roads connected by small

local streets. Travelers may park either at the small lot (most convenient, but least

capacity), the large lot (largest capacity, but a far walk away), or along the small local

streets (intermediate in capacity and distance). This network represents an extreme

case of time dependency, when parked vehicles never clear — in other words, the

likelihood of finding parking at different locations will vary significantly depending

on when someone begins searching, and again during the search itself. Therefore, this

is a suitable demonstration for the features of the dynamic model.

The algorithm were implemented in C and runs on a 2.60 GHz Intel machine

with 4 GB memory running Windows 7. Figure 4.7 shows the convergence rate of

the algorithm, reporting the average excess cost obtained after a given amount of

computation time has elapsed. The figure shows that the relative gap is decreasing as

time elapses thought it may have temporary increase at some point. The convergence

is notably less smooth and direct than the static model presented in the previous

chapter, which is logical because the dynamic model is a stochastic simulation based

on a discrete model.

Figure 4.8 shows how the number of parked vehicles change with running

iteration by iteration in the process of finding equilibrium policies. In the early

iterations, very few vehicles park, because initially all drivers are assigned to the
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Figure 4.6: The demonstration network for the dynamic parking assignment
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Figure 4.7: The DTA model convergence rate
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Figure 4.8: The number of parked vehicles in each iteration

best policy with no congestion, which is to aim to park at the small lot. This causes

significant congestion, and in fact most drivers will circle endlessly in the first iteration

since the capacity of the small lot is less than the number of vehicles. (This example

is a challenging instance for the dynamic algorithm, since parked vehicles never clear

and this type of infinite cycling can occur.) As iterations progress, more and more

vehicles are shifted to alternate policies which involve searching for street parking or

driving to the large lot.

Figure 4.9 shows how the parking distribution after 100 iterations. The size

and number of the circle indicate how many vehicles parked at that location. Notice
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that even though the small parking lot is the nearest location to the final destination,

there are still many vehicles parked at other locations because the small parking lot

does not have enough space for all the parking demand. Also notice that the total

number of parked vehicles is 96 which is not equal to the demand 100. This is because

we only run our model 100 iterations. Based on the 100 iterations, the chosen policies

only allow 96 vehicles to park but the other 4 vehicles are set to continue driving for

a desirable location. We did not run more iterations because after 100 iteration, the

result only changes slowly. This is largely due to our naive implementation of the

Method of Successive Averages, since step 7 chooses the vehicles to update randomly.

A more intelligent version would shift vehicles with higher-cost policies with greater

probability, rather than treating all vehicles uniformly in this regard, but developing

this version is beyond the scope of the dissertation. For many practical applications,

vehicles will vacate parking spots as well, which would also eliminate the problem of

vehicles cycling endlessly. We are not only interested in parking distribution, since it

is dynamic traffic assignment we also care about how the parking spaces occupied as

time goes by.

Figure 4.10 shows the number of parked vehicles in each location over time.

Notice that some of the first vehicles will first choose on-street parking, correctly

anticipating that the small lot would be filled by the time they arrive, even though at

the present time it is completely empty.. This shows the strength of the equilibrium

modeling concept. The small lot then fills, with drivers eventually choosing the large

lot. If we adjust the walking cost and free flow speed to some point, these profiles

and results may change.
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Figure 4.9: The number of parked vehicles at each parking location

119



 

Figure 4.10: The number of parked vehicles at different locations
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4.8 Sensitivity Analysis

A natural question may come out when we deal with traffic assignment models:

what would happen if change some parameters. For instance, if the traffic or parking

demand changes how the parking distribution would change. Doing such analysis is

very useful since it illustrates how the model may be used in practice. Predicting

the possible parking distribution change is very helpful to set up parking guidance or

redesign parking services.

As for this analysis for the example in Section 4.7, we reduced the demand

by 10, 30, 50 and 80 percent, respectively. Figure 4.11 shows that if we decrease the

demand, the number of parked vehicles in the big parking lot will reduce dramatically,

while it in the small lot does not change much.

