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ABSTRACT 1 
Autonomous vehicles (AVs) may significantly change traveler behavior and network congestion. 2 
Empty repositioning trips allow travelers to avoid parking fees or share the vehicle with other 3 
household members. Computer precision and reaction times may also increase road and 4 

intersection capacities. As AVs are currently test-driving on public roads, they may be publicly 5 
available within the next two decades, within the span of 20 to 30 year planning analyses. 6 
Despite this, AV behaviors have yet to be incorporated into planning models. We present a 7 
multiclass four-step model including AV repositioning to avoid parking fees (but incurring 8 
additional fuel costs) and increasing link capacity as a function of the proportion of AVs on the 9 

link. Demand is divided into classes by value-of-time and AV ownership. Mode choice is 10 
between parking, repositioning, and transit using a nested logit model. Traffic assignment is 11 
based on a generalized cost function of time, fuel, and tolls. Results on a city network show that 12 
transit ridership decreases and the number of personal vehicle trips sharply increases due to 13 

repositioning. However, increases in link capacity offset the additional congestion. Although link 14 
volume increases significantly, only modest decreases in average link speed are observed. 15 

 16 
Keywords: autonomous vehicles, planning, network modeling  17 
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1. INTRODUCTION 1 
In the past two decades, autonomous vehicle (AV) research has been quickly maturing. With 2 
numerous developments in image recognition (1) and traffic detection and response systems (2) 3 
and spurred by competitions such as the DARPA challenge (3), AVs now have legal permission 4 

to be driven on California and Nevada roads under the supervision of a test driver (4). Although 5 
AVs are not currently available for purchase, they could be available at car dealerships in a 6 
decade or two. Some metropolitan planning organizations require 20 or 30 year predictions due 7 
to the long-term potential for roadway infrastructure investments, so AVs might be available 8 
during the time frame already under analysis. AV availability will provide travelers with 9 

additional benefits and options when driving. For instance, travelers may use laptops while 10 
traveling, or even have their AV drop them off at their destination then park elsewhere to avoid 11 
parking costs. However, vehicle miles traveled would increase per traveler trip. Also, this could 12 
result in a reduction in the number of transit trips because time spent in AVs in traffic may 13 

become less onerous and AV drop-off could avoid parking fees at the destination. Therefore, 14 
planning models should account for AV behaviors in their predictions. 15 

Much of the literature on AVs has addressed the technological hurdles in putting AVs 16 
safely on the road. Literature on transportation models for AVs include the proposal of a 17 

reservation-based intersection control policy by Dresner and Stone (5) that could increase road 18 
network capacity when AVs are a significant share of the traffic. Another topic of interest is 19 
reduced following headways from cooperative adaptive cruise control (CACC) for connected 20 

vehicles (CVs) (6), which could be incorporated into AVs as well. Furthermore, the NHTSA (7) 21 
specifies several levels of automation, ranging from none to full driving capability, with some 22 

partially automated vehicles currently available to the public. However, without more 23 
information on how these different levels of automation affect vehicle behavior, we focus on the 24 
differences between none and full automation. 25 

A more aggregate question is how AV ownership will affect trip and mode choice. 26 

Recent workshop presentations at the 2014 meeting of the Transportation Research Board (8, 9) 27 
addressed this question from the perspective of activity-based travel behavior. However, there is 28 
yet to be any literature published on travel demand models to account for AV benefits. 29 

Therefore, the purpose of this paper is to develop a modified four-step planning model to address 30 
the question of how AV ownership will affect transit demand during the highly congested peak 31 

hours. Trip and mode choice is analyzed through generalized costs of travel time, monetary fees, 32 
and fuel consumption. AVs are expected to increase trips because of the possibility of empty 33 

repositioning trips to avoid parking costs and allow other household members to share the 34 
vehicle. On the other hand, AVs also have the potential to increase road capacity. An increasing 35 
capacity function is proposed in Section 3.2 based on Greenshield’s (10) speed-density 36 
relationship as the proportion of AVs increases.  37 

This paper focuses on the AM peak, but the PM peak could be modeled using 38 
repositioning trips in the reverse direction (i.e. for picking up travelers from work). The four-step 39 
model was chosen because the greater simplicity of data inputs can more confidently be satisfied 40 

considering the lack of surveys on the topic. Also, many practitioners are still using the four-step 41 
model for their current planning applications, and therefore current data availability favors the 42 
four-step model.  43 

