Distributions of linear combinations

CE 311S

Linear combinations

MORE THAN TWO RANDOM VARIABLES

The same concepts used for two random variables can be applied to three or more random variables, but they are harder to visualize (triple integrals, triple sums, etc.)

One common thing to do with multiple random variables is to calculate *linear combinations* of them.

DISTRIBUTIONS OF LINEAR COMBINATIONS

A linear combination of the random variables X_1, \ldots, X_n has the form

$$a_1X_1 + a_2X_2 + \ldots a_nX_n$$

That is, we multiply each random variable by a constant coefficient, and add them up.

Examples: $X_1 + X_2$; $X_1 - X_2$; $5X_1 + 10X_2 + 3X_3$

To calculate the **total** of *n* random variables, we have a linear combination with $a_1 = a_2 = \cdots = a_n = 1$

To calculate the **difference** between 2 random variables, we have a linear combination with $a_1 = 1$ and $a_2 = -1$

I want to calculate the toll revenue on SH-130 today. If X_1 is the number of cars and X_2 the number of semi trucks, the revenue is $a_1X_1 + a_2X_2$ where a_1 and a_2 are the toll charged to each car and truck.

We have the following formulas:

For **any** random variables
$$X_1, ..., X_n$$

 $E[a_1X_1 + a_2X_2 + \cdots + a_nX_n] = a_1E[X_1] + a_2E[X_2] + \cdots + a_nE[X_n]$
 $V[a_1X_1 + a_2X_2 + \cdots + a_nX_n] = \sum_{i=1}^n \sum_{j=1}^n a_ia_j Cov(X_i, X_j)$

If X_1, \ldots, X_n are independent, the formula for variance simplifies to $V[a_1X_1 + a_2X_2 + \cdots + a_nX_n] = a_1^2 V[X_1] + a_2^2 V[X_2] + \cdots + a_n^2 V[X_n]$

The toll on SH-130 is \$1.50 for cars and \$4.50 for trucks. The mean and variance of the number of cars is 15,000 and 250,000; and the mean and variance of the number of trucks is 5,000 and 10,000. The number of cars and trucks is correlated, with covariance 50,000. What is the mean and standard deviation of the daily toll revenue?

The toll is $1.50X_1 + 4.50X_2$ where X_1 and X_2 are the number of cars and trucks.

$$E[1.50X_1 + 4.50X_2] = 1.50E[X_1] + 4.50E[X_2] = 45\ 000\ dollars$$

$$V[1.50X_1 + 4.50X_2] = 1.50^2 \text{Cov}(X_1, X_1) + (1.50)(4.50) \text{Cov}(X_1, X_2)$$
$$+ (4.50)(1.50) \text{Cov}(X_2, X_1) + 4.50^2 \text{Cov}(X_2, X_2)$$
$$= 2.25 V[X_1] + 13.5 \text{Cov}(X_1, X_2) + 20.25 V[X_2]$$
$$= 1 \ 440 \ 000$$

so the standard deviation is $\sqrt{1440000} = 1200$ dollars

I run a business where my daily revenue has a mean of 1500 and a standard deviation of 400, while my daily costs have a mean of 1000 and a standard deviation of 300. What is the mean and standard deviation of my daily profit, assuming my daily revenue and costs are independent?

$$\Pi = R - X$$
 so $E[\Pi] = E[R] - E[X] = 500$

$$V[R-X] = V[R] + V[X] = 300^2 + 400^2 = 500^2$$
 so $\sigma_{R-X} = 500^2$

This is one reason why we use variance even though standard deviation is easier to interpret. Variances add nicely, standard deviations do not.

I run a business where my daily revenue has a mean of 1500 and a standard deviation of 400, while my daily costs have a mean of 1000 and a standard deviation of 300. What is the mean and standard deviation of my daily profit, assuming my daily revenue and costs have a correlation coefficient of +0.5?

$$\Pi = R - X$$
 so $E[\Pi] = E[R] - E[X] = 500$

$$V[R-X] = V[R] + V[X] - 2Cov(R, X) =$$

 $300^2 + 400^2 - 2(0.5)(300)(400) = 130000$ so $\sigma_{R-X} = 360$

If revenue and costs were negatively correlated, would my daily profit have a higher or lower standard deviation?

Let's try to derive these formulas with n = 2 to keep the numbers manageable:

$$E[a_1X_1 + a_2X_2] = \sum_{x_1} \sum_{x_2} (a_1x_1 + a_2x_2)p(x_1, x_2)$$
$$= \sum_{x_1} \sum_{x_2} a_1x_1p(x_1, x_2) + \sum_{x_1} \sum_{x_2} a_2x_2p(x_1, x_2)$$
$$= a_1 \sum_{x_1} \sum_{x_2} x_1p(x_1, x_2) + a_2 \sum_{x_1} \sum_{x_2} x_2p(x_1, x_2)$$
$$= a_1 E[X_1] + a_2 E[X_2]$$

Notice that we did not have to assume independence to derive this formula.