Since we know for this special example, drivers mostly like to park in the small

lot or nearby links, we want to see if we increase the parking capacity of the small

parking lot, how the parking distribution will change. Figure 4.12 shows if we increase

the parking capacity of the small lot by 10, 30, 50, 80 and 100 percent, respectively,

how the number of parked vehicles will change at different locations. Clearly, if there

are more parking spaces at the small lot, many people do not need to get to the

far-away big lot to park, so its number is decreasing. Notice, all the parking spaces

in the small lot are always occupied.

Another reason that would impact parking distribution is the parking price

rate. Figure 4.13 shows how the price changing in the small lot would impact the

parking lot occupancy and the profit made from the ticket sale. As expected, increase
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Figure 4.11: The number of parked vehicles at different demand levels
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Figure 4.12: The number of parked vehicles with different parking capacity of the
small parking lot
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Figure 4.13: The number of parked vehicles in the small lot with different pricing
strategies

the price will reduce the number of vehicles parking in the lot, but the profit will

first increase until getting to some point where the total profit starts dropping. This

analysis is very useful for evaluating price strategies in garage or other kind of parking

lot management.

4.9 Conclusion and Practical Considerations

The model described in this chapter represents a dynamic traffic assignment

model which has been extended to include delays and congestion resulting from the

parking search process. In contrast to previous network-based approaches, these
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delays and congestion effects are modeled explicitly, using an online shortest path

approach. The resulting equilibrium state is a natural generalization of the Wardrop

condition traditionally used in transportation planning. Furthermore, the algorithms

presented above are easily amenable to implementation in agent-based simulation.

For large-scale instances, each component algorithm can be parallelized to decrease

computation time. This model can be used as is to evaluate parking policies related

to pricing and duration, both for routine conditions and special events. Its general

principles can also serve as the basis for more involved investigations concerning real-

time parking information or dynamic pricing policies; both of these are valuable topics

for future research. Other future research topics include extending the demand model

to handle trip chains (a vehicle departing from one parking space may head to several

other destinations, including parking at each one, before returning to the origin), or

developing alternative algorithms for reaching near-equilibrium solutions.

From the standpoint of practical implementation, the additional data require-

ments for this model, relative to existing dynamic traffic assignment models, are the

number of available parking spaces on each cell, the mean parking duration on each

cell, and the walking distances between each cell and each destination. The latter

data is relatively easy to estimate, given the network topology and an assumed walk-

ing speed. It may be easier to estimate the total number of available parking spaces

on a link, and divide them evenly among the cells, or to estimate the mean parking

duration with a proxy (such as a fraction of the maximum allowable time.)
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Chapter 5

Conclusion

5.1 Summary and Contribution

This dissertation developed three parking search models. To our knowledge,

these models were the first to incorporate parking search behavior into traffic assign-

ment models while considering the stochasticity in the parking availability and drivers’

parking choice behavior. The models can be used to evaluate proposed parking plan-

ning strategies or help provide more predicted parking information to travelers. This

would improve the parking services and reduce congestion levels because it would

work better than present traditional traffic assignment models which systematically

underestimate the parking and traveling demand by neglecting the parking search

process. As mentioned in Chapter 1, parking traffic may account for a considerable

portion of total flow, so it is necessary to incorporate parking into traffic assignment

models to obtain accurate forecasts of traffic and congestion levels.

To do this, we must consider the reason that causes parking searching traffic.

The first reason is uncertainty: before drivers get to their destinations, they do not

know the locations of available parking space. The result is ruising traffic and cycling

as drivers seek a parking space close to the destination. Commonly, drivers’ decisions

on where to park depend on their experience and perceived information. If there
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is real time parking availability information available to drivers, they will can make

improved decisions whether or not she to park at an available space or continue

searching for a closer space. The three models aim to capture this stochasticity both

in parking supply side and in driver’s choice behavior side.

Chapter 2 focuses on modeling a single drivers parking search behavior with

history dependence. The term “history dependence” refer to the driver’s memory of

parking space availability during passed visits. In this model, a so called “asymptotic

reset” probability function is built. This function can reflect impacts of the driver’s

past observations of parking availability on his/her future route and parking choice

decisions. This is the most important contribution of this model as it generalized

the concepts of “full reset”, in which the probability of finding a parking space is

independent of any past observations, and the “no reset”, in which parking availability

is completely determined by past observation. In asymptotic reset, there is large

dependence by past observations which are recent, which decay exponentially to the

a priori probabilities used by full reset. Finally the single driver’s parking search

behavior is modeled as a Markov decision process and solved with a value iteration

method.