The contributions of this paper are developing a multi-class four-step model using a 44 
generalized cost function of travel time, monetary fees, and fuel consumption to analyze the 45 
impact of AV ownership on trip, mode, and route choice. Three mode options of parking, 46 
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repositioning, and transit are considered using a nested logit model. A continuum of AV 1 

ownership is considered to analyze not only the impacts of full AV ownership, but also the 2 
impact of gradually increasing availability to travelers. The model is analyzed on a city network 3 
to demonstrate the potential effects on actual planning predictions.    4 

The remainder of this paper is organized as follows. §2 reviews literature on AV 5 
improvements to traffic operations and modeling approaches. §3 describes the generalized cost 6 
function and the §4 describes the modifications made to the four-step model to include the AV 7 
round-trip choice. §5 presents experimental results from the Austin downtown network, and 8 
conclusions are discussed in §6. 9 

 10 

2. LITERATURE REVIEW 11 
There does not appear to be any literature on planning models specifically for AVs at the date of 12 
this writing, although recent workshop presentations by Pendyala and Bhat (8) and Polzin et al. 13 

(9) indicate that the topic is under consideration. Studies by Dresner and Stone (11, 12) on 14 
intersection control policies taking advantage of the greater communications complexity and 15 

computer precision of AVs have demonstrated the potential for capacity improvements at 16 
intersections, even when compared against optimized signal timing (13). Computer precision 17 

may similarly be applied to roads to reduce headways and increase capacity.  18 
One development required for efficient planning analyses is a more macroscopic model 19 

of AV behaviors. Several city-wide models of AV intersection behavior have relied on custom 20 

micro-simulations, such as those by Carlino et al. (14) and Vasirani and Ossowski (15, 16). 21 
Although these models include some form of traffic assignment in response to congestion, they 22 

do not yet incorporate user equilibrium (UE) principles, so their network congestion predictions 23 
may be based on less accurate routing strategies due to the high computation time incurred for 24 
solving UE. Although dynamic traffic assignment (DTA) includes UE principles, more study is 25 

required to modify the greater detail in DTA flow and intersection propagation for AV 26 

behaviors. A DTA model would be valuable, though, because of the potential improvements in 27 
modeling intersection delay. Therefore this paper uses a modified static traffic assignment, which 28 
can efficiently incorporate UE behavior. 29 

Another potential network improvement from AVs is from the CACC technology 30 
developed for CVs (6). CAAC has been shown to increased capacity through reduced safety 31 

margins for car following through microsimulation (17). CAAC also increases stability and 32 
shockwave speed (18), which may be considered in shared road DTA models. In the static traffic 33 

assignment (STA) –based planning model presented in this paper, we propose a heuristic for 34 
scaling capacity that retains a monotone travel time function.  35 

Research into planning has mostly focused around two models: the four-step model (19), 36 
and the more recent activity-based model (ABM) (20). ABM may better predict repositioning 37 

trips because a major advantage to repositioning trips is sharing the car with other household 38 
members. However, although ABM is arguably a better predictor of current trips as well, many 39 
practitioners still use the four-step model because of the additional data and computational 40 

requirements of ABM (21). As a result, research into the four-step model is ongoing; recent 41 
developments include work on integration with dynamic traffic assignment (DTA) (22, 23, 24). 42 
For an initial planning analysis of AV behavior, the four-step model was chosen due to its 43 
greater simplicity and the additional complexities introduced in ABM. For instance, the impact 44 
of limitations in household car availability for all travelers on mode choice may be reduced by 45 
AV repositioning trips.  46 
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 1 

3. METHODOLOGY 2 
The fact that travel cost may impact trip, mode, and route choice is well-known and fundamental 3 
in most combined demand and assignment models. Autonomous vehicles (AVs) could 4 

conceivably affect all three aforementioned traveler choices by changing the utility of personal 5 
vehicle travel. AVs can avoid parking costs by dropping off travelers, then returning to the 6 
owner’s residence for free parking, thereby reducing the cost of driving relative to transit. These 7 
reduced costs may affect trip choice, not only because of a reduced desire for some travelers to 8 
choose origins and destinations near transit to avoid parking costs, but also because travelers 9 

may partake in activities besides driving while traveling by AV. Finally, the change in demand 10 
on the road network due to changes in trip distribution and mode choice will affect travel times 11 
and equilibrium flow. 12 

To model the effect of AVs on demand and route choice, this paper presents a modified 13 

four-step planning model with the addition of an AV round trip instead of a one-way trip with 14 
parking. Road capacity is formulated as a function of proportion of AVs on the road, based on 15 

