CE 311S: Final Exam, Spring 2018

Solutions

Problem 1. For this problem we have $\bar{x}=97.8$ and $s=14.7$.
(a) This is a prediction interval with endpoints $\bar{x} \pm s t_{0.975,5} \sqrt{1+1 / n}$, or $(57.0,139)$.
(b) This is a confidence interval on the mean with endpoints $\bar{x} \pm s t_{0.975,5} / \sqrt{n}$, or $(82.4,113)$.
(c) This is a confidence interval on the standard deviation with endpoints $\left(\sqrt{(n-1) s^{2} / \chi_{0.025,5}^{2}}, \sqrt{(n-1) s^{2} / \chi_{0.975,5}^{2}}\right)=$ $(9.17,36.0)$
(d) This is a tolerance interval with endpoints $\bar{x} \pm 5.775 \mathrm{~s}$, or $(13.0,183)$

Problem 2.

(a) Poisson with mean and variance 3
(b) Exponential with mean $1 / 3$ and variance $1 / 9$
(c) Normal with mean 3 and variance 3/100
(d) Negative binomial with $m=3$ and $p=1-\exp (-3)\left(1+3 / 1+3^{2} / 2!+3^{3} / 3!+3^{4} / 4!+3^{5} / 5\right.$! $)=0.0839$, so mean and variance are 35.7 and 390 , respectively.

Problem 3. For parts (a) and (b) of this problem, $p(x)$ is obtained by dividing the survey results by 100.
(a) $E[X]=\sum x p(x)=1.2$
(b) $E\left[X^{2}\right]=\sum x^{2} p(x)=3.2$, so the standard deviation is $\sqrt{E\left[X^{2}\right]-[E X]^{2}}=1.33$.
(c) In this part of the problem, the pmf changes to condition on $X>0$; the resulting pmf is $1 / 2,1 / 6,1 / 6$, and $1 / 6$ for x values of $1,2,3$, and 4, respectively. Repeating with this pmf gives $E[X \mid X>0]=2$ and $\sigma[X \mid X>0]=1.15$.

Problem 4. From the previous problem we have $p=0.3$.
(a) $H_{0}: p=0.25, H_{a}: p>0.25$
(b) Expanding the business when not many students are frequent users; not expanding the business when there are many frequent users.
(c) $z=\left(p^{\prime}-p_{0}\right) / \sqrt{p_{0}\left(1-p_{0}\right) / n}=1.15$. For this alternative hypothesis we reject H_{0} iff $z>z_{\alpha}=1.645$, so you do not expand the business.
(d) From the previous equation $z>1.645$ iff $p>0.321$.

Problem 5. In this problem we have $\sum x=472, \sum y=284, \sum x^{2}=45096, \sum y^{2}=17930$, and $\sum x y=$ 26191. Thus $S_{x x}=539, S_{y y}=1799, S_{x y}=-619, \bar{x}=94.4$, and $\bar{y}=56.8$. Finally $S S E=1089$ and $S S T=1799$, so $\sigma=19.0$.
(a) $\beta_{1}=S_{x y} / S_{x x}=-1.15$ and $\beta_{0}=\bar{y}-\beta_{1} \bar{x}=165.1$, so $y=165.1-1.15 x$ is the best-fit line.
(b) $R^{2}=1-S S E / S S T=0.394$.
(c) $P(Y=165.1-1.15 x+\epsilon>60)=P(\epsilon>-15.061)=P(Z>-1.05)=0.705$.

Problem 6. Let R be revenue, S scooter costs, and F the cost of fines. Profit is given by $\Pi=R-S-F$.
(a) $E[\Pi]=E[R]-E[S]-E[F]=-200$
(b) $\sigma[\Pi]=\sqrt{V[R]+V[S]+V[F]}=768$.
(c) $E[\Pi]$ is the same as before. But now

$$
\sigma[\Pi]=\sqrt{V[R]+V[S]+V[F]-2 \rho_{R, S} \sigma_{R} \sigma_{S}-2 \rho_{R, F} \sigma_{R} \sigma_{F}+2 \rho_{S, F} \sigma_{S} \sigma_{F}}=812
$$

