# More on discrete random variables 

## CE 311S

## CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function $F_{X}(x)$ of a random variable is the probability that $X$ is less than or equal to $x$,

$$
F_{X}(x)=P(X \leq x)
$$

Remember that $X$ is a labeling of outcomes; so, for example, $F_{X}(5)$ is the probability that the outcome which actually occurs is no more than 5 .

## Example

For a family with two children, the PMF for the number of girls was given by

$$
\begin{array}{cc}
x & P_{X}(x) \\
\hline 0 & 1 / 4 \\
1 & 1 / 2 \\
2 & 1 / 4
\end{array}
$$

## Example

To find the CDF, "add up" the values in the PMF column:

| $x$ | $P_{X}(x)$ | $F_{X}(x)$ |
| :---: | :---: | :---: |
| 0 | $1 / 4$ | $1 / 4$ |
| 1 | $1 / 2$ | $3 / 4$ |
| 2 | $1 / 4$ | 1 |

## Example

I flip a coin three times. Let $Y$ equal 1 if at least two of these flips are heads, and 0 otherwise.

| $y$ | $P_{Y}(y)$ | $F_{Y}(y)$ |
| :---: | :---: | :---: |
| 0 | $1 / 2$ | $1 / 2$ |
| 1 | $1 / 2$ | 1 |

Notice that the values in the CDF column are never decreasing, and that for the greatest value the random variable the CDF equals one.

## Example

I flip a coin until it comes up heads. Let $Z$ equal the number of flips before I stop (including the last one).

| $z$ | $P_{Z}(z)$ | $F_{Z}(z)$ |
| :---: | :---: | :---: |
| 1 | $1 / 2$ | $1 / 2$ |
| 2 | $1 / 4$ | $3 / 4$ |
| 3 | $1 / 8$ | $7 / 8$ |
| 4 | $1 / 16$ | $15 / 16$ |
| 5 | $1 / 32$ | $31 / 32$ |

The values in the CDF column are still increasing; in this case there are an infinite number of values, so it never equals one; but as $z \rightarrow \infty, F_{Z}(z) \rightarrow 1$.

We can define the CDF for values in between those the random variable can take.

| $x$ | $P_{X}(x)$ | $F_{X}(x)$ |
| :---: | :---: | :---: |
| 0 | $1 / 4$ | $1 / 4$ |
| 1 | $1 / 2$ | $3 / 4$ |
| 2 | $1 / 4$ | 1 |

- $F_{X}(1.5)=P(X \leq 1.5)=3 / 4$
- $F_{X}(0.5)=P(X \leq 0.5)=1 / 4$
- $F_{X}(-5)=P(X \leq-5)=0$
- $F_{X}(10)=P(X \leq 10)=1$

The PMF can be plotted by showing the probability of each possible value for the random variable. The CDF can be plotted as horizontal lines which "jump" at each possible value for the random variable.


(Figures from the Pishro-Nik text.)

If we have the CDF, we can compute probabilities without having to sum up each of the possible outcomes.

In the infinite coin-flipping example, $F_{Z}(z)=1-1 / 2^{z}$ whenever $z$ is a positive integer. What is the probability that I flip the coin at least 5 times, but no more than 15 times?
"At least 5, but no more than 15 " means $5,6,7, \ldots, 13,14,15$. (Pay attention to whether endpoints are included or not: "more than five" vs. "at least 5," "no more than 15 " vs. "less than 15 .")

I can write this statement in multiple ways:
$P(5 \leq Z \leq 15)=P(4<Z \leq 15)=P(4<Z<16)$, etc.

If I write it in the form $P(4<Z \leq 15)$, then this is just $F_{Z}(15)-F_{Z}(4)$. Why?
$F_{Z}(15)$ gives me the probability of seeing $1,2, \ldots, 14,15$.
$F_{Z}(4)$ gives the probability of seeing $1,2,3$, or 4 .

Subtracting these, what is left is the probability of $5,6,7, \ldots, 14,15$ which is the goal.
$P(5 \leq Z \leq 15)=F_{Z}(15)-F_{Z}(4)=\left(1-1 / 2^{15}\right)-\left(1-1 / 2^{4}\right) \approx 0.0625$.