Greenshields’s (10) speed-density relationship. To more accurately model the costs incurred by 16 
the additional driving, a fuel consumption model is incorporated into the generalized cost 17 

function. 18 
 19 

3.1 Assumptions 20 
Because AVs are still in the early stages of testing, experimental data on AV owner behavior and 21 
AV improvements in traffic network capacity is not available. Theoretical studies such as 22 

Dresner and Stone (11) have predicted significant improvements in intersection flow, but link 23 
capacity changes, if any, have not been studied. Therefore we make the following assumptions 24 
about traveler behavior and capacity: 25 

 26 

1. AV market penetration will occur over a number of years as the purchase price gradually 27 
becomes viable for travelers of all incomes. Therefore our model is built on the four-step 28 
planning model, which is often used for long-term predictions. A long-term model may 29 

be useful to practitioners including the impact of AVs in 20 or 30 year planning models. 30 
 31 

2. AV drivers have the option of parking (with a possible parking fee) or sending their AV 32 
back to the origin and incurring fuel costs. Although activity-based models (20) may 33 

predict additional utility benefits by making the AV available to other travelers in the 34 
household, techniques to model such benefits in the four-step planning model are less 35 
clear. This results in three mode options: parking, repositioning, and transit. A nested 36 
logit model is used to decide between driving and transit, and parking and repositioning. 37 

 38 

3. Travelers seek to minimize a generalized cost of time, fuel, and tolls/parking fees. AVs 39 
are assumed to choose a route that minimizes this combined cost function, including fuel 40 
consumption. Travelers are divided into value-of-time (VOT) classes, and VOT is used to 41 

convert travel time to units of money. Incorporating fuel consumption into route choice, 42 
or “eco-routing” has been previously studied by Rakha et al. (25) and Yao and Song (26), 43 
as well as others, and AV routing algorithms could incorporate eco-routing technology. 44 
Although requiring travelers to choose a VOT for their trip routing may seem restrictive, 45 
airlines already do this through their cost index.  46 
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 1 

4. A STA model is used with four-step planning. Although Tung et al. (22) and Duthie et al.  2 
(24) have incorporated DTA into the four-step model, without literature on modifying the 3 
greater detail in DTA (such as intersection dynamics) for AVs, DTA could easily be less 4 
accurate. Additionally, trip distribution and mode choice have potential errors due to the 5 

possible behaviors of AV drivers. DTA is more sensitive to demand and departure time 6 
variability, and may exacerbate any errors in demand predictions. DTA also has the 7 
downside of requiring more computational resources. Therefore a STA model, which is 8 
commonly used with the four-step model, was chosen for this study.  9 

 10 

5. Lower reaction times and greater precision of AVs are assumed to reduce the necessary 11 

following distance, and correspondingly increase the jam density. Link jam density is 12 
then a function of the proportion of AVs on the link. Capacity is assumed to be a linearly 13 

related to jam density, as with Greenshields’s (10) model, to predict the increase in 14 

capacity as a function of AVs. This relationship was chosen because although AVs may 15 
have the reaction time to support minimal headways at any speed, the vehicle may not 16 
have the braking authority to match maximum braking behavior of the vehicle ahead. 17 
Therefore, as speed increases, headways must increase as well, even for AVs.  Although 18 

Greenshields’ relationship is designed for use with hard capacities in DTA as opposed to 19 
the “capacity” of the BPR function, it is used here only to scale the original capacities in 20 

the static network. In the absence of studies estimating roadway capacity improvement as 21 
a function of AV proportion, we believe this assumption is reasonable. Greenshields’s 22 
model also results in the favorable property of the travel time function being monotone 23 

increasing with respect to increases in AV flow (despite increases in capacity). 24 
 25 

These assumptions are made for the purposes of a long-term planning model because the 26 
impact of AVs has not been well studied. However, with AVs in testing on public roads, 20 or 30 27 

year predictions by metropolitan planning organizations may soon wish to include the effects of 28 
AV ownership in their analyses of travel demand. 29 

 30 

3.2 Travel time function 31 
The computer precision and reaction times of AVs allows reduction of headways while 32 

maintaining safety in the event of sudden deceleration of the vehicle ahead. These reduced 33 
headways increase density, permitting greater roadway capacity. To model this, the travel time 34 
model was based on the well-known Bureau of Public Records (BPR) travel time function with 35 

capacity as a function of the proportion of AVs on the road: 36 
 37 

       (1) 38 

 39 

where  is travel time when the flow is , flow specific to class  is ,  is the free 40 

flow travel time,  is the capacity, and  and  are calibration constants for link .  41 