Chapter 3 deals with multiple drivers’ parking search behavior. Similar to

the model for a single driver, this model also captures uncertainty in parking space

availability and drivers’ parking choice. The difference, this models currently does

not consider memory impacts, but take into account the mutual dependence between

route-parking choice and the probability of parking availability. The first contribution

of this model is that the network is transformed with dummy links and nodes which
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can account for splitting flows into two types: passing through flow and searching

parking flow. Vehicles of searching parking flows can either park through an added

dumy link or continue driving back to regular link and searching parking again. The

second contribution is that an traffic equilibrium solution algorithm is developed.

This can help this model to be used in practice or embedded into currently static

traffic assignment models.

Chapter 4 expanded the theories and principles in the static parking search

model into a cell transmission (CTM) based dynamic traffic assignment (DTA) frame-

work. Compare to the static model, this DTA model not only can describe the

stochasticity as in the static model, but also can reflect changes to demand, flows,

parking choice and occupancy over time. The policy-based equilibrium of this model

can be achieved by running the solution algorithm which can be used to evaluate

parking planning alternatives or parking controls for events. It can also be used to

predict real time traffic and parking conditions.

Overall, to our knowledge the innovative models developed in this dissertation

are the first models that combine traffic assignment and stochastic parking search

process, and have big potentials to be used in practice and benefit the transportation

system.

5.2 Future Work

Future work includes improving the models and generalizing them into more

conditions. The first consideration is expand the history dependence into multiple

vehicles models. This makes it much more interesting as not only the memory impacts
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should considered, but also the interaction between drivers or even between their

memories should also be considered.

Another possible work is to make the models reflect flow-congestion interac-

tions. Now, one of the biggest assumptions for the first two models is that the link

travel times are constant but not flow dependent. this is because the time we started

modeling it, we try to simplify it and focus on the memory impacts but not other

things. However, in the future, developing flow dependent link cost functions and

incorporate it into the models can make them more realistic.

Incorporate more information into present models. While currently we only

consider memory impacts on parking choice behaviors, in the future, we may consider

include spatial correlations into the model. For instance, if a link has no opening

parking spot, it is highly possible that its neighbor link has no spot either. This

requires bigger state spaces for modeling it as a MDP.

Run the models even on bigger networks. This dissertation focuses on model

construction and algorithm design, so it does not test them on very large network.

one of the reason is that running the models on a large network usually needs a very

long time which seems not worthy of in current stage. The other reason is that it

is hard to get real data, especially parking information for large networks. Making

assumptions on the these data for large networks may causes big errors.

Comparing the DTA model with the static model and other common DTA

models may also give surprises. As we mentioned before, without considering parking,

there will be a big underestimation of traffic flows in some area. After comparison
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it may help understand why some traffic management or control strategies that have

been tested with simulations and proved to be feasible do not work in reality. Another

difference is that common DTA or even static assignment models assume each vehicle

ends at its final destination point, usually the centroid point. This requires some

vehicles with the same destination centroid concentrate at a point at some time which

may cause short term extreme local congestion. While the DTA in this dissertation

let vehicles park on the link or to some parking lot with a “scattered” way. there will

probably no short term extreme congestion at all.
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Appendix 1

Probability of Parking Availability

In this section we develop one potential specification for the pij functions. For

each link, assume that the total number of parking spaces is given by the positive

integer Sij. (If no parking is available, pij is uniformly zero.) Further assume that the

mean parking time for any vehicle on this link is µij, that the parking duration for any

vehicle is exponentially distributed with this mean independent of any other, and that

the headways between vehicles arriving to park are also exponentially distributed with

mean headway 1/xij,S. Omitting subscripts for brevity, we now derive pij as follows.

