CE 311S: Final Exam, Fall 2017

Solutions

Problem 1.

(a) $4 \times 5 \times 4 \times 1=80$
(b) $\binom{4}{2}=6$
(c) $\binom{4}{2}\binom{5}{3}\binom{4}{1}\binom{1}{1}=240$
(d) $2^{4+5+4+1}=16384$

Problem 2.

(a) $H_{0}: \mu=3.5, H_{a}: \mu>3.5$
(b) For this alternative hypothesis, we reject if $t>t_{.05,4}=2.132$. Since $t=\left(\bar{x}-\mu_{0}\right) /(s / \sqrt{n})$, and since $n=5, \mu_{0}=3.5$, and $s=0.158$, we have $t>2.132$ if $\bar{x}>3.65$.
(c) No, because the sample mean is 3.6 , which does not lie in the rejection region.

Problem 3.

(a) A is negative binomial with $m=3$ and $p=0.2$, so $E[A]=m / p=15$ and $V[A]=m(1-p) / p^{2}=60$
(b) Let B be the number of offers in a given week; B is Poisson with $\lambda=1$, so $P(B>2)=1-\sum_{i=0}^{2} \frac{e^{-1} 1^{i}}{i!}=$ 0.08 .
(c) C is exponential with mean and standard deviation both equal to 7 days.
(d) D is normal with mean of $E[B]=1$ and variance of $V[B] / 52=1 / 52 . P(D>1.1)=P(Z>0.72)=$ 0.236 .

Problem 4. With the given problem data we have $S_{x x}=3.96 \times 10^{4}, S_{x y}=-1.62 \times 10^{5}$, and $S_{y y}=1.32 \times 10^{6}$. Furthermore $\bar{x}=2720 / 60=45.3$ and $\bar{y}=288, S S E=6.58 \times 10^{5}$, and $S S T=1.32 \times 10^{6}$.
(a) $\beta_{1}=S_{x y} / S_{x x}=-4.09$ and $\beta_{0}=\bar{y}-\beta_{1} \bar{x}=474$, so $y=474-4.09 x$.
(b) $R^{2}=1-S S E / S S T=0.502$
(c) $\sigma=\sqrt{S S E /(n-2)}=107$. When $x=1, P(Y>300)=P(\epsilon>-170)=P(Z>-1.59)=0.94$.
(d) When $x=90, P(Y>300)=P(\epsilon>194)=P(Z>1.82)=0.0341$.
(e) $t=\beta_{1} /\left(\sigma / \sqrt{S_{x} x}\right)=-7.64$. Since $n=60$ we have $p \ll .0005 \approx 0$.

Problem 5. Let A, B, and C be the events corresponding to your use of each pickup line, and F the event where you receive a favorable response.
(a) $P(A \cap F)=P(F) P(A \mid F)=\frac{1}{5} \frac{1}{4}=\frac{1}{20}$
(b) $P(A)=P(A \cap F)+P\left(A \cap F^{c}\right)=\frac{1}{20}+\frac{4}{5} \frac{4}{10}=0.37$
(c) $P(F \mid A)=P(A \cap F) / P(A)=0.135$. Similarly $P(F \mid B)=0.2$ and $P(F \mid C)=0.384$, so line C is the most likely to receive a positive reaction (38.4% probability).

Problem 6. We have $\bar{x}=42, s=10$, and $n=6$.
(a) The interval bounds are $\bar{x} \pm t_{0.025,5} s / \sqrt{n}$, or $(31.5,52.5)$.
(b) The interval bounds are $\sqrt{(n-1) s^{2} / \chi_{0.05,5}^{2}}$ and $\sqrt{(n-1) s^{2} / \chi_{0.95,5}^{2}}$, or $(6.72,20.9)$.
(c) The interval bounds are $\bar{x} \pm t_{0.025,5} s \sqrt{1+1 / n}$, or $(14.2,69.8)$.
(d) If the interval contains the next 5 years with 95% probability, then it contains each individual year with probability $\sqrt[5]{0.95}=0.98979 \approx 0.99$. So the interval bounds are $\bar{x} \pm t_{0.005,5} s \sqrt{1+1 / n}$, or $(-1.55,85.6)$.