Since the VOT varies across the population, the population of travelers is instead divided 42 

among a set of discrete classes , with each  having a VOT of . Each class uses AVs 43 

entirely, or not at all, denoted by the boolean variable .  is exogenous in this model 44 
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because ownership decisions depend also on AV pricing relative to individual household income 1 

and utilities. This is not restrictive because any traveler class with owners of both AVs and non-2 
AVs can be separated into two classes with the same VOT. (If a VOT class includes owners of 3 
both AVs and non-AVs, we assume that the market penetration is known). 4 

We derive below the conditions under which  is monotone increasing with respect 5 

to any . This is necessary but not sufficient for convexity in a multiclass formulation (Marcott 6 

and Wynter, 2004). 7 

 8 

            (2) 9 
 10 

therefore  if 11 

 12 

         (3) 13 

 14 

Equation (3) implies that capacity must exceed the change in capacity due to  vehicles; 15 

otherwise  may decrease resulting in a decrease in . 16 

A capacity function based on the well-known Greenshields’s (10) speed-density 17 

relationship and an increasing jam density function of the proportion of autonomous vehicles is 18 
shown to satisfy (3) under reasonable assumptions. Greenshields’ relationship predicts  19 

 20 

          (4) 21 

 22 

where  is vehicle speed,  is free flow speed,  is density, and  is jam density. Based on 23 

equation (4), capacity is , a linear function of jam density. Therefore  in the BPR 24 

function was also assumed to be a linear function of jam density: 25 

 26 

          (5) 27 

 28 
Jam density is assumed to be a function of the proportion of AVs on the road. Human 29 

drivers are on average expected to require some headway  including length of the vehicle 30 

ahead, with AVs requiring a distance , both measured in feet. Jam density is then 31 
 32 

     (6) 33 

 34 
in units of vehicles per mile.  35 

The capacity function defined by equations (5) and (6) is shown to be monotone increasing with 36 

respect to any  under the assumption that . This assumption is reasonable 37 
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considering highway vehicle spacing at jam density was estimated at  feet for one city 1 

by Van Aerde and Rakha (27), and Elefteriadou et al. (28) suggests  feet length for a 2 
passenger car equivalent, which is a lower bound on spacing.  3 
 4 

From , , so . Since ,   5 

 6 

   (7) 7 

 8 

 Since capacity can be rewritten as  9 

   (8) 10 

 11 
then  12 

 13 

14 

         (9) 15 

 16 

 simplifies to 17 

 18 

   (10) 19 

 20 
which is satisfied because equation (7) is true □ 21 

 22 

3.3 Cost function 23 
To incorporate the multiple types of costs incurred by different modes, such as transit fees and 24 
travel time, a generalized cost function is required. Monetary fees and travel time do not fully 25 

encompass the cost of an AV making a round trip instead of a one-way trip with parking. The 26 
associated cost to the traveler of the AV’s return leg is not travel time (for the traveler is not in 27 
the vehicle), and road tolls can be avoided by route choice. However, regardless of the route, the 28 

return trip incurs additional fuel consumption. Therefore, the fuel consumption function found by 29 
Gardner et al. (29), based on a regression equation from MOVES (30) data, was used: 30 
 31 

          (11) 32 
 33 

where  is vehicle speed in miles per hour and  is energy consumption in kilo-Watt hours per 34 
mile. This function is monotone decreasing with speed, therefore monotone increasing with 35 

travel time, allowing its use as part of a generalized cost function for the standard user 36 
equilibrium assignment. Fuel consumption was included for all personal vehicle trips – one-way 37 
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with parking and AV round-trip, and converted into money through the price of gasoline, , 1 

which was assumed to be constant for the network. For a link  (where  is the set of 2 

links) with length  in miles, the fuel consumed over the link for a travel time of  in hours, 3 

, is then 4 

 5 

        (12) 6 

 7 
where 36.44 is the energy content of gasoline (31). 8 

When creating generalized costs based on travel time and money, an important variable is 9 

the VOT for conversion to a single unit, denoted by  for class . Travelers with a high VOT 10 

may burn more fuel and use tolled roads to reduce travel time, whereas travelers with a low VOT 11 

may be more reluctant to incur monetary costs. The generalized cost function for driving on 12 

,  is a combination of travel time, fuel consumption, and road toll : 13 

  14 

       (13) 15 

 16 

For a parking fee of , the cost of a one-way driving trip from  to  followed by parking is 17 
 18 

