CE 311S: Final exam

Tuesday, May 15 2:00 – 5:00 PM

Name _____

Instructions:

- **SHOW ALL WORK** unless instructed otherwise. No shown work means no partial credit!
- If you require additional space, you may use the back of each sheet and/or staple additional pages to the end of the exam.
- If you need to make any additional assumptions, state them clearly.
- You may use one regular-sized sheet of notes; please turn in the notes with your exam. No additional resources are permitted.
- The number of points associated with each part of each problem is indicated.
- All necessary tables are attached.

Problem	Points	Possible
1		20
2		20
3		15
4		15
5		15
6		15
TOTAL		100

Problem 1. (20 points). Wanting a piece of the scooter sharing action, you and your friends form a startup called UT-Scooty. Your idea is to flood campus with cheap, disposable (and biodegradable!) scooters at such a rate that UT Parking and Transportation Services cannot impound them all.¹ In this way you can continue to operate without having to obey UT regulations. As a starting point, you and your friends collect data on the number of Bird and LimeBike scooters which were used during a six-day random sample earlier in the semester.

$102 \ 88 \ 125 \ 85 \ 90 \ 97$

For each of the following, find *intervals* which you are 95% sure contain the requested values. Assume that these numbers are normally distributed.

- (a) (5) The number of scooters which will be used in any given day.
- (b) (5) The mean number of scooters used per day.
- (c) (5) The standard deviation in the number of scooters used per day.
- (d) (5) The number of scooters which will be used in 99% of the days.

¹This happens to be very similar to *predator satiation*, the same evolutionary strategy used by cicadas and other insects, which simultaneously erupt in numbers so huge that predators simply get full and stop eating them.

Problem 2. (20 points). UT-Scooty has a soft launch over the sumer. During this time you collect data about the number of accidents reported due to scooter malfunctions, likely due to choosing your shady brother-in-law's fabrication company to build the scooters. In particular, you notice that each day, you see an average of 3 accidents. After any day in which more than 5 accidents occur, the Daily Texan will run an article criticizing UT-Scooty; after three such articles, the resulting lawsuits will force you to shut down. For each of the following random variables, indicate the *name of the distribution family*, its *mean*, and its *variance*. If you need to make additional (reasonable) assumptions for this problem, state what they are.

- (a) (5) The number of accidents per day.
- (b) (5) The time between accidents.
- (c) (5) The average number of accidents over the next 100 days.
- (d) (5) The number of days UT-Scooty will operate before shutting down.

Problem 3. (15 points). You poll a large number of students about how many times per week they use UT-Scooty, giving the following results:

Times per week	0	1	2	3	4
Percent of responses	40	30	10	10	10

(a) (5) What is the expected number of times a student uses UT-Scooty each week?

(b) (5) What is the standard deviation of the number of times a student uses UT-Scooty each week?

(c) (5) Repeat parts (a) and (b), excluding students who never use the service (those who answered 0).

Problem 4. (15 points). You now use the same survey data from Problem 3 to decide whether to expand UT-Scooty to Texas A&M University; you will launch there only if you are very sure that at least 25% of students are frequent users (defined as students who use the service *at least twice per week*). Assume that n = 100 for your survey.

- (a) (2) What are your null and alternative hypotheses?
- (b) (3) State what Type I and Type II errors are for this problem, without using any mathematical or statistical jargon.
- (c) (5) Do you decide to expand to A&M? Use a significance level of 5% for your test.
- (d) (5) What is the smallest proportion of frequent users for which you would decide to expand service?

Problem 5. (15 points). As the summer goes on, you suspect there might be a relationship between the temperature (measured in Fahrenheit) and the number of customers. You have collected the following data:

Temperature	85	87	91	95	114	
Riders	58	54	63	84	25	

- (a) (5) What is the best-fit line relating ridership to temperature?
- (b) (5) What is the R^2 value?
- (c) (5) If it is 94 degrees, what is the probability that there are more than 60 riders?

Problem 6. (15 points). For each month, you must calculate the profit for UT-Scooty: the revenue, minus the costs of scooter purchases and fines from UT (Parking and Transportation Services is not convinced by your argument that, being biodegradable, they are actually adding nutrients to the soil and adding value to UT). The mean and standard deviation for these quantities are as follows: for revenue, \$1000 and \$500; for purchase costs, \$300 and \$200; and for fines, \$800 and \$500. First assume that these three values are independent of each other.

