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Mobility services, such as ridesourcing and e-scooters, are changing the trans-

portation landscape. These services are often unregulated and their impact on traffic

or alternative modes is not well understood. In this dissertation, we study two features

of mobility services: (1) we analyze the management of ridesourcing platforms through

policies aimed at minimizing their congestion externality; in particular, we investigate

policies that reduce idling drivers and improve operational efficiency, (2) we explore the

interaction between mobility services and alternative modes; in this case, we study the

relationship between e-scooter ridership and transit. While the first part of the disser-

tation develops mathematical models to understand time-dependent policies for rides-

ourcing management, the second component focuses on statistical and equity analysis of

observed e-scooters data in Austin, TX.
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Chapter 1

Introduction

Mobility services are expanding at a rapid pace. Within the past few years, cities

across the globe experimented with a wide range of new mobility options. This growth

has been supported by advancement in applications that connect services with users. It

is also expected that self-driving technology would reduce operating costs and further

accelerate adoption of on-demand mobility services.

That said, will this increase in services translate to the improved mobility of people

and goods? In many cities, the current state of unfettered expansion resulted in further

congestion, inequity, and pollution. Drivers circle around downtown areas looking for

their next passenger, and e-scooters litter public spaces and the environment. Will au-

tonomous taxis increase vehicle miles traveled?, and what proportion of those miles will

be without any passengers? Will e-scooters provide accessibility to underserved com-

munities?, or will they be piled up on a downtown sidewalk? Researchers are actively

studying all those questions to inform policies that shape well-connected livable cities.

This dissertation investigates strategies for managing ridesourcing services (e.g,

Uber/Lyft) by focusing on policies that reduce congestion and minimize operational in-

efficiencies. Two different ridesourcing management strategies are studied: (1) advanced

reservation of rides (supply management) and (2) pricing policies that induce passengers

to depart at off-peak periods (demand management). In addition to ridesourcing, the dis-

sertation studies the distribution of e-scooter trips in Austin, TX and how those e-scooters

interact with other services such as bus transit.
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1.1 Background: Ridesourcing Systems

Recent growth of ridesourcing services is further exacerbating fleet management

challenges associated with dynamic and spatially asymmetric passenger demands. Rides-

ourcing platforms (e.g., Uber and Lyft) need to locate a sufficient number of drivers near

anticipated passenger demand to reduce the reach time (i.e., the customer wait time be-

tween ride request and the arrival of a driver). However, an abundance of drivers may

result in increased driver idle time. This spatiotemporal supply-demand mismatch led

platforms to implement a set of strategies aimed at improving operational efficiency.

In general, supply and demand management strategies can be broadly classified

into one of the following categories: pricing, fleet sizing, empty vehicle routing (rebal-

ancing), or matching passengers to drivers (Nie, 2017; Zuniga-Garcia et al., 2020). To

implement those strategies in practice, the platform uses a set of control levers that in-

clude earning guarantees for new drivers, sign-on and added bonuses, and heat maps

that show high demand locations where drivers earn more due to surge pricing (Lyft,

2019a,c). In addition, as implemented by Lyft in New York City, platforms can restrict the

number of active drivers or force them to drive towards high demand areas if they wish

to remain online (Lyft, 2019b).

1.1.1 Modeling frameworks

To theoretically evaluate the impact of demand or supply management strategies,

researchers have developed different modeling frameworks that describe ridesourcing

systems. Those models often vary depending on the application being studied. How-

ever, most models can be classified into one of the following categories: (1) equilibrium-

based without stochasticity, (2) steady-state equilibrium analysis of stochasticity, (3) time-

dependent without stochasticity, (4) steady-state stochastic analysis within time-dependent
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models, (5) time-dependent with transient (non-steady state) analysis of stochasticity. The

models proposed in this dissertation fall into the last category, where we develop time-

dependent models of ridesourcing systems and evaluate policies using transient analysis

of stochastic processes (Yahia et al., 2021b).

Equilibrium analysis methods

The majority of existing studies on ridesourcing systems focus on analyzing in-

teractions between driver supply and passenger demand under static equilibrium condi-

tions. These studies seek to evaluate the market share of ridesourcing platforms, com-

petition among platforms, and the impact of ridesourcing platforms on traffic congestion

(Bahat and Bekhor, 2016; Ban et al., 2019; Di and Ban, 2019; Qian and Ukkusuri, 2017;

Wang et al., 2018; Yahia et al., 2018). Following Yang and Yang (2011), researchers ex-

amined the relationship between customer wait time, driver search time, and the cor-

responding matching rate at market equilibrium (Xu et al., 2020; Zha et al., 2016). Re-

cently, Di et al. (2018) incorporated ridesharing user equilibrium in a network design

problem; Zha et al. (2018a) proposed an equilibrium model to investigate the impact of

surge pricing on driver work hours; Zhang and Nie (2019) studied passenger pooling un-

der market equilibrium for different platform objectives and regulations; and Rasulkhani

and Chow (2019) generalized a static many-to-one assignment game that finds equilib-

rium through matching passengers to a set of routes. While static equilibrium analysis

provides valuable strategic decision-making insights, it fails to address stochasticity and

time-dependence in ridesourcing dynamics.

Steady state analysis of stochasticity

To investigate stochasticity in demand/supply management, researchers have de-

veloped queueing theoretic models for ridesourcing systems. In particular, closed queue-
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ing networks were used to analyze rebalancing and pricing policies (Banerjee et al., 2017;

Braverman et al., 2019; Zhang and Pavone, 2016). In these closed queueing networks, the

difficulty in designing supply management strategies arises from equilibrium (steady-

state) constraints that result in high dimensional non-convex problems (Banerjee et al.,

2017). Other queueing based approaches include a double-ended queue to characterize

stochasticity in matching (Xu et al., 2020) and an M/G/N queue where each driver is

considered to be a server (Li et al., 2019). Spatial stochasticity associated with matching

was also investigated using Poisson processes to describe the distribution of drivers near

a passenger (Chen et al., 2019; Zhang et al., 2019; Zhang and Nie, 2019).

Those studies focus on steady-state (equilibrium) analysis that disregards the time-

dependent variability in demand/supply patterns. Furthermore, temporal variations in

demand/supply patterns may occur rapidly, and the system may not attain the steady-

state equilibrium conditions (Braverman et al., 2019; Ozkan and Ward, 2020). In addition,

policies generated from steady-state optimization in closed queueing networks are open-

loop (static); this implies that the policies do not react to the time-dependent stochastic

state of the system.

Time-varying models without stochasticity

The importance of time dynamics has been emphasized in recent articles that de-

sign time-dependent demand/supply management strategies (Ramezani and Nourine-

jad, 2018). Wang et al. (2019) proposed a dynamic user equilibrium approach for deter-

mining the optimal time-varying driver compensation rate. Similarly, Nourinejad and

Ramezani (2020) developed a dynamic model to study pricing strategies; their model al-

lows for pricing strategies that incur losses to the platform over short time periods (driver

wage greater than trip fare), and they emphasized that time-invariant static equilibrium

models are not capable of analyzing such policies. An alternative dynamic model was
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proposed by Daganzo and Ouyang (2019); however, the authors focus on the steady-state

performance of their model. While these models can be used to analyze time-dependent

policies, the authors do not explicitly consider the spatio-temporal stochasticity that results

in the mismatch between supply and demand.

Steady-state analysis of stochasticity in time-dependent ridesourcing systems

The most common approach for analyzing time-dependent stochasticity in rides-

ourcing systems is to apply steady-state probabilistic analysis over fixed time intervals. In

other words, a steady state is assumed to be reached within each interval, where param-

eters such as arrival rate differ across intervals. However, in the context of driver rebal-

ancing, experimental analysis by Braverman et al. (2019) suggests that the time needed

to converge to steady-state (equilibrium) in ridesourcing systems is on the order of 10

hours. Thus, since parameters (e.g., passenger arrival rate) vary over much shorter time

intervals, the system would not reach the steady-state condition. Another limitation of

time-dependent steady-state policies is that they are independent of the realized system

state at any time instant. In particular, those policies are based on probabilistic predic-

tions over entire time intervals, and they do not react to the stochastic system state that is

realized at a specific time within the time interval.

Transient analysis of stochasticity in time-dependent ridesourcing systems

To address limitations in steady-state methods, Braverman et al. (2019) proposed

a time-dependent look-ahead policy that can be used to make rebalancing decisions at

any point in time. Recent studies that investigate operational challenges in ridesourcing

systems also advocate for transient analysis instead of steady-state models (Nourinejad

and Ramezani, 2020; Ozkan and Ward, 2020).

The ridesourcing methods in this dissertation fall into this category of analyzing
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time-dependent stochasticity in ridesourcing systems. The proposed policies focus on the

transient nature of dynamics and do not assume that a steady-state would be achieved.

In addition, the proposed state-dependent policies react to the realized fluctuations in the

stochastic system state.

1.1.2 Pricing for ridesourcing systems

The majority of existing literature on pricing in ridesourcing systems investigates

the role of surge pricing in alleviating or worsening operational inefficiencies. In general,

these studies can be classified as either equilibrium-based evaluation of optimal prices or

data-driven investigation of pricing inefficiencies.

Modeling ridesourcing systems as two-sided markets, researchers examined the

impact of prices on the equilibrium between earning-sensitive drivers and price-sensitive

passengers (Bai et al., 2019). In this approach, the prices, demand rate, and expected

supply are fixed across different time-periods. Thus, the steady-state equilibrium is as-

sumed to hold within each time period where the optimal price is determined. Alterna-

tive steady-state equilibrium methods include: the analysis of threshold-based dynamic

pricing strategies, where the prices are determined by the number of idle drivers (Baner-

jee et al., 2016); spatial pricing across a network of regions (Bimpikis et al., 2019; Zha et al.,

2018b); and the use of pricing to alleviate system inefficiencies such as matching drivers

to distant passengers at high demand levels (Castillo et al., 2017; Xu et al., 2020; Zha et al.,

2018b).

While equilibrium-based methods provide valuable strategic-level insights into

supply and demand management (Ban et al., 2019), their value may be limited in op-

erational analysis where the system parameters vary rapidly. As previously mentioned,

in the context of driver rebalancing, it was shown that the time needed to converge to a

steady-state equilibrium is on the order of 10 hours (Braverman et al., 2019). Thus, since
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parameters and system characteristics vary over a much shorter time scale, transient (non-

equilibrium) methods are needed for operational decisions. Recently, transient analysis

of ridesourcing systems resulted in novel pricing strategies where the platform may incur

losses over short time periods (Nourinejad and Ramezani, 2020); the authors emphasize

that such policies can not be evaluated using time-invariant steady-state methods.

In addition to model-based analysis, pricing was further examined using data-

driven approaches. Notably, by analyzing the spatial variation in the mismatch between

supply and demand (search frictions), it was shown that the future earnings of drivers

starting at the same location differ significantly based on the assigned destination (Zuniga-

Garcia et al., 2020); consequently, there is a need for “destination invariant” pricing mech-

anisms where drivers starting their trip at the same location and the same time have equal

expected future income (Ma et al., 2018). Other data-driven methods include the predic-

tion of future surge pricing patterns to inform driver and rider decisions (Battifarano and

Qian, 2019).

As opposed to existing equilibrium-based methods, this research focuses on state-

dependent pricing using transient analysis of ridesourcing dynamics. In other words, in-

stead of assuming steady-state conditions within successive time periods, we implement

real-time pricing that reacts to the current and predicted stochastic system state. More-

over, in contrast to origin-based pricing strategies, the proposed mechanism depends on

both spatial and temporal components of the predicted demand.

1.2 Background: E-Scooters

E-scooters offer an alternative travel mode that could reduce congestion and pol-

lution (Gössling, 2020). However, e-scooters have also raised safety concerns as a result of

the high injury rate for riders using this mode (Rix et al., 2021). The majority of research
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on e-scooters focuses on safety or exploratory travel analysis (Zuniga-Garcia et al., 2021).

In terms of exploratory analyses, Zou et al. (2020) investigated e-scooter data in

Washington D. C. It was observed that e-scooters are predominantly used during the

evening peak hours and in the middle of the day– indicating that they serve non-commute

travel. The authors also noted how e-scooter rides were correlated with events in the area.

The trip distances observed were under 1 mile and the median ride duration was around

10 minutes. Thus, similar to observations by Sanders et al. (2020), most e-scooter rides are

a replacement for walking. Sanders et al. (2020), who surveyed university staff in Tempe

Arizona, noted that barriers to e-scooter ridership include availability of the service and

safety concerns.

Safety was especially highlighted in several articles as a key limitation of e-scooters.

Yang et al. (2020) mined data from news reports to describe e-scooter incidents. The au-

thors found that the injury rate during the night time was higher and that female riders

were less likely to be involved in a fatal crash. As for the injury rate per mile, Rix et al.

(2021) found the the e-scooter rate was 175-200 times higher than motor vehicles rates.

This dissertation investigates the relationship between e-scooters and transit. We

use CapRemap, Austin’s transit network redesign, as a natural experiment to evaluate

resulting changes to scooter ridership. The objective of this research is to investigate

whether e-scooters can replace transit in areas that lost service.
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Chapter 2

Book-Ahead and Supply Management for Ridesourcing Systems

2.1 Introduction

Given the objectives of guaranteeing low customer waiting times and low driver

idle time, the following questions arise: how many drivers should a ridesourcing plat-

form supply?, and, how should the platform spatially manage idle drivers based on an-

ticipated demand?

In this chapter, the primary objective is to investigate the role of book-ahead/reserved

rides in the management of driver supply. Reservations give precise information charac-

terizing the start time and location of anticipated trips; in turn, the platform can use this

information to adjust the availability and spatial distribution of its driver supply. Thus,

given a reach time service requirement that the platform seeks to maintain, we analyze

the impact of reservations on the number of drivers supplied throughout the network.

Moreover, since passengers that schedule a ride in advance expect the driver to arrive

within a desired pickup window, our analysis incorporates such priority of book-ahead

rides over non-reserved rides.

The proposed supply management framework parallels existing research on rides-

ourcing systems (Djavadian and Chow, 2017; Lei et al., 2019; Wang and Yang, 2019). The

majority of existing studies assume a fixed number of driver supply and/or steady-state

(equilibrium) conditions. However, it is increasingly apparent that demand and supply

patterns in ridesourcing systems are time-varying. In addition, these variations in de-

mand and supply occur at a fast pace, and the system may never attain a steady state

equilibrium.
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Thus, our proposed framework for analyzing reservations in ridesourcing systems

focuses on the transient nature of time-varying stochastic demand/supply patterns. Pre-

cisely, for any future point in time, we seek to probabilistically characterize the total

number of active (non-idle) drivers; this time-dependent probabilistic characterization

is determined by the fraction of book-ahead rides, the stochasticity of non-reserved rides,

the anticipated time-varying profile of book-ahead rides, and control policies that aim to

maintain reach time priority for book-ahead rides. In more detail, as shown in Figure 2.1,

the proposed framework consists of the following three components for managing driver

supply:

1. We develop a state-dependent admission control policy that assigns drivers to pas-

sengers. The objective of this control policy is to guarantee the reach time service

requirement for book-ahead rides. The policy reacts to the realized ride requests

and available driver supply. Effectively, the admission control policy ensures that

there is a sufficient number of drivers near the location of anticipated book-ahead

rides such that the driver can reach the passenger within the pickup window. In

other words, the admission control policy ensures that the reach time service re-

quirement is attained for book-ahead rides by choosing which driver to assign to

every realized non-reserved ride request.

2. In a predictive approach over an upcoming time-interval, we provide an upper

bound on the performance of the state-dependent admission control policy; pre-

cisely, the performance of the policy is measured in terms of the probability that the

reach time service requirement would be violated for a non-reserved ride. In con-

trast to steady-state methods, we use transient analysis of Mt/GI/∞ to determine

the aforementioned upper bound at any point in time throughout the window. In

other words, we derive a time-dependent upper bound on the probability of reach
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Figure 2.1: Proposed framework for computing the target supply that probabilistically
guarantees the reach time service requirement, assigning drivers to passengers to guaran-
tee the arrival of drivers to book-ahead rides within the pickup window, and rebalancing
drivers across regions to maintain the targets.

time violation for non-reserved rides. Subsequently, we use the time-averaged value

of the upper bound to compute the “target” number of drivers that is required dur-

ing the upcoming time window; thus, this target limits the probability of reach time

service violation to be within a desired performance level.

3. We propose another reactive state-dependent policy for dispatching/rebalancing

drivers across multiple regions. In practice, the driver supply may deviate from

the predicted target due to the spatiotemporal passenger demand patterns. Thus,

we propose a minimum cost flow mechanism that determines the adjustments to

the driver supply that are needed to maintain the targets throughout the network.

For a specific system state at some time within the time window, the dispatch-

ing/rebalancing mechanism determines the number of idle drivers that should tran-

sition to adjacent regions to achieve the targets.

The remainder of this chapter proceeds as follows: Section 2.2 describes the pro-

posed model for analyzing time-dependent ridesourcing dynamics. Section 2.3 presents
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the admission control policy. Section 2.4 derives an upper bound on the performance of

the admission control policy and computes the target supply. Section 2.5 presents the

driver dispatching/rebalancing mechanism. Section 2.6 exhibits simulation results using

data from Lyft operations in Manhattan. Section 2.7 concludes the chapter.

2.2 System Model

In this section, we describe a general model for time-varying dynamics in rides-

ourcing systems. The proposed model represents the number of future active rides that

initiate in a region. A ride/driver is active from the moment the driver is dispatched

to pick up the passenger until the trip is completed. For non-reserved rides, the ride

becomes active at the same time as the request is initiated. On the other hand, for book-

ahead rides, there is a lag between the time that the request is initiated and the time that

the drivers is dispatched to pick up the passenger. While active, drivers are associated

with the passenger and can not take on other requests. The ride duration (service time)

is the time spent while the driver is active which includes the pick up time. A ride starts

when the driver becomes active and ends when the driver is idle again.

The active rides are represented over a set of geographic regions R = {1, .., m}.

These regions are sufficiently small that if a ride request initiates in a region and the

assigned driver is operating in the same region, then the reach time is within a desired

service level. In other words, if we want the reach time to be under 10 minutes, then the

time it takes to drive from any point to any other point within the defined region should

be under 10 minutes.