         (14) 19 

 20 

where  is the route. 21 
 For the return leg of AV round-trips, with no passenger, travel time is not a factor, so the 22 

notation  with  is used to denote the cost of driving with  VOT. Cost of an AV 23 

round-trip, using path  for travel from  to  and path  for travel from  to , is 24 
 25 

      (15) 26 

 27 

The cost of traveling on link  using transit is similarly  28 
 29 

          (16) 30 

 31 
with transit fees included in the origin-destination cost. When transit uses the same links as other 32 

vehicles, such as with many buses, travel time depends on total vehicular flow. Transit could also 33 

be given separate links with different travel time functions. Based on the cost per link, the cost of 34 
a transit trip is then  35 
 36 

        (17) 37 

 38 

where  is the transit fee for traveling from  to . Multimodal routes are not permitted in this 39 
model. 40 
 41 

3.4 Traffic assignment 42 
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The traffic assignment formulation is multi-class because of the distinction between AV and 1 

non-AV vehicles. Marcott and Wynter (32) demonstrate that multi-class formulations are not 2 
necessarily convex despite monotonicity of the travel time function with respect to the flow of 3 
any single class. Non-convexity can result in the existence of multiple equilibria as well as non-4 

convergence of algorithms designed for convex objective functions. The weaker convexity 5 
requirement they develop of partial nested monotonicity, in general, requires the specification of 6 
the optimal link flows of one class as a function of link flows of second class. This is difficult for 7 
city-size networks that this model is designed for. Even if these functions were determined, the 8 
somewhat arbitrary nature of the VOT parameter could prevent partial nested monotonicity in 9 

general, as shown by Marcott and Wynter’s (32) example network with three equilibria. 10 
Nevertheless, this issue is not unique to this model, but common to all models 11 

incorporating multiple discrete VOT classes. Numerical results in section 5 suggest that using the 12 
Frank-Wolfe algorithm specified in equation (22) as a heuristic for the VI of equation (18) 13 

converges to an equilibrium, although multiple equilibria are certainly possible. However, we 14 
note that many dynamic traffic assignment models, although widely accepted, also cannot be 15 

shown to have uniqueness or existence of user equilibria (33). 16 
 Multiclass user equilibrium assignment with fixed demand was formulated as a 17 

variational inequality (VI) in the form of Nagurney and Dong (34). Let 18 

 be the vector of all class link flows. The VI problem is to find 19 

 such that 20 
 21 

        (18) 22 

 23 

where  is the vector of class-specific driving costs and                                                                                         24 

 is the feasible region defined by  25 
 26 

          (19) 27 

 28 

           (20) 29 
  30 

        (21) 31 

 32 

 satisfies user equilibrium due to Nagurney and Dong’s (34) proof on a more general form of 33 
this VI incorporating elastic demand and OD disutility. Due to the special behaviors of AVs, we 34 
include only assignment in the VI and consider travel demand separately as trip distribution and 35 

mode choice in the four-step model. 36 

 The Frank-Wolfe algorithm was used as a heuristic to solve this VI. The step size of  37 
was found by solving  38 
 39 

       (22) 40 

 41 

where  is the search direction, for . This appeared to converge for a city-size network, as 42 
shown in Figure 1. The algorithms for multiclass VI formulations of traffic assignment studied 43 
by Nagurney and Dong (34) and Marcott and Wynter (32) may improve convergence. Optimal 44 
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convergence of traffic assignment was not a major focus of this study, and a specific algorithm is 1 

not a requirement of the model. 2 
 3 

4. PLANNING MODEL 4 
The commonly used four-step model was modified to incorporate AV round trips. The latter 3 5 
steps incorporated a feedback element for convergence to a stable solution. The following 6 
subsections discuss trip distribution and mode choice in greater detail. Multiclass traffic 7 
assignment was formulated in §3.4. 8 

 9 
4.1 Trip generation 10 

The first step is trip generation, which determines productions  and attractions  based on 11 

survey data for each , , where  is the set of zones. Productions and attractions for 12 

each zone are vectors in  to distinguish between VOT classes. Although the distribution 13 

among VOT classes may vary at each zone, system-wide consistency of  is 14 
required.  15 
 16 

