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Joint Distributions



What if there is more than one random variable we are
interested in?

How should you invest the extra money from your summer internship?
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To simplify matters, imagine there are two mutual funds you are thinking
about investing in:

Fund A: Invests in cryptocurrency

Fund B: Invests in municipal bonds

Neither of these funds has a guaranteed rate of return, so we can use prob-
ability distributions to describe them.
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Based on your investing experience, you believe that Fund A’s annual rate
of return will be 75% with probability 0.2, 20% with probability 0.5, and
−50% with probability 0.3.

Fund B has an annual rate of return of 10% with probability 0.6, and −5%
with probability 0.4.

However, investments are not independent of one another: when the econ-
omy is strong, most assets will increase in value; in a recession, most assets
will decrease in value.
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We can describe this information in a table showing the probability of
seeing each combination of rates of return.

B A
+75% +20% −50% Sum

+10% 0.10 0.45 0.05 0.6
−5% 0.10 0.05 0.25 0.4

Sum 0.20 0.50 0.30 1

Each entry in the table shows the probability of a particular combination of
rates of return. This is called the joint probability mass function or joint
distribution of A and B.
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B A
+75% +20% −50% Sum

+10% 0.10 0.45 0.05 0.6
−5% 0.10 0.05 0.25 0.4

Sum 0.20 0.50 0.30 1

Some things to notice about the table:

Each value is nonnegative, and all values in the table add up to 1.

The sum of all values in the first row gives the probability that
B = +10% when we aren’t looking at A.

The sum of the values in each column give the probability mass
function for A when we aren’t looking at B.
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In general, if X and Y are any two discrete variables, the joint probability
mass function PXY (x , y) is the probability of seeing both X = x and
Y = y .

To be a valid joint PMF, PXY (x , y) ≥ 0 for all x and y , and∑
x

∑
y PXY (x , y) = 1.

The marginal PMF of X gives us the distribution of X when we aren’t
concerned with Y :

PX (x) =
∑
y

PXY (x , y)

Likewise, the marginal PMF of Y is PY (y) =
∑

x PXY (x , y)
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B A
+75% +20% −50% Sum

+10% 0.10 0.45 0.05 0.6
−5% 0.10 0.05 0.25 0.4

pA 0.20 0.50 0.30 1

The marginal PMF of A in this table is just the sums of each column.

Joint Distributions



B A
+75% +20% −50% pB

+10% 0.10 0.45 0.05 0.6
−5% 0.10 0.05 0.25 0.4
pA 0.20 0.50 0.30 1

The marginal PMF of B is just the sums of each row.
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The joint CDF is written

FXY (x , y) = P(X ≤ x ∩ Y ≤ y)

and is the sum of the PXY values which are both less than or equal to x ,
and less than or equal to y .

To use the joint CDF to solve problems, it is helpful to draw a picture to
see what areas need to be added and subtracted.
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(Figure from Pishro-Nik)
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Two discrete random variables X and Y are independent if
PXY (x , y) = PX (x)PY (y) for every possible value of x and y . If this is not
true (even for one value of x and y), they are dependent.

B A
+75% +20% −50% PB

+10% 0.10 0.45 0.05 0.6
−5% 0.10 0.05 0.25 0.4

PA 0.20 0.50 0.30 1

Are funds A and B independent?
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Let R be the number of heads on three coin flips, and S be the number of
heads on the next two coin flips.

S R
0 1 2 3 PS

0 1/32 3/32 3/32 1/32 1/4
1 1/16 3/16 3/16 1/16 1/2
2 1/32 3/32 3/32 1/32 1/4

PR 1/8 3/8 3/8 1/8 1

Are R and S independent?

How did I get the values for PRS(r , s)?
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The expected value of any function h(X ,Y ) is
∑

x

∑
y h(x , y)pXY (x , y)

B A
+75% +20% −50% pB

+10% 0.10 0.45 0.05 0.6
−5% 0.10 0.05 0.25 0.4

pA 0.20 0.50 0.30 1

Let’s say I invest my money equally in the two funds. What is the expected
average rate of return (A + B)/2?
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To calculate the sum, you can create two tables, one with values of
(A + B)/2, and the other with probabilities.