## EXPECTED VALUE

In the first week of class, we developed descriptive statistics for data sets. (Why?)

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 0 | 0054 | 0047003901 | 017001920 | 006300 | 00830216 | 02270057 | 00510018 |  |
|  |  | 0020 | ${ }^{0015}$ | ${ }^{01088} 00824$ | 0038 0026 000 | 00460150 0038 0039 | ${ }^{0141} 0039$ | 0025 <br> 00030 <br> 00009 <br> 005 |  |
| 0000 |  | 0018 | 00080007 | 7901040 |  |  |  |  |  |
| 0000 |  | ${ }_{0}^{0009} 00000$ | $\begin{array}{ll}0014 \\ 0022 & 0042 \\ 0072 \\ 01\end{array}$ | 0112 01857 | ${ }^{0039} 000$ | 0035 0103 01292 | 01010018 0120 | 0027 00034 00005 00053 |  |
|  | ${ }^{\text {O }}$ 0700 | ${ }_{0}^{0062} 0$ | ${ }^{0043} 0083{ }^{0029} 0$ | ${ }^{0275} 03848$ | ${ }^{0172} 0$ | O3050562 | ${ }^{0380} 0148$ | (ens |  |
|  | ${ }^{\text {a }}$ | ${ }^{01778}$ |  | -53880640 | ${ }_{0}^{026213} 0$ | - 0646 | 006190270 | (1320 |  |
| [1000 | ${ }^{3} 11000$ | ${ }_{0}^{02388}$ |  | 06630809 072 | ${ }^{0.354} 0$ | - 09261009 |  | (oze |  |
|  | ${ }_{1}^{1200}$ | ${ }^{0367} 0$ | 0237051308 | 084510390 | ${ }_{0}^{0731} 10$ | 10541160 | ${ }^{1003} 06557$ | 0424 |  |
|  | ${ }^{13000} 1$ | $\underbrace{0344}_{0} 0$ | (eas | 09861175\% |  | 10851214 11131217 | 10950745 | ${ }^{0} 04360317$ |  |
|  | ${ }^{3} 12000$ | ${ }^{044} 0430$ | ${ }^{0316} 05556$ | ${ }^{0} 095012081$ | 106311 | 1144 11231232 1203 | 11160689 | 0461 |  |
|  | ${ }_{1}^{1700} 110$ | ${ }^{0443} 0$ | O323 050210 | 10731304 1 | 1199 108 | ${ }_{0}^{11367112037}$ | ${ }^{10835} 0.06950$ |  |  |
|  | ${ }^{1800} 18$ | $\underbrace{0418}_{0} 0$ | 0314 <br> 0319 <br> 03481 <br> 0481 <br> 1 | 104313541 103012861 | 1230 1105 08 | 08461090 07070939 | ${ }^{09866} 0031$ | 04070290 0390280 0287 |  |
|  |  | $0_{0381020}^{032}$ | 025804030 | 09331154 | 10060 | 05160777 | ${ }_{0} 7412460$ | ${ }^{0332} 00245$ |  |
|  | ${ }_{2200}^{2100}$ | $\left.\right\|_{0837} ^{0337} 002$ | (02430214 ${ }^{02193} 01780$ | ${ }^{0813} 09776$ |  | 03600586 0336 0.560 |  |  |  |
|  |  |  | 012601370 | 046705470 | 030702 | 02770475 | 04240212 |  |  |



## We want to do the same for random variables.

Consider families with two children. Let $X$ be the number of girls. $X$ has a value for each of the four outcomes.

| Outcome | $X$ |
| :---: | :---: |
| BB | 0 |
| BG | 1 |
| GB | 1 |
| GG | 2 |

What would a measure of location or measure of variability mean for the random variable $X$ ?

Imagine that we repeat this experiment many, many times, and record the value of $X$ for each.


We can calculate the sample mean (and other descriptive statistics) from these values of $X$.

