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Abstract  

 
Urban Consolidation Centers (UCCs), facilities where deliveries directed towards the city center can be dropped 

off, sorted, and consolidated in smaller and more environmentally friendly vehicles represent a good opportunity to 
reduce the negative impacts of urban freight movements. However, in the past twenty years only a few of the real-
world applications have succeeded due to several operational, financial, and regulatory issues. In this report, we 
present a model to address the optimal facility location, fleet, and route choice problem for UCCs based on the 
heuristic genetic algorithm. The model, which is presented in the form of a toolbox, allows minimizing the total costs 
and the environmental impacts of UCC configurations, in order to reproduce perspectives of different stakeholders 
and policy scenarios. The model features two sequential sub-models to address the location-allocation and 
heterogeneous routing problem. It also accounts for specific aspects of the last-mile distribution problem, such as the 
different costs, speeds, and capacities of available vehicles. The applicability of the toolbox is demonstrated showing 
different potential scenarios for the implementation of UCCs in the city of Austin, Texas. 
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1. Introduction 

Urban freight distribution plays a critical role in the sustainable development of urban 
regions as it determines up to 15-20% of vehicular traffic in cities (Dablanc, 2011). The several 
negative effects of the “last mile” freight distribution threaten the livability of cities and they can 
outweigh the benefits of economic development and flourishing of commercial activities. Indeed, 
the presence of trucks in urban areas increases the use of nonrenewable resources and the 
levels of emission of associated pollutants (global and local), triggers traffic jams, and decreases 
the throughput of traffic. It can also lead to traffic accidents and can cause considerable noise 
and visual intrusion (Quak, 2008; Browne et al., 2012). 

Consequently, in recent decades a series of initiatives, including new regulations, 
infrastructure improvements, and measures concerning sharing space and time have been 
adopted throughout the world, especially Europe and Japan (Muñuzuri et al., 2005). A particularly 
promising solution features Urban Consolidation Centers (UCCs): transshipment points situated 
in the proximity of a city center, where deliveries from logistic companies are dropped off, sorted, 
and consolidated in smaller and more environmentally friendly vehicles such as electric vans and 
cargo-bikes (Crainic et al., 2004; Allen et al., 2007). In addition to the reduced emissions, another 
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advantage of these “alternative” vehicles would be the transshipment in smaller vehicles that 
would allow higher load factors and ultimately decrease the amount of traffic entering the city. 
Moreover, a series of additional logistics and retail services can also be provided at the UCC 
(Huschebeck and Allen, 2005). 

In the last twenty years several UCCs have been implemented mainly in European cities 
in the U.K., Italy, France, Germany and the Netherlands, but also in Motomachi in Yokohama, 
Japan. However, the majority of these projects did not last longer than a few years (Schoemaker, 
2002; Browne et al., 2005). Real-world experiences highlighted different reasons behind the 
failure of UCCs initiatives. Some can be ascribed to a lack of planning and to relatively ambitious 
forecasts in terms of public acceptance and carrier compliance (Rooijen and Quak, 2010). Other 
factors might be attributed to the UCCs’ vital dependency on local authorities to subsidize the 
high investment and operating costs (Dablanc and Rodrigue, 2014). Finally, erroneous 
operational choices concerning the location of the facilities and the characteristics of the fleet in 
charge of the “last mile” deliveries may have led to eventual negative results of implementation of 
UCCs. The efficiency of this measure depends particularly on the distance between the UCCs 
and customers and on the features of vehicles used for the final leg of distribution (speed, 
operating costs, capacity, emissions, etc.). This is the case of Leiden, Netherlands, where the 
UCC was located relatively far away from the city center (Schoemaker, 2002) and Kassel, 
Germany where the additional operation costs outweighed the transportation savings (Browne et 
al., 2005). 

Clearly, introducing UCCs involves extra-costs, risks, and delays in the delivery process 
that could jeopardize the success of this measure. For this reason, identification of optimal 
solutions in terms of facility location, fleet, and delivery routes would be beneficial in the 
preliminary assessment of UCC initiatives, prior to financial and institutional considerations. To 
date, in the field of urban logistics, important studies have been conducted to determine efficient 
and sustainable configurations of urban distribution systems by identifying the best location of 
these facilities (Crainic et al., 2004; Munuzuri et al., 2012) and the optimal fleet choice for the last-
mile delivery (Figliozzi et al., 2011); more complex problems have also been investigated, 
including the optimal combination of “satellites” and delivery routes (Crainic et al., 2010), and the 
optimal configuration of routes and mix of vehicles (van Duin et al., 2013).  

This study follows similar lines, but aims to cover several of these aspects 
simultaneously, thereby providing a broader perspective involving different goals. To our 
knowledge, a similar comprehensive model considering the optimal location of UCCs, along with 
the mix of vehicles and their routes to accomplish last mile deliveries has not yet been developed. 
A study addressing this type of problem has been published by Wu et al. (2002) who developed a 
model for the multi-depot location-routing problem with a heterogeneous fleet. However, in this 
report, the capacity is the only distinguishing factor among the different types of vehicles. Our 
model, by contrast, is formulated as a Mixed-Integer Linear Program (MILP) where the decision 
variables are whether to use a facility or not, the number of certain vehicle types to be used, 
characterized by different capacities, speeds, costs, and emissions, and the routes to be taken to 
serve all customers. In order to bring a higher level of realism, additional constraints concerning 
the time to accomplish deliveries and the maximum service range of certain vehicles (e.g. cargo-
bikes) were introduced to our model. 

