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ABSTRACT1
The traffic assignment problem is primary concerned with the study of user equilibrium and system2
optimum states. These models, however, require that travelers are perfectly rational and have a3
complete knowledge of network conditions. For an empirical standpoint, when a large number of4
selfish travelers control the flow on a network, the chances of reaching equilibrium are slim. User5
behavior in such settings can be modeled using probabilistic route choice models, which define6
when and how players switch paths. In the context of the traffic assignment problem, only a few7
dynamic route adjustment processes exhibit asymptotic convergence to equilibrium. In this paper,8
we propose a Markov decision process formulation for improving the probability of convergence9
of any closed-form route choice model to an equilibrium solution using dynamic pricing. A simple10
example to illustrate the application of the pricing framework is also discussed.11
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1 INTRODUCTION1
Urban transportation planning is traditionally carried out using a four-step process. The first three2
steps are used to estimate the number of travelers/users, their origin-destination (OD) pairs, and3
their mode of travel. The final step, also called route choice or traffic assignment, involves assign-4
ing travelers to different routes. This assignment procedure is done assuming that traffic networks5
are in a state of equilibrium due to selfish choices made by travelers (1, 2). In order to observe a6
user equilibrium (UE) or Nash equilibrium (NE) state, travelers must be rational and have a perfect7
knowledge of the network topology and its response to congestion. However, when a large number8
of travelers interact, the extent of reasoning required to arrive at an equilibrium solution remains9
beyond one’s human ability. Learning models in transportation and behavioral game theory have10
tried relaxing these assumptions of perfect rationality to develop dynamic day-to-day models that11
take into account how travelers’ choices vary with time in the presence of historical information12
on network conditions. A major goal of these studies has been to test if a particular dynamical pro-13
cess converges to equilibrium. However, the number of dynamics that are known to converge to14
equilibrium in traffic networks are quite limited. This motivates us to raise the following question:15
“Irrespective of how traffic networks evolve, can we use a dynamic pricing/tolling mechanism to16
ensure the convergence of players’ choices to a UE?”17

While congestion pricing has been traditionally used to achieve social optimal (SO) flows, the18
purpose of pricing here is to guide users to an equilibrium state. The advantages of guiding players19
to reach an equilibrium are two-fold. First, in the presence of multiple equilibria, we may be able20
to guide players to an efficient one. Second, and more importantly, SO states are equivalent to UE21
states under modified link performance functions (3). Therefore, reaching a SO state is as difficult22
as reaching an UE, and hence using dynamic pricing we might also be able to direct players to a SO23
state. The main hypothesis of this research is that for a given route switching mechanism, assuming24
that travelers make more rational choices with time, we can improve the probability of reaching25
(i) a UE by dynamically pricing the network for finite number of days or (ii) a SO by dynamically26
pricing the network for a finite number of days and then shift to a static pricing scheme using the27
marginal costs. Since UE states are self-enforcing, if users become experienced enough, revoke28
pricing would not alter the state of the network. On the other hand, a SO state is not self-enforcing,29
and hence we would have to continue to collect tolls using the marginal costs.30

The rest of this paper is organized as follows. In Section 2, we summarize the literature on31
the topic of day-to-day dynamics. Section 3 discusses two commonly used modeling approaches32
that are used to study the evolution of traffic. In Section 4, we propose a Markov decision process33
(MDP) model for finding a dynamic pricing policy that improves the probability of convergence34
to an equilibrium solution and demonstrate it using a logit route choice model on a small network.35
Finally, in Section 5, we summarize our findings and discuss pointers for future research on this36
topic.37

2 LITERATURE REVIEW38
Several efficient algorithms exist for finding the UE solution to the traffic assignment problem39
(TAP) (4, 5, 6, 7, 8, 9, 10). A separate line of research has investigated how an equilibrium might40
be reached in traffic networks. This issue has received considerable attention in the literature and41
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equilibrium is modeled as a steady state of a stochastic process (11, 12, 13, 14). Also called as day-1
to-day dynamic models, these stochastic processes result from randomness in users perceived travel2
times. These models can be placed in a larger context of learning in repeated and evolutionary3
games in which players’ actions are chosen in response to the past history of a game. Some of the4
commonly used dynamics include best response mechanism (15, 16), replicator dynamics (17, 18),5
projection dynamics (19), and Brown-von Neumann-Nash dynamic (20). For a detailed description6
of these dynamics see (21).7