In the long run, we expect to see $X=0$ for $25 \%$ of the sample values, $X=1$ for $50 \%$ of them, and $X=2$ for $25 \%$ of them. So the sample mean becomes a weighted average of the possible values of $X$, with weights according to the probability mass function.

| Outcome | $X$ |
| :---: | :---: |
| BB | 0 |
| BG | 1 |
| GB | 1 |
| GG | 2 |

Mean of $X$ is $\frac{0.25 \times 0+0.50 \times 1+0.25 \times 2}{0.25+0.50+0.25}=1$. This is also called the expected value.

Because the denominator is the sum of the probabilities (which will always equal 1 ), the expected value can be written as

$$
E[X]=\mu_{X}=\sum_{x \in R} x \cdot P_{X}(x)
$$

where $R$ is the set of all of the possible values $X$ can take.

For example, we could have calculated the expected number of girls in a two-child family as follows:

| $x$ | $P_{X}(x)$ | $x \cdot P_{X}(x)$ |
| :---: | :---: | :---: |
| 0 | 0.25 | 0 |
| 1 | 0.50 | 0.50 |
| 2 | 0.25 | 0.50 |
|  | 1 | $\mathbf{1}$ |

Example: Here are the current odds for the Lotto Texas game.

| Winnings | Odds |
| :---: | :---: |
| $\$ 3$ | 1 in 75 |
| $\$ 50$ | 1 in 1526 |
| $\$ 2000$ | 1 in 89,678 |
| $\$ 21,000,000$ | 1 in $25,827,165$ |

What is the expected winnings from a single ticket? If each ticket costs $\$ 1$, is it a good idea to play this game?

Write each possible outcome, the probability of occurrence, multiply and add.

| 3 | $1 / 75$ | 0.040 |
| :---: | :---: | :---: |
| 50 | $1 / 1526$ | 0.033 |
| 2000 | $1 / 89678$ | 0.022 |
| $21 \times 10^{6}$ | $1 / 25827165$ | 0.813 |
| 0 | 0.986 | 0 |
|  | 1 | $\mathbf{0 . 9 0 8}$ |

For a $\$ 1$ ticket, on average you will only get $90.8 \Phi$ back.

Furthermore, excluding the very rare possibility of a jackpot, you will get less than $10 \Phi$ back for your dollar.

## We can also calculate expected values of functions as well.

Assume that the temperature in Austin is either $95^{\circ} \mathrm{F}$ (with $10 \%$ probability), $90^{\circ} \mathrm{F}$ (with $20 \%$ probability), $80^{\circ} \mathrm{F}$ (with $30 \%$ probability), and 70 F (with $40 \%$ probability). What is the expected temperature in ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ ?

## We can also calculate expected values of functions as well.

Assume that the temperature in Austin is either $95^{\circ} \mathrm{F}$ (with $10 \%$ probability), $90^{\circ} \mathrm{F}$ (with $20 \%$ probability), $80^{\circ} \mathrm{F}$ (with $30 \%$ probability), and 70 F (with $40 \%$ probability). What is the expected temperature in ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ ? If $C$ is the temperature in Celsius and $F$ is the temperature in Fahrenheit, $C=5 / 9(F-32)$.

| $f$ | Probability | $f \cdot P_{F}(f)$ | $c(f) \equiv 5 / 9(f-32)$ | $c(f) \cdot P_{C}(c)$ |
| :---: | :---: | :---: | :---: | :---: |
| 95 | 0.1 | 9.50 | 35 | 3.50 |
| 90 | 0.2 | 18.0 | 32.2 | 6.44 |
| 80 | 0.3 | 24.0 | 26.7 | 8.00 |
| 70 | 0.4 | 28.0 | 21.1 | 8.44 |
|  | 1 | $\mathbf{7 9 . 5}$ |  | $\mathbf{2 6 . 4}$ |

(In general $E[g(X)]=\sum_{x_{k} \in R_{X}} g\left(x_{k}\right) P_{X}\left(x_{k}\right)$ )

| $f$ | Probability | $f \cdot P_{F}(f)$ | $c(f) \equiv 5 / 9(f-32)$ | $c(f) \cdot P_{C}(c)$ |
| :---: | :---: | :---: | :---: | :---: |
| 95 | 0.1 | 9.50 | 35 | 3.50 |
| 90 | 0.2 | 18.0 | 32.2 | 6.44 |
| 80 | 0.3 | 24.0 | 26.7 | 8.00 |
| 70 | 0.4 | 28.0 | 21.1 | 8.44 |
|  | 1 | $\mathbf{7 9 . 5}$ |  | $\mathbf{2 6 . 4}$ |

In this example, we could have just taken the expected temperature in Fahrenheit and converted to Celsius. This won't always work.