Given the complexity of the problem, the model is decomposed into two sub-models: 
the first one consists of a facility location problem with capacity and budget constraints; the 
second one consists of a mixed-vehicle routing problem with time, capacity, and budget 
constraints. In order to apply the model to large-scale real world cases to solve the MILP, we 
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adopted the heuristic technique of genetic algorithms. 
This model has been implemented in the form of a user-friendly “toolbox” that allows 

users to customize their own study by defining the main parameters, including demand, features 
of vehicles and facilities, and financial and environmental constraints. Another important feature 
of our toolbox is the possibility to choose between two different objective functions: the 
minimization of daily operating costs and the minimization of the daily cost of emissions. This 
component of our model is included in order to provide a broader view regarding the alternative 
opportunities for implementing UCC solutions. The main rationale behind this choice is to allow a 
comparison among perspectives of the several stakeholders (carriers, retailers, consumers, 
municipalities, etc.) involved in the distribution process, who often have different priorities (e.g. 
providing a cost-effective service and minimizing negative externalities of truck deliveries). 

In the remainder of this paper, we first introduce the different operational issues related 
with the implementation and operation of the UCCs considered in our model. Then, we provide 
the model formulation and the description of the computational approach based on the heuristic 
technique of genetic algorithms used to solve the optimization problem. Finally, we illustrate the 
capabilities of the toolbox by showing the results corresponding to different scenarios in the city of 
Austin, Texas. We conclude with a number of general remarks and recommendations for future 
research. 

2. Operational issues involved with the implementation of UCCs and comprehensive 
model formulation 

The main operational barriers to the implementation of UCCs can be summarized in the 
extra costs of developing dedicated facilities for the transshipment of goods (and possibly added 
logistic services), operating these facilities, purchasing the fleet in charge of the last-mile 
deliveries, and providing the delivery service to customers. In addition, other operational issues, 
such as increased delivery time due to the transshipment and limitations of lower capacity, 
service range, and speed of vehicles like cargo-bikes and electric vans, could arise when 
implementing UCCs. Most of these barriers have been thoroughly investigated in the field of 
urban freight distribution and they have been typically studied by adopting different techniques 
from the Operations Research field. 

The optimal location of UCCs, which is a central aspect of the efficiency of the city 
distribution (Browne et al., 2007), relies on identifying the optimal candidate sites where freight 
can be transshipped from trucks to smaller and more eco-friendly vehicles to accomplish the last 
leg of distribution. The problem has been traditionally formulated as a location–allocation model 
for the multi-echelon distribution setting (Taniguchi et al., 1999; Crainic et al. 2004; Crainic et al., 
2010) where the main considered costs are those related to the investment and operation of the 
facilities and the transportation costs inbound and outbound the UCCs. Different constraints 
concerning the capacity of facilities and budget conditions have been typically included to 
increase the realism of the models. Clearly, since each context represents a unique setting in 
terms of costs (rent, handling and transportation), accessibility of customers (traffic conditions), 
and urban morphology (land-use and road network layout), the location-allocation model might 
yield to various results. For example, in a situation characterized by high infrastructure costs and 
limited available space in the city center, few larger facilities in the periphery of the city would 
probably be a more efficient solution. Otherwise, in case of heavy traffic conditions, cargo-bikes 
might demonstrate more advantages than larger vehicles because in these conditions larger 
vehicles (most often) cannot exhibit a speed advantage over cargo-bikes. Interestingly, in most of 
the previous studies the adopted perspective was the one of local authorities, made in an attempt 
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to minimize externalities. 
Another critical issue to guarantee a satisfactory delivery service and implement efficient 

UCC solutions consists of the fleet of vehicles used for the last-mile distribution. In this case, 
different choices would reflect distinct priorities as each typology of vehicle is characterized by 
specific strengths and weaknesses. For example, cargo-bikes are characterized by lower 
purchase costs and zero emissions, but they have limited capacity and service range, and have 
lower speeds; on the other hand, “traditional” vans have higher capacities and speeds, but also 
considerably higher purchasing costs and several negative externalities. In the last few years, 
within the literature of urban logistics, a growing number of studies have been carried out to 
investigate the competitiveness of alternative modes, such as electric vans or cargo-bikes (Feng 
and Figliozzi, 2013; Davis and Figliozzi, 2013; Tipagornwong and Figliozzi, 2014). Browne and 
Leonardi (2011) have provided an ex-post evaluation of a trial in London where deliveries made 
by traditional vans were replaced by electrically assisted tricycles and electric vans departing 
from a UCC. Furthermore, an extensive number of papers have combined this issue with the 
vehicle routing problem (VRP), aiming to provide an accurate solution to what is referred to as the 
heterogeneous vehicle routing problem (HVRP). Within the field of sustainable urban freight 
distribution, van Duin et al. (2013) have proposed a model for the Fleet Size and Mix Vehicle 
Routing Problem (FSMVRP) with time-windows for electric-vehicles. 

The model developed in this study has the following main goals: to determine the optimal 
locations among different candidate sites for UCCs; to determine the optimal fleet mix given 
different typologies of vehicles; and to determine the optimal delivery routes from UCCs to their 
assigned customers. It includes considerations of different categories of costs, including 
transportation costs (truck trips to the UCC and last mile deliveries from the UCCs) and 
investment costs (rent and upgrades of facilities and purchase of fleet). 

Our model was made by introducing a few assumptions. First, we consider a single depot 
(e.g. a major distribution center or warehouse) located in the outskirts of the city from which one 
or more trucks depart to serve all the UCCs being used. Second, we consider the three following 
options for the last-mile distribution: vans, electric vans, and cargo-bikes. However, the model 
could be easily adapted to analyze additional typologies of vehicles. The objective of our model is 
to either minimize cumulative costs or to minimize cumulative emissions; the user may choose 
which of the two categories should be minimized. 

 

Under these circumstances, the following sets of decision variables are identified: 
 

1. Location binary variables 𝑦𝑠 of UCCs corresponding to 1 if the UCC is open and 0 otherwise; s 
is an index from S, the set of candidate facilities. 

 
2. Flow distribution variables 𝑓𝑠𝑘  representing the quantity of goods being sent from UCC s to the 
customer k; where k is an index from K, the set of customers that have to be served. 