Consequently, we incorporate reservations by providing reach-time priority for

book-ahead rides. For a driver to arrive within the book-ahead ride pickup window, the

driver must be geographically close to the passenger at the anticipated trip start time.
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Table 2.1: Table of notation & definitions
active driver ≜ drivers are active from the moment they are dispatched to pick up a passenger

and until the passenger leaves the vehicle
idle driver ≜ driver waiting to be dispatched (not active)

ride initiation/start ≜ time driver is dispatched to pick up passenger
ride completion ≜ time passenger leaves vehicle

ride duration ≜ total time while driver is active (includes pick up time)
R ≜ set of regions {1, .., r, .., m}

window k ≜ time window (kw, (k + 1)w]

w ≜ duration of time window
ck

r ≜ target number of drivers in region r during window k that would probabilistically
guarantee a desired reach time service level

f P,k
r (t) ≜ deterministic process representing active drivers at time t ∈ (kw, (k + 1)w] that

are serving requests which initiated in r during previous time windows
f BA,k
r (t) ≜ deterministic process representing active drivers at time t ∈ (kw, (k + 1)w] that

are associated with book-ahead trips that initiate within window (kw, (k + 1)w] in
region r

Nk
r (t) ≜ stochastic process representing active drivers at time t ∈ (kw, (k + 1)w] that are

associated with admitted stochastic non-reserved rides that initiate within window
(kw, (k + 1)w] in region r

λk
r (t) ≜ demand rate at which stochastic non-reserved ride requests initiate during win-

dow k in region r
gk

r (·) ≜ probability density function characterizing the ride duration (completion time -
trip request time) of stochastic non-reserved rides that appear during window k
in region r

Gk
r (·) ≜ cumulative density function of gk

r (·)
f A(τi),k
r (t) ≜ active drivers at time t ∈ (τi, min{τi + Di, (k + 1)w}] corresponding to non-

reserved rides that were previously admitted between (kw, τi] in region r
τi ≜ arrival time of the ith non-reserved ride request

Di ≜ ride duration of the ith non-reserved ride
γi ≜ indicator function/random variable characterizing the event that the ith non-

reserved ride request is admitted
Bk

r ≜ average blocking probability during window k in region r
δ ≜ desired reach time quality of service for non-reserved rides (upper bound on the

average blocking probability)
Nk,∞

r (t′) ≜ number of busy servers at time t′ ∈ (0, w] in a transient Mt/GI/∞ queue that starts
empty at t′ = 0; equivalently, the number of active non-reserved rides assuming
that all stochastic non-reserved requests are admitted

ρk
r (t′) ≜ time-dependent mean/variance of the Poisson distribution characterizing

Nk,∞
r (t′) at time t′ ∈ (0, w]

ar ≜ number of active drivers in region r
er ≜ number of idle drivers in region r
sv

r ≜ virtual supply in region r representing drivers in excess of the target ck
r that can be

removed from region r
dv

r ≜ virtual demand in region r representing drivers that should be added to region r
to meet the target ck

r
∆r ≜ if region r has virtual demand, then ∆r = −dv

r ; otherwise, if the region has virtual
supply, then ∆r = sv

r
hij ≜ recommended driver transitions between region i and j

1{·} ≜ indicator function or random variable
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Thus, we consider that book-ahead ride requests must be assigned a driver from within

the same region in which the request initiates, and that satisfying the reach time service re-

quirement for book-ahead rides is equivalent to a driver arriving to the passenger within

the pickup window. In Section 2.3, we design an admission control policy that guarantees

that book-ahead rides will be assigned a driver from within the same region.

In the proposed ridesourcing model, we do not explicitly analyze ridesharing (i.e.,

passenger pooling); however, the predicted number of active rides would be a conser-

vative estimate on the corresponding value in ridesharing systems. Furthermore, for

tractable target computations, we examine each region separately. In other words, the

admission control and corresponding targets assume passengers remain within the zone,

disregarding the variation in destinations. Then, to account for the spatial distribution

of passenger destinations and the associated movement of drivers across regions, we im-

plement a min-cost flow rebalancing method that maintains the targets across regions.

Note that the targets themselves represent a desired number of drivers that is determined

by passenger demand; this implies that the targets do not depend on the stochasticity of

drivers entering and exiting the system.

We proceed by describing the model for active rides in each region. For each re-

gion, this model consists of processes representing book-ahead rides and non-reserved

stochastic rides. The processes form the basis of subsequent sections that discuss the ad-

mission control policy and the computation of targets.

2.2.1 Time-varying profiles representing rides that will be active in the

future

In each region r ∈ R, we represent ridesourcing dynamics over future time win-

dows of length w. At the beginning of each window k, corresponding to time interval
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(kw, (k + 1)w], the ridesourcing platform can characterize three processes (two determin-

istic and one stochastic) that will be realized during the upcoming window (kw, (k + 1)w].

The processes represent active drivers at time t ∈ (kw, (k + 1)w] that are serving requests

initiated within the region.

Figure 2.2: System model characterizing the cumulative number of rides that will be active

in the future at time t ∈ (kw, (k + 1)w]. Arrows pointing upwards indicate trip start time.

Arrows pointing downwards indicate trip completion. Solid lines correspond to f P,k
r (t),

dotted lines correspond to f BA,k
r (t), and dashed lines correspond to Nk

r (t). Non-reserved

requests marked with an “X” are blocked requests.

First, we assume that the platform knows the anticipated start time for book-ahead

rides that will initiate during window k. We also assume that the platform can accurately

estimate the corresponding ride duration (i.e. the platform has full trip information for

future book-ahead rides). Thus, at the start of window k, the platform can characterize the

deterministic process { f BA,k
r (t) : t ∈ (kw, (k + 1)w]} that represents the number of active

drivers at time t associated with book-ahead trips that will initiate in region r within
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window k.

Second, at the beginning of time window (kw, (k + 1)w], currently active drivers

serving rides that started in region r prior to time t = kw are known to the platform. For

those previously observed trips, we assume that the platform can accurately estimate the

trip completion time. Thus, at the start of window k, the platform can characterize the

deterministic process { f P,k
r (t) : t ∈ (kw, (k + 1)w]}. This process represents the number

of active drivers at time t that are serving rides that started in region r during previous

time windows. In other words, those are previously observed rides that haven’t ended

yet and may correspond to either passenger type (book-ahead or non-reserved).

Third, at the beginning of window k, the platform also anticipates non-reserved

stochastic rides that will arise throughout the upcoming window in region r. For those

rides, we assume that the platform can estimate the demand (ride request) rate {λk
r(t) :

t ∈ (kw, (k + 1)w]}. We also assume that the platform can estimate a general distribution

gk
r (·) that corresponds to the ride duration (the CDF of gk

r (·) is Gk
r (·)), and we consider

that the duration of any specific non-reserved trip is independent of other trips. Then,

we define a stochastic process {Nk
r (t) : t ∈ (kw, (k + 1)w]} that represents the number of

active drivers at time t associated with admitted stochastic rides which initiate in region

r during window k. In this case, a non-reserved ride request would be admitted if it is

assigned a driver from within the same region.

The deterministic processes { f P,k
r (t), f BA,k

r (t) : t ∈ (kw, (k + 1)w]} and the stochas-

tic process {Nk
r (t) : t ∈ (kw, (k + 1)w]} are illustrated in Figure 2.2. The figure shows the

cumulative number of active drivers at time t ∈ (kw, (k + 1)w]}.

The next section describes the admission control policy that decides whether to

admit non-reserved rides based on the difference between the predicted targets and the

number of active drivers. The admission control policy is state-dependent such that the

admission decision is determined for each ride request once the request is observed. In
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Figure 2.3: Implementation of the proposed framework across time windows.

more detail, the admission decision depends on the current known state of the system for

the entire duration that the observed ride will be active. Given this policy, we discuss in

Section 2.4 how the targets are evaluated at the beginning of the window. However, to

compute the targets, we refer to the predicted future system state under the control policy,

and we resort to a probabilistic characterization of the anticipated non-reserved rides (i.e.,

we further analyze the stochastic process {Nk
r (t) : t ∈ (kw, (k + 1)w]}). In other words,

the admission control policy uses the targets in determining the deterministic admission

decisions while the targets are evaluated using the predicted stochastic system state that

will arise under the control policy. Then, in Section 2.5, we present the driver dispatching

and rebalancing mechanism that maintains the targets given the observed demand pat-

terns. Figure 2.3 illustrates the relationship between different components of this chapter

and the time at which those components would be implemented.

17



2.3 Admission Control Policy

In this section, we present an admission control policy that is used to assign drivers

to realized non-reserved ride requests. In each region, when a non-reserved ride request

is observed, the proposed state-dependent control policy determines whether the request

should be admitted or blocked. If the request is admitted, then a driver from within the

same region is assigned to serve the request.

The admission decision is based on the supply in the region, the anticipated book-

ahead rides, and the previously admitted non-reserved rides. The policy seeks to guar-

antee that a driver from within the same region would be available to serve anticipated

future book-ahead rides. Thus, admission control aims to guarantee that drivers arrive

within the pickup window for future book-ahead rides. Since the same policy is imple-

mented for each region, we restrict our discussion in this section to a single region r ∈ R.

At any time t ∈ (kw, (k + 1)w], the admission control policy determines if idle

drivers will be available in the region by comparing the number of active rides to the tar-

get supply ck
r . The target supply ck

r , illustrated in Figure 2.2, is the total number of drivers

associated with region r during window k; this total includes drivers that are serving

ride requests initiated in region r and drivers idling in region r. The target ck
r represents

a desired level of driver supply that would probabilistically guarantee the reach time

service requirement for non-reserved rides (Section 2.4). The admission control policy

assumes that the targets ck
r will be maintained in each region r throughout the time win-

dow k. For tractable computation, the admission control policy also assumes that the

passengers destinations remain within the region (in Section 2.5, we devise a driver dis-

patching/rebalancing mechanism that considers the spatial distribution of demand and

seeks to maintain the target across regions).
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2.3.1 Policy implementation

A non-reserved ride request is admitted if, upon admission, the total number of

active rides does not exceed the target supply for the entire ride duration. Once a non-

reserved ride request is observed, the associated ride duration would be also revealed

to the platform. Then, there are two cases where the admission control policy would

block the non-reserved ride request: (1) There are not enough available drivers within the

region at the time of request initiation; this is illustrated in Figure 2.2 at time tb
1, where the

sum Nk
r (tb

1) + f BA,k
r (tb

1) + f P,k
r (tb

1) is equal to the target ck
r . In other words, admission of

the non-reserved ride would result in the total number of active rides exceeding the target

supply at the time of request initiation. (2) Admission of the non-reserved ride would

result in reach time service violation for an anticipated book-ahead ride; in Figure 2.2,

admission of the non-reserved ride request that initiates at time tb
2 would lead to reach

time violation for the book-ahead trip that initiates at t⋆ (considering that the observed

ride duration of the request that initiates at tb
2 extends beyond t⋆). In other words, if the

non-reserved ride was admitted at tb
2, then at t⋆ (just before the book-ahead request is

anticipated) the sum Nk
r (t⋆) + f BA,k

r (t⋆) + f P,k
r (t⋆) would be equal to the target supply ck

r ;

this implies that the total number of active rides would exceed the target supply when the

book-ahead ride at t⋆ starts (equivalently, the book-ahead ride would not be assigned a

driver from within the same region).

In more detail, let τi be the arrival time of the ith non-reserved ride request, and

let Di be the corresponding ride duration. In addition, let γi be an indicator function that

takes the value one if the ith non-reserved ride request is admitted. Equation 2.1 gives the

expression for γi (i.e., Equation 2.1 represents the condition for admission). In Equation

2.1, f A(τi),k
r (t) represents previously admitted non-reserved rides that would be active at

time t ∈ (τi, min {τi + Di, (k + 1)w}]. In other words, f A(τi),k
r (t) represents previously ad-

mitted non-reserved rides that would be active during the time that the ith non-reserved
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ride request is being served. Note that the projected ride duration of the ith non-reserved

user is restricted to t ∈ (τi, min{τi + Di, (k + 1)w}] instead of t ∈ (τi, τi + Di] since ad-

mission control decisions are made per window k (i.e., the rides whose duration extends

beyond t = (k + 1)w would become part of f P,k+1
r (t)).

γi = 1
{

1 + f P,k
r (t) + f BA,k

r (t) + f A(τi),k
r (t) ≤ ck

r , ∀t ∈ (τi, min {τi + Di, (k + 1)w}]
}
(2.1)

If we let τn and Dn be the arrival time and ride duration of the nth previously

observed non-reserved ride (where n ∈ {1, ..., i − 1}), we can express f A(τi),k
r (t) as shown

in Equation 2.2. In this equation, 1{τn + Dn > t} takes the value one if the nth previously

observed non-reserved ride would be active at time t, and γn takes the value one if the

nth non-reserved request was admitted.

f A(τi),k
r (t) =

i−1

∑
n=1

1{τn + Dn > t}γn, t ∈ (τi, min {τi + Di, (k + 1)w}] (2.2)

We emphasize that the control policy is state-dependent and applied upon the re-

ceipt of each ride request; this implies that the state of the system is deterministic and

all the variables (including τn, Dn, γn, f A(τi),k
r (t), τi, Di, γi) are known at time τi. Then, the

admission decision for the ith non-reserved user follows directly from evaluating expres-

sions 2.1 and 2.2.

A non-reserved ride request that is blocked may be assigned a driver from an ex-

ternal region (i.e., the passenger will experience a long wait time). Alternatively, blocked

non-reserved requests may be dropped from the system, where this indicates a passenger

canceling the ride due to the extended wait time. In the simulation experiments (Section

2.6), we follow the latter approach.

20



2.4 Target Supply for Probabilistically Guaranteeing the Reach Time

Quality of Service

While the admission control policy is a state-dependent policy that is applied dur-

ing the time window (kw, (k + 1)w], it is based on the target supply ck
r that is determined

at the beginning of the time window t = kw. For a specific region r, the target ck
r rep-

resents the total number of drivers that is required during window k to probabilistically

guarantee the reach time service requirement for non-reserved rides. Drivers are consid-

ered to be associated with a region if they are either serving requests that initiated in the

region or they are idle within the region. In this section, we discuss how the targets can

be computed at the beginning of the time window. First, we derive a time-dependent

upper bound on the blocking probability corresponding to the admission control policy.

Then, we determine the target number of drivers that limits the time-averaged block-

ing probability to be below a certain quality of service threshold. In turn, limiting the

time-averaged blocking probability is equivalent to limiting the probability of reach time

violation for non-reserved ride requests.

In Equations 2.1 and 2.2, representing the admission control policy when the ith

non-reserved ride request is received, the values of all the variables are known (for ev-

ery non-reserved ride request that was previously received, the trip information would

have been revealed to the platform). However, at the beginning of the time window,

the platform would not know the arrival time, ride duration, and admission decision

of a future non-reserved request. Therefore, at the beginning of the time window,

τn, Dn, γn, f A(τi),k
r (t), τi, Di, γi are all random variables. To express the probability of ad-

mission, we can re-write Equation 2.1 as shown in Equation 2.3. Hence, Equation 2.4
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represents the probability that the ith non-reserved ride request would be blocked.

P(γi = 1) = P
(

1 + f P,k
r (t) + f BA,k

r (t) + f A(τi),k
r (t) ≤ ck

r , ∀t ∈ (τi, min {τi + Di, (k + 1)w}]
)

(2.3)

P(γi = 0) = 1 − P(γi = 1) =

P
(
∃t ∈ (τi, min{τi + Di, (k + 1)w}] : 1 + f P,k

r (t) + f BA,k
r (t) + f A(τi),k

r (t) > ck
r

)
=

P

(
∃t ∈ (τi, min{τi + Di, (k + 1)w}] : 1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > t}γn > ck
r

)
(2.4)

Observe that for predictive target computations, f A(τi),k
r (t) = ∑i−1

n=1 1{τn + Dn >

t}γn represents stochastic non-reserved ride requests that will be admitted between

(kw, τi] and will be active at time t ∈ (τi, min {τi + Di, (k + 1)w}]. Recall that future

stochastic non-reserved ride requests appear at a demand rate {λk
r(t) : t ∈ (kw, (k + 1)w]}

and the corresponding ride durations are generally distributed according to a distribution

gk
r (·). Previously, we defined the stochastic process {Nk

r (t) : t ∈ (kw, (k + 1)w]} that rep-

resents the number of future active drivers associated with admitted non-reserved rides.

Notice that Nk
r (τi) = f A(τi),k

r (τi) is the number of admitted non-reserved ride requests that

will be active at time τi. However, for t ∈ (τi, min {τi + Di, (k + 1)w}], Nk
r (t) ̸= f A(τi),k

r (t)

since Nk
r (t) includes non-reserved ride requests that will be admitted between (kw, t]

while f A(τi),k
r (t) is restricted to non-reserved ride requests admitted between (kw, τi].

To determine the target supply ck
r , we need to evaluate the blocking probability

expression in Equation 2.4 for different values of ck
r . However, this probability expression

is difficult to analyze due to the dependence of γi (admission of ith non-reserved request)

on the random variables τn, Dn (arrival time, ride duration) and γn (admission) associated

with previously arriving non-reserved ride requests n ∈ {1, ..., i − 1}. In addition, the
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arrival time τi of the ith non-reserved ride request also depends on the arrival time τn of

all previous requests. Moreover, the correlations between the random variables have to

be considered over the entire time interval (τi, min{τi + Di, (k + 1)w}] and this interval

also has time-varying functions f P,k
r (t) and f BA,k

r (t) that impact the admission probability.

Thus, instead of attempting to evaluate Equation 2.4, we provide an upper bound

on the blocking probability. In particular, let {Nk,∞
r (t) : t ∈ (kw, (k + 1)w]} be the number

of busy servers in a transient Mt/GI/∞ queue that starts empty at the beginning of the

window t = kw, where the arrivals to the Mt/GI/∞ queue appear according to a Poisson

process with rate {λk
r(t) : t ∈ (kw, (k + 1)w]} and the service distribution is gk

r (·).

Theorem 1. The blocking probability, P(γi = 0), for the ith stochas-

tic non-reserved ride request that appears at time τi is bounded above by

P
(

Nk,∞
r (τi) ≥ ck

r − max
t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
])

Proof. We first start by deriving upper bounds on the blocking probability P(γi = 0)

(Inequalities 2.7–2.9). Then, through Equations 2.11–2.15, we show that the upper bound

in Inequality 2.9 can be expressed in terms Nk,∞
r (τi), where Nk,∞

r (τi) is the number of

busy servers at time τi in a transient Mt/GI/∞ queue that starts empty at the beginning

of the time window.