- (a) What is your monthly expected profit?
- (b) What is the standard deviation of your monthly profit?
- (c) Repeat parts (a) and (b) if The correlation coefficient between revenue and purchase costs is +0.5; between revenue and fines is -0.1; and between purchase costs and fines is +0.4

Table A.3 Standard Normal Curve Areas

Shaded area	$= \Phi(z)$
	.09
-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003	3 .0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004	4 .0003
-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .000	5 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0008	7.0007
-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .001	0.0010
-2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .001	4 .0014
-2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .002	0.0019
-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .002	7.0026
-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .003	7.0036
-2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .004	9 .0038
-2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .006	6 .0064
-2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .008	7 .0084
-2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .011	3 .0110
-2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .014	6 .0143
-2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .018	8 .0183
-1.9 0287 0281 0274 0268 0262 0256 0250 0244 023	9 .0233
	1 .0294
-1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .037	5 .0367
-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .046	5 .0455
-1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .057	1 .0559
-1.4 0808 0793 0778 0764 0749 0735 0722 0708 069	4 0681
-1.3 0968 0951 0934 0918 0901 0885 0869 0853 087	8 0823
-1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .100	3 .0985
-1.1 , 1357 , 1335 , 1314 , 1292 , 1271 , 1251 , 1230 , 1210 , 119	0.1170
-1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .140	1 .1379
-0.0 18/1 181/ 1788 1762 1736 1711 1685 1660 163	5 1611
-0.8 2119 2090 2061 2033 2005 1977 1949 1922 180	4 1867
-0.7 2420 2389 2358 2327 2296 2266 2236 2206 217	7 2148
-0.6 2743 2709 2676 2643 2611 2578 2546 2514 248	3 2451
-0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .281	0.2776
-0.4 3446 3400 3372 3336 3300 3264 3228 3102 315	6 3121
-0.3 3821 3783 3745 3707 3660 3632 3504 2557 352	0 3482
-0.2 4207 4168 4129 4090 4052 4013 3974 3936 380	7 3850
-0.1 4602 4562 4522 4483 4443 4404 4364 4325 428	6 4247
-0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .468	1 .4641

 $\Phi(z) = P(Z \le z)$

(continued)

Appendix Tables A-7

.9973

.9980

.9986

.9990

.9993

.9995

.9996

.9997

.9974

.9981

.9986

.9990

.9993

.9995

.9997

.9998

Standa	rd Normal	Curve Area	s (cont.)					$\Phi(z) = I$	$P(Z \le z)$
.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964

Table A.3

z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.11.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3 3.4 .9965

.9974

.9981

.9987

.9990

.9993

.9995

.9997

.9966

.9975

.9982

.9987

.9991

.9993

.9995

.9997

.9967

.9976

.9982

.9987

.9991

.9994

.9995

.9997

.9968

.9977

.9983

.9988

.9991

.9994

.9996

.9997

.9969

.9977

.9984

.9988

.9992

.9994

.9996

.9997

.9970

.9978

.9984

.9989

.9992

.9994

.9996

.9997

.9971

.9979

.9985

.9989

.9992

.9994

.9996

.9997

.9972

.9979

.9985

.9989

.9992

.9995

.9996

.9997

Appendix Tables A-9

Table A.5Critical Values for t Distributions

				α			
v	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
32	1.309	1.694	2.037	2.449	2.738	3.365	3.622
34	1.307	1.691	2.032	2.441	2.728	3.348	3.601
36	1.306	1.688	2.028	2.434	2.719	3.333	3.582
38	1.304	1.686	2.024	2.429	2.712	3.319	3.566
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
50	1.299	1.676	2.009	2.403	2.678	3.262	3.496
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
8	1.282	1.645	1.960	2.326	2.576	3.090	3.291