Only a few dynamics exhibit convergence to UE in traffic networks. Traffic can be modeled as8
congestion games which belong to the class of potential games that possess the finite improvement9
property (22). According to this property, a dynamic in which, at each round of a repeated game,10
a single traveler switches paths so that he/she is strictly better off converges to a UE. Fictitious11
play process (15, 16) is another dynamic in which each traveler best responds to the empirical joint12
distribution of other traveler’ actions. However, the actual equilibrium solution to which fictitious13
play process converges depends on factors such as initial beliefs, tie-breaking rules, and the manner14
in which beliefs are updated (i.e., sequential or simultaneous).15

A more realistic class of learning models in game theory relaxes the assumption of perfect16
rationality. The central idea in these models is to define a stochastic process using the outcomes17
of a game as system states, and assume some dynamic which lets players move from one state to18
another. This process is modeled as a Markov chain and its stationary or steady state distribution is19
used to study equilibrium solutions. Travelers in these models are modeled using the concepts of20
inertia, myopic behavior, and mutations. Inertia suggests that travelers are unlikely to frequently21
switch paths. Myopic behavior implies that travelers choose actions to optimize their present travel22
times rather than discounted infinite-horizon travel times. Mutations reflect the assumption that23
travelers may “tremble” or make mistakes while choosing a path. Depending on the probabilities24
that are assigned to the strategies that are not best responses, different learning algorithms can be25
constructed (23, 24, 25, 26, 27).26

3 DISCRETE AND CONTINUOUS DAY-TO-DAY MODELS27
In this section, we discuss two day-to-day models that are commonly found in literature. The first28
model is a discrete time Markov chain (DTMC) in which travelers follow the logit path choice29
model (11). The second one is similar to the first but is defined in a continuous setting (27)30
and is hence modeled as a continuous time Markov chain (CTMC). Both models are assumed to31
have a finite number of travelers. These models will be illustrated using the following example,32
which will later be used for demonstrating the proposed dynamic pricing mechanism. Suppose33
two travelers wish to travel from node O1 to D1 (traveler 1) and from O2 to D2 (traveler 2) in34
the network shown in Figure 1. The link performance functions are indicated on the arcs. There35
are four different outcomes in this network. Suppose we denote the states/feasible flow solutions36
using the ordered pairs (T, T ), (B,B), (T,B), and (B, T ), where T stands for top link (with link37
performance function x2) and B for bottom link (with link performance function x). We will refer38
to these states using the numbers 1, 2, 3, and 4 respectively. The first and the second elements of39
the ordered pair represent the choices made by the traveler 1 and traveler 2 respectively. In these40
models, we will assume that each time a traveler makes a route choice he or she uses a probability41
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distribution based on the logit path choice model while assuming that other travelers remain on1
their current paths. Note that while the link flow solution to this problem is unique, there are two2
path flow solutions (states 3 and 4).3

1 2 

𝑥2  

𝑥  
𝑶𝟏 

𝑶𝟐 𝑫𝟐 

𝑫𝟏 
0  

0  0  

0  

FIGURE 1: Example to demonstrate day-to-day dynamics in networks

3.1 Discrete time models4
In the discrete version of day-to-day dynamic models, travelers make route choices on each day5
based on observed states in the past. Suppose travelers choices are conditioned on the current state6
of the system. This lets us define a Markov process with transition probabilities as defined below.7
Suppose P = [pij] represents the transition matrix, where pij denotes the probability of moving8
from states i to state j in one time period.9

p11 = Probability that both travelers stay on the top path (1)

=

(
exp(−4)

exp(−4) + exp(−1)

)2

(2)

p12 = Probability that both travelers move to the bottom path (3)

=

(
exp(−1)

exp(−4) + exp(−1)

)2

(4)

p13 = Probability that only traveler 2 switches to the bottom path (5)

=

(
exp(−1)

exp(−4) + exp(−1)

)(
exp(−4)

exp(−4) + exp(−1)

)
(6)

p14 = Probability that only traveler 1 switches to the bottom path (7)

=

(
exp(−1)

exp(−4) + exp(−1)

)(
exp(−4)

exp(−4) + exp(−1)

)
(8)