What about the variance?

$$V [a_1 X_1 + a_2 X_2] = E[(a_1 X_1 + a_2 X_2 - \mu_{a_1 X_1 + a_2 X_2})^2]$$

= $E[(a_1 (X_1 - \mu_1) + a_2 (X_2 - \mu_2))^2]$
= $E[a_1^2 (X_1 - \mu_1)^2 + a_1 a_2 (X_1 - \mu_1) (X_2 - \mu_2) + a_2 a_1 (X_2 - \mu_2) (X_1 - \mu_1) + a_2 a_2 (X_2 - \mu_2) (X_2 - \mu_2)]$
= $a_1 a_1 E[(X_1 - \mu_1) (X_1 - \mu_1)] + a_1 a_2 E[(X_1 - \mu_1) (X_2 - \mu_2)] + a_2 a_1 E[(X_2 - \mu_1) (X_1 0 \mu_1)] + a_2 a_2 E[(X_2 - \mu_1) (X_2 - \mu_1)]$
= $\sum_{i=1}^2 \sum_{j=1}^2 a_i a_j \text{Cov}(X_1, X_2)$

If X_1 and X_2 are independent, their covariance is zero, so the formula simplifies to

$$a_1^2 \operatorname{Cov}(X_1, X_1) + a_2^2 \operatorname{Cov}(X_2, X_2)$$

or simply $a_1^2 V[X_1] + a_2^2 V[X_2]$

WHAT ARE STATISTICS?

Remember the measures of location and variability from Chapter 1?

00000000	0003 0000	000000	066 01	1 0000	0405	508 24	100 04	\$0508	0060	01 C	100	30	100		
0000 000	0 0000 00	000 000	00 000	00 000	00 000	00 00	00 333	333377	77777(0000					
·							US 29	90 4.	5 mile	es W d	of FM	1960			
01 12	0001	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011	0012			
00 00															
00 00 _															
00 00 3	0100 0054	0047		0170	0192	0063	0083	0216	0227	0057	0051	0018			
00 00 3	0200 0020	0015	0012	0108	0124	0038	0046	0150	0141		0025	0009			
00 00 3	0300 0011	. 0015	0008	0068	0100	0026	0038	0139	0134	0029		0005			
00 00 3	0400 0018	8 0008	0007	0079	0104	0015	0037	0116	0096		0026	0005			
00 00 3	0500 0009	0014	0013	0112	0157		0035	0129	0101	0018	0027	0005			
00 00 3	0600 0023	0022	0042	0214	0296	0139	0103	0242	0129	0073	0034	0013			
00 00 3	0700 0062	0043	0085	0275	0384	0172	0305	0562	0380	0148	0078	0022			
00 00 3	0800 0127	0093	0161	0398	0497	0262	0546	0768	0519	0270	0132	0085		_ \	
00 00 3	0900 0178	8 0126	0284	0528	0640	0413	0653		0645	0366	0190	0134			1015
00 00 3	1000 0231	. 0170	0371	0663	0809	0534	0926	1009	0788	0526	0260	0212		/	IAUN
00 00 3	1100 0288	8 0186	0396	0772	0896	0625	1086	1151	0935	0610	0322	0268			
00 00 3	1200 0367	0237	0513	0845	1039	0731	1054	1160	1003	0657	0424	0262		\neg	
00 00 3	1300 0344	0258	0460	0846	1086	0903	1085	1214	1095	0745	0460	0317			
00 00 3	1400 0397	0351	0463	0956	1175	0993	1113	1217	1080	0713	0436	0317		v	
00 00 3	1500 0407	0316	0556	0950	1208	1063	1144	1232	1116	0689	0461	0309			
00 00 3	1600 0433	0318	0490	0971	1294	1089	1136	1203	1083	0665	0465	0298			
00 00 3	1700 0440	0323	0502	1073	1304	1194	0876	1097	0996	0695	0455	0288			
00 00 3	1800 0418	8 0314	0488	1043	1354	1230	0846	1090	0986	0631	0407	0290			
00 00 3	1900 0399	0319	0441	1030	1286	1105	0707	0939	0896	0550	0390	0287			
00 00 3	2000 0381	0258	0403	0933	1154	1006	0516	0777	0741	0460	0332	0245			
00 00 3	2100 0337	0243	0214	0813	0976	0789	0360	0586	0632	0319	0266	0134			
00 00 3	2200 0286	i 0193	0178	0669	0885	0607	0336	0560	0544	0247	0210	0132			
00 00 3	2300 0153	0126	0137	0467	0547	0307		0475	0424	0212	0152	0075			
00 00 3	2400 0093	0081	0081	0387	0455	0214	0148	0304	0300	0146	0120	0060			

What was the purpose of these?