When I go to Double Daves, half of the time I eat a 12 -inch medium pizza, and the other half of the time I eat the 18 -inch Big Dave pizza. What is the expected diameter of my pizza?


If the number of calories $C$ is related to the diameter of the pizza $D$ by $C=19 D^{2}$, what is the expected number of calories I consume each time I go to Double Dave's?
$E[D]=15$ and $E[C]=4446 \neq 19 \times 15^{2}=4275$.

The only time that $E[g(X)]=g(E[X])$ reliably is when $g$ is a linear function of $X$. In particular,
$E[a X+b]=a \cdot E[X]+b$ for any values of $a$ and $b$

Why?

For a nonlinear function, we have to first compute $g(x)$ for every possible value, then compute $\sum g(x) P(x)$. This is called the law of the unconscious statistician (LOTUS):

$$
E[g(X)]=\sum_{x_{k} \in R_{X}} g\left(x_{k}\right) P_{X}\left(x_{k}\right)
$$

(The same formula works for linear functions too; but you can use the distributive property to manipulate the sum to get $a E[X]+b=g(E[X])$

Consider this carnival game: a fair coin is tossed repeatedly until tails appears. The pot starts at one dollar and is doubled each time heads appears. Whenever tails appears, you win the entire pot.

How much would you pay to play this game?

What are your expected winnings?

Expected value does not always exist!

There must be more to the story than expected value alone...

## VARIANCE

## What can we do about an equivalent for variance and standard deviation?



Do the same as with the mean (expected value). If we were to run the experiment many times, what would be the sample variance and sample standard deviation?

Remember, the formula for sample variance was $s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$. Why did we have $n-1$ in the denominator?
(1) We only had access to a sample, not the true (population) distribution, $n-1$ corrected for this. Here we have the true distribution.
(2) In any case, when $n$ is large, the difference between dividing by $n$ or $n-1$ is small.

With $n$ in the denominator, $s^{2}$ was simply the average value of $(x-\bar{x})^{2}$.

So, for random variables, we define the variance and standard deviation as follows:

Variance: $\quad V[X]=\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]=\sum_{x_{k} \in R_{X}}\left(x_{k}-\mu_{X}\right)^{2} P_{X}\left(x_{k}\right)$ Standard deviation: $\sigma_{X}=\sqrt{V[X]}$

## Example

What is the variance and standard deviation of the number of boys in a two-child family (remember $\mu_{X}=1$ )?

| $x$ | $P_{X}(x)$ | $\left(x-\mu_{X}\right)^{2}$ | $\left(x-\mu_{X}\right)^{2} P_{X}(x)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.25 | 1 | 0.25 |
| 1 | 0.50 | 0 | 0 |
| 2 | 0.25 | 1 | 0.25 |
|  | 1 |  | $\mathbf{0 . 5}$ |

So $V[X]=0.5$ and $\sigma_{X}=\sqrt{0.5}=0.71$.

## VARIANCE SHORTCUTS AND FORMULAE

We can compute $V[X]$ more simply using

$$
V[X]=E\left[X^{2}\right]-(E[X])^{2}
$$

Why?

## Example

What is the variance and standard deviation of the number of boys in a two-child family?

| $x$ | $P_{X}(x)$ | $x^{2}$ | $x^{2} P_{X}(x)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.25 | 0 | 0 |
| 1 | 0.50 | 1 | 0.50 |
| 2 | 0.25 | 4 | 1.00 |
|  | 1 |  | $\mathbf{1 . 5}$ |

So $E[X]^{2}=1.5$ and $V[X]=E[X]^{2}-(E[X])^{2}=1.5-1^{2}=0.5$

The variance of a linear function can be calculated as follows:
$V[a X+b]=a^{2} \cdot V[X]$ for any values of $a$ and $b$
Why?

