CE 311S: Final Exam, Spring 2014

Solutions

Problem 1.

(a) Exponential with $\lambda=12 / \mathrm{hr}$, so the mean and standard deviation are $1 / \lambda=5$ minutes.
(b) Poisson with mean 12 and standard deviation $\sqrt{12}$.
(c) Let C be the quantity in the problem. Then $C+1$ is negative binomial with $m=1$ and $p=0.01$, so $E[C]=m / p-1=99, V[C]=m(1-p) / p^{2}=9900$ and the standard deviation is 99.4.
(d) The number each customer purchases is binomial with $n=10$ and $p=0.5$, and thus has a mean of $n p=5$ and a variance of $n p(1-p)=2.5$. By the Central Limit Theorem, the average of the next 100 customers is normally distributed with mean 5 and variance 0.025 , so a standard deviation of 0.16 .

Problem 2. Let $U N B, G R E$, and $E C J$ be the events "Schraderbrau patrols the Union," "Schraderbrau patrols Gregory," and "Schraderbrau patrols ECJ." Further let C be the event "you are caught."
(a) $P(U N B \cap C)=P(U N B) P(C \mid U N B)=0.2 \times 0.6=0.12$
(b) Repeating part (a) gives a 9% probability of being caught if you sell math at Gregory, and a 5% probability of being caught if you sell math at ECJ. ECJ is the best choice.
(c) Define new events as follows: $\overline{U N B}, \overline{G R E}$, and $\overline{E C J}$ are the events "you sell math at the Union," "you sell math at Gregory", and "you sell math at ECJ," respectively. Then

$$
\begin{aligned}
& P(\overline{E C J} \mid C)=\frac{P(C \mid \overline{E C J}) P(\overline{E C J})}{P(C \mid \overline{U N B}) P(\overline{U N B})+P(C \mid \overline{G R E}) P(\overline{G R E})+P(C \mid \overline{E C J}) P(\overline{E C J})} \\
&=\frac{0.05 \times \frac{1}{3}}{0.12 \times \frac{1}{3}+0.09 \times \frac{1}{3}+0.05 \times \frac{1}{3}}=\frac{5}{26}
\end{aligned}
$$

Problem 3. With this data set $\bar{x}=5600$ and $s=2000$.
(a) The interval endpoints are $\bar{x} \pm s t_{0.025,5} / \sqrt{n}$ or $(3500,7700)$.
(b) This is a one-sided prediction interval with lower endpoint $\bar{x}-s t_{0.1,5} \sqrt{1+1 / n}$ or 2410

Problem 4.

(a) $H_{0}: p=0.85, H_{a}: p>0.85$
(b) For this alternative hypothesis, you reject the null hypothesis if $z>z_{0.05}=1.64$; and for a test on proportions $z=\left(p^{\prime}-p_{0}\right) / \sqrt{p_{0}\left(1-p_{0}\right) / n}$, so substituting $p_{0}=0.85, n=100$, we find $z>1.64$ if $p^{\prime}>0.909$
(c) We cannot reject the null hypothesis, so we purchase the next batch from Sue de Ephedrine.

Problem 5. Let C be the weight of cat food in a truck, X the weight of exams, and T the total weight (so $T=C+X)$
(a) No, because the correlation coefficient is nonzero.
(b) $E[X]=E[T-C]=E[T]-E[C]=3000-2000=1000$ pounds.
(c) $V[X]=V[T-C]=V[T]+V[C]-2 \rho_{T, C} \sigma_{T} \sigma_{C}=20^{2}+100^{2}-2(0.5)(100)(20)=8400$, so $\sigma_{X}=91.7$ pounds.
(d) $V[T]=V[C+X]=V[C]+V[X]+2 \rho_{C, X} \sigma_{C} \sigma_{X}$. We know everything in this equation except for $\rho_{C, X}$, so we can solve for it: $\rho_{C, X}=-0.98$.

Problem 6. Let x denote the number of charges and y the number of years in prison.
(a) The best-fit line is $y=21.4+0.612 x$
(b) $R^{2}=0.233$
(c) $S S E=200$, so $\sigma=8.17$ and $P(Y>20)=P(Z>-0.918)=0.82$.