Define the state variable P ∈ {0, · · · , S} denoting the number of occupied

parking spaces. The evolution of P can be modeled as a Markov chain with transition

matrix

1− x x 0 · · · 0 0
1/µ 1− x− 1/µ x · · · 0 0
0 2/µ 1− x− 1/µ · · · 0 0
0 0 3/µ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1− (S − 1)/µ− x x
0 0 0 · · · S/µ 1− S/µ


(1.1)

whose eigenvector gives the steady-state probabilities πk for the number of occupied

parking spaces. Exploiting the matrix structure, we can calculate this eigenvector

132



recursively:

π1

π0

= µx (1.2)

π2

π1

=
µx

2
(1.3)

... (1.4)

πn
πn−1

=
µx

n
(1.5)

... (1.6)

πS
πS−1

=
µx

S
(1.7)

so πk ∝ (µx)k/k! and

πk =
(µx)k/k!∑S

k′=0(µx)k′/(k′)!
(1.8)

Thus we have

p(x) = 1− πS =

∑S−1
k′=0(µx)k

′
/(k′)!∑S

k′=0(µx)k′/(k′)!
(1.9)

With this specification of p(x), xp(x) is strictly increasing as shown below. Appli-

cation of l’Hospital’s rule shows that C = limx→∞ xp(x) = S/µ in accordance with

intuition. (The maximum rate new vehicles can park is the number of available spaces

multiplied by the average rate parked vehicles depart.)

Proposition 14. If parking probabilities are given by (1.9) then xp(x) is strictly in-

creasing for x > 0.

Proof. Let f(x) = xp(x). Both the numerator and denominator of f are strictly

positive whenever x is; therefore to show that f ′(x) > 0 it is enough to show that the
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numerator of its derivative is strictly positive, that is,(
S∑
k=0

µk

k!
xk

)(
S−1∑
k=0

µk

(k + 1)!
xk

)
−

(
S−1∑
k=0

µk

k!
xk

)(
S∑
k=0

µk

(k + 1)!
xk

)
> 0 (1.10)

Noting that the first term can be replaced by(
S∑
k=0

µk

k!
xk

)(
S∑
k=0

µk

(k + 1)!
xk

)
− µSxS

(S + 1)!

(
S∑
k=0

µk

(k)!
xk

)
(1.11)

and the second by(
S∑
k=0

µk

k!
xk

)(
S∑
k=0

µk

(k + 1)!
xk

)
− µSxS

S!

(
S∑
k=0

µk

(k + 1)!
xk

)
(1.12)

it is enough to show that

µSxS

S!

(
S∑
k=0

µk

(k + 1)!
xk

)
>

µSxS

(S + 1)!

(
S∑
k=0

µk

k!
xk

)
(1.13)

Comparing term by term,

µSxS

S!

µk

(k + 1)!
xk =

µSxS

(S + 1)!

S + 1

k + 1

µk

k!
xk (1.14)

Since S ≥ k for all terms in the sum (and S > k for all but the last) this establishes

the result.

When S is large, the formula (1.9) may be difficult to evaluate numerically, so

an approximation is given here. Define Bi = (µx)i/i! so (1.9) is simply

p(x) = 1− BS∑S
k=0Bk

(1.15)

Now BS = elogBS and

logBk ≈ k log(µx)− k log k + k − 1

2
log(2πk) (1.16)
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using Stirling’s approximation to k!. Furthermore, using the Taylor expansion of ex

we have

Bk ≈ 1 + k log(µx)− k log k + k − 1

2
log(2πk) (1.17)

which can be directly substituted in the numerator of (1.15). In the denominator,

using the asymptotic expressions

S∑
k=1

log k ≈ (S +
1

2
) logS − S +

1

2
log(2π) (1.18)

and
S∑
k=1

k log k ≈ K − S2

4
+
S(S + 1)

2
logS +

logS

12
(1.19)

with K = 1
12
− ζ ′(−1) where ζ is the Riemann zeta function, we finally obtain

p(x) ≈ 1−
1 + S

(
log µx

S
+ 1
)
− 1

2
log(2πS)

1−K + S − 1
4

log(8πS) + S(S+1)
2

(
log µx

S
+ 1
)

+ S2

4
+ S

2
(1− log(2πS))

(1.20)

after some algebra. While an approximation, this function is easier to evaluate for

large S (say, if a parking link represents a large lot.)
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