4.2 Trip distribution 17 

Trip distribution determines the number of person trips  between every OD pair , 18 
which is assumed to increase with productions and attractions and decrease with travel cost. As 19 

with trip generation,  to distinguish between VOT class. Minimum cost used for 20 

determining person-trips is defined as  21 

 22 

        (23) 23 

 24 

Then  25 
 26 

          (24) 27 

 28 

where  is the decreasing friction function, , and  is adjusted iteratively 29 

to  for consistency with productions and attractions, . 30 

 31 

4.3 Mode choice 32 

Mode choice splits the person trips per origin-destination into mode-specific trips  per mode 33 

, with  the set of all modes. Travelers may choose between parking, repositioning, and 34 
transit. Mode splits are determined by a nested logit model on utility of each mode. To include 35 
the benefits of having a vehicle parked at the destination for immediate departure on short notice, 36 

an AV preference constant  is included.  denotes the traveler preference for transit. 37 
Mode-specific trips per class are therefore defined as 38 

 39 
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   (25) 1 

 2 

    (26) 3 

 4 

         (27) 5 

 6 

To model return trips, additional demand is added for AV round-trips:  7 
 8 

          (28) 9 

 10 

 11 

4.4 Four-step algorithm 12 
The standard four-step algorithm with feedback as described in McNally (19) is used. 13 

Productions and attractions, the output of are trip generation, are assumed to be known. The 14 
latter three steps are performed in a feedback loop for convergence. Trip distribution determines 15 

total person trips per origin-destination pair and VOT class based on travel costs (initially free 16 
flow costs). Mode choice splits person trips into mode-specific trips using a nested logit model. 17 
Traffic assignment finds the routes for all vehicle trips, assuming user equilibrium behavior. As 18 

the assignment changes based on the personal vehicle trips, the feedback loop allows trip 19 

distribution and mode choice to be updated using the travel costs from the traffic assignment.  20 
To improve convergence, the method of successive averages (MSA) algorithm is used for 21 

the four-step feedback. Let  be the person-trips and  be the trips using mode  22 

from  to  at iteration  of the feedback loop, and  and  be the search 23 

direction at iteration . A step size of  is used, i.e. 24 

 25 

        (29) 26 

 27 

        (30) 28 

 29 

Convergence was measured based on the root mean squared error of mode-specific trips as 30 
suggested by Boyce et al. (35): 31 
 32 

      (31) 33 

 34 
The AV four-step model was observed to converge on the downtown Austin city network. 35 

 36 
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5. EXPERIMENTAL RESULTS 1 
The model was tested on the Austin downtown sub-network with trip data provided by the 2 
Capital Area Metropolitan Planning Organization. Bus routes are included and were used for 3 
transit options. In addition, walking at the speed of 3 mph was permitted along all links for 4 

connecting to transit because some zones are not directly served by bus. Although no distance 5 
constraint was included due to the complexity imposed on the shortest path algorithm, walking 6 
long distances would have a high penalty in travel time with respect to vehicular travel. 7 
Altogether, the network has 88 zones, 634 nodes, 1574 links, 62836 trips, and 84 bus routes. 8 

Due to lack of VOT distribution data per zone, the same distribution (shown in Table 1) 9 

was used for each zone with VOTs ranging from 1.15 to 22. Values of time were uniformly 10 

chosen from a range, and the log-normal expression with mean  and standard deviation   11 
 12 

        (32) 13 

 14 

was used to determine the class distribution of demand as suggested by Yang and Meng (36) and 15 

Huang and Li (37). The inverse friction function  was used. Parking costs were 16 

estimated at $5.00 per day for all zones because more specific data was not available. Although 17 
downtown parking fees are often much higher, for long term planning travelers are assumed to 18 

have the option of cheaper annual parking passes. Fuel cost was set at $3.00 per gallon. As with 19 

Pool et al. (21), .  was set as  to avoid artificial inflation of the modal split. 20 

On initial availability for public use, AVs may have a high purchase cost because of the 21 
novelty of the technology. As production increases, the cost is expected to reduce so that AVs 22 
are more affordable. The assumption was made that higher income travelers also have higher 23 

VOT, and that income affects affordability of AVs. Therefore, the experiment simulated the 24 

entry of AVs into public use by sorting  in decreasing order by , and running  25 

experiments. On the th experiment, the first  classes of this ordering of  were assumed to 26 
use autonomous vehicles.  27 
 28 

5.1 Convergence of traffic assignment 29 
Because of the multiclass formulation, the traffic assignment VI does not necessarily have a 30 
unique or existent equilibrium, and the common Frank-Wolfe algorithm is not guaranteed to 31 

converge. However, empirical results of running Frank-Wolfe on the downtown Austin network 32 
suggest that it converges to an equilibria. Figure 1 shows convergence for the case in which the 8 33 
highest VOT classes – 55% of the demand – use AVs. Convergence is measured through the 34 

average excess cost, i.e. the average difference between observed and shortest path travel costs. 35 