We wanted to use a single number to describe the data set in some way. (This is the definition of a **statistic**. In mathematical terms:

Consider a sample of *n* elements, and let X_i describe the variable of the *i*-th member of the sample. A **statistic** is a random variable *Y* which is determined from the random variables X_1, \ldots, X_n

Examples:

Sample mean: $Y = \sum_{i=1}^{n} X_i / n$ Maximum value: $Y = \max_{i=1}^{n} \{X_i\}$ Total: $Y = \sum_{i=1}^{n} X_i$ The important thing to notice is that **the statistics are random variables themselves.**

Let's say I roll a die five times, and take the average of the values.

 $\begin{array}{c} 6, 6, 3, 1, 1 \rightarrow 3.4 \\ 5, 1, 1, 5, 2 \rightarrow 2.8 \\ 5, 6, 3, 2, 4 \rightarrow 4.0 \\ 3, 3, 2, 4, 5 \rightarrow 3.4 \\ 2, 6, 6, 1, 3 \rightarrow 3.6 \end{array}$

Each sample could have a different mean, so the sample means form a random variable (taking the values 3.4, 2.8, 4.0, 3.4, 3.6, and so on). Can we say anything meaningful about its distribution?

Yes, we can.

In fact, we will shortly see that if n is large, the sample mean has a normal distribution **no matter what the distribution of the** X_i **is**. Furthermore, its mean is simply the mean of the individual random variables, and its variance is the variance of the individual random variables, divided by n.

To begin, we need to make some assumptions about the X_i

The random variables X_1, \ldots, X_n are a **random sample** if they are independent and identically distributed.

(This is often abbreviated as the "iid" property.)

Assume that X_1, \ldots, X_n are a random sample, and let \overline{X} represent the sample mean:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

What is $E[\overline{X}]$?

In the dice example above, this is asking what the average is *of the average of five dice rolls*. This is conceptually different from asking what the average is of each roll of the die, although we might think the answers should be the same.

Notice that \overline{X} is a *linear combination* of X_1, \ldots, X_n :

$$\overline{X} = \frac{1}{n}X_1 + \frac{1}{n}X_2 + \dots + \frac{1}{n}X_n$$

So therefore

$$E[\overline{X}] = \frac{1}{n}E[X_1] + \dots + \frac{1}{n}E[X_n]$$

Since X_1, \ldots, X_n are identically distributed, they all have the same mean (call it μ):

$$E[\overline{X}] = \frac{1}{n}\mu + \dots + \frac{1}{n}\mu = \mu$$

So, $E[\overline{X}] = \mu$ as well: the expected value of the sample mean is the expected value of the original random variable.

So in the dice example, over a long time the average of the sample means (3.4, 2.8, 4.0...) will be very close to 3.5 (the expected value of a single roll).

We can repeat the same idea for variance. Because \overline{X} is a linear combination with weights 1/n, and because X_1, \ldots, X_n are independent, we have

$$V[\overline{X}] = \frac{1}{n^2}V[X_1] + \dots + \frac{1}{n^2}V[X_n]$$

Since X_1, \ldots, X_n are identically distributed, they all have the same variance (call it σ^2):

$$V[\overline{X}] = \frac{1}{n^2}\sigma^2 + \dots + \frac{1}{n^2}\sigma^2 = \frac{\sigma^2}{n}$$

So, $V[\overline{X}] = \sigma^2/n$: the variance of the sample mean is NOT the variance of the original random variable, but is smaller by a factor of n.

In the dice example, the variance of the sample mean rolls (3.4, 2.8, 4.0...) will be smaller than the variance of the roll of an individual dice.

(The variance is smaller by a factor of n, so the standard deviation is smaller by a factor of \sqrt{n} .)

The **central limit theorem** goes one step further and specifies what type of distribution the sample mean has:

Let X_1, \ldots, X_n be a random sample. Then if *n* is sufficiently large, \overline{X} has approximately a normal distribution, with mean and standard deviation given on the previous slide.

This is true **no matter what distribution the** X_i **are taken from**. As a practical rule of thumb, if n > 30 it is safe to use the Central Limit Theorem.

This is the PMF for a random variable:

This is the PMF of the *average* of two independent draws of the same random variable:

This is the PMF of the average of *three* independent draws of the same random variable:

This is the PMF of the average of *thirty* independent draws of the same random variable:

This is the PDF for a random variable:

This is the PDF of the *average* of two independent draws of the same random variable:

This is the PDF of the average of *three* independent draws of the same random variable:

This is the PDF of the average of *thirty* independent draws of the same random variable:

I flip a coin 49 times, and calculate the proportion of flips which were heads. What is the probability that this proportion is between 0.49 and 0.51?