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1 Introduction

Transportation planning provides the “big picture” view of transportation systems. When doing
planning, we are concerned with a relatively large area all at once, such as a major metropolitan
area — in Austin, Texas, for instance, the official planning model consists of the five counties
surrounding the city. In Chicago, the planning model consists of sixteen counties. As a rule of
thumb, the scope of a planning model should be large enough that most of the trips in your model
both begin and end within the study area. For example, if constructing a planning model for
Laramie, it would be wrong only to include the part of the city south of Grand Avenue and east of
3rd Street, because many of the drivers in this part of the city are either going to somewhere else
(say, the University, or downtown) or coming from there. When we move to traffic operations in a
few weeks, we won’t need this requirement, and we’ll take a look at smaller areas in greater detail.

The reason for this is that the major questions in transportation planning all relate to how and
why people are traveling in the first place. Where are travelers coming from? Where are they
going? What time of day are they traveling? What mode of transportation are they using (car,
bus, bicycle, etc.)? What route are they taking? It is simply impossible to answer questions such
as these if most of the trips start or end outside of your study area.

The main goal of transportation planning is to predict how travelers will use the transportation
system: the number of drivers on each road, the number of passengers on each bus route, and
so forth. These are called link flows. Predicting link flows allows a city or state government to
evaluate different options. For instance, if a new bridge over the railroad tracks is built in Laramie,
a planning model is used to predict how people will change the routes they take, and to measure the
impact on traffic levels in different neighborhoods. On a larger scale, Wyoming is considering a toll
on I-80, and a planning model would be used to see how many trucks divert onto other roadways.
Sometimes, a “do nothing” model is used to raise support for transportation improvement projects,
to show what would happen in the future if nothing is done while travel demand continues to grow.
Frequently, a planning model is used to provide quantitative comparison of several different options.

If link flows are the output of a planning model, the main input is demographic data. That is,
given certain information about a population (number of people, income, amount of employment,
etc.), we want to predict how many trips they will make, and how they will choose to travel. Census
records form an invaluable resource for this, often supplemented with travel surveys. Commonly, a
medium-to-large random sample of the population is offered some money in exchange for keeping
detailed diaries indicating all of the trips made within the next several weeks, including the time
of day, reason for traveling, and other details.

To get link flows from demographic data, most regions use the so-called four-step model (Figure 1).
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Figure 1: Schematic of the four-step process.

The first step is trip generation: based on demographic data, how many trips will people make?
The second is trip distribution: once we know the total number of trips people make, what are the
specific locations people will travel to? The third is mode choice: once we know the trip locations,
will people choose to drive, take the bus, or use another mode? The fourth and final step is route
choice: once we know the modes people will take to their trip destinations, what routes will they
choose? Thus, at the end of the four steps, the transition from demographic data to link flows has
been accomplished.1

Demographics are not uniform in a city; some areas are wealthier than others, some areas are
residential while others are commercial, some parts are more crowded while other parts have a
lower population density. For this reason, planners divide a city into multiple zones, and assume
uniform conditions within each zone. Clearly this is only an approximation to reality, and the
larger the number of zones, the more accurate the approximation. (At the extreme, each household
would be its own zone and the uniformity assumption becomes irrelevant.) On the other hand,
the more zones, the longer it takes to run each model, and at some point computational resources
become limiting. For concrete examples, the Austin model contains about 500 zones, while the
Chicago model contains about 1,800. Zones are often related to census tracts, to make it easy to
get demographic information from census results.

The last piece of the puzzle is a representation of the transportation infrastructure itself. This is
done using a mathematical networkwhich consists of links and nodes. In transportation applica-
tions, a link usually represents a means of travel from one point to another: a road segment between
two intersections, a bus route between two stops, and so on, as seen in Figure 2. The nodes, in
turn, are the endpoints of the links. Quite often, nodes are adjacent to multiple links, so a node
representing an intersection may adjoin multiple links representing road segments. Nodes and links
may also be more abstract; for instance, nodes may represent zone “centroids” where trips begin
and end, and links in a multimodal network might represent a transfer from one transport mode
to another. The level of detail in a network varies from application to application. For multistate

1In more sophisticated models, the four steps may be repeated again, to ensure that the end results are consistent
with the input data. We won’t worry about this in CE 3500.
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Figure 2: Nodes and links in transportation networks.

freight models, major highways may be the only links, and major cities the only nodes. For a city’s
planning model, all major and minor arterials may be included as well. For a more detailed model,
individual intersections may be “exploded” so that different links represent each turning movement
(Figure 3). A network is often compactly written as G = (N,A) where N and A respectively
represent the sets of nodes and links. A link is often written in terms of its endpoints, so (i, j)
represents a link starting at node i and ending at node j. In the real world, these networks can be
quite large; the Chicago network contains nearly 13,000 nodes and 39,000 links!

One final note before launching into the details of the four steps. In each of these four steps, a lot
of seemingly unrealistic assumptions will be made. Especially in transportation planning, engineers
often balk at the “hand waving” that’s done. Fundamentally, this is because all of the questions in
transportation planning are questions of human behavior, and unlike a fluid or pin joint, humans
do not behave in simple ways that are easy to reproduce. However, this is less worrying than it
may seem at first glance. Two things need to be kept in mind. First, predicting aggregate behavior
of a large group of people is easier than predicting the specific behavior of one individual. More
importantly, if we are to be precise, every model, in every field, is wrong: if it were exactly true,
it wouldn’t be a model, we’d have the universe in a box! The question is whether a model is close
enough to reality that you are capturing the basic behavior well enough to make good decisions,
and at this the four-step model has been repeatedly validated. The famous statistician George Box
is said to have quipped that “all models are wrong, but some models are useful.”