Similar convergence was observed for all scenarios in the gradual availability of AVs 36 

experiment. 37 
 38 
 39 

5.2 Reduction in transit demand 40 
Figure 2 shows the decrease in transit demand as more VOT classes receive access to AVs. 41 

Transit demand is high without AVs because a high proportion of low VOT travelers, which are 42 
the majority of the demand (see Table 1), choose transit. The pattern of decrease roughly follows 43 
the class proportions because the reduction in transit utility is primarily due to the lower cost of 44 
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AVs. When AVs are available only to the upper classes, which comprise a small fraction of the 1 

population, the effect is small. However, as autonomous vehicles become available to lower-2 
middle VOT classes, the rate of decrease in transit demand is much greater. Overall, the model 3 
predicts a reduction in transit ridership of 61.4% due to lower costs of AVs for low VOT 4 

travelers (see Tables 2 and 3).  5 
 6 
 7 

5.3 Autonomous vehicle demand 8 
AV round-trip demand was a high fraction of the total personal vehicle demand, reaching 83% at 9 

full market penetration (Figure 3). This analysis neglected the possible reduction in parking fees 10 
due to the economics of lower demand. However, because the alternative is a return trip, parking 11 
costs would likely need to be significantly lower to be competitive against the fuel cost of a 12 
return trip to the origin. 13 

 Similarly, for transit to be competitive against AVs, transit must provide benefits in cost 14 
or travel time. Transit costs in this model were $1, so a reduction in cost sufficient to be 15 

competitive against the lack of parking costs would be difficult. However, restricted-access 16 
routes for transit such as bus rapid transit or metro could provide advantages in travel time. 17 

  18 

5.4 Long-term effects 19 
Table 2 shows the mode split for each VOT class before any AVs and after full AV availability, 20 

and Table 3 shows the mode disutility per class in units of dollars. Because of the model 21 
definition and parameters, the difference between parking and round-trip disutilities is the 22 

difference between parking costs and fuel costs. Travel time has an identical effect on both 23 
parking and round-trip because the traveler is only in the vehicle going to the destination. In the 24 
absence of data, the traveler preference for parking and round-trip was set identical to avoid 25 

artificially skewing the modal split. Total demand for any personal vehicle mode changed from 26 

23500 person trips to 47676 trips, and with the shift to 39592 AV round-trips, the total number 27 
of trips made by personal vehicles increases to 87275 – an increase of 271.4%. Although many 28 
of these additional trips are traveling away from downtown, the network still experiences 29 

significant increases in link volume. However, average speed decreases are modest, as shown in 30 
Figure 4. This is encouraging because it suggests that the increases in demand are substantially 31 

offset by increases in capacity from AVs. 32 
 33 

5.5 Effect on traffic 34 
Figure 4 shows that average link travel speeds mirrors the class proportions, indicating that the 35 
decrease in average link speeds is due to the switch to AV round-trips. On the north/south –36 
bound freeways and arterials, much of the AV round-trip traffic travels in the opposite direction 37 

– away from workplaces in downtown. However, within the downtown grid itself, AV round-38 
trips contribute to congestion while leaving the area. However, the changes are relatively small, 39 
suggesting that roadway capacity increases negate some of the additional vehicular travel 40 

demand.  41 

 42 
6. CONCLUSIONS 43 
This paper developed a model to analyze the impact of AV availability on AM peak transit 44 
demand. AVs allow the option of a drop-off and return trip to avoid parking costs, incurring only 45 
additional fuel consumption, so a generalized cost function of travel time, monetary fees, and 46 
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fuel was created to model the cost of a trip. On the other hand, AV use increases road capacity, 1 

reducing travel times. This inspired a jam density function of the proportion of AVs on the road, 2 
with capacity assumed to be a linear function of jam density in accordance with Greenshields’s 3 
(10) speed-flow density relationship. The resulting travel time function was proven to be 4 

monotone increasing for the specific jam density function used. This generalized cost function 5 
and AV round-trip mode was incorporated into a multi-class four-step planning model, and 6 
convexity of the user equilibrium traffic assignment objective function was shown. The model 7 
was tested on the Austin downtown network including its bus routes. Results with these 8 
repositioning trips to the origin indicated that parking cost was a main incentive for transit, and 9 

that avoidance of parking costs through AV round-trips resulted in both an increase in AV 10 
round-trips relative to one-way and park trips and a decrease in transit demand. However, 11 
increases in travel times were offset by the road capacity increases of AV use. 12 