P(γi = 0) (2.5)

= P

(
∃t ∈ (τi, min{τi + Di, (k + 1)w}] : 1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > t}γn > ck
r

)
(2.6)

≤ P

(
∃t ∈ (τi, min{τi + Di, (k + 1)w}] : 1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > t} > ck
r

)
(2.7)
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≤ P

(
∃t ∈ (τi, (k + 1)w] : 1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > t} > ck
r

)
(2.8)

≤ P

(
∃t ∈ (τi, (k + 1)w] : 1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > τi} > ck
r

)
(2.9)

Inequality 2.7 holds since we are considering that all requests that are received before the

ith request are admitted (i.e, γn = 1 for all n ∈ {1, ..., i − 1}).

Inequality 2.8 holds since we are expanding the time horizon until the end of the window.

Inequality 2.9 follows since ∑i−1
n=1 1{τn + Dn > τi} ≥ ∑i−1

n=1 1{τn + Dn > t}. Specifically,

the number of non-reserved ride requests that are received between (kw, τi] and are still

active (being served) at time τi is at least as large as the corresponding number of non-

reserved ride requests that are received between (kw, τi] and are still active at time t ∈

(τi, (k + 1)w] (i.e. t ≥ τi).

Then, we can rearrange the last expression in Inequality 2.9 as follows:

P

(
∃t ∈ (τi, (k + 1)w] : 1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > τi} > ck
r

)
(2.10)

= 1 − P

(
1 + f P,k

r (t) + f BA,k
r (t) +

i−1

∑
n=1

1{τn + Dn > τi} ≤ ck
r , ∀t ∈ (τi, (k + 1)w]

)
(2.11)

= 1 − P

(
1 + max

t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
]
+

i−1

∑
n=1

1{τn + Dn > τi} ≤ ck
r

)
(2.12)

= P

(
1 + max

t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
]
+

i−1

∑
n=1

1{τn + Dn > τi} > ck
r

)
(2.13)

= P

(
i−1

∑
n=1

1{τn + Dn > τi} > ck
r − max

t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
]
− 1

)
(2.14)

= P

(
i−1

∑
n=1

1{τn + Dn > τi} ≥ ck
r − max

t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
])

(2.15)

Equality 2.12 follows since f P,k
r (t) + f BA,k

r (t) are the only components that depend on t in
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expression 2.11, and if the sum 1 + f P,k
r (t) + f BA,k

r (t) + ∑i−1
n=1 1{τn + Dn > τi} is less than

or equal to ck
r at

t̃ = arg max
t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
]
, then the aforementioned sum is less than or equal to

ck
r for all t ∈ (τi, (k + 1)w].

Equality 2.15 follows since ∑i−1
n=1 1{τn + Dn > τi}, maxt∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
]
,

and ck
r are all integer values representing the number of active drivers or driver supply.

Thus,

P(γi = 0) ≤ P

(
i−1

∑
n=1

1{τn + Dn > τi} ≥ ck
r − max

t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
])

(2.16)

let Nk,∞
r (τi) = ∑i−1

n=1 1{τn + Dn > τi},

Then,

P(γi = 0) ≤ P
(

Nk,∞
r (τi) ≥ ck

r − max
t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
])

(2.17)

Nk,∞
r (τi) represents the number of stochastic non-reserved ride requests that are received

between (kw, τi] and are active at time τi. Thus, Nk,∞
r (τi) is similar to Nk

r (τi) with the

main difference being that Nk
r (τi) is restricted to admitted non-reserved ride requests

while Nk,∞
r (τi) accounts for all received requests (i.e., Nk,∞

r (τi) assumes that all requests are

admitted regardless of the admission control policy). As previously described, stochastic

non-reserved ride requests start arriving after the beginning of the time window (t = kw)

according to a Poisson process with demand rate {λk
r(t) : t ∈ (kw, (k + 1)w]} and their

ride duration follows the general distribution gk
r (·). Then, the system corresponding to

Nk,∞
r (τi) can be described as a transient Mt/GI/∞ queue that starts empty at t = kw,

receives requests at the rate {λk
r(t) : t ∈ (kw, (k + 1)w]}, has a generally distributed

service rate gk
r (·), and has an infinite number of servers (all requests are admitted). In this
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context, Nk,∞
r (τi) (the number of active rides at time τi) represents the number of busy

servers at time τi in the transient Mt/GI/∞ queue.

Given this upper bound in Theorem 1, we can limit the blocking probability at

time τi to be below a certain quality of service threshold δ by ensuring that the upper

bound is below δ (as shown in Inequality 2.18). Importantly, while P(γi = 0) is difficult

to evaluate as mentioned earlier, the upper bound can be evaluated for any value ck
r and

at any time τi using transient analysis of Mt/GI/∞ queues (Section 2.4.1). Subsequently,

after illustrating how the upper bound can be evaluated at any time for a specific value

of ck
r , we discuss (Section 2.4.2) how to use this upper bound to determine the target

supply, where the target supply is the minimal ck
r that limits the time-averaged blocking

probability to be below the threshold δ.

P(γi = 0) ≤ P
(

Nk,∞
r (τi) ≥ ck

r − max
t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
])

≤ δ (2.18)

2.4.1 Time-dependent distribution of the number of busy servers in an

Mt/GI/∞ queue

To evaluate the upper bound P
(

Nk,∞
r (τi) ≥ ck

r − max
t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
])

at time τi and for a specific ck
r , we use a graphical approach that was first recognized by

Prékopa (1958) and was subsequently further discussed in articles that analyze Mt/GI/∞

queues (Eick et al., 1993; Foley, 1982). We show that the number of busy servers in an

Mt/GI/∞ queue that starts empty, Nk,∞
r (τi), has a time-dependent Poisson distribution,

and we derive the time-dependent mean associated with this distribution. Thus, since

max
t∈(τi,(k+1)w]

[
f P,k
r (t) + f BA,k

r (t)
]

and ck
r are known values at time τi, evaluating the up-
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Figure 2.4: Service time vs. arrival time associated with a transient Mt/GI/∞ queue
that starts empty at time kw. Since there are an infinite number of servers, all arrivals
start being serviced immediately. The dotted diagonal lines represent the decrease in
remaining service time as the user is being served. For any time t, the number of users
still being served is equal to the number of diagonal lines that intersect a vertical line from
t; equivalently, the number of users still being served at t is the number of points in the
shaded area.

per bound is equivalent to computing the probability that a Poisson random variable

is greater than or equal to a constant.

Referring to Figure 2.4, consider stochastic arrivals to an Mt/GI/∞ queue such

that xj denotes the jth arrival time according to the Poisson process and sj denotes the

corresponding generally distributed service time. In time window (kw, (k + 1)w], the

Mt/GI/∞ queue is initially empty at time kw.

We can think of (xj, sj) as a random point in the two-dimensional plane

(kw, (k + 1)w]× [0, ∞) that represents the arrival time and service duration. For any two-

dimensional set S in (kw, (k + 1)w] × [0, ∞), the number of points in the set represents

random sampling of the arrivals Poisson process; thus, the number of points in the set S

is Poisson distributed. We also know that disjoint two-dimensional sets correspond to in-

dependent sampling of a Poisson process; this implies that the number of points in each

set is independent of other disjoint sets.

Furthermore, considering an infinitesimal two-dimensional square set with an area
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ds(dx), we can see that the mean number of points in that set is λk
r(x)dx

(
gk

r (s)(ds)
)
;

this implies that the intensity of the two-dimensional Poisson distribution is λk
r(x)gk

r (s).

Thus, the distribution of points defined as (arrival time, service duration) is Poisson over

the two-dimensional space, and the mean number of points for any set S is given by∫
S λk

r(x)gk
r (s)dsdx.

To determine the mean number of busy servers ρk
r(t), we evaluate the integral∫

S λk
r(x)gk

r (s)dsdx over the shaded area illustrated in Figure 2.4. This shaded area rep-

resents arrivals to the Mt/GI/∞ queue since time kw that have not yet completed at time

t. The resulting expression for ρk
r(t) is given in Equation 2.19. If we further consider

that the arrival rate λk
r(x) is constant over the time window such that λk

r(x) = λk
r , the

expression for ρk
r(t) simplifies as shown in Equation 2.20.

Thus, within each window, Nk,∞
r (τi) is Poisson distributed with a time-dependent

mean ρk
r(τi). Given a specific value ck

r , we can use this characterization of Nk,∞
r (τi) to

evaluate the upper bound at any time τi.

ρk
r(t) =

∫ t

kw

∫ ∞

t−x
λk

r(x)gk
r (s)dsdx (2.19)

ρk
r(t) =

∫ t

kw

∫ ∞

t−x
λk

r gk
r (s)dsdx

= λk
r

[
t − kw −

∫ t−kw

0
Gk

r (x)dx
] (2.20)

2.4.2 Target predictions for bounding the time-averaged blocking

probability

Knowing that we can evaluate the upper bound on the blocking probability at

any time and for any ck
r , we now investigate the minimal value of ck

r that limits the time-

averaged blocking probability to be below a threshold δ. This minimal ck
r will be referred
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to as the target, and it represents the number of drivers that the platform seeks to supply

during the upcoming time window to limit reach time service violations (i.e., to limit the

fraction of non-reserved requests whose reach time will exceed the reach time service

requirement).

Precisely, the time-averaged blocking probability in region r ∈ R during window

(kw, (k + 1)w] is given in Equation 2.21, where γt is an indicator random variable that

takes the value one if a passenger that arrives at time t would be admitted. Since Poisson

arrivals see time averages (PASTA property), the time-averaged blocking probability is

equivalent to the blocking probability of a typical non-reserved ride request that appears

between (kw, (k + 1)w]. Then, the target ck
r is the desired number of drivers that limits

the blocking probability of a typical non-reserved ride request that will appear during

the upcoming window.

Bk
r =

1
w

∫ (k+1)w

kw
P(γt = 0)dt (2.21)

As previously mentioned, evaluating the blocking probability in Equation 2.21 is

challenging. Thus, to compute the target, we use the time-averaged value of the upper

bound in Theorem 1. As shown in Inequality 2.22, if we find the value of ck
r that limits the

time-averaged upper bound to be less than the threshold δ, then this ck
r will also limit the

time-averaged blocking probability to be less than δ. Note that just as we can evaluate the

upper bound in Theorem 1 for a specific value of c and at a specific time (Section 2.4.1),

we can evaluate the time-averaged upper bound for a specific value of c using numerical

integration.

Bk
r ≤ 1

w

∫ (k+1)w

kw
P

(
Nk,∞

r (t) ≥ ck
r − max

t̂∈(t,(k+1)w]

[
f P,k
r (t̂) + f BA,k

r (t̂)
])

dt ≤ δ (2.22)

Therefore, as shown in Equation 2.23, we seek the minimal value ck
r that restricts Bk

r

to be less than or equal to the threshold δ. In Equation 2.23, observe that the time-averaged
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upper bound decreases monotonically with increasing values of c; consequently, since c

must be a non-negative integer, we can iterate through increasing integer values of c until

we find the minimal target ck
r that ensures that the time-averaged blocking probability is

less than δ (alternatively, we may use faster line search techniques).

ck
r = min

c≥0, c∈Z

[
c :

1
w

∫ (k+1)w

kw
P

(
Nk,∞

r (t) ≥ c − max
t̂∈(t,(k+1)w]

[
f P,k
r (t̂) + f BA,k

r (t̂)
])

dt ≤ δ

] (2.23)

The targets ck
r are computed for every region r ∈ R at the beginning of window k

(i.e., at time t = kw). If the number of drivers supplied by the platform in each region

(either idling in the region or serving requests that initiate in the region) is equal to the cor-

responding target, then the blocking probability for future non-reserved requests would

be less than the threshold δ. Thus, if the targets are provided in each region, the reach

time service requirement is probabilistically guaranteed for stochastic non-reserved rides

(for book-ahead rides, the reach time service requirement is guaranteed based on the ad-

mission control policy in Section 2.3). Apart from target computations, the upper bound

on the blocking probability can be used as a performance measure for the admission con-

trol policy, where performance of the policy refers to the probability of reach time service

violation (for a given level of driver supply).

2.5 Driver Dispatching & Rebalancing Mechanism

In this section, we develop a driver dispatching and rebalancing mechanism that

aims to maintain the targets across multiple regions. The targets computed in Section

2.4 represent a desired level of driver supply. In practice, within the time window
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(kw, (k + 1)w], drivers serving requests that initiated in a region r ∈ R may finish their

trips in other regions. Similarly, drivers serving requests that initiated in an external

region r′ ∈ R\{r} may finish their trip in region r. Thus, the number of drivers asso-

ciated with each region may deviate from the corresponding target ck
r due to observed

origin-destination trip patterns. This section presents a dispatching/rebalancing mecha-

nism that computes the minimum number of driver transitions that achieve the targets,

where only idle drivers are allowed to transition between adjacent regions. We show that

the proposed optimization formulation reduces to a minimum cost flow formulation on a

transformed network of regions.

In more detail, consider that at some time t the platform aims to determine the nec-

essary driver transitions that maintain the targets. In this section, all the defined variables

represent the network conditions at time t; this time t could be either at the beginning of

time window (kw, (k + 1)w] or within the window. For every region i, let ai be the num-

ber of active drivers serving requests initiated in the region, and let ei be the number of

idle drivers in the region.

In addition, for every region, define a virtual supply sv
i as shown in Equation 2.24,

where the virtual supply represents the number of excess drivers (beyond the target)

that can transition to adjacent regions. The virtual supply sv
i is limited by the number of

idle drivers in the region; thus, it is the minimum of the idle drivers ei and the number

of drivers in excess of the target (ai + ei) − ck
i . Similarly, define a virtual demand dv

i as

shown in Equation 2.25, where the virtual demand represents the number of additional

drivers needed in region i to meet the target ck
i at time t. Furthermore, for every region

i, define ∆i as shown in Equation 2.26, where ∆i represents either the demand (expressed

as a negative value) or the supply.
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sv
i =


min

{
ei, (ai + ei)− ck

i
}

if ck
i − (ai + ei) ≤ 0

0 otherwise
(2.24)

dv
i =


ck

i − (ai + ei) if ck
i − (ai + ei) > 0

0 otherwise
(2.25)

∆i =


−
[
ck

i − (ai + ei)
]

if ck
i − (ai + ei) > 0

min
{

ei, (ai + ei)− ck
i
}

otherwise
(2.26)

For the regions defined in Section 2.2, we construct a directed network G = (R, E).

The set of regions R corresponds to the nodes of the network. The set of edges E includes

links (i, j) and (j, i) for every pair of adjacent regions i and j (see original network in

Figure 2.5). Define hij as the number of drivers that need to transition from region i to the

adjacent region j on link (i, j).

The platform rebalancing optimization formulation is shown in Equations 2.27–

2.31. In this formulation, the platform seeks to minimize the number of driver transitions

(objective 2.27) while ensuring that the targets are maintained (constraint 2.28). In par-

ticular, constraint 2.28 specifies that the difference between drivers leaving a region and

drivers arriving to a region should match the supply/demand in the region. Constraint

2.29 restricts the number of drivers leaving a region to the number of idle drivers in the

region; in other words, this constraint ensures that the optimal solution to formulation

2.27–2.31 (if it exists) describes the number of idle drivers transitions to adjacent regions

(i.e., idle drivers do not transition across multiple regions). The remaining constraints

2.30 and 2.31 ensure that the decision variables hij are non-negative integers.
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min
hij :(i,j)∈E

∑
(i,j)∈E

hij (2.27)

s.t. ∑
j:(i,j)∈E

hij − ∑
j:(j,i)∈E

hji = ∆i ∀i ∈ R (2.28)

∑
j:(i,j)∈E

hij ≤ ei ∀i ∈ R (2.29)

hij ≥ 0 ∀(i, j) ∈ E (2.30)

hij ∈ Z ∀(i, j) ∈ E (2.31)

In formulation 2.27–2.31, unless the total supply matches the total demand

(∑i∈R sv
i = ∑i∈R dv

i ) and the network is strongly connected, the optimization problem

may not have a feasible solution. Thus, we consider instead the revised formulation

2.32–2.37, where hi corresponds to drivers added/removed from region i by adjusting

the total number of drivers in the network. Since adding or removing drivers would be

costly to the platform (e.g., requires incentivizing new drivers or taking drivers offline),

we associate a high cost M with such transitions. As a result, in the optimal solution to

formulation 2.32–2.37, the total number of drivers is adjusted only if the targets could not

be maintained internally via transitions of idle drivers across adjacent regions.

min
hij :(i,j)∈E, hi :i∈R

∑
(i,j)∈E

hij + M ∑
i∈R

|hi| (2.32)

s.t. ∑
j:(i,j)∈E

hij − ∑
j:(j,i)∈E

hji + hi = ∆i ∀i ∈ R (2.33)

∑
j:(i,j)∈E

hij ≤ ei ∀i ∈ R (2.34)

hij ≥ 0 ∀(i, j) ∈ E (2.35)
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hij ∈ Z ∀(i, j) ∈ E (2.36)

hi ∈ Z ∀i ∈ R (2.37)

In what follows, through a sequence of reformulations, we will show that opti-

mization problem 2.32–2.37 reduces to a minimum cost flow problem on a transformed

network.

First, observe that formulation 2.32–2.37 can be rewritten in terms of hi• and h•i that

are defined in Equations 2.38 and 2.39. The revised formulation is given in 2.40–2.46. In

this case, h•i corresponds to drivers added to region i ∈ R by adjusting the total number

of drivers, and hi• corresponds to drivers removed from region i ∈ R by adjusting the

total number of drivers (i.e., hi• represents drivers that can be removed from the system

to avoid having excess idle drivers).

hi• =


hi if hi > 0

0 otherwise
(2.38)

h•i =


|hi| if hi < 0

0 otherwise
(2.39)

min
hij :(i,j)∈E, hi•,h•i :i∈R

∑
(i,j)∈E

hij + M ∑
i∈R

[hi• + h•i] (2.40)

s.t. ∑
j:(i,j)∈E

hij − ∑
j:(j,i)∈E

hji + hi• − h•i = ∆i ∀i ∈ R (2.41)

∑
j:(i,j)∈E

hij ≤ ei ∀i ∈ R (2.42)

hij ≥ 0 ∀(i, j) ∈ E (2.43)
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hi•, h•i ≥ 0 ∀i ∈ R (2.44)

hij ∈ Z ∀(i, j) ∈ E (2.45)

hi•, h•i ∈ Z ∀i ∈ R (2.46)

Observe that due to the high costs associated with adjusting the total number of

drivers, h•i ≤ dv
i for every region i; this inequality implies that the amount of drivers

added to region i is less than demand in the region. Similarly, for every region i, hi• ≤ sv
i ;

this inequality implies that the number of drivers disposed from region i (by adjusting

the total number of drivers) is less than the virtual supply in the region. If we sum the

latter two inequalities over all regions, we get inequalities 2.47 and 2.48. Then, we can

rewrite those inequalities using slack variables as shown in Equations 2.49–2.51.

