Distributions of linear combinations

CE 311S

MORE THAN TWO RANDOM VARIABLES

The same concepts used for two random variables can be applied to three or more random variables, but they are harder to visualize (triple integrals, triple sums, etc.)

One common thing to do with multiple random variables is to calculate linear combinations of them.

DISTRIBUTIONS OF LINEAR COMBINATIONS

A linear combination of the random variables X_{1}, \ldots, X_{n} has the form

$$
a_{1} X_{1}+a_{2} X_{2}+\ldots a_{n} X_{n}
$$

That is, we multiply each random variable by a constant coefficient, and add them up.

Examples: $X_{1}+X_{2} ; X_{1}-X_{2} ; 5 X_{1}+10 X_{2}+3 X_{3}$

To calculate the total of n random variables, we have a linear combination with $a_{1}=a_{2}=\cdots=a_{n}=1$

To calculate the difference between 2 random variables, we have a linear combination with $a_{1}=1$ and $a_{2}=-1$

I want to calculate the toll revenue on $\mathrm{SH}-130$ today. If X_{1} is the number of cars and X_{2} the number of semi trucks, the revenue is $a_{1} X_{1}+a_{2} X_{2}$ where a_{1} and a_{2} are the toll charged to each car and truck.

We have the following formulas:

For any random variables X_{1}, \ldots, X_{n}

$$
\begin{gathered}
E\left[a_{1} X_{1}+a_{2} X_{2}+\cdots a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]+\cdots+a_{n} E\left[X_{n}\right] \\
V\left[a_{1} X_{1}+a_{2} X_{2}+\cdots a_{n} X_{n}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{gathered}
$$

If X_{1}, \ldots, X_{n} are independent, the formula for variance simplifies to

$$
V\left[a_{1} X_{1}+a_{2} X_{2}+\cdots a_{n} X_{n}\right]=a_{1}^{2} V\left[X_{1}\right]+a_{2}^{2} V\left[X_{2}\right]+\cdots+a_{n}^{2} V\left[X_{n}\right]
$$

Example

The toll on SH-130 is $\$ 1.50$ for cars and $\$ 4.50$ for trucks. The mean and variance of the number of cars is 15,000 and 250,000 ; and the mean and variance of the number of trucks is 5,000 and 10,000 . The number of cars and trucks is correlated, with covariance 50,000 . What is the mean and standard deviation of the daily toll revenue?
The toll is $1.50 X_{1}+4.50 X_{2}$ where X_{1} and X_{2} are the number of cars and trucks.
$E\left[1.50 X_{1}+4.50 X_{2}\right]=1.50 E\left[X_{1}\right]+4.50 E\left[X_{2}\right]=45000$ dollars

$$
\begin{gathered}
V\left[1.50 X_{1}+4.50 X_{2}\right]=1.50^{2} \operatorname{Cov}\left(X_{1}, X_{1}\right)+(1.50)(4.50) \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
+(4.50)(1.50) \operatorname{Cov}\left(X_{2}, X_{1}\right)+4.50^{2} \operatorname{Cov}\left(X_{2}, X_{2}\right) \\
=2.25 V\left[X_{1}\right]+13.5 \operatorname{Cov}\left(X_{1}, X_{2}\right)+20.25 V\left[X_{2}\right] \\
=1440000
\end{gathered}
$$

so the standard deviation is $\sqrt{1440000}=1200$ dollars

Example

I run a business where my daily revenue has a mean of 1500 and a standard deviation of 400 , while my daily costs have a mean of 1000 and a standard deviation of 300 . What is the mean and standard deviation of my daily profit, assuming my daily revenue and costs are independent?
$\Pi=R-X$ so $E[\Pi]=E[R]-E[X]=500$
$V[R-X]=V[R]+V[X]=300^{2}+400^{2}=500^{2}$ so $\sigma_{R-X}=500$

This is one reason why we use variance even though standard deviation is easier to interpret. Variances add nicely, standard deviations do not.