Since AVs are likely to initially be more expensive, and therefore affordable only for 13 

upper-class travelers, transit authorities have a period between introduction of AVs and high 14 
reduction of transit demand. Transit authorities may benefit from developing restricted-access 15 

routes for transit because the mode switch to AV round-trips will result in additional road 16 
congestion. The experiments in this paper modeled a city with bus routes that share roads with 17 

personal vehicles. Cities with metro or bus rapid transit may observe a smaller reduction in 18 
transit demand due to the increase in personal vehicle travel times. Higher congestion also 19 
increases fuel consumption, which may be an incentive for lower VOT travelers to switch to 20 

transit. 21 
Another group likely to be affected is parking garage owners, who will have to reduce 22 

costs to remain competitive against the cost of additional fuel consumption for an AV round-trip. 23 
The effect of parking price reductions in response to lower demand was not modeled, and should 24 
be studied in future work. As an initial model for modeling the effect of AVs on demand, this 25 

paper made many simplifying assumptions that should be relaxed in future work. Additionally, 26 

uniqueness of user equilibrium could not be proved due to the multiclass formulation. The 27 
magnitude of observed modal changes may depend on mode and active transportation options in 28 
the model. For comparison, the model should be studied on regional networks and networks with 29 

additional transit options. Furthermore, partial automation as specified by the NHTSA may be 30 
available sooner yet have similar effects on traffic flow. Different levels of automation should be 31 

studied in future work. Nevertheless, this model is a starting point for future models, and 32 
suggests that transit demand will likely experience a significant decrease after generally 33 

affordable autonomous vehicles are introduced. 34 
 35 
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TABLE 1 VOT distribution 1 

 2 
3 

Class VOT Share 

1 1.15 0.08 

2 3.5 0.37 

3 5.85 0.28 

4 8.15 0.14 

5 10.5 0.07 

6 13 0.03 

7 15 0.015 

8 17.5 0.007 

9 20 0.004 

10 22 0.002 
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TABLE 2 Comparison of mode-specific demand before AV availability and after full AV 1 

availability. 2 

 3 
 4 

  5 

VOT Demand without AVs  Demand with AVs 

Park Transit Round-trip Park Transit Round-trip 

1.15 3.10% 96.90% 

 

1.40% 49.00% 49.60% 

3.5 15.20% 84.80% 6.10% 33.00% 60.90% 

5.85 41.40% 58.60% 15.10% 19.60% 65.40% 

8.15 64.10% 35.90% 20.90% 12.00% 67.10% 

10.5 78.90% 21.10% 24.30% 7.80% 67.80% 

13 88.00% 12.00% 26.60% 5.30% 68.10% 

15 92.30% 7.70% 27.80% 3.90% 68.20% 

17.5 95.50% 4.50% 28.90% 2.80% 68.30% 

20 97.30% 2.70% 29.60% 2.10% 68.30% 

22 98.20% 1.80% 30.00% 1.70% 68.20% 
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TABLE 3 Comparison of mode and class specific costs (in dollars) before AV availability and 1 

after full AV availability 2 

 3 
 4 
  5 

VOT Disutility without AVs  Disutility with AVs 

Park Transit Round-trip Park Transit Round-trip 

1.15 5.94 2.04 2.67 6.05 1.99 0.57 

3.5 6.06 3.85 2.58 6.33 3.75 0.79 

5.85 6.2 5.73 2.6 6.63 5.54 1.01 

8.15 6.34 7.66 2.67 6.92 7.31 1.22 

10.5 6.48 9.64 2.71 7.23 9.13 1.44 

13 6.64 11.72 2.73 7.56 11.08 1.67 

15 6.75 13.38 2.73 7.82 12.63 1.86 

17.5 6.9 15.42 2.73 8.15 14.56 2.09 

20 7.04 17.45 2.73 8.47 16.49 2.33 

22 7.16 19.06 2.73 8.73 18.04 2.52 
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 1 
Figure 1. Convergence of traffic assignment. 2 
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 1 
FIGURE 2 Total transit demand 2 
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 1 
FIGURE 3 AV round-trip demand as a percentage of total personal vehicle demand 2 
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 1 
FIGURE 4 Change in average link speed, weighted by length, as AV availability increases  2 
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