# EXPECTED VALUE AND VARIANCE FOR SPECIAL DISCRETE RANDOM VARIABLES 

For any binomial random variable

$$
E[X]=n p \text { and } V[X]=n p(1-p)
$$

So, if you know $X$ is a binomial random variable, you don't have to calculate a complicated sum; just use these formulas.

## Example

- I flip a coin 50 times; the expected number of heads is $50(1 / 2)=25$ and the variance is $50(1 / 2)(1 / 2)=12.5$
- The probability of winning is 0.4 ; if I play 10 times, I expect to win $10(0.4)=4$ times and the variance is $10(0.4)(0.6)=2.4$.
- A family has 4 children; the expected number of boys is $4(1 / 2)=2$ and the variance is $4(1 / 2)(1 / 2)=1$.

For any hypergeometric random variable $X$, the expected value and variance are:

$$
\begin{gathered}
E[X]=\frac{k b}{b+r} \\
V[X]=k \frac{b}{b+r} \frac{r}{b+r} \frac{b+r-k}{b+r-1}
\end{gathered}
$$

(Is this similar to the formulas for the binomial distribution when the population is large?)

For any negative binomial random variable, we have

$$
\begin{gathered}
E[X]=\frac{m}{p} \\
V[X]=\frac{m(1-p)}{p^{2}}
\end{gathered}
$$

For any Poisson random variable $X$ with an average rate of occurrence $\lambda$ we have

$$
\begin{aligned}
& E[X]=\lambda \\
& V[X]=\lambda
\end{aligned}
$$

## SOME EXAMPLES

## Example

Pennies minted before 1982 are mostly made of copper (after 1982, they are almost entirely zinc). Copper prices have risen to the point that a pre-1982 penny is actually worth 2.5 cents if melted down. Some people actually spend their time sifting pennies to find pre-1982 ones (roughly $25 \%$ of pennies in circulation).

On average, how many pennies will I look at before I earn a $\$ 15$ profit from this activity?

I earn 1.5 cents profit on each pre-1982 penny I see.

To make $\$ 15$ profit, I need to find 1000 pre- 1982 pennies.

Let $X$ be the number of post-1982 pennies $I$ see first. $X$ is negative binomial with $m=1000, p=1 / 4$

So $E[X]=1000 /(1 / 4)=4000$

Assume that the number of students who stop by my office hours is a Poisson random variable with $\lambda=2$. What is the probability that no students stop by my office hours? The probability that between 3 and 5 students stop by? What is the standard deviation of the number of students who stop by?

$$
P(X=0)=\frac{e^{-2} 2^{0}}{0!}=0.135
$$

$$
P(X=3)+P(X=4)+P(X=5)=\frac{e^{-2} 2^{3}}{3!}+\frac{e^{-2} 2^{4}}{4!}+\frac{e^{-2} 5^{0}}{5!}=0.307
$$

$$
\sqrt{V[X]}=\sqrt{2}=1.414
$$

The number of callers to a technical support line is a Poisson random variable. On average, there are 2 calls per hour. What is the standard deviation of the number of calls in an eight-hour shift? What is the probability that there will be at least 2 calls during an eight-hour shift?

For the eight-hour shift, the average number of occurrences is 16 , so $\lambda=16$.

$$
\sqrt{V[X]}=\sqrt{16}=4
$$

$P(X \geq 2)=1-P(X=0)-P(X=1)=1-\frac{e^{-16} 16^{0}}{0!}+\frac{e^{-16} 16^{1}}{1!}=0.999998$

## For next time...

I enter a casino playing a game with even odds ( $50 \%$ chance of winning). I adopt the following strategy: start by betting $\$ 1$. If I win, stop playing. If I lose, double my bet to $\$ 2$ and play again. Repeat until I win, and walk away $\$ 1$ richer.

Does this work?

First try to think about the problem intuitively. Then define random variables, calculate expected values and variances, and either confirm or revise your intuition.