The expressions for the other transition probabilities can be written similarly. The Markov10
chain defined using these transition probabilities is irreducible as every pair of states communicate11
with each other. Hence a steady state distribution exists. The long run percentage of finding the12
system in states 1, 2, 3, and 4 is 0.1885, 0.3201, 0.2456, and 0.2456 respectively. Since states 313
and 4 are the equilibrium states, one is likely to find the system in disequilibrium states nearly 50%14
of the time.15
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3.2 Continuous time models1
In continuous time day-to-day models (21, 27), all travelers do not change their paths at the same2
time but are presented with strategy revision opportunities at random intervals. The sojourn times3
for each traveler (time between two successive revision opportunities) are assumed to be expo-4
nentially distributed with rate λ. This framework is also called Logit learning and is modeled as5
a continuous time Markov chain (CTMC). When a traveler gets to choose a path (say at time t),6
he/she does so using a log-linear choice rule assuming that all other travelers remain on their cur-7
rent paths. Unlike in the case of discrete time models, players’ transition rates are additionally8
assumed to be dependent on a parameter ε which defines the extent of making a mistake or the9
extent of irrationality. For any positive ε, the CTMC is irreducible and recurrent (since all states10
can communicate with each other). Hence, a unique steady state/limiting distribution that has all11
states in its support exists. However, as ε tends to zero, i.e., as the probability of making mistakes12
get smaller (it is assumed that by repeated interactions players get more experienced) only a few13
states have positive limiting probabilities. These states constitute what is termed a stochastically14
stable set. Blume (27) showed that as ε’s tend to zero, the stochastically stable set coincides with15
the states that are in UE.16

In the example discussed earlier, for a given ε, the transition probabilities for traveler 1, ξε1(),17
can be written as shown below. When presented with a strategy revision opportunity, suppose18
traveler 2 is on the top path, traveler 1 chooses T and B with probabilities ξε1(T, T ) and ξε1(B, T )19
respectively.20

ξε1(T, T ) =
exp(−4/ε)

exp(−4/ε) + exp(−1/ε)
ξε1(B, T ) =

exp(−1/ε)
exp(−4/ε) + exp(−1/ε)

(9)

ξε1(T,B) =
exp(−1/ε)

exp(−1/ε) + exp(−2/ε)
ξε1(B,B) =

exp(−2/ε)
exp(−1/ε) + exp(−2/ε)

(10)

Expressions for the transition probabilities of traveler 2 may be written in a similar manner.21
The transition diagram and the associated transition rates are shown in Figure 2.22
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FIGURE 2: Transition diagram for a logit learning process
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The global balance equations are then constructed and solved to obtain the long run proportion1
of time spent in each state.2

ρε1 + ρε2+ρ
ε
3 + ρε4 = 1 (11)

ρε1 (ξ
ε
2(T,B) + ξε1(B, T )) =ρ

ε
4ξ
ε
1(T, T ) + ρε3ξ

ε
2(T, T ) (12)

ρε2 (ξ
ε
2(B, T ) + ξε1(T,B)) =ρε4ξ

ε
2(B,B) + ρε3ξ

ε
1(B,B) (13)

ρε3 (ξ
ε
2(T, T ) + ξε1(B,B)) =ρε1ξ

ε
2(T,B) + ρε2ξ

ε
1(T,B) (14)

ρε4 (ξ
ε
1(T, T ) + ξε2(B,B)) =ρε1ξ

ε
1(B, T ) + ρε2ξ

ε
2(B, T ) (15)

Solving the balance equations for a given value of ε gives the steady state probabilities of3
finding the system in that state. As ε tends to zero, the support of the steady state probabilities is4
identical to set of UE solutions. Table 1 summarizes the behavior of the steady state probabilities5
for different values of ε. As can be seen from the table, the steady state probability of each of the6
UE states is 0.5 for low values of ε.7

TABLE 1: Convergence of logit learning

ε 1 0.5 0.33 0.25 0.2 0.1 . . . 0.01
ρε1 0.020593 0.001159 6.02E-05 3.04E-06 1.52E-07 4.68E-14 . . . 2.6E-131
ρε2 0.152163 0.063305 0.024287 0.009075 0.003358 2.27E-05 . . . 1.86E-44
ρε3 0.413622 0.467768 0.487826 0.495461 0.498321 0.499989 . . . 0.5
ρε4 0.413622 0.467768 0.487826 0.495461 0.498321 0.499989 . . . 0.5

Alternately continuous time day-to-day dynamics can be modeled using ordinary differential8
equations (28) in which travelers are assumed to be infinitely divisible. Sandholm (21) shows that9
this approach is equivalent to the CTMC model when the number of travelers is large.10