∑
i∈R

h•i ≤ ∑
i∈R

dv
i (2.47)

∑
i∈R

hi• ≤ ∑
i∈R

sv
i (2.48)

∑
i∈R

h•i + h̄d = ∑
i∈R

dv
i (2.49)

∑
i∈R

hi• + h̄s = ∑
i∈R

sv
i (2.50)

h̄d, h̄s ≥ 0 (2.51)

Intuitively, h̄d is a slack variable that represents the demand that is satisfied through in-

ternal driver transitions (as opposed to adding external drivers h•i by adjusting the total

number of drivers). Meanwhile, h̄s is a slack variable that represents the supply that is

used to satisfy demand through internal driver transitions (as opposed to disposing off
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the supply hi• by adjusting the total number of drivers). Therefore, h̄d = h̄s. A more

rigorous approach to show that the equality holds is as follows:

Lemma. h̄d = h̄s = h̄

Proof. First, we rearrange Equation 2.49 to arrive at Equation 2.52. Then, we can restrict

the sum to regions where ∆i < 0 since by definition dv
i = 0 if ∆i ≥ 0, and since h•i ≤ dv

i ,

then h•i = 0 if dv
i = 0 (where h•i ≥ 0 by definition). Thus, ∆i ≥ 0 ⇒ dv

i = 0 ⇒ h•i = 0,

and we can restrict the sum to ∆i < 0 as shown in Equation 2.53.

Equation 2.54 follows by definition of dv
i and ∆i when ∆i < 0.

Equation 2.55 follows by rearranging constraint 2.41. Note that since ∆i < 0 then sv
i = 0

by definition, and since hi• ≤ sv
i then hi• = 0.

h̄d = ∑
i∈R

dv
i − h•i (2.52)

= ∑
i∈R:∆i<0

dv
i − h•i (2.53)

= ∑
i∈R:∆i<0

−∆i − h•i (2.54)

= ∑
i∈R:∆i<0

 ∑
j:(j,i)∈E

hji − ∑
j:(i,j)∈E

hij

 (2.55)

Following a similar approach, we can define h̄s as illustrated in Equation 2.56.

h̄s = ∑
i∈R:∆i>0

 ∑
j:(i,j)∈E

hij − ∑
j:(j,i)∈E

hji

 (2.56)

Then, we can represent the difference between h̄d and h̄s as in Equation 2.57.

Observe that if ∆i = 0, then ∑j:(j,i)∈E hji = ∑j:(i,j)∈E hij, where this follows by constraint

2.41 (hi• = h•i = 0 since h•i ≤ dv
i , hi• ≤ sv

i and dv
i = sv

i = ∆i = 0).

Thus, we can rearrange Equation 2.57 to get Equation 2.58.
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Then, we can rearrange Equation 2.58 further to get Equations 2.59. Finally, note

that ∑i∈R ∑j:(j,i)∈E hji is a summation over all links in the network, and similarly

∑i∈R ∑j:(i,j)∈E hij is a summation over all links in the network. This gives Equation 2.60,

which proves the lemma.

h̄d − h̄s = ∑
i∈R:∆i<0

 ∑
j:(j,i)∈E

hji − ∑
j:(i,j)∈E

hij

− ∑
i∈R:∆i>0

 ∑
j:(i,j)∈E

hij − ∑
j:(j,i)∈E

hji

 (2.57)

= ∑
i∈R

 ∑
j:(j,i)∈E

hji − ∑
j:(i,j)∈E

hij

 (2.58)

= ∑
i∈R

∑
j:(j,i)∈E

hji − ∑
i∈R

∑
j:(i,j)∈E

hij (2.59)

= ∑
(i,j)∈E

hij − ∑
(i,j)∈E

hij = 0 (2.60)

Subsequently, we can add Equations 2.49–2.51 as constraints in formulation 2.40–

2.46, where we use h̄ = h̄d = h̄s. The resulting formulation is shown in 2.61–2.71 (Equa-

tion 2.50 is first multiplied by a negative sign and then added as a constraint). Note that

h̄ must be integer since, for each region i, sv
i , dv

i , h•i, hi• are all integer.

min
hij :(i,j)∈E, hi•,h•i :i∈R, h̄

∑
(i,j)∈E

hij + M ∑
i∈R

[hi• + h•i] (2.61)

s.t. ∑
j:(i,j)∈E

hij − ∑
j:(j,i)∈E

hji + hi• − h•i = ∆i ∀i ∈ R (2.62)

∑
j:(i,j)∈E

hij ≤ ei ∀i ∈ R (2.63)

∑
i∈R

h•i + h̄ = ∑
i∈R

dv
i (2.64)
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−
[

∑
i∈R

hi• + h̄

]
= − ∑

i∈R
sv

i (2.65)

hij ≥ 0 ∀(i, j) ∈ E (2.66)

hi•, h•i ≥ 0 ∀i ∈ R (2.67)

h̄ ≥ 0 (2.68)

hij ∈ Z ∀(i, j) ∈ E (2.69)

hi•, h•i ∈ Z ∀i ∈ R (2.70)

h̄ ∈ Z (2.71)

To map the problem to an equivalent min-cost flow formulation, for each region

i ∈ R, we define variables hii⋆ that represent the total number of drivers leaving region i to

adjacent regions (Equation 2.72). In addition, for each link (i, j) ∈ E, we define variables

hi⋆ j = hij. Thus, we can define hii⋆ in terms of hi⋆ j as in Equation 2.73. Since hij is a non-

negative integer for all (i, j) ∈ E, we have that hii⋆ and hi⋆ j are non-negative integers as

well.

hii⋆ = ∑
j:(i,j)∈E

hij ∀i ∈ R (2.72)

= ∑
j:(i,j)∈E

hi⋆ j ∀i ∈ R (2.73)

Then, we can express constraint 2.63 in terms of hii⋆ as hii⋆ ≤ ei for all regions i ∈ R.

Moreover, we can express the sum of driver transitions across links (i, j) ∈ E as shown in

Equation 2.74.

∑
(i,j)∈E

hij = ∑
i∈R

∑
j:(i,j)∈E

hij = ∑
i∈R

hii⋆ (2.74)
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Therefore, we can reformulate optimization problem 2.61–2.71 in terms of the newly de-

fined variables as follows: Substitute Equation 2.74 in the objective function 2.61, replace

the sum of drivers leaving a region to adjacent regions with hii⋆ (as in Equation 2.72),

replace hij by hi⋆ j and hji by hj⋆i, replace constraint 2.63 with hii⋆ ≤ ei, add Equation

2.73 to the constraints, add constraints that restrict hi⋆ j to be non-negative integers for all

(i, j) ∈ E, and add constraints that restrict hii⋆ to be non-negative integers for all i ∈ R.

The revised formulation is shown in 2.75–2.87.

min
hi⋆ j :(i,j)∈E, hi•,h•i,hii⋆ :i∈R, h̄

∑
i∈R

hii⋆ + M ∑
i∈R

[hi• + h•i] (2.75)

s.t. hii⋆ − ∑
j:(j,i)∈E

hj⋆i + hi• − h•i = ∆i ∀i ∈ R (2.76)

∑
i∈R

h•i + h̄ = ∑
i∈R

dv
i (2.77)

−
[

∑
i∈R

hi• + h̄

]
= − ∑

i∈R
sv

i (2.78)

∑
j:(i,j)∈E

hi⋆ j − hii⋆ = 0 ∀i ∈ R (2.79)

0 ≤ hii⋆ ≤ ei ∀i ∈ R (2.80)

hi⋆ j ≥ 0 ∀(i, j) ∈ E (2.81)

hi•, h•i ≥ 0 ∀i ∈ R (2.82)

h̄ ≥ 0 (2.83)

hii⋆ ∈ Z ∀i ∈ R (2.84)

hi⋆ j ∈ Z ∀(i, j) ∈ E (2.85)

hi•, h•i ∈ Z ∀i ∈ R (2.86)

h̄ ∈ Z (2.87)

Consider the standard minimum cost flow problem given in formulation 2.88–2.90
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for a network G′ = (V, A) (Ahuja et al., 1993; Wolsey, 1998), where cpq is the cost of a unit

flow on link (p, q) ∈ A, xpq are decision variables corresponding to flows on each link

(p, q) ∈ A, bp is the equivalent of supply/demand at node p, and upq is an upper bound

on the flows xpq (i.e., capacity of link (p, q) ∈ A). A necessary condition for feasibility of

the optimization problem is ∑p∈V bp = 0.

min
xpq :(p,q)∈A

∑
(p,q)∈A

cpqxpq (2.88)

s.t. ∑
{q:(p,q)∈A}

xpq − ∑
{q:(q,p)∈A}

xqp = bp ∀p ∈ V (2.89)

0 ≤ xpq ≤ upq ∀(p, q) ∈ A (2.90)

Apart from the integrality constraints, the formulation 2.75–2.87 has the same

structure as the minimum cost flow optimization problem 2.88–2.90; this implies that

the constraint matrix associated with formulation 2.75–2.87 is totally unimodular. Thus,

since ∆i, dv
i , sv

i , and ei are all integer values, each extreme point in the constraint set will

be integral. Then, solving the linear programming relaxation in 2.91–2.99 will give us the

integer optimal solution of optimization problem 2.75–2.87.

min
hi⋆ j :(i,j)∈E, hi•,h•i,hii⋆ :i∈R, h̄

∑
i∈R

hii⋆ + M ∑
i∈R

[hi• + h•i] (2.91)

s.t. hii⋆ − ∑
j:(j,i)∈E

hj⋆i + hi• − h•i = ∆i ∀i ∈ R (2.92)

∑
i∈R

h•i + h̄ = ∑
i∈R

dv
i (2.93)

−
[

∑
i∈R

hi• + h̄

]
= − ∑

i∈R
sv

i (2.94)

∑
j:(i,j)∈E

hi⋆ j − hii⋆ = 0 ∀i ∈ R (2.95)
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0 ≤ hii⋆ ≤ ei ∀i ∈ R (2.96)

hi⋆ j ≥ 0 ∀(i, j) ∈ E (2.97)

hi•, h•i ≥ 0 ∀i ∈ R (2.98)

h̄ ≥ 0 (2.99)

The linear program 2.91–2.99 can be mapped to a minimum cost flow program

2.88–2.90 applied on a transformed network illustrated in Figure 2.5. In particular, con-

sider a source node SO where links (SO, i) that connect SO to region i ∈ R dispatch flows

h•i. In addition, consider a sink node SI where links (i, SI) that connect region i ∈ R

to SI dispatch flows hi•. Let h̄ represent the flow between SO and SI. Then, observe

that constraint 2.92 is equivalent to constraint 2.89 at all un-starred nodes in the network

transformation of Figure 2.5. Similarly, constraint 2.95 is equivalent to constraint 2.89 at

all starred nodes. Constraint 2.93 corresponds to constraint 2.89 applied at the source

node SO, and constraint 2.94 corresponds to constraint 2.89 applied at the sink node SI.

In the network transformation, each link is associated with a (cost, capacity) label. Ob-

serve that the objective function 2.91 can be obtained by plugging the link costs and flow

variables in the minimum cost flow objective function 2.88. Also, observe that constraints

2.96–2.99 are the link capacity constraints 2.90 in the transformed network. Furthermore,

by definition, ∑i∈R ∆i + ∑i∈R dv
i − ∑i∈R sv

i = 0; this implies that the necessary condition

for feasibility in the minimum cost flow program (∑p∈V bp = 0) is satisfied. Thus, solv-

ing the linear program 2.91–2.99 is equivalent to solving the minimum cost flow program

2.88–2.90 using the transformed network.
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Figure 2.5: Network transformation corresponding to the minimum cost flow program,

where solving the integer program 2.32–2.37 using the original network is equivalent to

solving the minimum cost flow program 2.88–2.90 using the transformed network. Each

link in the transformed network is associated with a (cost, capacity) label. Each node

in the transformed network is either a supply, demand, or transmission node such that

values of bp in constraint 2.89 are within the squares.

Consequently, since the integer program 2.32–2.37 reduces to formulation 2.91–

2.99, then solving the integer program 2.32–2.37 on the original network (Figure 2.5) is

equivalent to solving the minimum cost flow program 2.88–2.90 on the illustrated trans-

formed network. As a minimum cost flow program, the driver dispatching and rebalanc-

ing optimization problem can be solved in polynomial time. The optimal solution of the

optimization program represents recommended idle driver transitions that are needed to

maintain the targets across regions. Specifically, the optimal solution includes idle drivers
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that should transition to adjacent regions and idle drivers that should be added to the net-

work by adjusting the total number of drivers in the system. In addition, the optimal

solution also includes excess idle drivers that can be removed from the system.

2.6 Simulation Results

In this section, we present experimental results using data from Lyft operations

in Manhattan, NYC on Friday December 14th, 2018 (NYCTLC, 2019). We consider trips

that started between 16:00–19:00 (local time) in four regions. The regions chosen roughly

correspond to four sections of the city as illustrated in Figure 2.6 (1-lower Manhattan,

2-midtown Manhattan, 3-upper west side, and 4-upper east side). For time windows of

duration w = 20 minutes, we use trip initiation and completion time data available on

the New York City Taxi and Limousine Commission website to characterize the processes

{ f P,k
r (t), f BA,k

r (t), Nk
r (t) : t ∈ (kw, (k + 1)w]}.

Our primary findings suggest that an increase in the fraction of book-ahead rides

leads to a reduction in the total number of drivers that are needed to probabilistically

guarantee the reach time service requirement. This reduction in the total number of

drivers is also associated with a lower number of idling drivers (i.e., an increase in the

driver utilization rate).

2.6.1 System model specification and comparison to observed data

The process { f P,k
r (t) : t ∈ (kw, (k + 1)w]} is generated at the beginning of every

window k. Specifically, using the available data, f P,k
r (t) represents previously observed rides

that initiated in region r prior to t = kw and will be active at time t ∈ (kw, (k + 1)w].

To generate the process { f BA,k
r (t) : t ∈ (kw, (k + 1)w]} from the New York City

data, we randomly sample a fraction pBA of the trips that start during window k in re-
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Figure 2.6: Manhattan divided into four regions.

gion r. We choose to generate f BA,k
r (t) as the fraction of anticipated rides since we are

interested in analyzing the change in the target number of drivers as the fraction of book-

ahead rides increases.

As for the stochastic process {Nk
r (t) : t ∈ (kw, (k + 1)w]}, at the beginning of each

window k, we calibrate the demand rate λk
r corresponding to ride requests that will ap-

pear during the upcoming window in region r. In the following simulation, for simplicity,

the demand rate varies across time-windows but is assumed constant within each time

window; however, the proposed framework can be implemented using time-dependent

demand rate functions by evaluating Equation 2.19. Moreover, even with window-

constant demand rates, the Poisson distribution describing active drivers is time-varying

within each window such that the mean is given by Equation 2.20. We emphasize that this

transient analysis does not assume an equilibrium or steady-state conditions in any time

window. The arrival rate for region 2 is shown in Figure 2.7; as observed, the demand rate

increases rapidly showing the need for non-equilibrium methods. For the distribution

gk
r (·) representing ride duration, we use the empirical distribution that is derived from

the observed rides in each region. Note that to analyze the change in the target number
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Figure 2.7: Arrival rate for ride requests that initiate in region 2.

of drivers with increasing book-ahead rides, we effectively assume that the arrival rate of

non-reserved ride requests is (1 − pBA)λ
k
r (where a fraction pBA of the anticipated trips

that will initiate during window k are book-ahead rides).

As illustrated in Figure 2.8, the proposed model for predicting the number of active

rides (Section 2.2) accurately represents the observed data. In this Figure, for comparison

with observed trip data, we consider that all rides are admitted and that there are no

book-ahead rides (effectively assuming Nk
r (t) = Nk,∞

r (t)). Recall that Nk
r (t) represents

the predicted non-reserved ride requests that will appear during window k; in contrast,

during window k + 1, the process f P,k+1
r (t) consists of observed trips (as given in the

data) that differ from the previously predicted trips.
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Figure 2.8: Predicted total number of active rides vs. observed number of active rides,

where predictions were made over time windows with a duration of 20 minutes. The

error bars correspond to one standard deviation of the time-dependent Poisson distri-

bution characterizing Nk,∞
r . In this figure, to compare with the observed trip data, we

assume that all rides are admitted (i.e., we consider that Nk
r (t) = Nk,∞

r (t)).

2.6.2 Upper bound on the blocking probability

To evaluate how tight is the upper bound in Inequality 2.22, we implement the

admission control policy in region 2 and average the observed proportion of blocked

rides Bk
r across time windows. For this upper bound numerical analysis, the assumptions

involved in target evaluation and admission control apply; specifically, the total supply

(active and idle) is maintained at the target level, drivers switch between active and idle

within the region, and non-reserved rides are blocked if upon admission the total number

of active rides would exceed the target at some point in time throughout the ride duration.

Figure 9 shows the variation in the blocking proportion Bk
r relative to the upper bound δ.

As observed, the blocking proportion Bk
r increases with larger tolerance values. We also

observe that the blocking proportion increases with the fraction of book-ahead rides pBA
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as a result of fewer idle drivers being available for non-reserved rides.

Figure 2.9: The change in observed blocking proportion Bk
r and the ratio Bk

r /δ relative to

the upper bound δ.

2.6.3 Target computations, admission control, and minimum cost flow

dispatching/rebalancing

Then, to account for the spatial distribution of demand and the variation in supply

across regions, we implement the proposed framework in Sections 2.2–2.5 (see Figure 2.3).

Different from Section 2.6.2, the demand moves between regions such that the supply

deviates from the target, and we implement the min. cost flow program to maintain the

target.

