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Transportation planning forecasts often differ widely from forecasted conditions. For in-
stance, transit ridership is often lower than forecasted, toll revenue is lower, and construction costs
and duration are higher. Many people assume that this occurs because transportation models
are biased to favor selection of particular projects or alternatives for political reasons or to reflect
personal biases. However, an old adage is to “never ascribe to malice that which is adequately
explained by incompetence” — but rather than incompetence, this paper suggests that neglecting
uncertainty in future demand may result in systematically over-optimistic forecasts, even if the
modeling and prediction processes are completely unbiased.

In particular, this paper shows that even if the forecasting process is unbiased, two factors
combine to produce systematically optimistic forecasts for the selected project: (1) the inability to
forecast future conditions perfectly, and (2) the fact that projects are chosen to maximize one or
more measures of effectiveness. The combination of this uncertainty and choice process suggest that
the chosen project is likely one for which the forecast is overly optimistic. This paper studies the
issue by evaluating multiple project alternatives using static traffic assignment with uncertainty in
the OD matrix. Key implications for planning are: (1) introducing a large number of alternatives
for comparison may in fact hinder selection of the optimal alternative, and (2) the use of multi-
scenario or sampling techniques can be useful to identify overly optimistic forecasts despite imperfect
knowledge of future conditions.

Consider n alternative projects under consideration, and let d reflect the true (unknown)
future OD matrix. Let ε̃ be a random term representing forecasting errors in the OD matrix used
for evaluation. The main result holds even when the demand modeling process is unbiased, that
is, E[ε̃] = 0; but we present a slightly weaker general condition given below. Let fi be a function
mapping an OD matrix to a measure of effectiveness used to evaluate a project (say, toll revenue);
the traffic assignment is embedded in this function. So, for instance, f1(d) is the toll revenue from
alternative 1 at equilibrium, based on the true future OD matrix, and f3(d + ε̃) is the toll revenue
from alternative 3 based on the forecasted (noisy) OD matrix. Let ξ̃i represent the error in the
prediction of the measure of effectiveness for alternative i, that is ξ̃i = fi(d + ε̃)− fi(d).

The selected project i∗(ε̃) satisfies i∗(ε̃) ∈ arg maxi{fi(d + ε̃)}. Note that the selected
project depends on ε̃, and that the realization of the noise ε̃ is common across all alternatives,
since the same OD matrix is used to evaluate all alternatives. This is one way in which the
formulation is different from standard discrete choice formulations, in which the error terms are
generally independent across alternatives.

The hypothesis for this research is that E[ξ̃i∗(ε̃)] ≥ 0 even if E[ε̃] = 0 (or even E[ξ̃i] = 0) for
all i. In particular, we show that this is true under certain general conditions, including when f
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is convex and demand is unbiased, or when f is unbiased when demand is unbiased. However, the
traffic assignment mapping is complex, especially in large networks, and it is difficult to establish
such properties exactly. Therefore, we explore this issue in two additional ways, deriving exact
results on small transportation networks, and performing a numerical investigation of practical-
sized networks. The exact result is provided below; its proof and the remaining investigations are
deferred to the full paper.

Specifically, let j index an alternative for which E[fj(d+ε̃)] is maximal, and k an alternative
for which fk(d) is maximal (these need not be distinct). That is, project j has maximal expected
performance (that is, the one most likely to be chosen by the modeling process), and project k
has maximal true performance. The following proposition provides the main theoretical result for
the paper, showing that the expected deviation between the predicted and realized measure of
effectiveness is nonnegative if the expected prediction error is zero or positive for each project, and
providing relatively weak conditions for which this expected deviation is

Proposition 1. If E[ξ̃i] ≥ 0 for each project i, then E[ξ̃i∗(ε̃)] ≥ 0. Furthermore, if any of the

following criteria hold, the inequality is strict and E[ξ̃i∗(ε̃)] > 0:

1. Pr(fj(d + ε̃) = maxi {fi(d + ε̃)}) < 1

2. Pr(fk(d + ε̃) = maxi {fi(d + ε̃)}) < 1

3. E[fj(d + ε̃)] > E[fk(d + ε̃)]

4. E[fk(d + ε̃)] > fk(d)

Proof. To prove the first claim, we use the definitions of i∗, j, and k as follows:

E[ξ̃i∗(ε̃)] =

∫
(fi∗(ε̃)(d + ε̃)− fi∗(ε̃)(d)) dε̃

≥
∫

(fj(d + ε̃)− fi∗(ε̃)(d)) dε̃ by definition of i∗

≥
∫

(fj(d + ε̃)− fk(d)) dε̃ by definition of k

= E[fj(d + ε̃)]− fk(d)

≥ E[fk(d + ε̃)]− fk(d) by definition of j

= E[ξ̃k]

≥ 0 by assumption

The four conditions in the second claim correspond exactly to the four inequalities in the above
relation, and if any hold then the inequality is strict.

The first two conditions essentially require that the choice process be nondeterministic, that there
is at least some prediction error which could affect the ranking of the top project. The third is
satisfied if the projects maximizing the expected and true performance are not “tied” in expected
performance, and the fourth is satisfied if the expected prediction error for the true optimal project
is strictly positive. Note that if any of these conditions holds true, then the expected prediction
error for the selected project is strictly positive.

Below we list a few specific implications and examples of functions which satisfy the condi-
tion in the first part of Proposition 1:
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• Even if E[fi(d+ ε̃)] = fi(d) for all i, we may still have E[ξ̃i∗(ε̃)] > 0. (In other words, we can
obtain biased results from unbiased evaluation.)

• If each fi is convex and E[ε̃] = 0, then E[ξ̃i∗(ε̃)] ≥ 0

• If fk is strictly convex, E[ε̃] = 0, and V [fk(d + ε̃)] > 0, then E[ξ̃i∗(ε̃)] > 0

In the full paper, this result is supplemented with numerical studies on transportation
networks, where it is difficult or impossible to show that the functions fi (embedding both the traffic
assignment mapping and the measure of effectiveness) satisfy particular properties. Particular
attention is paid to the implications for transportation planning, demonstrating how the level of
expected error in the selected project varies with factors such as the total number of alternatives, the
distribution and variance of the demand forecasting error, the particular measure of effectiveness,
and also discuss strategies for mitigating this type of error.
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