4 MODEL FORMULATION11
We now propose a discrete time equivalent of the continuous time route choice model described12
in the previous section by including a term εk in the expressions for the transition probabilities,13
which represent the extent of irrationality on day k. We also suppose that travelers get more14
experienced over time and hence assume that εk → 0 as k → ∞. However, unlike as seen15
in the continuous models, we demonstrate that the discrete time Markov chain with decreasing16
extent of irrationality can have steady state distributions in which a significant proportion of time17
is spent in disequilibrium states. We then propose a dynamic tolling framework that can potentially18
improve the probability of convergence to an equilibrium state. Further, in the presence of multiple19
equilibrium solutions, we will be able to choose the equilibrium to which we want the system to20
converge.21

For the purpose of demonstration, suppose the ε’s vary as 1/(k + 1) and that the extent of22
irrationality is homogenous across all travelers. The transition probability matrix P (k) = [pij(k)]23
is now a function of k. Given below is the modified version of (2), similar expressions for the other24
transition probabilities can be written.25
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p11 = Probability that both travelers stay on the top path on day k (16)

=

(
exp(−4/εk)

exp(−4/εk) + exp(−1/εk)

)2

(17)

Suppose that on day 0, all states are equally likely to be observed. The long run percentages of1
finding the system in each of the 4 states can be written as a limk→∞ P (k), where a is a row vector2
that represents the initial distribution on day 0. Computing higher powers of P by direct matrix3
multiplication, the long run percentages was approximately found to be4

=
[
0.25 0.25 0.25 0.25

] 
0.0649634 0.555205 0.189916 0.189916
0.402912 0.133405 0.231841 0.231841
0.161785 0.272153 0.472968 0.0930937
0.161785 0.272153 0.0930937 0.472968


=
[
0.19786135 0.308229 0.246954675 0.246954675

]
(18)

As mentioned earlier, even if travelers get more experienced with time, the system is again5
likely to be found in disequilibrium states for nearly 50% of the time. In order to avoid this issue,6
we now propose a mechanism in which the links in the network are tolled for a finite number of7
days after which the tolls are revoked. Since users make more rational choices with time, once an8
equilibrium state is reached the probability of revisiting that state in the next time period is high,9
and hence the probability of finding the system in equilibrium can be improved. We assume that10
travelers value time and cost equally and hence attempt to minimize the sum of travel time and cost11
of their routes.12

Consider N users who repeatedly make route choices between their origins and destinations13
over a finite number of days. We assume that the number of travelers are fixed. Although this14
assumption is limiting because there is usually a high degree of demand uncertainty in networks,15
the treatment of equilibrium with stochastic demand is a topic in itself and can be justly studied16
only if the problem with a fixed number of players is fully explored. Suppose that set of days17
is denoted by K = {1, 2, . . . , K}. Let sk represent the vector of route choices on day k and uk18
represent the vector of link tolls on day k. Assume that on any day, links in the network may be19
priced from a finite set of feasible tolls U. We now define an MDP in which given the path choices20
on a particular day, one can determine the optimal toll that maximizes the probability (ideally one21
would want them to be close to 1) of reaching an equilibrium at the end of Kth day from every22
initial state. The tolls for day k + 1 are chosen at the end of day k and are revealed to travelers23
before the beginning of the day k + 1. The components of the MDP are as follows:24

25
Time periods: k = 0, 1, 2, . . . , K26
States: Path choice vector on day k (sk). States are indexed by i, j27
Actions: Tolls on day k (uk)28
Transition probabilities: pkij(uk, εk) = P[sk+1 = j|sk = i,uk, εk]29
Value Functions: Probability of reaching a UE at the end of the time period (Jk(sk))30
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Boundary conditions: JK(sK) is 1 if sK is a UE and is 0 otherwise.1
2

𝑘 𝑘 + 1 

Travelers make decisions 𝒔𝑘 

Tolls for the next day are decided 𝒖𝑘  

Travelers make decisions 𝒔𝑘+1  
based on 𝒔𝑘 and 𝒖𝑘  

FIGURE 3: Timeline for the MDP

In this model, the transition probabilities depend on the current state, the tolls, and εk that3
reflects the extent of irrationality of travelers. Each player is assumed to compute his/her disutility4
along a path using the revealed tolls and estimated travel time (which in reality may be obtained5
from some type of web/mobile application that stores past network conditions) assuming that the6
rest of the users continue on their paths chosen on the previous day. The Bellman’s equation7
of optimality can thus be written as follows: Jk(i) = maxuk∈U