 

3. Delivery route binary variables: 𝑥𝑖,𝑗
𝑣,𝑠

, 𝑦𝑖,𝑗
𝑒,𝑠

, 𝑧𝑖,𝑗
𝑏,𝑠

 representing respectively the van (v), electric 

van (e) and cargo-bike (b) departing from UCC s, that serves customer j after having served 
customer i; V is the set of available vans, E is the set of available electric vans and B is the set of 
available cargo-bikes.  

 
The optimization program of the comprehensive UCC implementation model is formulated using 
equations 1-18. The presented formulation has a goal to minimize costs; however, with minor 
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adjustments to the formulation, the objective to minimize emissions can also be used, as 
discussed later. 
 

min 𝑍(𝑦𝑠, 𝑓𝑠𝑘 , 𝑥𝑖,𝑗
𝑣,𝑠, 𝑦𝑖,𝑗

𝑒,𝑠, 𝑧𝑖,𝑗
𝑏,𝑠) =  ∑ ((𝑦𝑠𝑖𝑠 + ∑ (ℎ𝑠𝑓𝑠𝑘 + 𝛼𝑠𝑓𝑠𝑘

1

𝑘0
𝑝0)𝑘𝜖𝐾 ) +𝑠𝜖𝑆

∑ ((∑ ∑ 𝛽𝑖,𝑗𝑝1𝑥𝑖,𝑗
𝑣,𝑠

𝑗𝜖𝐾′𝑖𝜖𝐾′ ))𝑣𝜖𝑉 + ∑ ((∑ ∑ 𝛽𝑖,𝑗𝑝2𝑦𝑖,𝑗
𝑒,𝑠

𝑗𝜖𝐾′𝑖𝜖𝐾′ ))𝑒𝜖𝐸 +

∑ ((∑ ∑ 𝛽𝑖,𝑗𝑝3𝑧𝑖,𝑗
𝑏,𝑠

𝑗𝜖𝐾′𝑖𝜖𝐾′ ))𝑏𝜖𝐵 ) + ∑ (𝑟1)𝑣𝜖𝑉 + ∑ (𝑟2)𝑒𝜖𝐸 + ∑ (𝑟3)𝑏𝜖𝐵                           (1) 

Subject to: 
∑ 𝑓𝑠𝑘 ≤ 𝑦𝑠𝑐𝑚𝑎𝑥    ∀ 𝑠𝜖𝑆𝑘𝜖𝐾                                                                                              (2) 

∑ 𝑓𝑠𝑘 =𝑠𝜖𝑆 𝑑𝑘      ∀ 𝑘𝜖𝐾                                                                                                   (3) 

∑ ∑ 𝛼𝑠𝑓𝑠𝑘
1

𝑘0
𝑘𝜖𝐾 𝑒0 ≤𝑠𝜖𝑆 𝜀0                                                                                              (4) 

∑ ∑ 𝑑𝑘𝑥𝑖,𝑘
𝑣,𝑠

𝑘𝜖𝐾 ≤𝑖𝜖𝐾 𝑘1     ∀ 𝑣𝜖𝑉, ∀ 𝑠𝜖𝑆                                                                           (5) 

∑ ∑ 𝑑𝑘𝑦𝑖,𝑘
𝑒,𝑠

𝑘𝜖𝐾 ≤𝑖𝜖𝐾 𝑘2     ∀ 𝑒𝜖𝐸, ∀ 𝑠𝜖𝑆                                                                           (6) 

∑ ∑ 𝑑𝑘𝑧𝑖,𝑘
𝑏,𝑠

𝑘𝜖𝐾 ≤𝑖𝜖𝐾 𝑘3     ∀ 𝑏𝜖𝐵, ∀ 𝑠𝜖𝑆                                                                           (7) 

∑ 𝑥𝑖,𝑝
𝑣,𝑠

𝑖𝜖𝐾′ − ∑ 𝑥𝑝,𝑗
𝑣,𝑠

𝑗𝜖𝐾′ = 0    ∀ 𝑣𝜖𝑉, ∀ 𝑠𝜖𝑆, ∀ 𝑝𝜖𝐾′                                                        (8) 

∑ 𝑦𝑖,𝑝
𝑒,𝑠

𝑖𝜖𝐾′ − ∑ 𝑦𝑝,𝑗
𝑒,𝑠

𝑗𝜖𝐾′ = 0    ∀ 𝑒𝜖𝐸, ∀ 𝑠𝜖𝑆, ∀ 𝑝𝜖𝐾′                                                        (9) 

∑ 𝑧𝑖,𝑝
𝑏,𝑠

𝑖𝜖𝐾′ − ∑ 𝑧𝑝,𝑗
𝑏,𝑠

𝑗𝜖𝐾′ = 0    ∀ 𝑏𝜖𝐵, ∀ 𝑠𝜖𝑆, ∀ 𝑝𝜖𝐾′                                                      (10) 

∑ 𝑥0,𝑘
𝑣,𝑠

𝑘𝜖𝐾 = 𝑦𝑠    ∀ 𝑣𝜖𝑉, ∀ 𝑠𝜖𝑆                                                                                      (11) 

∑ 𝑦0,𝑘
𝑒,𝑠

𝑘𝜖𝐾 = 𝑦𝑠    ∀ 𝑒𝜖𝐸, ∀ 𝑠𝜖𝑆                                                                                       (12) 

∑ 𝑧0,𝑘
𝑏,𝑠

𝑘𝜖𝐾 = 𝑦𝑠    ∀ 𝑏𝜖𝐵, ∀ 𝑠𝜖𝑆                                                                                       (13) 

∑ ∑ ∑ 𝑥𝑝,𝑗
𝑣,𝑠

𝑝∈𝐾 +𝑣∈𝑉𝑠∈𝑆 ∑ ∑ ∑ 𝑦𝑝,𝑗
𝑒,𝑠

𝑝∈𝐾 +𝑒∈𝐸𝑠∈𝑆 ∑ ∑ ∑ 𝑧𝑝,𝑗
𝑏,𝑠

𝑝∈𝐾 = 1𝑏∈𝐵  𝑠∈𝑆   ∀ 𝑗𝜖𝐾       (14) 