			Two-sided	l Intervals					One-sided	l Intervals		
Confidence Lev	el	95%			<i>%</i> 66			95%			<i>%</i>	
% of Population Capture	o%06 ≤ bo%	≥ 95%	%66 ≤	≥ 90%	≥ 95%	≥ 99%	≥ 90%	≥ 95%	%66≤	≥ 90%	≥ 95%	≥ 99%
	2 32.019	37.674	48.430	160.193	188.491	242.300	20.581	26.260	37.094	103.029	131.426	185.617
	3 8.380	9.916	12.861	18.930	22.401	29.055	6.156	7.656	10.553	13.995	17.370	23.896
7	4 5.369	6.370	8.299	9.398	11.150	14.527	4.162	5.144	7.042	7.380	9.083	12.387
	5 4.275	5.079	6.634	6.612	7.855	10.260	3.407	4.203	5.741	5.362	6.578	8.939
	6 3.712	4.414	5.775	5.337	6.345	8.301	3.006	3.708	5.062	4.411	5.406	7.335
	7 3.369	4.007	5.248	4.613	5.488	7.187	2.756	3.400	4.642	3.859	4.728	6.412
	8 3.136	3.732	4.891	4.147	4.936	6.468	2.582	3.187	4.354	3.497	4.285	5.812
	9 2.967	3.532	4.631	3.822	4.550	5.966	2.454	3.031	4.143	3.241	3.972	5.389
1	0 2.839	3.379	4.433	3.582	4.265	5.594	2.355	2.911	3.981	3.048	3.738	5.074
1	1 2.737	3.259	4.277	3.397	4.045	5.308	2.275	2.815	3.852	2.898	3.556	4.829
1	2 2.655	3.162	4.150	3.250	3.870	5.079	2.210	2.736	3.747	2.777	3.410	4.633
1	3 2.587	3.081	4.044	3.130	3.727	4.893	2.155	2.671	3.659	2.677	3.290	4.472
1,	4 2.529	3.012	3.955	3.029	3.608	4.737	2.109	2.615	3.585	2.593	3.189	4.337
1	5 2.480	2.954	3.878	2.945	3.507	4.605	2.068	2.566	3.520	2.522	3.102	4.222
1	6 2.437	2.903	3.812	2.872	3.421	4.492	2.033	2.524	3.464	2.460	3.028	4.123
Sample Size n 1'	7 2.400	2.858	3.754	2.808	3.345	4.393	2.002	2.486	3.414	2.405	2.963	4.037
1	8 2.366	2.819	3.702	2.753	3.279	4.307	1.974	2.453	3.370	2.357	2.905	3.960
1	9 2.337	2.784	3.656	2.703	3.221	4.230	1.949	2.423	3.331	2.314	2.854	3.892
ñ	0 2.310	2.752	3.615	2.659	3.168	4.161	1.926	2.396	3.295	2.276	2.808	3.832
Ä	5 2.208	2.631	3.457	2.494	2.972	3.904	1.838	2.292	3.158	2.129	2.633	3.601
Ř	0 2.140	2.549	3.350	2.385	2.841	3.733	1.777	2.220	3.064	2.030	2.516	3.447
3	5 2.090	2.490	3.272	2.306	2.748	3.611	1.732	2.167	2.995	1.957	2.430	3.334
4	0 2.052	2.445	3.213	2.247	2.677	3.518	1.697	2.126	2.941	1.902	2.364	3.249
4	5 2.021	2.408	3.165	2.200	2.621	3.444	1.669	2.092	2.898	1.857	2.312	3.180
1. J	0 1.996	2.379	3.126	2.162	2.576	3.385	1.646	2.065	2.863	1.821	2.269	3.125
Q	0 1.958	2.333	3.066	2.103	2.506	3.293	1.609	2.022	2.807	1.764	2.202	3.038
ř	0 1.929	2.299	3.021	2.060	2.454	3.225	1.581	1.990	2.765	1.722	2.153	2.974
õ	0 1.907	2.272	2.986	2.026	2.414	3.173	1.559	1.965	2.733	1.688	2.114	2.924
6	0 1.889	2.251	2.958	1.999	2.382	3.130	1.542	1.944	2.706	1.661	2.082	2.883
10	0 1.874	2.233	2.934	1.977	2.355	3.096	1.527	1.927	2.684	1.639	2.056	2.850
15	0 1.825	2.175	2.859	1.905	2.270	2.983	1.478	1.870	2.611	1.566	1.971	2.741
20	0 1.798	2.143	2.816	1.865	2.222	2.921	1.450	1.837	2.570	1.524	1.923	2.679
25	0 1.780	2.121	2.788	1.839	2.191	2.880	1.431	1.815	2.542	1.496	1.891	2.638
30	0 1.767	2.106	2.767	1.820	2.169	2.850	1.417	1.800	2.522	1.476	1.868	2.608
0	o 1.645	1.960	2.576	1.645	1.960	2.576	1.282	1.645	2.326	1.282	1.645	2.326

Table A.6 Tolerance Critical Values for Normal Population Distributions

Appendix Tables A-11

Table A.7 Critical Values for Chi-Squared Distributions

					α					
ν	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
31	14.457	15.655	17.538	19.280	21.433	41.422	44.985	48.231	52.190	55.000
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328
33	15.814	17.073	19.046	20.866	23.110	43.745	47.400	50.724	54.774	57.646
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667	59.891	62.880
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62.426	65.473
40	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	63.691	66.766

For
$$v > 40, \chi^2_{a,v} \approx v \left(1 - \frac{2}{9v} + z_a \sqrt{\frac{2}{9v}}\right)^3$$