Example

I run a business where my daily revenue has a mean of 1500 and a standard deviation of 400 , while my daily costs have a mean of 1000 and a standard deviation of 300 . What is the mean and standard deviation of my daily profit, assuming my daily revenue and costs have a correlation coefficient of +0.5 ?

$$
\Pi=R-X \text { so } E[\Pi]=E[R]-E[X]=500
$$

$V[R-X]=V[R]+V[X]-2 \operatorname{Cov}(R, X)=$
$300^{2}+400^{2}-2(0.5)(300)(400)=130000$ so $\sigma_{R-X}=360$

If revenue and costs were negatively correlated, would my daily profit have a higher or lower standard deviation?

Let's try to derive these formulas with $n=2$ to keep the numbers manageable:

$$
\begin{gathered}
E\left[a_{1} X_{1}+a_{2} X_{2}\right]=\sum_{x_{1}} \sum_{x_{2}}\left(a_{1} x_{1}+a_{2} x_{2}\right) p\left(x_{1}, x_{2}\right) \\
=\sum_{x_{1}} \sum_{x_{2}} a_{1} x_{1} p\left(x_{1}, x_{2}\right)+\sum_{x_{1}} \sum_{x_{2}} a_{2} x_{2} p\left(x_{1}, x_{2}\right) \\
=a_{1} \sum_{x_{1}} \sum_{x_{2}} x_{1} p\left(x_{1}, x_{2}\right)+a_{2} \sum_{x_{1}} \sum_{x_{2}} x_{2} p\left(x_{1}, x_{2}\right) \\
=a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]
\end{gathered}
$$

Notice that we did not have to assume independence to derive this formula.

What about the variance?

$$
\begin{gathered}
V\left[a_{1} X_{1}+a_{2} X_{2}\right]=E\left[\left(a_{1} X_{1}+a_{2} X_{2}-\mu_{a_{1} X_{1}+a_{2} X_{2}}\right)^{2}\right] \\
=E\left[\left(a_{1}\left(X_{1}-\mu_{1}\right)+a_{2}\left(X_{2}-\mu_{2}\right)\right)^{2}\right] \\
=E\left[a_{1}^{2}\left(X_{1}-\mu_{1}\right)^{2}+a_{1} a_{2}\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)+\right. \\
\left.a_{2} a_{1}\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)+a_{2} a_{2}\left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right)\right] \\
=a_{1} a_{1} E\left[\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right)\right]+a_{1} a_{2} E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]+ \\
a_{2} a_{1} E\left[\left(X_{2}-\mu_{1}\right)\left(X_{1} 0 \mu_{1}\right)\right]+a_{2} a_{2} E\left[\left(X_{2}-\mu_{1}\right)\left(X_{2}-\mu_{1}\right)\right] \\
=\sum_{i=1}^{2} \sum_{j=1}^{2} a_{i} a_{j} \operatorname{Cov}\left(X_{1}, X_{2}\right)
\end{gathered}
$$

If X_{1} and X_{2} are independent, their covariance is zero, so the formula simplifies to

$$
a_{1}^{2} \operatorname{Cov}\left(X_{1}, X_{1}\right)+a_{2}^{2} \operatorname{Cov}\left(X_{2}, X_{2}\right)
$$

or simply $a_{1}^{2} V\left[X_{1}\right]+a_{2}^{2} V\left[X_{2}\right]$

WHAT ARE STATISTICS?

Remember the measures of location and variability from Chapter 1?