∑ ∑ 𝛽𝑖,𝑗𝑥𝑖,𝑗
𝑣,𝑠 1

𝛾1
𝑗𝜖𝐾′ ≤ 𝜏𝑖𝜖𝐾′   ∀ 𝑣𝜖𝑉, ∀ 𝑠𝜖𝑆                                                                      (15) 

∑ ∑ 𝛽𝑖,𝑗𝑦𝑖,𝑗
𝑒,𝑠 1

𝛾2
𝑗𝜖𝐾′ ≤ 𝜏𝑖𝜖𝐾′   ∀ 𝑒𝜖𝐸, ∀ 𝑠𝜖𝑆                                                                      (16) 

∑ ∑ 𝛽𝑖,𝑗𝑧𝑖,𝑗
𝑏,𝑠 1

𝛾3
𝑗𝜖𝐾′ ≤ 𝜏𝑖𝜖𝐾′   ∀ 𝑏𝜖𝐵, ∀ 𝑠𝜖𝑆                                                                      (17) 

∑ ∑ ∑ ∑ 𝛽𝑖,𝑗𝑒1𝑥𝑖,𝑗
𝑣,𝑠

𝑗𝜖𝐾′𝑖𝜖𝐾′𝑣𝜖𝑉𝑠𝜖𝑆 + ∑ ∑ ∑ ∑ 𝛽𝑖,𝑗𝑒2𝑦𝑖,𝑗
𝑒,𝑠

𝑗𝜖𝐾′𝑖𝜖𝐾′𝑒𝑣𝜖𝐸𝑉𝑠𝜖𝑆 +

∑ ∑ ∑ ∑ 𝛽𝑖,𝑗𝑒3𝑧𝑖,𝑗
𝑏,𝑠

𝑗𝜖𝐾′𝑖𝜖𝐾′𝑏𝜖𝐵𝑠𝜖𝑆 ≤ 𝜀1                                                                           (18) 

 

In this formulation, the decision variables are: 
 

𝑦𝑠 = 1 if UCC s is used, 0 otherwise. 
𝑓𝑠𝑘 = {0, 𝑑𝑘} is the daily amount (volume) of shipment that goes from UCC s to customer k. 
𝑥𝑖,𝑝

𝑣,𝑠 = 1 if the van v departing from UCC s serves customer j after having served customer i, 0 

otherwise. 
𝑦𝑖,𝑗

𝑒,𝑠 = 1 if electric van e departing from UCC s serves customer j after having served customer i, 

0 otherwise. 

𝑧𝑖,𝑗
𝑏,𝑠 = 1 if cargo-bike b departing from UCC s serves customer j after having served customer i, 

0 otherwise. 
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The other notation in the model is: 
 

𝑆: the set of available UCCs. 
𝑉: set of all available vans. 
𝐸: set of all available electric vans. 
𝐵: set of all available cargo-bikes. 

𝐾: set of customers. 
𝐾′: 𝐾 ∪ 𝑠, union of the set 𝐾 with a specific UCC 𝑠.  
𝑖𝑠: fixed cost of purchasing/renting UCC 𝑠 (daily basis). 
ℎ𝑠: cost of handling a unit of demand for UCC 𝑠. 
𝑑𝑘: demand of customer 𝑘 (daily basis) 

𝛼𝑠: distance from the warehouse to UCC 𝑠. 

𝑘0: capacity per truck. 
𝑘1: capacity per van. 
𝑘2: capacity per electric van. 

𝑘3: capacity per cargo-bike. 
𝑐𝑚𝑎𝑥: capacity of all UCCs. 
𝑝0: shipment costs per distance traveled by truck. 
𝑝1: shipment costs per distance traveled by van. 

𝑝2: shipment costs per distance traveled by electric van. 
𝑝3: shipment costs per distance traveled by cargo-bike. 
𝑒0: emission per distance traveled by truck. 
𝑒1: emission per distance traveled by van. 

𝑒2: emission per distance traveled by electric van. 
𝑒3: emission per distance traveled by cargo-bike (always assumed zero). 
𝜀0: maximum amount of pollution allowed for all shipments from the warehouse to all UCCs. 
𝜀1: maximum amount of pollution allowed for all shipments from the UCCs to all customers. 
𝛽𝑖,𝑗: distance from customer i to j. 

𝑟1: purchase price of a van (daily basis). 
𝑟2: purchase price of an electric van (daily basis). 
𝑟3: purchase price of a cargo-bike (daily basis). 
𝜏: maximum time allowed for delivery 
γ1: average speed of vans. 
γ2: average speed of electric vans. 
γ3: average speed of cargo-bikes. 
 

Constraint (2) ensures that UCCs’ capacities are not exceeded. Satisfaction of demand is 
enforced by Constraint (3). Constraint (4) ensures that the total emissions produced by trucks are 
below the allowable limit. The capacities of vans, electric vans, and cargo-bikes are enforced by 
Constraint (5), Constraint (6) and Constraint (7), respectively. Constraints (8-10) ensure the 
conservation of flows at nodes (customers) for vans, electric vans, and cargo-bikes. Constraints 
(11-13) ensure that each van, electric van, and cargo-bike can travel to only one customer at a 
time. Constraint (14) ensures that each customer is served only once. Constraints (15-17) 
represent the time constraint for deliveries of vans, electric vans, and cargo-bikes. Constraint (18) 
ensures that emissions produced by all the deliveries accomplished by vans, electric vans, and 
cargo-bikes together are below the allowable limit. 
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In the case that the environmental objective is adopted in the model (i.e. minimizing 
emissions), the main objective function (1) would be replaced by the sum of Constraint (4) and 
Constraint (18) and it would itself become a constraint; the first part of the objective function that 
deals with the cost of purchasing a UCC, handling demand at each UCC, and transporting goods 
from the warehouse to each UCC would become Constraint (4) while the rest of the objective 
function which deals with the distribution of goods from each UCC to all of its customers would 
become Constraint (18). These two new constraints would have to be below a value expressing a 
monetary budget. Thus, the right hand side of Constraint (4) and Constraint (18), 𝜀0 and 𝜀1, 
would now have a cost interpretation rather than an emission interpretation. 