First, as mentioned in Section 2.6.1, we characterize the processes

{ f P,k
r (t), f BA,k

r (t), Nk
r (t) : t ∈ (kw, (k + 1)w]} representing the predicted number of

active rides in each region r. Then, using the upper bound on the time-dependent

blocking probability of the admission control policy, we determine the target number of

drivers associated with every region r during the upcoming window. After that, at the

beginning of the time window, we apply the driver dispatching/rebalancing mechanism

47



to attain the targets across regions. Then, throughout the time window, for every

non-reserved ride request that is received, we implement the admission control policy to

determine whether the request should be admitted or blocked; the received non-reserved

ride requests are directly retrieved from the New York City data (as opposed to the

predictions Nk
r (t)). We also implement the driver dispatching/rebalancing mechanism

halfway through the time window. However, at the beginning of the time window we

allow for total adjustments of the driver supply while halfway through the window

we consider that only existing idle drivers can transition across adjacent regions. This

process is then repeated for every time window.

For simulation purposes, we disregard the stochasticity of drivers entering and

exiting the system across time windows. However, the admission control policy, target

computations, and subsequent driver dispatching policy allow for a time-varying and

stochastic variation in the supply that is joining or leaving the platform. In fact, target

evaluation is based on the demand process and the admission control assumes that the

target is maintained throughout the time window. Even if the actual supply deviates

from the target, the admission control policy is still implemented by finding if there are

any idle drivers and measuring the change in idle drivers relative to the target. On the

other hand, the driver dispatching is only concerned with the instantaneous state of the

supply relative to the target.

Note that the presented driver rebalancing strategy only uses information from

the current time window. In other words, while the proposed state-dependent strategy

does not assume steady-state conditions in a time-varying environment, it does not look

into future windows to determine the current rebalancing recommendations. Alternative

policies that predict future dynamics multiple windows in advance may also be effective

since they would have more information on the anticipated variation in driver supply.

We apply the same framework for different fractions of book-ahead rides and
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Figure 2.10: Change in the time-averaged target number of drivers with an increase in
the fraction of book-ahead rides (for different quality of service thresholds δ). For each
data point (i.e., every (pBA, δ) pair), the plotted time-averaged target is the average of the
corresponding value obtained from 30 different iterations of the proposed framework,
where this averaging is needed due to the randomness in generation of the book-ahead
profile f BA,k

r (t).

record the target ck
r across windows. In Figure 2.10, we illustrate the change in targets

for different fractions of book-ahead rides. In particular, we measure the time-averaged

target c̄r for increasing values of pBA and different quality of service thresholds δ (as de-

fined in Section 2.4.2, δ bounds the time-averaged blocking probability such that a lower

value of δ indicates a higher quality of service). As expected, we observe that the target

number of drivers increases with decreasing δ; this result implies that a larger number of

drivers is needed to guarantee the reach time service requirement for a greater fraction of

non-reserved ride requests. We also observe that the target number of drivers decreases

as the fraction of book-ahead rides increases. The decrease in targets indicates that the

number of drivers needed decreases with more information on anticipated trips.

For the simulation setting, the ratio of internal driver transitions ∑(i,j)∈E hij to the

total flows (∑(i,j)∈E hij + ∑i∈R |hi|) was approximately 0.5 when averaged across min-cost

flow evaluations. The recommended external flows reflect the additional drivers needed
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Figure 2.11: The number of idle drivers and the driver utilization rate 100*(ac-
tive/(active+idle)) averaged across regions. The quality of service threshold δ is set at
0.01.

to satisfy increasing demand (Figure 2.7). This ratio depends on the demand rates, fre-

quency of driver rebalancing, and the spatial distribution of regions. All these parameters

would vary between different areas and time periods.

As the target decreases with increasing fractions of book-ahead rides, the number

of idling drivers in the system also decreases. Figure 2.11 illustrates the average number

of idling drivers for different reservation levels. We observe that when pBA = 0.9 the

average number of idle drivers can be up to 17.3 less than the corresponding value when

pBA = 0.0. This reduction in the number of idle drivers with increasing pBA translates to

a higher driver utilization rate.

Figure 2.12 illustrates the average number of rides that are blocked by the admis-

sion control policy (i.e., the reach time service requirement was not met for these rides).

As shown, the average number of blocked rides increases with reservation levels. This

increase in blocking results from the reduction in the overall number of drivers in the sys-

tem. However, the fraction of blocked requests is (mostly) within the specified threshold

δ = 0.01. For pBA = 0.9, the fraction of blocked requests slightly exceeds the level of ser-
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vice threshold δ; this discrepancy may be attributed to the randomness in the system and

the fact that the targets are not perfectly maintained throughout the entire time window.

Figure 2.12: The number of blocked ride requests and the fraction of blocked re-

quests 100*(blocked/(admitted+blocked)) averaged across regions. The quality of service

threshold δ is set at 0.01.

The previous analysis assumed perfect compliance with inter-regional driver tran-

sitions at the simulation-specific driver rebalancing stages (beginning and mid-window).

However, the drivers may not follow platform recommendations and that would result in

greater difficulty maintaining the targets. Figure 2.13 shows the number of blocked rides

and fraction of blocked rides in the worst-case scenario where drivers do not follow inter-

regional transition recommendations. As observed, the number of blocked rides almost

doubles in some cases and the fraction of blocked rides also increases up to 3.5%.
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Figure 2.13: For the case when idle drivers do not follow platform-recommended tran-

sitions between regions, we observe an increase in the number blocked rides and the

fraction of blocked rides. The quality of service threshold δ is set at 0.01.

2.7 Conclusion

In this chapter, we propose a model for transient analysis of stochasticity in rides-

ourcing systems. As opposed to steady-state equilibrium methods, we characterize the

time-dependent state of the system and design control policies for managing driver sup-

ply. Furthermore, we incorporate book-ahead rides (reservations) in our framework and

analyze the impact of book-ahead rides on driver supply management.

In more detail, we propose a state-dependent control policy that assigns drivers to

observed ride requests with the objective of guaranteeing the reach time service require-

ment for book-ahead rides. Then, we derive a time-dependent upper bound on the per-

formance of the control policy, where the performance of the policy is measured in terms

of the probability of reach time service violations for non-reserved rides. Subsequently,

this upper bound is used to determine the target number of drivers that probabilistically

guarantees the reach time service requirement for non-reserved rides. The targets repre-
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sent the total number of drivers that are associated with a region such that the drivers are

either idling in the region or serving requests that initiate in the region. Then, consider-

ing a set of regions with different targets, we propose a driver dispatching/rebalancing

optimization program that seeks to maintain the targets across regions. We show that the

dispatching/rebalancing problem reduces to a minimum cost flow program that is solved

on a transformed network.

The key findings are as follows: (1) For the desired reach time quality of service,

an increase in the fraction of book-ahead rides leads to a reduction in the total number

of drivers required. (2) This reduction in the total number of drivers is associated with a

decrease in the number of idling drivers. (3) Once the driver supply is decreased, there

is a greater risk that the reach time service requirement will be violated for anticipated

non-reserved rides. However, the fraction of rides that experience increased reach time

beyond the reach time service requirement is within a specified threshold, where this

threshold dictates the target number of required drivers. (4) For Lyft rides in Manhat-

tan, we observe rapid variations in demand rates that emphasize the need for transient

analysis of ridesourcing dynamics.

The proposed model can be used for operation of ridesourcing systems. Specifi-

cally, the proposed control policy can be used for ensuring reach time priority for book-

ahead rides, the target supply determines the number of drivers that would probabilisti-

cally guarantee the reach time service requirement for non-reserved rides, and the mini-

mum cost flow program determines the necessary driver dispatching/rebalancing that is

needed to maintain the targets.

More importantly, the proposed model can inform policy decisions that seek to

maximize driver welfare and to reduce congestion externalities associated with rides-

ourcing platforms. In particular, for a given quality of service and reach time service

requirement, policy makers can determine if the ridesourcing platform is employing an
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excessive number of drivers by comparing the total number of drivers in the system to

the target supply. In addition, our results suggest that policy makers should advocate for

an increased fraction of book-ahead rides and supply management strategies that use this

book-ahead information to reduce the number of idling drivers.
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Chapter 3

Peak-Load Pricing and Demand Management for Ridesourcing Systems

3.1 Introduction

To limit the adverse impact of the supply-demand mismatch, platforms have also

resorted to surge pricing as an effective tool for managing both supply and demand.

During peak hours, surge pricing reduces the supply-demand mismatch by inhibiting

passenger demand and at the same time attracting additional drivers to the surge loca-

tion. However, surge pricing is controversial (Wang and Yang, 2019; Zuniga-Garcia et al.,

2020). For example, drivers chasing the surge may reach the surge location after demand

subsides while leaving passengers in other locations without service. To address such

surge pricing drawbacks, we investigate alternative pricing policies where passengers in

areas with high demand are offered the option to delay their trip in exchange for a re-

duced cost. In other words, we propose a pricing mechanism that induces users to travel

during time periods when the predicted demand is low relative to the available supply

(Yahia and Boyles, 2021).

Recent research on pricing in ridesourcing systems focuses on evaluating the op-

timal trip cost under supply-demand equilibrium (Bai et al., 2019; Banerjee et al., 2016;

Bimpikis et al., 2019; Wang et al., 2016; Zha et al., 2018a,b), analyzing operational ineffi-

ciencies attributed to pricing (Xu et al., 2020; Zuniga-Garcia et al., 2020), and determin-

ing pricing strategies in transient (non-equilibrium) systems (Nourinejad and Ramezani,

2020). The majority of existing studies analyze equilibrium conditions within time peri-

ods where driver supply, passenger demand, or trip costs are time invariant. However,

since supply and demand patterns vary rapidly across time, ridesourcing systems may
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never attain equilibrium (Braverman et al., 2019). The proposed pricing strategy focuses

on the transient nature of ridesourcing dynamics (Yahia et al., 2021b). We predict a time-

dependent probabilistic characterization of anticipated ride requests. Then, when users

request a ride, we use the demand predictions to compute the cost of each offered depar-

ture time alternative.

In particular, we consider that the platform dynamically provides users with mul-

tiple ride options, where each ride alternative consists of the trip cost at a delayed de-

parture time. In turn, the passengers evaluate the utility of offered alternatives, and a

multinomial logit model (MNL) is used to represent the probability that a passenger se-

lects a specific alternative. To determine future demand peaks, we use a probabilistic

characterization of anticipated spatiotemporal demand. Then, given the MNL model for

passenger choice and the anticipated demand, we evaluate the trip cost for each offered

departure time using an optimization problem that maximizes platform revenue subject

to constraints that stagger demand peaks. The pricing policy is state-dependent, and it is

successively implemented as ride requests appear across time.

The remainder of this chapter proceeds as follows: Section 3.2 presents the system

model and the demand processes. Section 3.3 discusses departure time choice and its im-

pact on anticipated demand. Section 3.4 discusses the platform pricing policy. Section 3.6

demonstrates the impact of the proposed pricing strategy using Lyft rides in Manhattan.

Section 3.7 concludes the chapter.

3.2 System Model

The ridesourcing platform aims to price trip alternatives for ride requests that ini-

tiate in a geographic region r ∈ R (where R is the set of regions). As illustrated in

Figure 3.1, we assume that the platform dynamically updates the offered alternatives
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at the beginning of regular time intervals U = {[ul, ul+1), [ul+1, ul+2), . . .}. For exam-

ple, at time ul, the platform evaluates alternatives that will be offered to ride requests

that will initiate during [ul, ul+1). Each alternative consists of a delayed departure time

τ ∈ T = {τ1, τ2, . . . , τM} within the time horizon Tl+1 = [ul+1, ul+1 + T] and an associ-

ated trip cost. The offered departure times τ ∈ T do not have to coincide with end points

of time intervals in U .

Then, after the ride requests that initiate during [ul, ul+1) choose their trip depar-

ture time and cost, the platform generates a new set of alternatives (at time ul+1) for ride

requests that will initiate during [ul+1, ul+2). Similar to ride requests that previously ini-

tiated, the ride requests that initiate during [ul+1, ul+2) will be offered a new set of depar-

ture times τ ∈ T ′ within the time horizon Tl+2 = [ul+2, ul+2 + T] and an associated trip

cost for each departure time. The alternatives offered to ride requests that initiate dur-

ing [ul, ul+1) are different from those offered to requests that initiate during [ul+1, ul+2),

where this difference reflects variation of the system state between the time horizons Tl+1

and Tl+2.

Figure 3.1: Time-dependent rolling horizon pricing mechanism.

Since the same pricing procedure is repeatedly used for ride requests that initiate
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in any time interval [ul, ul+1) ∈ U , we restrict our analysis to requests that initiate during

[u0, u1). For those rides, the offered departure time alternatives τ ∈ T = {τ1, τ2, . . . , τM}

are within the time horizon T = [u1, u1 + T].

In the subsequent analysis, we determine the trip cost of each departure time al-

ternative τ ∈ T based on the anticipated system state during T. We start by describing

the predicted demand in Section 3.2.1. Then, in Section 3.2.2 we analyze the impact of the

demand on the shortage in supply (change in idle drivers), and we define the load in a

region as the process describing lost idle drivers. The resulting variation in idle drivers

informs pricing strategies in Section 3.4.

In more detail, the load process that informs pricing decisions is derived from the

anticipated trips that start or end in region r within T. We categorize those trips into future

or past depending on whether the ride request is received prior to u0 (past) or within T

(future). Note that requests received prior to u0 may start their trip within T due to users

delaying their ride. Section 3.2.1 discusses past and future processes. Moreover, the users

for which we are currently evaluating departure time alternatives (i.e., the users that will

appear during [u0, u1)) are referred to as now users; Section 3.3 describes their choices and

their impact on the load process.

58



Figure 3.2: System model characterizing time-dependent ridesourcing dynamics in a re-

gion (zone) r ∈ R. St
f represents the cumulative number of trips that start in r by time t

and correspond to ride requests received in the future within T. Et
f represents the cumu-

lative number of trips that end in r by time t and correspond to ride requests received in

the future within T. St
p represents the cumulative number of trips that start in r by time t

and correspond to past ride requests that are received prior to u0 (those rides start within

T even though the request is received prior to u0). Et
p represents the cumulative number

of trips that end in r by time t and correspond to past ride requests that are received prior

to u0 (those rides end within T). The load process is Lt
r = St

f + St
p − Et

f − Et
p.

3.2.1 Prediction of demand processes

We proceed by describing further the system state and the spatiotemporal demand

during the time horizon T. The predicted demand processes dictate the supply-demand

mismatch and the resulting shortage in idle drivers (high load).

As previously discussed, apart from now users, the demand during T has two com-

ponents: (1) past demand that corresponds to ride requests received before u0, and (2)
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future demand that corresponds to ride requests that will be received during T. In the

following demand characterization, we assume future ride requests do not delay their

trip start time; this assumption ensures computational tractability and it is conservative

in that it represents a worst case future demand scenario from the perspective of users

that request a ride between [u0, u1).

Future demand

First, we focus on future demand. For any pair of regions i, j ∈ R, we consider

that future ride requests for users traveling between i and j will appear according to a

Poisson process. In addition, we assume that the platform can estimate the rate of ride

requests {λt
ij : t ∈ T}. For simplicity, we consider that the rate λij is fixed within the

horizon T; however, the proposed mechanism can be easily generalized to cases with a

time-dependent ride request rate. We also assume that the ride duration will be generally

distributed such that the service time distribution for rides between i, j is denoted by gij(·)

and its cumulative density function is Gij(·).

Thus, at time u0 and for any region r ∈ R, the platform can characterize two differ-

ent predicted demand process {St
f , Et

f : t ∈ T} associated with future ride requests. These

processes are stochastic since they are determined by ride requests that appear according

to a Poisson process and ride durations that are generally distributed. Moreover, these

processes depend on the spatial distribution of demand across the regions in R. The pro-

cess St
f represents the cumulative number of future rides that will start in region r ∈ R by

time t ∈ T. A ride starts when the driver is assigned to fulfill the trip (i.e., the driver is

no longer idle). On the other hand, Et
f represents the cumulative number of rides that end

in region r ∈ R by time t ∈ T (once a trip ends, region r would gain an idle driver). The

processes {St
f , Et

f : t ∈ T} are illustrated in Figure 3.2.

We assume that the processes {St
f , Et

f : t ∈ T} are unbounded. An equivalent
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assumption is that all ride requests can be served. Thus, we may observe that the pre-

dicted number of trips that start in r is greater than the number of available idle drivers

throughout the time horizon; in practice, this would correspond to distant drivers from

an external region being dispatched to serve requests that start in r. In other words, the

demand processes corresponds to trips starting in r or trips ending in r (even if the driver

had to be dispatched from an external region to serve requests in r).

Previously observed demand

In addition to the future demand, we assume that the platform can accurately de-

termine the trip start time and duration for previously observed ride requests (i.e., the

platform has full information on ride requests received prior to time u0). Thus, for each

region r ∈ R, the platform can characterize deterministic processes {St
p, Et

p : t ∈ T} cor-

responding to the cumulative number of starts/ends that occur during T given that the

request was received prior to time u0. St
p represents prior ride requests that start in region

r by time t ∈ T. Similarly, Et
p represents prior ride requests that end in region r by time

t ∈ T. We emphasize that {St
p, Et

p : t ∈ T} are restricted to starts or ends that occur within

T and that requests received prior to u0 may start their trip within T due to users delaying

their ride.

3.2.2 Predicted load process

Given these demand processes, we can define the load process Lt
r, where Lt

r corre-

sponds to the change in the number of idle drivers between u1 and t ∈ T. In particular,

we can express Lt
r in Equation 3.1 as the number of trips ending in r subtracted from the

number of trips that start in r. Observe that if the trips starting in region r is greater than

the trips ending in region r the load will increase; thus, large load values indicate that
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there is a net decrease in idle drivers. Note that Lt
r is independent of the users that appear

between [u0, u1). In other words, Lt
r is either caused by future demand or prior demand

such that it is independent of the users we seek to price. The load process Lt
r is illustrated

in Figure 3.2.

Lt
r = St

f + St
p − Et

f − Et
p (3.1)

In Section 3.4, we will use the expected value of Lt
r to compute the price of each

offered departure time alternative. The pricing strategy aims to disperse users that initiate

between [u0, u1) away from periods with high expected load E
[
Lt

r
]
. Thus, we proceed by

evaluating E
[
Lt

r
]

given in Equation 3.2.