∑
j p

k
ij(uk)Jk+1(j). The optimal8

values can be obtained using backward induction and since the transition probabilities are assumed9
to have closed-form expressions, the objective may be minimized over the set U. The value of K10
should be carefully chosen so that the system would continue to remain at an equilibrium once the11
prices are revoked.12

Consider the example in Figure 1. The boundary condition for state 4 is set to 1. Suppose that13
travelers use a logit learning model and on day k + 1 they choose between the two alternatives14
with probabilities that depend on tolls for day k + 1 and the travel times observed on day k, while15
assuming that other travelers remain on the paths chosen on day k. Let uk = (uTk , u

B
k ) represent16

the vector of tolls on the top and bottom links between nodes 1 and 2 in the network. On day 0, we17
assume that the network is in one of the four states with equal probability. Given below are some18
expressions for the transition probabilities (expressions for the other transition probabilities can be19
written in a similar way).20

pk11(uk, εk)) = Probability that both travelers stay on the top path (19)

=

 exp
(
−4−utk
εk

)
exp

(
−4−utk
εk

)
+ exp

(
−1−ubk
εk

)
2

(20)

pk12(uk, εk)) = Probability that both travelers move to the bottom path (21)

=

 exp
(
−1−ubk
εk

)
exp

(
−4−utk
εk

)
+ exp

(
−1−ubk
εk

)
2

(22)
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pk13(uk, εk)) = Probability that only traveler 2 switches to the bottom path (23)

=

 exp
(
−4−utk
εk

)
exp

(
−4−utk
εk

)
+ exp

(
−1−ubk
εk

)
 exp

(
−1−ubk
εk

)
exp

(
−4−utk
εk

)
+ exp

(
−1−ubk
εk

)
 (24)

pk14(uk, εk)) = Probability that only traveler 1 switches to the bottom path (25)

=

 exp
(
−4−utk
εk

)
exp

(
−4−utk
εk

)
+ exp

(
−1−ubk
εk

)
 exp

(
−1−ubk
εk

)
exp

(
−4−utk
εk

)
+ exp

(
−1−ubk
εk

)
 (26)

In this example, we use the ε’s defined in the previous case and solve the MDP to obtain the1
optimal pricing policy. The value of K was chosen to be 30 and the results are shown in Table2
2. The transition probabilities (calculated based on the assumed ε’s) imply that travelers in state 43
would continue to remain in that state with probability 1 (to within floating point accuracy) after4
30 days. The following table shows the value functions. As can be seen from the first row of the5
table, the probability of reaching a UE at the end of the 30th day is close to 1 from all states. Since6
on day 0, the system is equally likely to be in each of the four states, the long run percentage of7
reaching equilibrium is (0.994487 + 0.994637 + 0.993277 + 0.998216)/4 = 0.99515, which is a8
lot higher than long run percentages found in the previous cases. Note that the J’s of the states9
for which the boundary values are set to 0 gradually increases as k decreases, while the J values10
for the UE state (for which the boundary value is initialized at 1) monotonically decreases as k11
decreases.12

13
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TABLE 2: Results of the MDP for K = 30

k J∗k (1) uk(1) J∗k (2) uk(2) J∗k (3) uk(3) J∗k (4) uk(4)
0 0.994487 (0,2) 0.994637 (1.3,0.1) 0.993277 (2,0) 0.998216 (0.1,1)
1 0.992994 (0,2) 0.993633 (1.2,0) 0.992195 (2,0) 0.999651 (0,1)
2 0.99122 (0,2) 0.992382 (1.1,0) 0.990809 (2,0) 0.999942 (0,1)
3 0.989275 (0,2) 0.990894 (1.1,0) 0.989083 (2,0) 0.99999 (0,1)
4 0.987079 (0,2) 0.989121 (1.8,0.7) 0.986993 (2,0) 0.999998 (0,1)
5 0.984541 (0,2) 0.98701 (1.5,0.4) 0.984503 (2,0) 1 (0,1)
6 0.981574 (0,2) 0.98451 (1.4,0.3) 0.981558 (2,0) 1 (0,1)
7 0.978133 (0,2) 0.981561 (1,0) 0.978125 (2,0) 1 (0,1)
8 0.97406 (0,2) 0.978127 (1,0) 0.974056 (2,0) 1 (0,1)
9 0.969226 (0,2) 0.974057 (1,0) 0.969224 (2,0) 1 (0,1)