3. Computational approach 

In order to solve the defined mathematical problem, the model is divided into two joint 
sub-models aimed at solving separately the optimal location and mixed vehicle routing 
components, as Figure 1 shows. The first sub-model aims at identifying a set of best performing 
configurations of UCCs and the customers that will be assigned to each UCC according to the 
objective selected. The second sub-model, which is fed with the output of the first sub-model, 
aims at identifying the optimal routes and corresponding vehicles serving customers departing 
from the facilities identified in the first sub-model. Unlike other approaches, where different sub-
models are iterated back and forth to consider inter-dependencies among the different design 
problems, our two sub-problems are solved sequentially. In order to provide a fair estimation of 
the last-mile costs within the location-allocation model (i.e. the first sub-model), the length of 
routes departing from the UCCs are derived through an analytical approximation model (see 
Section 3.1). Given the computational burden of deriving heterogeneous routes for large 
problems, the exact last-mile delivery costs are derived only within the second-model for a 
smaller set of optimal solutions. In short, when the first sub-model is solved (a set of optimal UCC 
locations is determined and each customer is assigned to a specific UCC), work begins on the 
next sub-model, where the aim is formulate routes and choose vehicle types in such a way as to 
minimize the cost (or emissions) of routing for each UCC. 

The approach adopted to solve the two sub-models is based on the search heuristic 
technique of the genetic algorithm (GA), which is an optimization strategy where a set of 
randomly generated solutions (initial population) is improved by means of an iterative procedure. 
This iterative process consists of selecting the best performing solutions (parents) and “breeding” 
them to create new “generations”, until an optimal solution is found. During the breeding process 
mutations are randomly applied (i.e. random changes in a solution that occur at a predetermined 
probability) in order to maintain a higher diversity in the population. The interested reader may 
refer to Yang (2010) for a more detailed explanation of this heuristic. Besides the typical steps 
used in the genetic algorithm, we provide a more detailed description of some peculiarities of the 
optimal location-allocation sub-model and optimal fleet choice-routing sub-model in Section 3.1 
and Section 3.2. 
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Figure 1:  Descriptive Map of the adopted optimization approach 

3.1 Location-allocation sub-model 
The method used to fill the initial population of solutions is not completely random, but it 

is based on the relative accessibility of the available UCCs for each customer. Hence, as an initial 
step, all the customers are assigned to a UCC i with a probability 𝑃𝑖  which is derived from  

𝑃𝑖 =
(∑ 𝑑𝑖

𝑁
𝑖 ) 𝑑𝑖⁄

∑ ((∑ 𝑑𝑖)𝑁
𝑖 𝑑𝑖⁄ )𝑁

𝑖

                                                                                                                     (19) 

where 𝑑𝑖 represents the distance between the customer and UCC i among the available set of N 
facilities. 

At this point, a random number of facilities between 1 and (N-1) are removed and the 
“unassigned” customers (i.e. customers whose UCC has been removed) are re-assigned to the 
remaining UCCs according to their relative accessibility with a probability derived by means of 
Equation (19). 

The selection of “parent” solutions is based on the tournament selection method where 
the best performing solution is identified among a set of randomly selected solutions. The 
breeding procedure into “child” solutions is rather straightforward and is accomplished by means 
of a two-point crossover where the assigned UCCs of two corresponding groups of customers in 
the parent solutions are swapped. The mutation of child solutions is applied such that some 
customers are randomly re-assigned to the available facilities. 

To provide an estimate of the last-mile delivery costs, the lengths of routes are 
determined by means of the approximation approach proposed by Robusté et al. (2004), based 
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on the prior studies of Eilon (1971) and Daganzo (1984), where analytical formulations are 
empirically derived depending on different features of demand. Hence, we adopt the following 

equation representing the distance 𝐷 of the routes departing from a single facility, obtained from 
the Clarke and Wright Algorithm in the elliptic VRP: 

𝐷 ≈ 0.603𝑎√1 + 𝛽2 (
𝑁

𝐶
) + 0.725√𝐴𝑁                                                                               (20) 

where “a” corresponds to the major semi-axis of the ellipse circumscribing the customers served 

by the UCC, 𝛽 represents the ratio between the major and minor semi-axis of the ellipse, N 
corresponds to the number of customers served (in our case by each utilized UCC), C indicates 
the average amount of customers that can be served given the average capacity of the fleet, and 
A represents the area containing the scattered customers. 
When the amount of customers served by the UCC is low (N<3) instead, we adopt the original 
formulation by Daganzo (1984) where the total length D of the routes is given by: 

𝐷 ≈  
2𝑟𝑁

𝐶
+ 0.73√𝐴𝑁                                                                                                              (21) 

where r corresponds to the average distance between the customers and the UCC. The results of 
these estimations are face-validated by analyzing the results produced in the case studies 
examined in Section 4. 

Finally, over the several generations a set of m candidate optimal solutions is created in 
order to provide the input for the second sub-model. The size of the set, M, can be varied 
according to the scale of the problem and level of accuracy sought in the solutions of the overall 
problem. In the case studies presented in Section 4, we typically used sizes ranging between 2 
and 10 based on the size of the case studies. 
 
3.2 Fleet choice-routing sub-model 
 

The output of the location-allocation sub-model consists of M solutions, each of which 
may use up to N UCCs. This means that if all of the available UCCs are used, the fleet choice-
routing sub-model needs to optimize M*N UCC/customer configurations. 