E
[
Lt

r
]
= E

[
St

f

]
+ St

p − E
[
Et

f

]
− Et

p (3.2)

Expected number of future ride requests that start in region r ∈ R

We start by deriving E
[
St

f

]
. Since future ride requests are received according to a

Poisson process, the expected number of trips starting in r by time t is given in Equation

3.3. Observe that E
[
St

f

]
is time-dependent indicating lost idle drivers as time progresses.

E
[
St

f

]
= ∑

j∈R
λrj(t − u1) (3.3)

Expected number of future ride requests that end in region r ∈ R

Next, we derive E
[
Et

f

]
, the expected number of future ride requests that end in r

by time t. Recall that we assume all requests could be served. In addition, for demand

traveling from j ∈ R to r, we assume that future ride requests will be received according

to a Poisson process with rate λjr and that the ride duration has a general distribution
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Figure 3.3: Service time vs. arrival time for future rides that are received after time u1.
The dotted diagonal lines represent the decrease in remaining service time as the user
is being served. For any time t, the number of users that have completed service is the
number of points in the shaded area. For all such points, the intersection of the associated
dotted diagonal line with the x-axis is less than t. The shaded area also corresponds to
users that are served by time t in a transient M/GI/∞ queue that starts empty at time u1.

gjr(·) with the CDF being Gjr(·). In the following, we use a graphical approach to show

that Et
f has a time-dependent Poisson distribution and E

[
Et

f

]
is its time-dependent mean

(Prékopa, 1958).

In Figure 3.3, let xj denote the trip start time (ride request initiation) of the jth fu-

ture user that appears according to the Poisson process. Note that the trip may start in

an external region (provided it starts during T as a future ride request). Moreover, let sj

denote the corresponding service time for the jth future user. As shown in Figure 3.3, we

observe that (xj, sj) is a random point in the two-dimensional plane [u1, u1 + T]× [0, ∞)

that represents the trip start time and service duration. Thus, for any two-dimensional

set S in [u1, u1 + T]× [0, ∞), the number of points in the set represents random sampling

of the ride requests Poisson process; therefore, the number of points in the set S is Poisson

distributed. We also know that disjoint two-dimensional sets correspond to independent

sampling of a Poisson process; this implies that the number of points in each set is inde-

pendent of other disjoint sets.
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Furthermore, if we isolate an infinitesimal two-dimensional square set with an area

ds(dx), we can see that the mean number of points in that set is λjrdx
(

gjr(s)(ds)
)
. Thus,

for any two-dimensional set S, the intensity of the two-dimensional Poisson distribution

is λjrgjr(s). In other words, the distribution of points defined as (arrival time, service

duration) is Poisson over the two-dimensional space, and the expected number of points

for any set S is given by
∫

S λjrgjr(s)dsdx.

As a result, to determine the expected number of arrivals from region j, we evaluate

the integral
∫

S λjrgjr(s)dsdx over the shaded area illustrated in Figure 3.3. This shaded

area represents trips that started in j and have completed in region r prior to time t ∈ T.

In particular, for each (arrival time, service time) pair associated with a specific user, the

diagonal line represents the decrease in remaining service time as the user is being served.

Note that for all users in the shaded area, the corresponding diagonal line intersects the

x-axis prior to time t; this indicates that the trip terminates in region r before time t.

In addition, observe that evaluating the integral
∫

S λjrgjr(s)dsdx over the shaded

area is equivalent to calculating the expected number of served users in a transient

M/GI/∞ queue that starts empty at u1, where the M/GI/∞ queue has an arrival rate

λjr and a general service distribution gjr (the queue has infinite servers since all users can

be served).

Then, to compute E
[
Et

f

]
, the expected number of total trips that start in any region

and end in r by time t, we sum the integral
∫

S λjrgjr(s)dsdx across all regions j ∈ R (where

the integral is evaluated using the bounds of the shaded area). The resulting expression

for E
[
Et

f

]
is given in Equation 3.4. Similar to E

[
St

f

]
, we observe that E

[
Et

f

]
is time-

dependent indicating the change in load across time.

E
[
Et

f

]
= ∑

j∈R

∫ t

u1

∫ t−x

0
λjrgjr(s)dsdx = ∑

j∈R
λjr

∫ t−u1

0
Gjr(x)dx (3.4)
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3.3 Passenger Price and Departure Time Choice

Now that the load process in Equation 3.2 can be evaluated from past and future

trips (Equations 3.3 and 3.4 for future starts/ends). We proceed to analyze the choices

of now users and their impact on the total trip starts/ends. Section 3.3.1 discusses the

multinomial logit model representing user choice, and Section 3.3.2 discusses the impact

of choice probabilities on trip starts and ends. Then, in Section 3.4, we use the passenger

choices and their impact on future supply-demand to determine the price of each offered

departure time alternative.

3.3.1 The multinomial logit model

The probability pk(ck, τk) of a passenger choosing a particular departure time al-

ternative τ ∈ T = {τ1, τ2, . . . , τM} is determined by random utility theory. In particular,

we use a multinomial logit (MNL) model.

The MNL model and the subsequent pricing optimization problem in Section 3.4

use the time-dependent surcharge ck instead of the full trip cost, where the full trip cost

consists of the surcharge added to a base fare. Since the base fare for each user is time-

invariant (depending on factors such as the length of the trip, operational costs, type of

service etc.), it does not factor into the departure time choice. In other words, the base fare

would be the same for different departure time alternatives and the difference in cost is

determined solely by the time-dependent surcharge. Moreover, while the base fare differs

across users, the same surcharge is assigned for all users that choose a specific departure

time alternative.

A MNL for traveler choice can be specified by defining the utility V of travel. As-

sume that the surcharge ck is less than c1 such that travelers would only delay their trip

for a reduced trip fare. Let ak = c1 − ck be the savings that result from departing at time
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τk ∈ T , and let dk = τk − τ1 be the associated delay. In addition, define Vk = βcak + βddk

to be the utility of choosing a specific departure time τk ∈ T . The resulting utility of

departing now, at τ1, would be V1 = 0.

Since ak is restricted to be greater than zero and it represents savings, it is expected

that βc is positive (increased utility with greater savings). The parameter βd represents the

sensitivity towards delay and it is expected to be negative. It is assumed that the service

provider can estimate those parameters from past data.

Then, the MNL probabilities pk(ck, τk) are given in Equations 3.5 and 3.6. For

brevity, we denote pk(ck, τk) as pk.

p1 =
1

1 + ∑τj∈T \{τ1} eβcaj+βddj
(3.5)

pk =
eβcak+βddk

1 + ∑τj∈T \{τ1} eβcaj+βddj
∀τ ∈ T \{τ1} (3.6)

The MNL model is not particularly suitable for departure time choice due to the

independence of irrelevant alternatives (IIA) property. With an MNL model, departure

times that are adjacent to each other do not exhibit increased sensitivity compared to

non-adjacent ones. However, there might be excluded exogenous factors that cause cor-

relations among adjacent time slots. Alternative models such as the ordered generalized

extreme-value (OGEV) model are more appropriate; those models place adjacent depar-

ture times within nests (Bhat, 1998; Small, 1987, 1994). Refer to Train (2009) for more on

MNL assumptions and the general extreme-value family of models which includes the

MNL as a special case of nested variations.

That said, MNL models are readily available within the toolkit of metropolitan

planning organizations and have been previously used for departure time choice anal-

ysis (Saleh and Farrell, 2005; Steed and Bhat, 2000). In fact, Steed and Bhat (2000) state
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that an MNL model was adequate for departure time choice in terms of data fit and that

attempts at estimating an OGEV resulted in estimates that are inconsistent with utility

maximization theory (logsum parameter exceeding 1). Small (1987) also reported viola-

tion of random utility maximization principles in attempts at estimating OGEV models.

Moreover, for the optimization program in section 3.4, initial attempts at using an

OGEV or nested models instead of an MNL led to non-convex optimization programs

that can not be reduced into convex equivalents. The primary difficulty arose from the

inclusion of log-sum coefficients.

3.3.2 Impact of choices on the load process

Given the MNL probability pk that users arriving now between [u0, u1) select to

depart at time τk, we determine the impact of these choices on the load process. Similar

to the analysis approach of future rides in Section 3.2, we determine the number of trips

that start/end in T given that the ride request will be received during [u0, u1) and the

departure time choice follows from the MNL model.

In more detail, the additional load δt
r at time t ∈ T that is associated with users that

appear between [u0, u1) is shown in Equation 3.7. The term St
n represents the cumulative

number of trips that start by time t and correspond to users requesting service between

[u0, u1). Similarly, the term Et
n represents the cumulative number of trips that end by time

t and correspond to users requesting service between [u0, u1). The expected additional

load E
[
δt

r
]

is given in Equation 3.8. In what follows, we evaluate E
[
δt

r
]
.

δt
r = St

n − Et
n (3.7)

E
[
δt

r
]
= E

[
St

n
]
− E

[
Et

n
]

(3.8)
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Note that the departure time alternatives and their prices are generated at time u0. Thus,

the platform needs to characterize the anticipated arrival rate and trip duration for re-

quests that appear in [u0, u1). Similar to the future ride requests, the platform would

estimate the arrival rate λrj for trips between regions r, j ∈ R. The ride duration also

follows a general distribution grj(·) with CDF Grj(·).

Expected number of ride requests that start in region r ∈ R for users requesting service

between [u0, u1)

Then, we derive E
[
St

n
]
, the expected cumulative number of trips that start before

time t in r and are associated with requests that will be received during [u0, u1). The

expression for E
[
St

n
]

is given in Equation 3.9; we arrive at this expression by calculating

the total expected number of requests received between [u0, u1) and multiplying by the

probability that those requests choose to depart prior to time t ∈ T (i.e., they choose a

departure time τ ∈ T = {τ1, τ2, ..τM} that is less than t).

E
[
St

n
]
=

[
∑
j∈R

λrj(u1 − u0)

]
∑

τk∈T :τk≤t
pk (3.9)

Expected number of ride requests that end in region r ∈ R for users requesting service

between [u0, u1)

Similarly, we derive E
[
Et

n
]
, the expected number of trips that end by time t in r

and are associated with requests that will be received during [u0, u1). The expression for

E
[
Et

n
]

is given in Equation 3.10. To obtain Equation 3.10, we multiply the expected total

number of users that would be received between [u0, u1) and are destined to r by the

probability that their trip ends before time t ∈ T; in turn, the probability that the trip ends

before time t is the product of the probability that the trip starts prior to time t and the
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probability that the ride duration is less than the difference between t and the start time.

E
[
Et

n
]
= λrr(u1 − u0) ∑

τk∈T :τk≤t
pkGrr(t − τk) (3.10)

3.4 Peak-Load Pricing

After defining the load process and the impact of now users on the trip start/ends,

we are able to identify time periods where the load is high and we would want the proba-

bility of departure at that time to be low. In this section, we describe the platform pricing

strategy that evaluates the optimal trip costs. Recall that the trip costs determine the

departure time probabilities via the MNL model; in turn, departure time probabilities de-

termine the impact of now users on trip starts/ends (see Equations 3.9 and 3.10). Thus,

the optimal costs are those that maximize revenue while ensuring that the probability

of departure during peak-load periods is limited. We seek to find the trip cost associated

with each departure time alternative τ ∈ T = {τ1, τ2, . . . , τM} offered to users that initiate

between [u0, u1).

3.4.1 Platform revenue maximization

The platform optimization problem is shown in formulation 3.11–3.16. The term

∑τk∈T ck pk in the maximization objective refers to the expected revenue per ride; it is the

sum across alternatives of the surcharge multiplied by the choice probability.

In addition to revenue maximization, the pricing strategy also aims to restrict the

load process, where an increase in the load process indicates lost idle drivers. To that

end, the component of the objective given by wz along with constraints 3.12 and 3.16

minimize the increase in load across departure time alternatives. Note that constraint 3.12

is linear in the departure time probabilities. The term w is a constant that weights the two
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components of the objective.

Constraints 3.13 and 3.14 represent the MNL model that relates the surcharge to

the choice probabilities. Constraint 3.15 guarantees that the savings are positive (i.e., that

the future departure time alternatives have a lower surcharge). Thus, formulation 3.11–

3.16 finds the optimal surcharges that maximize platform revenue, minimize peaks in the

load process, and reflect user choices.

max
pk :τk∈T ,

ak,ck :τk∈T \{τ1},z

∑
τk∈T

ck pk − wz (3.11)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])

≤ z ∀τk ∈ T \{τM} (3.12)

p1 =
1

1 + ∑τj∈T \{τ1} eβcaj+βddj
(3.13)

pk =
eβcak+βddk

1 + ∑τj∈T \{τ1} eβcaj+βddj
∀τ ∈ T \{τ1} (3.14)

ak ≥ 0 ∀τ ∈ T \{τ1} (3.15)

z ≥ 0 (3.16)

The optimization problem in 3.11–3.16 is non-convex and it has a nonlinear ob-

jective function with nonlinear constraints. Specifically, the choice probabilities pk are a

nonlinear function of the surcharge decision variables ck. In Section 3.4.2, we reformulate

the optimization problem to arrive at a convex program. First, we reduce formulation

3.11–3.16 to an equivalent formulation where the decision variables are only pk and z.

Then, we show that (in terms of pk and z) the objective is convex and the constraints form

a convex set.

Observe that the utilities only depend on the difference between c1 and ck (for some

τk ∈ T \{τ1}). If both c1 and ck are decision variables, then an infinite possible com-
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binations of those variables would result in the same set of utilities. The optimization

problem is then unbounded. To be precise, since many combinations of costs lead to the

same probabilities, as long as the problem is feasible (demand shaving constraints are

satisfied), infinitely high values of the cost variables would be chosen to maximize the

objective. This is especially problematic since the option of not choosing any departure

time is not considered. Thus, we assume that c1 is a fixed constant, and the costs ck at

τk ∈ T \{τ1} are decision variables, where the constraints impose that ck ≤ c1.

3.4.2 Convex revenue maximization formulation given passenger

choice

To reformulate the problem into a convex program, we start by replacing the max-

imization in 3.11–3.16 with the minimization in 3.17–3.22. This can be thought of as re-

placing the maximization of revenue objective with one that minimizes losses. Those two

forms are equivalent. As shown below, the revised objective is in terms of ak.

The revised formulation is as follows:

min
pk :τk∈T ,

ak :τk∈T \{τ1},z

∑
τk∈T \{τ1}

ak pk + wz (3.17)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])

≤ z ∀τk ∈ T \{τM} (3.18)

p1 =
1

1 + ∑τj∈T \{τ1} eβcaj+βddj
(3.19)

pk =
eβcak+βddk

1 + ∑τj∈T \{τ1} eβcaj+βddj
∀τ ∈ T \{τ1} (3.20)

ak ≥ 0 ∀τ ∈ T \{τ1} (3.21)

z ≥ 0 (3.22)
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Claim. Solving for an optimal solution to the maximization formulation 3.11–3.16 is equivalent

to solving for the minimum of formulation 3.17–3.22

Proof. We show that the objectives of the two formulations are equivalent as follows:

max
pk :τk∈T ,

ak,ck :τk∈T \{τ1},z

∑
τk∈T

ck pk − wz (3.23)

⇔ max
pk :τk∈T ,

ak :τk∈T \{τ1},z

∑
τk∈T \{τ1}

(c1 − ak) pk + c1p1 − wz (3.24)

⇔ max
pk :τk∈T ,

ak :τk∈T \{τ1},z

− ∑
τk∈T \{τ1}

ak pk + c1

�
�

�
�>

1
∑

τk∈T
pk − wz (3.25)

⇔ min
pk :τk∈T ,

ak :τk∈T \{τ1},z

∑
τk∈T \{τ1}

ak pk + wz (3.26)

The revised formulation is still a non-convex optimization problem since pk is a

nonlinear function of ak. Thus, in the subsequent reformulation 3.27–3.32, we reduce the

optimization problem 3.17–3.22 into a convex program in terms of pk and z. In more detail,

the MNL constraints in 3.19 and 3.20 implicitly force the probabilities to sum to one and

to be between zero and one. In what follows, since the problem is solved in terms of

pk, the constraints on the probabilities are explicitly stated and the MNL constraints are

dropped. The objective 3.17 reduces to the convex function 3.27. Constraint 3.21 can be

rewritten as constraint 3.31 which is linear in pk.

The revised formulation is as follows:

min
pk :τk∈T ,z

1
βc

 ∑
τk∈T \{τ1}

pk log (pk)− βddk pk

− 1
βc

(1 − p1) log (p1) + wz (3.27)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])

≤ z ∀τk ∈ T \{τM} (3.28)

72



∑
τk∈T

pk = 1 (3.29)

0 ≤ pk ≤ 1 ∀τ ∈ T (3.30)

pk ≥ eβddk p1 ∀τ ∈ T \{τ1} (3.31)

z ≥ 0 (3.32)

Claim. Solving for an optimal solution to 3.17–3.22 is equivalent to solving for the minimum of

formulation 3.27–3.32

Proof. First, we show that the two objectives are equivalent.

From Equation 3.19, we know that log(p1) = − log
(

1 + ∑τj∈T \{τ1} eβcaj+βddj
)

From Equation 3.20, we know that log(pk) = βcak + βddk − log
(

1 + ∑τj∈T \{τ1} eβcaj+βddj
)

Thus, log(pk) = βcak + βddk + log(p1)

Rearranging, we can write ak as follows:

ak =
1
βc

[log(pk)− log(p1)− βddk] (3.33)

Thus, ak pk =
1
βc
[pk log(pk)− pk log(p1)− βddk pk]

Then,

∑
τk∈T \{τ1}

ak pk =
1
βc

∑
τk∈T \{τ1}

[pk log(pk)− βddk pk]−
1
βc

log(p1)

�
���

���*
1 − p1

∑
τk∈T \{τ1}

pk (3.34)

=
1
βc

∑
τk∈T \{τ1}

[pk log(pk)− βddk pk]−
1
βc

(1 − p1) log(p1) (3.35)

where equation 3.34 follows from the requirement that the probabilities sum to one.
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This implies that:

min
pk :τk∈T ,

ak :τk∈T \{τ1},z

∑
τk∈T \{τ1}

ak pk + wz

is equivalent to:

min
pk :τk∈T ,z

1
βc

 ∑
τk∈T \{τ1}

pk log (pk)− βddk pk

− 1
βc

(1 − p1) log (p1) + wz

Furthermore, we show that constraint 3.21 can be expressed in terms of pk as follows:

From Equation 3.33, since βc is positive (sensitivity to savings), we know that ak ≥ 0 if

log(pk)− log(p1)− βddk ≥ 0.