10 0.963502 (0,2) 0.969225 (1,0) 0.963501 (2,0) 1 (0,1)
11 0.956699 (0,2) 0.963501 (1,0) 0.956698 (2,0) 1 (0,1)
12 0.948654 (0,2) 0.956698 (1,0) 0.948654 (2,0) 1 (0,1)
13 0.93907 (0,2) 0.948654 (1.4,0.4) 0.93907 (2,0) 1 (0,1)
14 0.927772 (0,2) 0.93907 (1,0) 0.927772 (2,0) 1 (0,1)
15 0.914254 (0,2) 0.927772 (1.4,0.4) 0.914254 (2,0) 1 (0,1)
16 0.898417 (0,2) 0.914254 (1.9,0.9) 0.898417 (2,0) 1 (0,1)
17 0.879299 (0,2) 0.898417 (1.9,0.9) 0.879299 (2,0) 1 (0,1)
18 0.857185 (0,2) 0.879299 (1.4,0.4) 0.857185 (2,0) 1 (0,0.9)
19 0.830007 (0,2) 0.857185 (1,0) 0.830007 (2,0) 1 (0,0.8)
20 0.799366 (0,2) 0.830007 (1.4,0.4) 0.799366 (2,0) 1 (0,0.7)
21 0.76033 (0,2) 0.799366 (1.4,0.4) 0.76033 (2,0) 1 (0,0.7)
22 0.718567 (0,2) 0.76033 (1.9,0.9) 0.718567 (2,0) 1 (0,0.6)
23 0.661377 (0,2) 0.718567 (1,0) 0.661377 (2,0) 1 (0,0.6)
24 0.606445 (0,2) 0.661377 (1.9,0.9) 0.606445 (2,0) 1 (0,0.5)
25 0.519531 (0,2) 0.606445 (1.9,0.9) 0.519531 (2,0) 1 (0,0.4)
26 0.453125 (0,2) 0.519531 (1.4,0.4) 0.453125 (2,0) 1 (0,0.4)
27 0.3125 (0,2) 0.453125 (1.4,0.4) 0.3125 (2,0) 1 (0,0.4)
28 0.25 (0,2) 0.3125 (1.4,0.4) 0.25 (2,0) 1 (0,0.3)
29 9.36E-14 (0,2) 0.25 (1,0) 7.86E-53 (0.1,0.2) 1 (0,0.3)
30 0 (0,0) 0 (0,0) 0 (0,0) 1 (0,0)

Table 3 reports the probability of reaching an UE state at the end of the pricing time periods1
for different time period durations, i.e., for different values of K. As expected, the longer we price2
the network, the chances of reaching an equilibrium increase.3
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TABLE 3: Results of the MDP for different values of K

K J∗0 (1) J∗0 (2) J∗0 (3) J∗0 (4)
5 0.605062 0.617078 0.517995 0.87233

10 0.83596 0.840394 0.799958 0.946907
15 0.92915 0.931078 0.913597 0.97707
20 0.969615 0.970441 0.962945 0.990166
25 0.987056 0.987408 0.984215 0.995811
30 0.994487 0.994637 0.993277 0.998216

Note that in the above example, we set the boundary value of state 4 to 1. Instead, we could1
have chosen state 3 as the preferred UE state and set its boundary value to 1. Although, states 3 and2
4 have the same link flows, note that they are different path flow solutions. Hence, the proposed3
pricing mechanism not only improves the probability of reaching a UE solution but also lets us4
choose a particular UE solution in the presence of multiple equilibria. A preferred UE solution5
in such instances may be identified on the basis or stability or entropy. Further, one could set the6
boundary value of disequilibrium states (such as states 1 and 2) to 1. However, after the prices7
are revoked, since these states are not in equilibrium, travelers would continue to switch routes. In8
such cases, travelers may be forced to choose the disequilibrium state by enforcing a static toll that9
is collected indefinitely. This procedure may be used to help users reach a SO state.10

5 CONCLUSION11
In this paper, a dynamic pricing model was developed to improve the probability of convergence12
to a UE in the TAP with boundedly rational users. The problem was formulated as an MDP and13
was demonstrated using a small network and the numerical results appear promising. The problem14
presents several interesting directions for future research. Theoretical results related to rates of15
convergence of closed-form transition probabilities in the presence of dynamic pricing may be of16
interest. The dynamic pricing models may be extended to ones in which the transition probabilities17
are not known but are inferred from observed players’ choices. These extensions can capture the18
effects of heterogeneity in learning and the value of time of travelers. It would also be interesting19
to see how these models work in practice by conducting experiments using simulations and human20
subjects.21
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