The main algorithmic steps of the sub-model can be summarized as follows. For a 

particular solution m ∈ M, the used UCC n ∈ Nm is selected and each customer serviced by UCC 
n is assigned to a random route that is served by a random vehicle type. Then, once the 
feasibility of the routes in terms of delivery time and capacity is verified, additional  routes are 
created with random vehicles (always ensuring that constraints are satisfied) until all customers 
served by UCC n have been assigned to a route. Then, we proceed to check the constraints that 
pertain to the entire UCC (either emission or budget constraints). Constraint (18), shown earlier, 
states that we need to check emission and budget constraints not just for UCCs but for the entire 
solution that may use up to N UCCs.  Thus, in order to check emission or budget constraints for 
each UCC separately, each UCC was linked to its own constraints. The constraints are directly 
proportional to the number of assigned customers to that UCC divided by the total number of 
customers in the network. These steps outline the creation of one random solution for UCC n.  
They are then repeated many times (usually ranging between 100 to 500 times) to create an 
original population for UCC n in solution m. 

The following step of the genetic algorithm procedure creates better solutions by 
“breeding” the best solutions of the initial population (identified with a tournament selection 
procedure); this process is then repeated over several generations in order to produce higher 
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quality solutions. The breeding approach used is based on the crossover method described by 
Prins (2004) where customers of the first Parent solution are randomly assigned to a new route 
corresponding to the one serving the same customers in the second Parent solution. Since in our 
sub-model, vehicle typologies are required to be “bred” as well, we propose the following 
approach to extend Prins’s breeding process: It is assumed that when a customer is re-assigned 
to a new route, the customer also inherits this route’s vehicle typology; this approach is used 
when possible but sometime the addition of a new customer does not allow for the same vehicle 
type to be used because some constraint may no longer be satisfied.  For example, if a cargo-
bike was originally used, the addition of a new customer may exceed its capacity. In this case, a 
new vehicle type, either an electric van or a van is randomly assigned. As with any genetic 
algorithm, a mutation may also occur with a predetermined probability.  This mutation would allow 
for random customers to be placed on new routes and to inherit a new vehicle.  Also, another 
mutation may allow for the switching of vehicle typologies on any one route if and only if the new 
vehicle type would be able to meet all constraints. 

The preceding steps describe the approach for finding the best set of routes for one 
particular UCC in one particular solution.  With that, all steps must be repeated for each UCC 
selected in the first sub-model in order to find the total costs (or emissions). These steps are 
applied to all the solutions in the set, allowing for the calculation of their total costs (or emissions) 
and ultimately yielding to the removal of the worst one. The breeding procedure is applied to the 
remaining solutions in the set in order to further improve the value of the objective function.  The 
whole procedure is iterated among the set of solutions until the optimal one is identified. 

4. Application to a realistic case study: Austin 

In order to show the applicability of the toolbox, we present the results of several 
simulations performed with different settings reflecting different UCC implementation scenarios in 
the city of Austin, Texas. Austin accounts for a population of about 900,000 inhabitants and is 
considered one of the fastest growing cities in the US with annual growth rates between 2.5 and 
3.0 percent (U.S. Census Bureau, 2015). This rapid growth gives UCCs an important opportunity 
to address the current and future issues associated with local congestion and pollution.  
Since conducting a data collection, validation, and analysis exercise was beyond the scope and 
means of this research, the case study was built based on previous studies and publicly available 
data sources concerning the demand and costs of UCCs. Hence, the two following alternative 
configurations for the application of the model are used for our demonstration. The first one, 
represented in Figure 2a, corresponds to a situation of relatively low number of 48 daily 
customers (represented by the blue markers) mainly located in the central districts and 12 
available facilities (represented by the green markers). The locations of both customers and 
facilities are spread rather homogeneously over the network. Different sizes of the deliveries are 
randomly assigned with values between 1 ft3 and 40 ft3 to the each of the customers. The second 
one, represented in Figure 2b, corresponds to a situation of a higher amount of daily customers 
(149) distributed over a larger area of the city (Figure 2b). Similar to the “small scale” 
configuration, the sizes of deliveries are randomly assigned to customers. 

In both cases, the main depot (represented by the purple marker) is located in the 
Southeastern limit of the city, close to Austin-Bergstrom International Airport and Interstate 35, 
two major sources of freight trips for Austin. 

The road network used in the simulations covers the majority of the city districts and 
consists of 3561 links and 1369 nodes. 
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In this study, we assume the size of available UCCs to be relatively small (about 4000 ft2) 
due to the urban location and the absence of added logistic services of these facilities. As a 
result, the estimated handling capacity corresponds to around 2,900 ft3 of goods per day and the 
investment costs correspond to an approximate annualized value of $40,000 (assuming 
depreciation of 20 years and an interest rate of 5%). The costs derived from the operation of 
satellites are given by the product of amount of goods transshipped (in ft3) and the average 
handling cost which is assumed to be $0.025 /ft3. 

 
Figure 2 (a): Demand and facility location for the small configuration; (b): Demand and facility 

location for the large configuration 

The main features of the available typologies of vehicles in the model are reported in 
Table 1. Capacities and purchasing costs are derived from publicly available data about different 
models (Cyclelogistics, 2011; Cycle Maximus, 2015; Nissan, 2015; Commercial Truck Trader, 
2015). The speeds of “traditional” vans and electric vans have been assumed rather low (20 mph) 
to account for the urban context and lower values have been applied for cargo-bikes to consider 
for physical limitations of cyclists. The operating costs are derived considering an average hourly 
wage of $30/hour and including other costs such as usage of gasoline (for vans) and 
maintenance. The allowable radius, which is not shown in the table, (the maximum distance that 
a vehicle is allowed to go from the UCC that it serves) is set to 4 miles for cargo-bikes but is not 
considered for electric vehicles and vans. The emission costs accounts for both greenhouse and 
non-greenhouse gas emissions produced per mile (Litman, 2009). 
 