Thus, ak ≥ 0 if log( pk
p1
) ≥ log

(
eβddk

)
, and this implies that ak ≥ 0 if pk ≥ eβddk p1

Thus, since the constraints form a convex set in pk and z, we can show that the

formulation 3.27–3.32 is a convex program by verifying that the objective is a convex

function. In this case, we show that the Hessian matrix associated with the objective is

positive semidefinite.

Claim. The objective function

F = 1
βc

[
∑τk∈T \{τ1} pk log (pk)− βddk pk

]
− 1

βc
(1 − p1) log (p1) + wz

is convex

Proof. Observe that the objective is separable with respect to each decision variable

{pk : τk ∈ T }, z

Then, we can easily determine the second derivative with respect to each variable and

construct the corresponding diagonal Hessian matrix as follows:

∂2F
∂p2

1
= 1

βc

[
1
p2

1
+ 1

p1

]
∂2F
∂p2

k
= 1

βc

(
1
pk

)
for all τk ∈ T

∂2F
∂z2 = 0
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Then the Hessian is an (M + 1) × (M + 1) diagonal matrix with the entries given by

∂2F
∂p2

1
, ∂2F

∂p2
k
, ∂2F

∂z2 . Recall that βc is positive since greater savings ak (i.e., lower ck) correspond to

higher utility.

In addition, for more than one departure time alternative, all the multinomial choice prob-

abilities {pk : τk ∈ T } are between (0, 1).

Thus, all the diagonal entries of the Hessian are non-negative; this implies that the Hes-

sian is positive semidefinite.

Since the Hessian is positive semidefinite, the objective is convex.

The convex program 3.27–3.31 can be solved using open-source solvers such as

CVXPY (Diamond and Boyd, 2016). After solving for the optimal probabilities {pk : τk ∈

T }, determine the associated optimal cost {ck : τk ∈ T \{τ1}} using Equation 3.36, where

Equation 3.36 follows from Equation 3.33.

c⋆k = c1 −
1
βc

[log (p⋆k)− βddk − log (p⋆1)] ∀tk ∈ T \{t1} (3.36)

3.5 Alternative Optimization Strategies

The formulation 3.27–3.32 takes the perspective of a service provider that aims

to maximize revenue. For comparison, an alternative optimization strategy that focuses

on system-level performance can be formulated. Observe that the objective in 3.27 has

two components: an expression derived from revenue maximization (minimum savings),

and wz which refers to reducing demand peaks. A revised optimization problem that

drops the first revenue maximization component is shown in 3.37–3.42. This formulation

minimizes the maximum increase in demand between one departure time and the next.
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min
pk :τk∈T ,

z

z (3.37)

s.t.
(

E
[
Lτk+1

r

]
+ E

[
δ

τk+1
r

])
−
(
E
[
Lτk

r
]
+ E

[
δ

τk
r
])

≤ z ∀τk ∈ T \{τM} (3.38)

∑
τk∈T

pk = 1 (3.39)

0 ≤ pk ≤ 1 ∀τ ∈ T (3.40)

pk ≥ eβddk p1 ∀τ ∈ T \{τ1} (3.41)

z ≥ 0 (3.42)

Figure 3.4: Manhattan divided into four regions.

3.6 Demonstrations & Network Analysis

In this section, we present experimental results using data from Lyft operations in

Manhattan, NYC. We use data from rides that occurred on Friday December 14th, 2018
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(NYCTLC, 2019) to estimate the model parameters. In addition, we limit the data to trips

that started between 16:00-19:00 (local time) in the four regions that are shown in Figure

3.4. All rides in a zone are offered the same departure time alternatives and corresponding

time-dependent surcharges. We use a rolling time horizon T of 50 minutes, and the users

are offered five departure times that are evenly spaced out within the horizon (i.e., there

is a difference of 10 minutes between successive departure time offers). Note that we

consider the pricing intervals [u0, u1) to be 10 minutes as well.

Our primary findings suggest that as the users value of time increases, the effec-

tiveness of the peak-load pricing strategy decreases. In addition, to control lost revenue,

the platform can adjust the weight parameter w. As w increases, the platform loses more

revenue in favor of shaving peaks in the load process.

3.6.1 System model specification and rolling horizon implementation

At any pricing interval and associated future time horizon T, we use ride request

received prior to [u0, u1) to generate St
p and Et

p. Then, we use the Manhattan ride request

data to determine the maximum likelihood estimator of the upcoming arrival rates λij

between regions i, j ∈ R. In addition, we use the ride duration of Manhattan trips to

estimate an empirical service distribution gij(·) with CDF Gij(·). The arrival rate and em-

pirical service distribution are used to evaluate cumulative starts/ends St
f /Et

f associated

with ride requests that will be received within the time horizon T.

In each region, after we evaluate the load process and determine the optimal prices

that will be offered to users, we consider that the Manhattan ride requests that subse-

quently appear in [u0, u1) to be ground truth observed data. Then, we probabilistically

delay the start time of each observed ride based on the optimal MNL probabilities.

This process is successively repeated by first updating St
p and Et

p to account for

the choices of observed users [u0, u1). Then, we analyze the subsequent pricing interval
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[u1, u2) and generate a new time horizon T that begins at u2. Note that we also discount

trips that start/end at u1 from St
p/Et

p since we are now only concerned with cumulative

starts/ends in the new horizon [u2, u2 + T].

3.6.2 Value of time and lost revenue

We analyze the impact of parameters βc and βd on the pricing strategy. For any

specific departure time alternative τk, the change in utility is given as ∆Vk = βc∆ak +

βd∆dk. Setting ∆Vk to zero, we can evaluate the trade-off between savings and delay. In

particular, ∆Vk = 0 implies that ∆ak = − (βd/βc)∆dk. Thus, in terms of the impact on

utility, a unit increase in delay is equivalent to − (βd/βc) in additional savings (recall that

βd is negative representing sensitivity to increased delay and βc is positive representing

sensitivity to greater savings). In other words, we can consider the value of time to be

VOT = − (βd/βc).

Maximizing the platforms revenue is equivalent to minimizing the expected user

savings given by ∑τk∈T \{τ1} ak pk (See Claim 3.4.2). The term ∑τk∈T \{τ1} ak pk corresponds

to the average lost revenue per ride based on the choices of the users. In Figure 3.5, we

evaluate ∑τk∈T \{τ1} ak pk for each region and then average the resulting sum across re-

gions. We repeat the computation in Equation 3.43 at every pricing time interval and we

plot the results for different VOT values.

Lost Revenue =
1
|R| ∑

r∈R
∑

τk∈T \{τ1}
ak pk (3.43)
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Figure 3.5: Lost revenue across time for different VOT values. The weight parameter w is

set to one.

We observe that as the VOT decreases the average lost revenue increases. This

indicates that users with a lower VOT are more likely to delay their departure time. In

turn, delayed departure times result in losses to the platform. In contrast, users with

high VOT choose to depart at earlier times and forgo the savings. To further incentivize

high VOT users to delay the trip, the platform may increase the weight w to place greater

emphasis on minimizing peaks in the load process as opposed to maximizing revenue.

In Figure 3.6, we illustrate the impact of the weight w on the lost revenue for a fixed

VOT of $12 per hour. We show that as the weight parameter increases in the optimization

objective, the losses to the platform increase as well; this indicates that the platform pri-

oritizes restricting peaks in load the process over generating revenue. On the other hand,

when the weight is low, the lost revenue is negligible; this indicates that the platform does

not offer users low cost departure time alternatives to avoid a decrease in its revenue.
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Figure 3.6: Lost revenue across time for different weight values. VOT is $12 per hour.

Figure 3.7 illustrates the difference in lost revenue when formulation 3.37–3.42 is

used instead of 3.27–3.32. Formulation 3.27–3.32, which takes the platform’s perspective

(revenue+load), results in a lower level of lost revenue.

Figure 3.7: Lost revenue across time for different objectives: revenue maximizing vs. peak

minimization only. VOT is $12 per hour. Weight parameter is 1.
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3.7 Conclusion

In this chapter, we propose a pricing mechanism that limits peaks in demand to the

available supply. In contrast to surge pricing, we offer user the option to delay their trip

departure time in exchange for a reduced trip cost. Thus, by pricing different departure

time alternatives, we aim to disperse users away from peaks in the load process, where

an increase in the load process represents lost idle drivers.

As opposed to equilibrium-based methods that assume steady-state conditions,

the proposed pricing mechanism focuses on the time-dependent system state and the as-

sociated transient probabilistic demand processes. In particular, we use a probabilistic

characterization of future spatio-temporal demand to determine time periods with in-

creased load. Then, we use the resulting load process to implement real-time pricing that

reacts to the current and predicted system state.

In addition to restricting the load process, the pricing strategy aims to maximize

platform revenue while representing user choices using a multinomial logit model. Sim-

ulation results using data from Lyft rides observed in Manhattan highlight the trade-off

between maximizing revenue and restricting the load process. The results also exhibit the

impact of user characteristics on the performance of the pricing strategy; specifically, we

observe that as the users value of time increases, the effectiveness of the pricing strategy

in terms of restricting the load process is diminished.
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Chapter 4

E-Scooters in Austin, TX: Effect of Transit Network Redesign on

E-Scooter Ridership

4.1 Introduction

In this chapter, we investigate the interaction between e-scooter and transit service

in Austin, TX. In 2018, CapMetro, the local transit agency, implemented a major redesign

of their transit network. This redesign–CapMetro Remap (CapRemap)–involved restruc-

turing the transit service towards a high frequency network. Shortly before CapRemap,

e-scooters were introduced in Austin and their ridership experienced a steady growth as

shown in Figure 4.1. The objective of this research is to study the change in e-scooter

ridership that can be attributed to CapRemap. This analysis would help understand the

trade-offs between transit and e-scooters.

The primary difficulty in isolating the impact of CapRemap on e-scooter ridership

results from the existence of confounding variables. In more detail, observing increased

ridership in certain areas may be attributed to demographic variables or to the proximity

to the UT Austin campus. The statistical analysis proposed in this section controls for such

confounding variables using a matching approach. We isolate areas that were impacted

by CapRemap and match them to reference areas that were not impacted. Then, we ana-

lyze the trend in scooter ridership across the matched areas. In other words, we compare

the change in ridership of the control group to the corresponding change observed in the

reference group.

The matching relies on sociodemographic variables and a proximity to UT mea-

sure. The demographic variables used are population density, retail employment, me-
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dian income, and proportion of young adults (under 34). The assumption is that areas

that match on those variables exhibit a common trend regarding the change in ridership.

Thus, if the control area shows significant trend deviation relative to the reference area,

this could be a result of the intervention (CapRemap).

Figure 4.1: E-Scooter ridership across time in Austin, TX.

4.1.1 CapRemap change in bus service

To visualize the impact of CapRemap, Figure 4.2 illustrates the change in bus ser-

vice throughout Austin. As observed, several areas lost frequent service, including ones

that have a high proportion of minorities that would rely on transit as a primary mode

of transport. However, it is not immediately apparent whether e-scooter trips can replace

transit in areas that lost service or complement transit in areas that gained high frequency

lines. In fact, figure 4.3 shows that scooter ridership is heavily concentrated in specific
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areas close to downtown or the UT Austin campus.

Figure 4.2: Added (green) and removed (red) stops following CapRemap, and stops that

had a net loss or gain of more than 10 buses during the morning peak. The color bar

shows the proportion of minorities in each census tract.
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Figure 4.3: The geographic distribution of e-scooter rides in Austin, TX. The color bar

represents number of rides.

4.2 Identification of Traffic Analysis Zones Impacted by CapRemap

Before we proceed to matching and estimating the effect of CapRemap on scooter

ridership, we first start by identifying the impact area. In what follows, the geographic

analysis unit is taken to be a traffic analysis zone (TAZ), where TAZs are defined by

CAMPO (the planning agency in the Austin area).

First, we need to map the transit service change from bus stop level to TAZ level.

Figure 4.4 shows one approach for this mapping based on the proportion of each bus stop

buffer in the TAZ. The bus stop buffer has a 1/4 mile radius around the stop, where this

1/4 mile distance represents the 85th percentile walking distance to stops. In other words,
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the 1/4 radius buffer is an appropriate representation of the stop coverage area. In the

illustrated example, a bus stop with a net gain of 31 stops has 25% of its 1/4 mile buffer

area in the TAZ and another with a net loss of 10 bus stops has 50% of its buffer area in

the TAZ, the resulting TAZ score is an area-weighted impact of each bus stop.

Figure 4.4: Mapping bus stop service change to TAZ level service change.

Figure 4.5 shows the TAZ level score across the network. As shown, higher values

indicate improved service while negative values indicate adversely impacted TAZs. We

use that TAZ level score to isolate areas that were impacted by CapRemap. To define the

areas that were significantly impacted by CapRemap, we look at the histogram of TAZ

scores. We observe that a threshold of 30 is a reasonably extreme value such that TAZs

with a score greater than 30 had significant improvement and those with a score less than

-30 had a significant reduction in service.
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Figure 4.5: TAZ score illustrating bus service change impact at the TAZ level. Histogram

of service changes across TAZs.

Subsequently, after identifying TAZ scores that are more extreme than the thresh-

old, we can group a set of impacted TAZs as shown in Figure 4.6. A label of ‘Negative‘

indicates that the area had a reduction in service and a label of ‘Positive‘ indicates that

the area had improved service. These significantly impacted areas are roughly around

Central, East, and South Austin.
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Figure 4.6: Areas that are either adversely or positively impact by CapRemap. Those

areas represent a group of TAZs that had significant changes in bus service.

4.3 Matching Impacted TAZs to Reference Zones

As previously mentioned, to match the impacted TAZs to reference zones we use

a set of demographic variables and the proximity of a TAZ to the UT main campus. The

demographic variables vary significantly across Austin as shown in Figure 4.7.
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4.3.1 Mahalanobis distance matching

Given the relevant demographic variables, the Mahalanobis distance measure is

used to find the similarity between TAZs. The Mahalanobis distance is one approach for

matching and it is defined in Equation 4.1. Rubin (2006) provides a detailed discussion of

different matching procedures used for causal analysis in observational studies.

D =
√
(u − v)V−1(u − v)T (4.1)

The term u is a vector of demographic variables and proximity to UT for a TAZ, the

term v is the corresponding vector for a reference TAZ. The matrix V−1 is the inverse of

the covariance matrix of the features, where this matrix is used to normalize for the scale

of different variables. Thus, the Mahalanobis distance measures how close TAZs are to

each other in terms of sociodemographic and UT proximity variables while normalizing

for the scale of each variable.

The Mahalanobis distance can be used to match one impacted TAZ to a reference

TAZ. Since each impacted area is composed of multiple grouped TAZs (Figure 4.6), the

proposed matching approach proceeds to find a reference TAZ for each TAZ within the

impacted area. The aggregation of the matched TAZs forms the reference matched area.

Figure 4.8 shows the matched area (collection of green TAZs) for the negatively impacted

central Austin area shown in red. Similar matched reference areas can be found for other

impacted locations (Figure 4.6).
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Figure 4.8: In red we have an area adversely impacted by CapRemap. In green is a

matched reference area with similar demographics but not affected by CapRemap.

4.4 Difference in Differences Statistical Analysis

After matching, we proceed to implement the difference-in-differences regression

to infer the impact of CapRemap on scooter ridership. The difference-in-differences (DID)

procedure is commonly used in natural experiments (quasi-experiments). In particular,

DID models can be used for estimating the effect of an intervention where before-after

data is available (Hill et al., 2018).

Validity of the difference-in-differences approach is subject to the standard causal

analysis assumptions in non-random (natural) experiments. Of those assumptions, for

the specific case of this CapRemap analysis, the stable unit treatment value assumption

(SUTVA) may not hold across matched pairs. SUTVA implies that the impact of the

CapRemap intervention should not spill over to control group TAZs. This assumption
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may not be necessarily true since the network redesign can impact non-adjacent TAZs as

a consequence of origin-destination trip patterns.

Another assumption that is specific to DID models is referred to as the par-

allel trends requirement. This assumption states that, in absence of the intervention

(CapRemap), the change in ridership at impacted areas would have paralleled the trend

in reference areas. In other words, the observed change in the control group is a proper

counterfactual for the change in the impacted group, where counterfactual refers to the

scooter ridership in the impacted area had the intervention not happened.

The parallel trends assumption is best illustrated in Figure 4.9. In this figure, the

control group outcome y starts at A and ends up at E after the intervention. The impacted

group starts at B and ends up at C. The parallel trends assumption states that, had the

intervention not occurred, the change in outcome for impacted group would have paral-

leled the control group change. The counterfactual for the impacted group, or imagined

outcome had the intervention not happened, would be point D. This implies that differ-

ence δ between C and D is the intervention effect.

Figure 4.9: The difference-in-difference parallel trends assumption. Extracted from Hill

et al. (2018).

The intervention effect is estimated using a regression model. For the scooter rider-
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ship application, the regression takes the form shown in Equation 4.2. In this regression,

‘date‘ is a boolean that is 1 post-intervention and zero otherwise, ‘change‘ is a boolean

that is 1 for impacted areas and zero for control. The dependent variable ‘count‘ refers to

the number of scooter rides in one day.

count = β0 + β1(date) + β2(change) + β3(change) ∗ (date) (4.2)

The parameters of the model are illustrated in Figure 4.10. The parameter β0 re-

flects the expected number of rides in the control area and before CapRemap. The pa-

rameter β1 refers to the trend; to be precise, β1 captures the change in scooter ridership

that can be attributed to time alone (i.e., does not include any additional effect of the

CapRemap intervention). The parameter β2 refers to the change in ridership that is at-

tributed to being in the impact area relative to the control zone; similarly, β2 does not

factor in any additional ridership differences that result from the CapRemap interven-

tion. The parameter β3 refers to the difference-in-differences intervention effect.

Figure 4.10: The difference-in-difference regression.
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4.4.1 Data preparation

To estimate the model, we create four different data-sets for every pair of matched

zones. A sample of one dataset is shown in Table 4.1. For each day (a data point), we

store the scooter use as the variable ‘count‘, and we have two boolean variables ‘change‘

and ‘date‘. The variable ‘change‘ is one if the area is impacted by CapRemap and zero for

reference zones. The variable ‘date‘ is one if the data point is take after CapRemap and

zero otherwise.

Note that we only consider data collected before June 19th, 2018. CapRemap was

implemented on June 3rd. The scooter data available starts at May 23rd, 2018. Thus the

data consist of about 11 days before CapRemap and 16 days after its implementation. We

do not use data beyond June 19th to avoid exogenous factors that may have emerged

during that time frame.