000000000003		000000000066 01			$0000 \quad 040508 \quad 2400 \quad 040508$					0060	01 C	C 100	30	100
$0000 \quad 0000 \quad 000$		0000000000000			00000000000003333337777770000									
								US 29	2904.5	5 mile	es w	F FM	1960	
0112		0001	0002	0003	0004	0005	0006	0007	70008	0009	0010	0011	0012	
0000														
0000														
00003	0100	0054	0047	0039	0170	0192	0063	0083	0216	0227	0057	0051	0018	
00003	0200	0020	0015	0012	0108	0124	0038	0046	0150	0141	0039	0025	0009	
00003	0300	0011	0015	0008	0068	0100	0026	0038	0139	0134	0029	0030	0005	
00003	0400	0018	0008	0007	0079	0104	0015	50037	70116	0096	0030	0026	0005	
00003	0500	0009	0014	0013	0112	0157	0039	0035	50129	0101	0018	0027	0005	
00003	0600	0023	0022	0042	0214	0296	0139	01.03	0242	0129	0073	0034	0013	
00003	0700	0062	0043	0085	0275	0384	0172	20305	0562	0380	0148	0078	0022	
00003	0800	0127	0093	01.61	0398	0497	0262	2546	0768	0519	0270	0132	0085	
000003	0900	0178	0126	0284	0528	0640	0413	0653	0859	0645	0366	0190	0134	
$00 \quad 003$	1000	0231	0170	0371	0663	0809	0534	0926	1009	0788	0526	0260	0212	
00003	1100	0288	0186	0396	0772	0896	0625	1086	1151	0935	0610	0322	0268	
00003	1200	0367	0237	0513	0845	1039	0731	1054	1160	1003	0657	0424	0262	
000003	1300	0344	0258	0460	0846	1086	0903	1085	1214	1095	0745	0460	0317	
000003	1400	0397	0351	0463	0956	1175	0993	1.113	1217	1080	0713	0436	0317	
00003	1500	0407	0316	0556	0950	1208	1063	1144	1232	1116	0689	0461	0309	
00003	1600	0433	0318	0490	0971	1294	1089	1136	1203	1083	0665	0465	0298	
00003	1700	0440	0323	0502	1073	1304	1194	0876	1097	0996	0695	0455	0288	
00003	1800	0418	0314	0488	1043	1354	1230	0846	1090	0986	0631	0407	0290	
00003	1900	0399	0319	0441	1030	1286	1105	0707	70939	0896	0550	0390	0287	
00003	2000	0381	0258	0403	0933	1154	1006	0516	160777	0741	0460	0332	0245	
00003	2100	0337	0243	0214	0813	0976	0789	0360	0586	0632	0319	0266	0134	
00003	2200	0286	0193	0178	0669	0885	0607	70336	0560	0544	0247	0210	0132	
00003	2300	0153	0126	0137	0467	0547	0307	70277	0475	0424	0212	0152	0075	
00003	2400	0093	0081	0081	0387	0455	0214	0148	0304	0300	0146	0120	0060	

What was the purpose of these?

We wanted to use a single number to describe the data set in some way. (This is the definition of a statistic. In mathematical terms:

Consider a sample of n elements, and let X_{i} describe the variable of the i-th member of the sample. A statistic is a random variable Y which is determined from the random variables X_{1}, \ldots, X_{n}

Examples:
Sample mean: $\quad Y=\sum_{i=1}^{n} X_{i} / n$
Maximum value: $Y=\max _{i=1}^{n}\left\{X_{i}\right\}$
Total: $\quad Y=\sum_{i=1}^{n} X_{i}$

The important thing to notice is that the statistics are random variables themselves.

Let's say I roll a die five times, and take the average of the values.

$$
\begin{array}{r}
6,6,3,1,1 \rightarrow 3.4 \\
5,1,1,5,2 \rightarrow 2.8 \\
5,6,3,2,4 \rightarrow 4.0 \\
3,3,2,4,5 \rightarrow 3.4 \\
2,6,6,1,3 \rightarrow 3.6
\end{array}
$$

Each sample could have a different mean, so the sample means form a random variable (taking the values 3.4, 2.8, 4.0, 3.4, 3.6, and so on). Can we say anything meaningful about its distribution?

Yes, we can.