Table 1: Fleet characteristics 

  Traditional van Electric van Cargo-bike Truck 

Speed (mph) 20 20 10 30 

Capacity (ft3) 180 140 40 1,000 

Purchasing costs ($) 25,000 30,000 7,000 -  

Operating costs ($/mile) 3  2.8  3.2  3.3  

Emissions costs ($/mile) 0.095 0.015 0 0.215 

 



 

12 

 

 

Finally, here we present a series of different scenarios corresponding to potential 
situations for the development of UCCs and possible related policy initiatives: 
 
Base Scenario: The distribution costs using UCCs for a single carrier are minimized. This 
scenario represents a situation where the carrier, evaluating the opportunity to implement UCCs 
as part of its last mile delivery, seeks the most cost efficient location of facilities, mix of vehicles, 
and corresponding routes serving its current customers.  
 
Scenario 1: The emissions caused by the distribution for a single carrier are minimized. This 
scenario represents a situation where the carrier, evaluating the option of using UCCs, seeks for 
the most environmentally friendly configuration in terms of location of facilities, vehicles in charge 
of the last mile deliveries, and corresponding routes. A high environmental performance might be 
sought in cases where a carrier seeks to build an environmentally friendly image or when the 
local authorities attempt to identify the most sustainable option for the city. 
 
Scenario 2: A single carrier minimizes costs as in the Base Scenario, but the purchase/rent cost 
of the facilities is reduced to an annualized value of $7,500 and the handling capacity of facilities 
is decreased to 600 ft3. This scenario represents a situation where the local authorities decide to 
provide inexpensive usage of facilities to the carriers. The reduced capacity instead, might be due 
to the inability (or unwillingness) of the municipality to provide for large facilities or due to the fact 
that the same offer is made to several carriers that have to share the same facilities. This kind of 
scenario may be introduced by local authorities with the goal of having more UCC facilities 
around its city in hopes of decreasing the total distance that last mile vehicles have to travel 
which would result in a reduction of emissions.  
 
Scenario 3: A single carrier minimizes costs as in the Base Scenario, but the purchase costs of 
bikes are reduced to zero and the purchase of costs of electric vans are reduced by 33%. This 
scenario represents a situation where local authorities decide to subsidize “cleaner” means of 
freight distribution aiming to improve air quality 

5. Results 

Since a heuristic technique is used to solve this NP-hard problem, the obtained solutions 
might be sub-optimal. Hence, it is recommended to test each configuration by changing and 
calibrating the several parameters used in the problem (population size, tournament size, number 
of generations, etc.). In this study, for the small configuration, the best results have been obtained 
by using a population size of 200 and 300 solutions for the location-allocation sub-model and the 
routing sub-model, respectively. Twenty generations were bred in the location-allocation model, 
whereas in the routing sub-model five generations were produced for each solution before the 
worst performing one was eliminated. 

The outcomes corresponding to the alternative scenarios for the small configuration are 
summarized by Figure 3, which shows the UCCs chosen (blue dots) and the routes taken by 
each vehicle type. Figure 4 resents the total daily distribution costs and Figure 5 presents the 
total daily total emission costs. 

The optimal configuration in the Base Scenario (Figure 3a,) corresponds to a single 
facility from where 4 routes for vans and 3 routes for electric vans depart. Even though cargo-
bikes have a considerably lower purchasing cost and an operating cost similar to other modes, 
they are not included in the fleet probably because of their limited capacity and service range. 
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According to these results, we could conclude that cargo-bikes will be seldom used whenever a 
carrier wants to minimize costs under these conditions. However, in other systems, where 
customers may be more clustered around the available facilities and where the average demand 
of a customer is much lower, cargo-bikes could still be a viable option. The corresponding total 
daily distribution costs of the Base Scenario amounts to $397.7 and the total daily emission costs 
amount to $4.8. 

On the other hand, Scenario 1 (Figure 3b), where the goal is to minimize emissions, is 
characterized by widespread usage of cargo-bikes and electric-vans for the last mile distribution 
(respectively 8 and 14 routes). As expected, vans are not used because they pollute much more 
per mile than the other two vehicle types. Also in this case, one single facility is chosen, relatively 
close to the main depot to reduce the emissions of trucks, but central enough to serve many 
customers with cargo-bikes. This scenario results in total daily distribution costs of $624.0 and 
total daily emission costs of $1.2. Though using only cargo-bikes would result in $0 of daily 
emissions, using only cargo-bikes is not a feasible solution because it would also result in many 
more total trips and would exceed the allowable cost constraint. 

When the investment cost of opening UCCs is reduced (along with their daily handling 
capacity) as in Scenario 2 (Figure 3c), the lowest costs are achieved by using two facilities (the 
same UCC as in the previous scenarios plus an additional one further west). The majority of 
customers are served with regular vans (7 routes), except for one delivery route assigned to an 
electric van. As in the Base Scenario, no cargo-bikes are used. The total daily distribution cost of 
this scenario amounts to $286.2 and the total daily emission cost is $1.9. Compared to the Base 
Scenario, the operation costs are much lower due to the fact that the facility comes at a much 
lower price (as well as a lower handling capacity). Interestingly, under these conditions, the total 
daily cost of emissions is close to the value of Scenario 1, where the objective was to minimize 
emissions. Hence, this result suggests that the leasing of smaller facilities at cheaper prices might 
be a beneficial option for the municipality when seeking for more environmentally friendly 
solutions. 

Scenario 3 (Figure 3d), which corresponds to the minimization of costs when the upfront 
costs of cargo-bikes and electric-vans are entirely or partly subsidized, is characterized by the 
usage of a single UCC from where the deliveries are performed by electric-vans and vans 
(respectively 7 and 2 routes). Surprisingly, no cargo-bikes are used, even though cargo-bikes 
were entirely subsidized. The total daily distribution and emission costs correspond to $383.3 and 
$3.6, respectively. Hence, this outcome suggests that subsidizing both electric-vans and cargo-
bikes would yield to only a minor reduction of emissions, particularly when compared to 
alternative measures like leased smaller facilities. 
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Figure 3 Straight line paths of each of the small configuration scenarios: (a) Base Scenario; (b) 

Scenario 1; (c) Scenario 2; (d) Scenario 3; the x and y axes represent the latitudes and 
longitudes. 