Table 4.1: Sample data for a matched pair of zones

day count change date

2018-05-23 32 1 0

2018-05-24 13 1 0

2018-05-25 115 1 0

2018-05-26 120 1 0

4.4.2 DID results

After fitting the difference-in-difference regression for each matched pair, we ob-

tain an ordinary least squares estimate for the parameters. The results for the central

Austin region (Figure 4.8) are shown below in Figure 4.11. Observe that the coefficient β3

had a value of 67. Moreover, for the null hypothesis that β3 = 0, we get a t-score of 2.75

which implies that we reject the null hypothesis under α levels as low as 0.008. The 95%
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confidence interval for the coefficient value is (18.08, 115.99). Overall, the regression has

a reasonably high adjusted R-squared of 0.637.

Figure 4.11: The difference-in-difference regression results for the central Austin nega-

tively impacted area.

Thus, for the central Austin region shown in Figure 4.8, the results indicate that

there is a significant change in scooter use after CapRemap, where this change in scooter

use is not explained by other sociodemographic variables or features. This analysis was

repeated for other zones; however, for none of the other zones were we able to reject the

null hypothesis that β3 = 0. This indicates that the results are inconclusive and that the

DID parameter is in fact not significant in most cases.

Recall that the model has limitations that may result in the inconclusive results. In
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addition to violation of the SUTVA assumption discussed earlier, the model can not de-

couple the effects of using scooters as a first-mile last-mile service from the use of scooters

in competition with transit. Thus, the coefficients may absorb different effects simultane-

ously which leads to misleading results.

4.5 A Note on Equity in Transit Planning

While e-scooters did not sufficiently replace transit service, it is not clear if minor-

ity groups were disproportionately impacted by CapRemap. In fact, CapRemap raised

several equity concerns and accusations of racial discrimination. Despite CapMetro’s ser-

vice equity analysis showing compliance with FTA’s policies, activists are still determined

that the redesign violates Title VI requirements. This section briefly discusses the impact

of CapRemap across sociodemographic groups in Austin, TX. In particular, we focus on

limitations of commonly used equity analysis procedures that comply with the FTA’s Title

VI requirements.

4.5.1 Limitations of current FTA-compliant equity analysis methods

Before analyzing the data in greater detail, it is worth mentioning CapMetro’s eq-

uity analysis that showed compliance with Title VI. In fact, CapMetro states that the ben-

efit to minorities from the service adjustments far exceeds the potentially adverse impact.

As discussed in an MPO policy meeting, CapMetro evaluated each of the major

service adjustments by studying the demographics of a 1/2 mile walk-shed that sur-

rounds the changed routes. The key analysis approach is to first find out whether the %

minority population around the walk-shed is greater than the average % minority popu-

lation in the total service area. If that is the case, proceed to determine whether alternative

routes can cover the minority block groups that lost service. This route level analysis is
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consistent with the FTA’s Title VI requirements. CapMetro’s results shows that most areas

with lost service will be covered by alternative routes and in many instances there will be

new high-frequency options as well.

Figure 4.12: Sample from CapMetro’s route-based analysis. Source: CAMPO transporta-

tion policy meeting.

The limitations of CapMetro’s route-level equity analysis are as follows:

1. While it is often mentioned that there will be high frequency routes close to minority

groups (similar to other studies that focused exclusively on those high frequency

routes), a detailed service frequency analysis seems to be lacking. The addition of

high frequency routes does not give the full picture of service changes on frequent

and non-frequent routes

2. Forming 1/2 mile walk-sheds around routes (with 1/4 mile strips on each side) is

a common method for measuring system coverage. Despite that, passengers board

their buses at stops, and the 1/4 mile distance is based on the 85th percentile walk-
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ing distance to those stops. Wouldn’t stop-based coverage, with a 1/4 mile radius

around stops, be more appropriate in that case?

3. The routes analyzed were restricted to those that had a greater than 25% change

in geographic coverage or service characteristics, where this 25% threshold was set

by CapMetro. Even after selecting the routes with major changes, they were only

analyzed further if the % minority population in the walk-shed was greater than

35%. Does this exclude parts of the network that were adversely impacted?

4. As shown in the Figure 4.12, the stops at Gardner Rd and Arthur Stiles Rd are re-

moved, and their location will no longer be within a 1/2 mile walk-shed of any

route. However, the minority block group in which they are located (blue) is as-

sumed to be covered by the adjusted route. Clearly, passengers that previously

used those stops will no longer be a short walk away from any transit line; but, they

are considered to be covered due to the irregular shapes of census block groups. In

particular, the analysis assumes that a block group has transit service if any part

of its area overlaps with the walk-shed. A better equity analysis approach would

restrict coverage to the area within a 1/4 mile distance from bus stops.

4.5.2 A peak-hour stop-based analysis approach

Focusing on the weekday morning peak service (7–10 a.m.), which targets essential

home-based work trips, we implement a stop-level equity analysis of the service changes.

The proposed stop-based approach in this section contrasts with the previous Cap-

Metro analysis as follows: (1) The change in frequency is evaluated at each stop by mea-

suring the difference in doors opening before and after CapRemap (2) A buffer with a 1/4

mile radius is created around each stop to determine the demographic characteristics of

affected riders (3) The approach includes changes to all routes — not just ones that pass
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CapMetro’s thresholds for significant changes and disparate impact (4) The impact of the

service change is restricted to the population within the buffer to avoid irregularities in

census data and to accurately represent the coverage area.

Figure 4.2 shows the stops that were added or removed, where the color bar shows

the proportion of minorities in each census tracts. It is evident that many stops were

removed in areas with a high proportion of minorities. That said, looking only at new

or removed stops is not representative of the full service change. The removal of a stop

that had low service is highlighted while major service reductions at other stops are not

shown. Similarly, in their transition to a high frequency network, CapMetro may have

significantly improved the frequency at existing stops without adding many new stops.

The second map in Figure 4.2 shows stops that experienced a change of more than 10

buses during the morning peak; this better illustrates areas with significant changes.

That said, for a precise analysis of the change in service frequency and its impact

on different demographic groups, some detailed stop-level demographic information is

needed. We proceed by computing the demographic characteristics per stop. Then, using

data on changes to bus frequency at each stop, we define aggregate metrics that describe

the change in level of service experienced by each demographic group.

Stop-level demographic data

Getting stop-level sociodemographic data requires projecting variables from cen-

sus tracts to the stop buffers. To do so, we can use the proportion of the buffer that lies

in each tract. This mapping is best illustrated in an example. Figure 4.13 shows how de-

mographic variables are computed for a buffer that overlaps with two tracts (25% of the

buffer area is in tract 1). The term ‘inter. area‘ refers to the area of intersection between

the buffer and the tract.
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Figure 4.13: Mapping census tract demographic data to stop level data.

In general, the number of minorities and the proportion of minorities within the

1/4 mile buffer can be determined as in Equations 4.3 and 4.4. Similar equations can be

used to map any census demographic data to stop-level data.

prop. minoritystop = ∑
tracts

(
inter. area
stop area

)
(prop. minority)tract (4.3)

minoritystop = ∑
tracts

(
inter. area
tract area

)
(minority)tract (4.4)

Stop-level service change metrics

After computing the stop demographic data, we define stop-level service met-

rics. Specifically, let’s define ‘impact‘ to be the change in service after implementation of

CapRemap. From that, ‘doors opening‘ is defined as the impact at stops with improved

service, and ‘doors closing‘ is defined as the impact at stops with reduced service.

impact = (no. buses post-CapRemap)− (no. buses pre-CapRemap) (4.5)

doors closing = max{−impact, 0} (4.6)

doors opening = max{impact, 0} (4.7)
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Aggregate impact metrics

Given the stop-level demographic data and metrics, we can now define aggregate

metrics that accurately describe the service changes per demographic group.

Expected Impact =
∑i∈stops(impact)i(minority)i

total minority in coverage area
(4.8)

Frac. DO =
∑i∈stops(doors opening)i(prop. minority)i

∑j∈stops(doors opening)j
(4.9)

Frac. DC =
∑i∈stops(doors closing)i(prop. minority)i

∑j∈stops(doors closing)j
(4.10)

The ‘Expected Impact‘ is the average service change experienced by a minority

person. In other words, if a minority person was sampled at random from the service

area, this is the change in service that they will experience.

The ‘Frac. DO‘ is the fraction of service improvements that went to minorities.

Similarly, ‘Frac. DC‘ is the fraction of service reductions inflicted on minorities. In con-

trast to the ‘Expected Impact‘ metric, those measures are not dependent on the density of

minorities in a particular area. For example, greatly improving service in a location that

is dense with minorities while leaving out many minority areas unconnected would give

a large positive ‘Expected Impact‘, but this may be undesirable.

4.5.3 Stop-level equity results & discussion

Table 4.2: Stop-level aggregate metrics for CapRemap

Expected Impact Frac. DO Frac. DC

Minority -5.54 0.55 0.52

White -6.10 0.45 0.47

Black -4.25 0.098 0.078
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The results in Table 4.2 show that, on average, Austin’s residents would see fewer

buses passing during the morning peak! While CapRemap added frequent lines, this

was at the expense of other non-frequent service. If we sample a minority person at

random, we would find that she experienced a net loss of around 5 buses passing during

the morning peak.

However, in terms of equity, there does not seem to be any bias against minorities.

The fraction of service improvements that went to areas with Black people was low (only

9.8% of the total service improvements). At the same time, at 7.8%, the fraction of service

reductions that was inflicted on areas with Black people was also low. Overall, minor-

ity areas were allotted 55% of the total service improvements (doors opening) and they

received 52% of the total service reductions. Meanwhile, areas with White people were

allotted 45% of the total service improvements and they received 47% of the total service

reductions.

The results indicate that minority areas did not simultaneously receive a lower

fraction of the service improvements and a greater fraction of the service reductions,

which indicates that there is no apparent bias against minorities in the distribution of

service modifications.

In response to complaints by activists, the FTA stated that the total minority pop-

ulation close to frequent service substantially increased. They cited the fact that 50,000

additional minority persons will be close to such frequent service. However, the focus on

the increase in frequent service may be misleading since people observed fewer buses on

average.
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4.6 Conclusion

This section looked at the impact of CapRemap, Austin’s transit network redesign,

on scooter ridership in the city. To isolate the impact of CapRemap on scooter use, we im-

plement a difference-in-differences (DID) statistical analysis. First, we identify the TAZ’s

that experienced significant changes in bus service due to CapRemap. Then, we group

blocks of such TAZs into impacted areas and we match the resulting impacted areas to

reference/control areas. The matching procedure is used to control for confounding vari-

ables, and it finds reference areas that have similar demographic characteristics to the

impacted areas. In particular, the matching approach uses the Mahalanobis distance to

find pairs of similar areas between reference and control groups. After matching is com-

plete, the DID model is used to estimate the difference-in-differences effect. The DID

model assumes that the matched areas would have parallel scooter ridership trends had

CapRemap not occurred. Thus, the difference-in-differences CapRemap intervention ef-

fect is estimated by quantifying the deviation from the parallel trends assumption within

the impacted group. The results are inconclusive. While we found that CapRemap in-

creased scooter use near the UT campus where transit service was reduced, this result

did not hold in other parts of Austin. In addition, there may be other factors that led to

violation of causality assumptions and biased the results.

Section 4.5 of this chapter discusses the equity analysis used by CapMetro to sat-

isfy the FTA Title VI requirements. Limitations of CapRemap’s equity analysis are dis-

cussed, and an alternative stop-based procedure that addresses existing deficiencies is

proposed. Although CapRemap led to accusations of racial discrimination, we do not find

any bias against minorities in the distribution of service changes. However, while Cap-

Metro claimed increased benefit to minorities and emphasized the added high-frequency

routes, we found that minority groups were overall worse off after the network redesign.
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Chapter 5

Conclusion

This dissertation explores the management and operation of on-demand mobility

systems. Chapters 2 and 3 analyze inefficiencies in the operation of ridesourcing ser-

vices and propose strategies for supply/demand management. Chapter 4 investigates

e-scooter service in Austin TX and the impact of transit network redesign on scooter rid-

ership.

5.1 Contributions

5.1.1 Ridesourcing

For ridesourcing systems, the contributions are as follows:

1. In contrast to equilibrium-based and steady-state stochastic methods, we use time-

varying models derived from transient analysis of queueing systems.

2. Based on those time-varying models, we analyze control policies aimed at managing

driver supply and maintaining a desired reach-time level of service. In the context

of reservations, where an admission control policy prioritizes book-ahead rides, we

provide a time-dependent upper bound on the probability of reach time violation

for non-reserved rides.

3. Given this probability of reach-time violation under the control policy, we determine

the target number of drivers that needs to be provided in each region. Effectively,

this target limits the probability of reach-time violation to be within a desired toler-

ance.
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4. We use the targets in a min-cost flow reformulation of the driver dispatching and

rebalancing problem. The optimal solution for this program represents the mini-

mum number of idle driver transitions between adjacent regions that is needed to

maintain the targets.

5. To manage demand, we propose a peak-load pricing strategy that gives users incen-

tives to delay their trips during periods of high demand. Similar to the reservations

model, we use a time-dependent characterization of the system dynamics. How-

ever, unlike the reservations study where the time-varying probability of reach-time

violation was evaluated, the stochastic processes are only analyzed in expectation.

That said, the processes representing expected number of trip starts and ends are

still time-varying functions.

6. In the peak-load pricing analysis, we use multinomial logit (MNL) models to rep-

resent the user choice among departure time alternatives. For each alternative, the

MNL model gives the probability of users choosing the alternative given the associ-

ated trip cost and delay. The optimization program developed takes the platforms

perspective, and it aims to maximize revenue subject to demand shaving constraints

and the MNL user choice probabilities. A key component of this dissertation is

showing that the resulting non-convex optimization program reduces to a convex

equivalent. This convex reformulation relies on expressing the optimization pro-

gram in terms of choice probabilities instead of trip cost.

5.1.2 E-Scooters

For the e-scooter ridership and transit network redesign study, the contributions

are as follows:
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1. We propose a procedure for evaluating the impact of transit network redesign on e-

scooter ridership. Using data from CapRemap, Austin’s network redesign in 2018,

we estimate the change in scooter ridership that can be attributed to CapRemap. The

primary challenge is isolating the effect of CapRemap from other confounding vari-

ables that may influence ridership. To do so, we implement a Mahalanobis distance

matching approach that pairs areas impacted by CapRemap with reference/control

areas. This matching uses demographic variables and proximity to the UT campus

as indicators of similarity between different locations. Then, for every matched pair

of areas, we use a difference-in-differences (DID) regression to estimate the effect of

CapRemap. The DID model depends on the assumption of parallel trends; this as-

sumption states that, in the absence of CapRemap, the change of scooter ridership in

impacted areas would have paralleled that in reference areas. Then, the CapRemap

effect is inferred as any significant deviation from this trend. Since the matched

pairs are similar on demographic variables and the DID model relies on trends, the

estimated CapRemap effect is free from time-related or demographic factors that

may otherwise bias the results.

2. We investigate existing approaches used to meet the FTA’s Title VI requirements

regarding equity in transit network redesign. We highlight limitations of existing

procedures, and we propose an alternative stop-based equity analysis. The stop-

based analysis projects census-level demographic variables to the stop-level, and

then uses aggregate metrics that better capture the impact of service changes on

each demographic group.
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5.2 Results

For reservations in ridesourcing systems, our results indicate that increased reser-

vations lead to lower targets and subsequently a fewer number of idling drivers. In other

words, the information provided by reservations helps us provide the appropriate num-

ber of drivers to fulfill book-ahead rides and limit the probability of reach-time violation

for non-reserved rides. On the other hand, in the absence of reservations, to guarantee

the same level of service, an increased number of drivers must be deployed and this leads

to inefficiencies (excess idle drivers).

In terms of peak-load pricing, our results indicate that the user’s value of time

(VOT) has a large effect on the success of the demand shaving strategy. If the user’s

value of time is high, they are less willing to delay their departure time in exchange for

a reduced fare. When the VOT is low, more users delay their trip by choosing lower cost

trips and resulting in better demand shaving at the expense of some lost revenue.

The e-scooters study shows that, in many cases, the impact of transit network re-

design on e-scooters ridership is insignificant. The results suggest that e-scooters did not

replace transit in areas that lost service. Regarding equity implications of the CapRemap

transit network redesign, our proposed stop-level analysis shows that there is no appar-

ent bias against minorities. That said, on average, if we sample a minority person at

random, we would find that they experienced a net loss in service. This result contradicts

CapMetro’s emphasis on benefits to minority populations through increased proximity

to high frequency transit lines.

5.3 Future Work

While the majority of existing studies focus on equilibrium/steady-state analy-

sis of emerging mobility services, existing research suggests that temporal variations in
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supply/demand occur rapidly, and systems describing mobility services may not attain

a steady-state equilibrium (Braverman et al., 2019). This rapid temporal variation in pa-

rameters suggests that there is a need for additional research on time-varying models and

state-dependent control policies. Equilibrium-based methods are useful for high-level

long-term planning; however, the nature of rapid and dynamic mobility systems requires

innovative management strategies that react to the time-varying state of the system. The

stochastic nature of supply/demand also warrants additional research that further inves-

tigates the impact of uncertainty on operational inefficiency and the analysis of control

policies in light of this stochasticity.

In the transportation literature, equity remains one area that requires additional re-

search. Across the transportation planning stages, from survey design to mode choice and

network analysis, little consideration is given to minority groups and their behavior. It

is well known that minority groups respond to surveys differently, use particular modes,

and are often adversely impacted by large transportation projects. Additional research

is needed on (1) procedures to incorporate their opinions and behavior into transporta-

tion planning, and (2) experimental and data-driven metrics that quantify the impact of

transportation projects on travel choices of minorities. In this dissertation, we show how

transit network redesign is one area that would benefit from further equity research.

Another critical research area is the safety and security of emerging mobility sys-

tems (Perrine et al., 2019). Apart from connected and autonomous vehicles, significant

advances are being made in the monitoring of traffic and transportation infrastructure

(Yahia et al., 2021a). This abundance of real-time data is essential for improving the effi-

ciency of mobility services and detecting disruptions to traffic or infrastructure. However,

the increased connectivity/monitoring introduces privacy and safety risks. Experimental

research on those topics would add great value to the current transportation literature.
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