In fact, we will shortly see that if n is large, the sample mean has a normal distribution no matter what the distribution of the X_{i} is. Furthermore, its mean is simply the mean of the individual random variables, and its variance is the variance of the individual random variables, divided by n.

To begin, we need to make some assumptions about the X_{i}
The random variables X_{1}, \ldots, X_{n} are a random sample if they are independent and identically distributed.
(This is often abbreviated as the "iid" property.)

Assume that X_{1}, \ldots, X_{n} are a random sample, and let \bar{X} represent the sample mean:

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

What is $E[\bar{X}]$?

In the dice example above, this is asking what the average is of the average of five dice rolls. This is conceptually different from asking what the average is of each roll of the die, although we might think the answers should be the same.

Notice that \bar{X} is a linear combination of X_{1}, \ldots, X_{n} :

$$
\bar{X}=\frac{1}{n} X_{1}+\frac{1}{n} X_{2}+\cdots+\frac{1}{n} X_{n}
$$

So therefore

$$
E[\bar{X}]=\frac{1}{n} E\left[X_{1}\right]+\cdots+\frac{1}{n} E\left[X_{n}\right]
$$

Since X_{1}, \ldots, X_{n} are identically distributed, they all have the same mean (call it μ):

$$
E[\bar{X}]=\frac{1}{n} \mu+\cdots+\frac{1}{n} \mu=\mu
$$

So, $E[\bar{X}]=\mu$ as well: the expected value of the sample mean is the expected value of the original random variable.

So in the dice example, over a long time the average of the sample means $(3.4,2.8,4.0 \ldots)$ will be very close to 3.5 (the expected value of a single roll).

We can repeat the same idea for variance. Because \bar{X} is a linear combination with weights $1 / n$, and because X_{1}, \ldots, X_{n} are independent, we have

$$
V[\bar{X}]=\frac{1}{n^{2}} V\left[X_{1}\right]+\cdots+\frac{1}{n^{2}} V\left[X_{n}\right]
$$

Since X_{1}, \ldots, X_{n} are identically distributed, they all have the same variance (call it σ^{2}):

$$
V[\bar{X}]=\frac{1}{n^{2}} \sigma^{2}+\cdots+\frac{1}{n^{2}} \sigma^{2}=\frac{\sigma^{2}}{n}
$$

So, $V[\bar{X}]=\sigma^{2} / n$: the variance of the sample mean is NOT the variance of the original random variable, but is smaller by a factor of n.

In the dice example, the variance of the sample mean rolls (3.4, 2.8, 4.0...) will be smaller than the variance of the roll of an individual dice.
(The variance is smaller by a factor of n, so the standard deviation is smaller by a factor of \sqrt{n}.)

The central limit theorem goes one step further and specifies what type of distribution the sample mean has:

Let X_{1}, \ldots, X_{n} be a random sample. Then if n is sufficiently large, \bar{X} has approximately a normal distribution, with mean and standard deviation given on the previous slide.

This is true no matter what distribution the X_{i} are taken from. As a practical rule of thumb, if $n>30$ it is safe to use the Central Limit Theorem.

Visualizing the central limit theorem

This is the PMF for a random variable:

Visualizing the central limit theorem

This is the PMF of the average of two independent draws of the same random variable:

Visualizing the central limit theorem

This is the PMF of the average of three independent draws of the same random variable:

Visualizing the central limit theorem

This is the PMF of the average of thirty independent draws of the same random variable:

Visualizing the central limit theorem

This is the PDF for a random variable:

Visualizing the central limit theorem

This is the PDF of the average of two independent draws of the same random variable:

Visualizing the central limit theorem

This is the PDF of the average of three independent draws of the same random variable:

Visualizing the central limit theorem

This is the PDF of the average of thirty independent draws of the same random variable:

Example

I flip a coin 49 times, and calculate the proportion of flips which were heads. What is the probability that this proportion is between 0.49 and 0.51 ?