(A + B)/2:

B A
+75% +20% −50%

+10% +42.5% +15% −20%
−5% +35% +7.5% −27.5%

Probabilities:

B A
+75% +20% −50%

+10% 0.10 0.45 0.05
−5% 0.10 0.05 0.25

Multiply corresponding values and add:
(42.5× 0.10 + 15× 0.45 + · · ·+ (−27.5)× 0.25) = 7.
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What are E [A] and E [B]? Probabilities:

B A
+75% +20% −50%

+10% 0.10 0.45 0.05
−5% 0.10 0.05 0.25
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A:

B A
+75% +20% −50%

+10% +75% +20% −50%
−5% +75% +20% −50%

Probabilities:

B A
+75% +20% −50%

+10% 0.10 0.45 0.05
−5% 0.10 0.05 0.25

Multiply corresponding values and add:
(75× 0.10 + 20× 0.45 + · · ·+ (−50)× 0.25) = 10.
(You would get the same answer by calculating E [A] the usual way, from
the marginal distributions.)
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B:

B A
+75% +20% −50%

+10% +10% +10% +10%
−5% −5% −5% −5%

Probabilities:

B A
+75% +20% −50%

+10% 0.10 0.45 0.05
−5% 0.10 0.05 0.25

Multiply corresponding values and add:
(10× 0.10 + 10× 0.45 + · · ·+ (−5)× 0.25) = 4.
(You would get the same answer by calculating E [B] the usual way, from
the marginal distributions.)
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MULTIPLE CONTINUOUS
RANDOM VARIABLES



All of the same concepts can be applied for joint continuous random
variables as well.

The joint density function fXY (x , y) is valid if fXY (x , y) ≥ 0 for all x and
y , and if

∫∞
−∞

∫∞
−∞ fXY (x , y) dy dx = 1.

The marginal density functions are fX (x) =
∫∞
−∞ fXY (x , y) dy and

fY (y) =
∫∞
−∞ fXY (x , y) dx

X and Y are independent if fXY (x , y) = fX (x)fY (y) for all x and y

E [h(X ,Y )] =
∫∞
−∞

∫∞
−∞ h(x , y)fXY (x , y) dy dx

Joint Distributions Multiple Continuous Random Variables



Continuous joint random variables are similar, but let’s go through some
examples. (Key ideas: replace table of “masses” with a “density” function
of multiple variables; replace sums with integrals)
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You have a new laptop. Let X represent the time (in years) before the
hard drive fails, and Y the time in years before your keyboard breaks. Let
the joint PDF of X and Y be

fXY (x , y) = ke−3x−2y

for x > 0 and y > 0, and 0 otherwise. What is k?
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So fXY (x , y) = 6e−3x−2y for x > 0, y > 0.
What is the marginal distribution of X? (This gives us the pdf for failure
life of the hard drive, irrespective of the failure life of the keyboard.)
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fXY (x , y) = 6e−3x−2y for x > 0, y > 0.
What is the marginal distribution of Y ? (This gives us the pdf for failure
life of the keyboard, irrespective of the failure life of the hard drive.)
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X and Y are independent if fXY (x , y) = fX (x)fY (y) Are X and Y
independent?
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What is the expected lifetime of the keyboard?
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Assume that I throw the laptop away once either the keyboard or hard
drive break. What is the expected lifetime of the laptop?
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COVARIANCE AND
CORRELATION



In the discrete example, we already saw that funds A and B are not
independent. It would be useful to have a measure of how dependent they
are, though.

Define the covariance of two random variables X and Y to be
Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

Why does this tell us how dependent X and Y are?

There is a shortcut formula for covariance:
Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].
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Recall that E [A] = 10 and E [B] = 4. (A− E [A])(B − E [B]):

B A
+75% +20% −50%

+10% 390 60 −360
−5% −585 −90 540

Probabilities:

B A
+75% +20% −50%

+10% 0.10 0.45 0.05
−5% 0.10 0.05 0.25

Multiply corresponding values and add:
(390× 0.10 + 60× 0.45 + · · ·+ 540× 0.25) = 120.

