CE 311S: Final Exam, Spring 2012

Solutions

Problem 1.

(a) A is Poisson with $\lambda=5$, so $V[A]=\lambda=5$ and $P(A=0)=\exp (-5)=0.00674$
(b) $B+1$ is negative binomial with $m=3$ and $p=0.05$, so $\frac{m}{p}=60=E[B+1]$ and $E[B]=59$. For variance, $V[B]=V[B+1]=m(1-p) / p^{2}=1140$
(c) C is binomial with $n=28$ and $p=0.4$, so $E[C]=n p=11.2$
(d) D is hypergeometric with $k=3, b=4$, and $r=11$, so $P(D=3)=0.00879, P(D=2)=0.145$, and $P(D=0)=0.362$.

Problem 2.

(a) $H_{0}: \mu=800, H_{a}: \mu<800$
(b) Since $n<40$ we must assume the apartment rents are normally distributed.
(c) $t=(750-800) /(100 / \sqrt{16})=-2$ while $t_{0.05,15}=1.753$, so you reject the hull hypothesis and confront Pat.
(d) $\sum x_{i}=n \bar{x}=12000$

Problem 3. Let C and D respectively denote the price of carnations and daffodils.
(a) $P(X \leq 40)=P(C \leq 40) P(D \leq 40)=(1-\exp (-40 / 40))^{2}=0.4$
(b) $F_{X}(x)=P(X \leq x)=P(C \leq x) P(D \leq x)=(1-\exp (-x / 40))^{2}$
(c) $f_{X}(x)=\frac{d}{d x} F_{X}(x)=\frac{\exp (-x / 40)}{20}(1-\exp (-x / 40))$
(d) $E[X]=\frac{1}{20}\left(\int_{0}^{\infty} x \exp (-x / 40) d x+\int_{0}^{\infty} x \exp (-x / 20) d x\right)$. Using the formulas given in the problem, this is $\$ 100$. For variance, $E\left[X^{2}\right]=\frac{1}{20}\left(\int_{0}^{\infty} x^{2} \exp (-x / 40) d x+\int_{0}^{\infty} x^{2} \exp (-x / 20) d x\right)$. Using the formulas given in the problem, this is 1800 . So $V[X]=E\left[X^{2}\right]-(E X)^{2}=800$.

Problem 4. The first part is a prediction interval with $\bar{x}=73, s=2.82$, and $n=2$, so the interval endpoints are $73 \pm 2.82 \times 6.314 \times \sqrt{1+1 / 2}$, or $(51,95)$. The second part is a confidence interval with $\bar{x}=75$, $s=12$, and $n=5$, so the interval endpoints are $75 \pm 12 \times 2.132 / \sqrt{5}$, or $(64,86)$.

Problem 5. Let X denote the number of Facebook posts in the next 24 hours.
(a) $H_{0}: \lambda=4, H_{a}: \lambda<4$
(b) $\{0,1,2\}$ is the only rejection region reflecting the alternative hypothesis.
(c) For a Type I error, we need $P(X \leq 2)$ when X is Poisson with $\lambda=4$. This probability is $\exp (-4)(1+$ $\left.4+\frac{4^{2}}{2!}\right)=0.238$
(d) For a Type II error, we need $P(X>2)$ when X is Poisson with $\lambda=2$. This probability is $1-\exp (-2)(1+$ $2+4)=0.0526$.

Problem 6.

(a) $E[Z]=0$
(b) $1=V[Z]=E\left[Z^{2}\right]-(E[Z])^{2}$, so $E\left[Z^{2}\right]=1$
(c) $0=\operatorname{Cov}\left(Z, Z^{2}\right)=E\left[Z^{3}\right]-E[Z] E\left[Z^{2}\right]$, so $E\left[Z^{3}\right]=0$.