 

 
Figure 4: Total daily costs of distribution in the small configuration 
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Figure 5: Total daily emission cost of distribution in the small configuration 

 For the larger configuration of the UCC distribution problem, shown in Figure 2b, the 
number of generated feasible solutions used in both the location-allocation and the routing sub-
model corresponds to 300. The 3 best solutions of the first sub-model obtained after 20 
generations of breeding were passed to second sub-model. Here, 5 generations of breeding were 
produced each time before the worst solution was eliminated. 

Figure 6 and Figure 7 show the total daily operating costs and total daily costs of 
emissions, respectively, for the large configuration.  The paths of the routes are not shown due to 
the great amount of routes overlapping in each scenario. The outcomes of the simulations for the 
larger scale problem are consistent with ones identified for the small configuration. 

In the Base Scenario, the total daily cost of delivery is $1686.0 and the total daily cost of 
emissions is $20.7. As in the Base Scenario, only a limited number of facilities is used (two 
UCCs) from where the vehicles in charge of the last-mile distribution are in large part vans (15) 
and electric vans (19). However, in this case, two cargo-bikes are used (one per facility). This 
suggests the idea that even though cargo-bikes may not be the most economical mode (in the 
modeled scenarios), it might still be a good idea for each UCC to have one in case there is a 
small amount of demand left over than cannot fit into a van or an electric van. 
 In Scenario 1, where the goal is minimizing emissions, in line with the results of the small 
configuration, the daily operating costs are higher than the Baseline Scenario at $1972.0 and the 
daily emission costs were lower at $7.4. Also in this case, no van is used, whereas 39 routes 
consisted of electric vans and 13 routes consisted of cargo-bikes. The facilities selected consist 
of the same two UCCs used in the Baseline Scenario. 
 As with the small configuration, the intention of Scenarios 2 and 3 was to investigate the 
effects of potential alternative policy measures to reduce the daily costs of emissions without 
compromising the efficiency of the solutions. Unlike in the small configuration where the costs of 
emissions could be drastically reduced (particularly in Scenario 2), the same cannot be said for 
the large configuration. While the operating costs are decreased thanks to different types of policy 
measures, the daily costs of emissions are not considerably reduced ($19.00 and $19.50 
respectively for Scenario 2 and 3). This result might be explained by the greater spread of 
customers in the large configuration, which does not allow for a great emission reduction or by a 
limited scalability of the model. For this reason, alternative scenarios with different demand 
patterns are recommended for additional investigations about these measures and for further 
testing of the model. 
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Figure 6: Total daily costs of distribution in the large configuration 

 
Figure 7: Total daily emission cost of distribution in the large configuration  

 As shown in the simulations presented above, the toolbox can provide useful information 
to different stakeholders for the evaluation of alternative UCC solutions.   

For example, the possibility of choosing different objectives, as in the Base Scenario and 
Scenario 1, shows how stakeholders with different goals (i.e. carriers and local authorities) would 
likely use a different fleet and a different set of routes. 

Furthermore, the two additional scenarios designed to reduce the daily costs of 
emissions while still using the objective function that minimizes operating costs provided an 
indication of the effectiveness of two alternative policy measures. In the configurations analyzed, 
Scenario 2, which offers lower prices of facilities with lower handling capacities, looks like the 
best compromise in terms of costs and emissions produced for both small and large 
configurations. Indeed, decreasing the price for the usage of facilities would not only reduce the 
costs for the carriers, but also yield to a decrease of emission costs, particularly in the case of the 
small configuration. This scenario can be a practical and viable solution for local authorities that 
are willing to lease their own facilities (with capacity limitations) to multiple carriers. However, it is 
recommended to perform some sensitivity analyses of the costs and capacities used before 
coming to conclusions. 
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6. Conclusions 

UCCs represent an innovative approach to reduce the negative impacts associated with 
the current delivery systems in urban areas. However, to date, most UCC initiatives had to be 
terminated due to high operating costs and a lack of subsidies. In the last fifteen years, the 
necessity of identifying the most beneficial setup in order to guarantee the success of UCCs has 
been the main rationale behind several studies in the urban logistic field. Along these lines, this 
study combined several issues into an optimization model presented in the form of a toolbox. 
 In this paper, we formulated an optimization problem that decides where to open UCCs, 
what vehicle types to use, and what routes to take in order to either minimize costs or minimize 
emissions. From a theoretical standpoint, this study represents an extension of previous models 
that typically addressed only one or two of the three decisions variables analyzed in this paper. 
The decision variables of the problem are the same as those in the model of Wu et al. (2002). 
However, our problem also considers each typology of vehicle to have additional specific features 
like costs and speeds. 

The methodological approach consists of dividing the problem into two sub-models that 
are sequentially solved by means of the heuristic genetic algorithm. The main characteristics of 
the model consist of first determining a set of candidate solutions regarding UCC locations and 
then feeding these candidate solutions into the second genetic algorithm that determines routes 
and chooses vehicle types. In order to improve the computational capabilities of the model, the 
breeding of solutions can be made more efficient by alternative techniques, which would allow 
only for the best characteristics of each parent solution to survive over the generations. Also, we 
plan to extend our study to see how the value of the objective function might further decrease if 
we applied a linear relaxation to the routing sub-model which can currently be characterized as 
an integer program.  

From a policy perspective, this study represents a useful tool to develop partnerships 
between carrier companies, local businesses, and city authorities in order to identify optimal 
solutions for all of the stakeholders involved. As an example, in the final part of this paper we 
provided a demonstration of the potential applications of the toolbox by producing alternative 
scenarios. Each scenario represents different conditions or policy interventions from the carrier or 
the local authorities. Some sensitivity analyses of the different parameters used in the toolbox 
and additional simulations entailing different customer and facility locations are recommended. 

There are many methodological and institutional challenges involved with the 
implementation of UCCs. With this toolbox, we hope to provide an additional level of 
understanding, which is critical in the preliminary analysis of the problem. 
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