Positive covariance means that when A is high, B tends to be high; and
when A is low, B tends to be low as well.
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We can also use the shortcut formula E [AB]− E [A]E [B] to save some
tedious computations: AB:

B A
+75% +20% −50%

+10% 750 200 −500
−5% −375 −100 250

Probabilities:

B A
+75% +20% −50%

+10% 0.10 0.45 0.05
−5% 0.10 0.05 0.25

E [AB] = 160, so Cov(A,B) = 160− 4× 10 = 120
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The trouble with covariance by itself is that it is hard to interpret, apart
from the sign:

If covariance is positive, when X is above average, Y usually is too;
and when X is below average, Y usually is too.

If covariance is negative, when X is above average, Y is usually below
average, and vice versa.

If X and Y are independent, their covariance is zero. (The converse is
not true).

The magnitude of the covariance does not tell very much, though. (It
depends on the units of X and Y )
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To make the magnitude useful, we make covariance unitless by dividing by
the standard deviations of X and Y . This gives the correlation
coefficient:

ρXY =
Cov(X ,Y )

σXσY

The correlation coefficient is always between −1 and +1, and quantifies
the strength of the linear relationship between X and Y .

If ρXY = 1, then Y = aX + b for some a > 0.

If ρXY = −1, then Y = aX + b for some a < 0.

If ρXY = 0, there is no linear relationship between X and Y . (This
does not mean they are independent.)

If ρXY ∈ (0, 1), there is roughly a linear relationship with positive
slope.

If ρXY ∈ (−1, 0), there is roughly a linear relationship with negative
slope.
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In the example with the mutual funds, σA = 44.4 and σB = 7.35, so
ρAB = 120/(44.4× 7.35) = 0.367
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Properties of covariance

1 Cov(X ,X ) = Var[X ] (covariance of a random variable with itself is
just its variance)

2 X , Y independent ⇒ Cov(X ,Y ) = 0 (but the reverse is not always
true)

3 Cov(X ,Y ) = Cov(Y ,X ) (order doesn’t matter for covariance)

4 Cov(aX ,Y ) = aCov(X ,Y ) (constants can be factored out)

5 Cov(X + c ,Y ) = Cov(X ,Y ) (adding a constant does not change
covariance)

6 Cov(X + Y ,Z ) = Cov(X ,Z ) + Cov(Y ,Z ) (distributive property)

(You should be able to prove these formulas from the definitions given
above.)
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By combining these properties, we can obtain the general formula

Cov(
m∑
i=1

aiXi ,

n∑
j=1

bjYj) =
m∑
i=1

n∑
j=1

aibjCov(Xi ,Yj)

For instnace, Cov(X1 + 2X2, 3Y1 + 4Y2) =
3Cov(X1,Y1) + 4Cov(X1,Y2) + 6Cov(X2,Y1) + 8Cov(X2,Y2)
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Let X and Y be independent standard normal random variables. What is
Cov(1 + X + XY 2, 1 + X )?

1 Added constants can be removed: Cov(X + XY 2,X )

2 Distributive property: Cov(X ,X ) + Cov(XY 2,X )

3 Covariance with itself is variance: Var(X ) + Cov(XY 2,X )

4 Standard normal has variance 1: 1 + Cov(XY 2,X )

5 Shortcut formula: 1 + E [X 2Y 2]− E [XY 2]E [X ]

6 Independence: 1 + E [X 2]E [Y 2]− E [XY 2]E [X ]

7 Variance shortcut formula:
1 + (Var(X ) + E [X ]2)(Var(Y ) + E [Y ]2)− E [XY 2]E [X ]

8 Standard normal: 1 + (1 + 0)(1 + 0)− E [XY 2](0) = 2
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An important special case is finding the variance of a sum:

Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y )

What does this mean if X and Y are independent? Positively correlated?
Negatively correlated?
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