CE 311S: Final Exam, Fall 2017 Solutions

Problem 1.

- (a) $4 \times 5 \times 4 \times 1 = 80$
- (b) $\binom{4}{2} = 6$
- (c) $\binom{4}{2}\binom{5}{3}\binom{4}{1}\binom{1}{1} = 240$
- (d) $2^{4+5+4+1} = 16384$

Problem 2.

- (a) $H_0: \mu = 3.5, H_a: \mu > 3.5$
- (b) For this alternative hypothesis, we reject if $t > t_{.05,4} = 2.132$. Since $t = (\bar{x} \mu_0)/(s/\sqrt{n})$, and since $n = 5, \mu_0 = 3.5$, and s = 0.158, we have t > 2.132 if $\bar{x} > 3.65$.
- (c) No, because the sample mean is 3.6, which does not lie in the rejection region.

Problem 3.

- (a) A is negative binomial with m = 3 and p = 0.2, so E[A] = m/p = 15 and $V[A] = m(1-p)/p^2 = 60$
- (b) Let B be the number of offers in a given week; B is Poisson with $\lambda = 1$, so $P(B > 2) = 1 \sum_{i=0}^{2} \frac{e^{-1}1^{i}}{i!} = 0.08$.
- (c) C is exponential with mean and standard deviation both equal to 7 days.
- (d) D is normal with mean of E[B] = 1 and variance of V[B]/52 = 1/52. P(D > 1.1) = P(Z > 0.72) = 0.236.

Problem 4. With the given problem data we have $S_{xx} = 3.96 \times 10^4$, $S_{xy} = -1.62 \times 10^5$, and $S_{yy} = 1.32 \times 10^6$. Furthermore $\bar{x} = 2720/60 = 45.3$ and $\bar{y} = 288$, $SSE = 6.58 \times 10^5$, and $SST = 1.32 \times 10^6$.

- (a) $\beta_1 = S_{xy}/S_{xx} = -4.09$ and $\beta_0 = \bar{y} \beta_1 \bar{x} = 474$, so y = 474 4.09x.
- (b) $R^2 = 1 SSE/SST = 0.502$
- (c) $\sigma = \sqrt{SSE/(n-2)} = 107$. When x = 1, $P(Y > 300) = P(\epsilon > -170) = P(Z > -1.59) = 0.94$.
- (d) When x = 90, $P(Y > 300) = P(\epsilon > 194) = P(Z > 1.82) = 0.0341$.

(e) $t = \beta_1/(\sigma/\sqrt{S_x x}) = -7.64$. Since n = 60 we have $p \ll .0005 \approx 0$.

Problem 5. Let A, B, and C be the events corresponding to your use of each pickup line, and F the event where you receive a favorable response.

- (a) $P(A \cap F) = P(F)P(A \mid F) = \frac{1}{5}\frac{1}{4} = \frac{1}{20}$
- (b) $P(A) = P(A \cap F) + P(A \cap F^c) = \frac{1}{20} + \frac{4}{5}\frac{4}{10} = 0.37$
- (c) $P(F \mid A) = P(A \cap F)/P(A) = 0.135$. Similarly $P(F \mid B) = 0.2$ and $P(F \mid C) = 0.384$, so line C is the most likely to receive a positive reaction (38.4% probability).

Problem 6. We have $\bar{x} = 42$, s = 10, and n = 6.

- (a) The interval bounds are $\bar{x} \pm t_{0.025,5} s / \sqrt{n}$, or (31.5, 52.5).
- (b) The interval bounds are $\sqrt{(n-1)s^2/\chi^2_{0.05,5}}$ and $\sqrt{(n-1)s^2/\chi^2_{0.95,5}}$, or (6.72, 20.9).
- (c) The interval bounds are $\bar{x} \pm t_{0.025,5} s \sqrt{1+1/n}$, or (14.2, 69.8).
- (d) If the interval contains the next 5 years with 95% probability, then it contains each individual year with probability $\sqrt[5]{0.95} = 0.98979 \approx 0.99$. So the interval bounds are $\bar{x} \pm t_{0.005,5} s \sqrt{1 + 1/n}$, or (-1.55, 85.6).