2 Trip Generation

The first of the four steps is trip generation, which takes demographic data for each zone as input,
and generates a total number of trips for each zone as an output. Trip generation distinguishes
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Figure 3: Two representations of the same intersection.

between productions, the number of trips made by households, and attractions, the places where
these households travel. Every trip involves both a production and an attraction: for example,
when I travel to work, there is a production at my apartment, and an attraction at UW. When I
shop for groceries, there is a production at my apartment, and an attraction at Safeway. Basically,
productions occur where people live, and attractions occur at the places people need to travel
to. Because every trip involves one of each, the total number of productions must equal the total
number of attractions. At the end of trip generation, we can say how many trips are produced by
each zone, and how many trips are attracted to each zone.

It is also useful to divide trips into different categories based on the purpose (work, shopping,
recreation, etc.), both from the standpoint of planning and from accurate modeling. This way, we
can estimate the total number of work trips produced by a zone, the total number of shopping trips
attracted to a zone, and so forth.

Both productions and attractions are estimated using linear regression; Section 2.3 provides a brief
overview of linear regression and shows how to do a regression using Excel. (If you already know how
to do linear regression using another software program, you are free to keep using that program.)
For this reason, Sections 2.1 and 2.2 present regression results without detailed derivations in order
to keep the focus on the transportation planning applications.

2.1 Productions

To calculate the number of trips produced by each zone, we need two ingredients. First, we need
to know how to calculate the number of productions as a function of demographic data. Second,
we need to know that zone’s demographic data, so we can apply the formula correctly. Planners
use travel surveys to accomplish the first of these, and census data to accomplish the second. For
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Table 1: Travel survey responses from Neptune City
Household Income Cars Size Workers Work trips Shopping trips

1 61,000 3 1 1 1.1 0.9
2 36,000 1 6 5 4.2 2.3
3 75,000 2 5 1 0.3 2.9
4 60,000 3 4 1 1.0 2.4
5 54,000 1 5 3 2.4 2.1
6 30,000 1 1 1 0.6 0.1
7 62,000 1 5 2 1.9 1.6
8 44,000 1 5 4 3.2 1.7
9 44,000 0 4 3 2.9 1.2
10 54,000 2 1 1 0.9 1.5
11 39,000 1 2 1 0.6 0.9
12 55,000 3 6 3 2.1 2.1
13 35,000 1 6 2 1.8 1.6
14 71,000 1 2 1 0.8 1.5
15 40,000 2 4 2 2.2 1.3
16 58,000 2 3 2 1.3 1.2
17 48,000 1 5 4 3.2 1.9
18 45,000 0 3 1 1.0 1.0
19 48,000 2 1 1 0.7 1.1
20 55,000 2 3 1 0.5 2.0

example, let’s say we’ve conducted a travel survey in the fictitious town of Neptune City and
obtained twenty responses (in reality, a much larger sample is used) as shown in Table 1. Each
household in the survey has reported their total annual income, the number of cars they own,
the number of people in the household, the number of employed people in the household, and the
average number of work trips and shopping trips made each day during the survey period of two
weeks.

We want to create an equation that relates a household’s income I, vehicle ownership v, size n, and
employment level e to the number of work and shopping trips produced by that household (Pw and
Ps, respectively). For simplicity, we will assume linear equations of the form

Pw = βw0 + βwI I + βwv v + βwn n+ βwe e (1)

Ps = βs0 + βsII + βsvv + βsnn+ βsee (2)

Our goal is to find the β values which best fit the survey data, and linear regression is the appropriate
tool for this task. Performing the regression, we obtain the following equations:

Pw = 0.30− (4.8× 10−6)I − 0.041v − 0.0024n+ 0.82e (3)

Ps = −0.80 + (2.4× 10−5)I + 0.14v + 0.25n+ 0.028e (4)

What do these mean? Let’s say we have a household with an annual income of I = 50000, which
owns three vehicles (v = 3) and consists of five members (n = 5), two of whom are employed
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Table 2: Neptune City zone information
Zone Households Income Cars Size Workers Office (ft2 × 106) Retail (ft2 × 106)

1 23,000 30,000 1.4 2.1 1.4 2 5
2 35,000 25,000 1.8 2.2 1.6 3 15
3 85,000 55,000 2.5 2.3 1.5 10 10
4 15,000 85,000 1.1 1.5 1.3 25 20

Table 3: Neptune City daily zone productions
Zone Average work trips Average shopping trips

1 29,000 15,000
2 50,000 22,000
3 100,000 125,000
4 14,000 27,000

(e = 2). Then substituting these values, we would expect this household to make an average of 1.6
work trips and 0.86 shopping trips each day. Examining the regression equations, we can see the
impact of each of these variables. For instance, for shopping trips, βsI > 0 and βsn > 0, indicating
that households with a higher income make more shopping trips on average, as do households with
more people. Both of these findings are intuitive, but the regression equation quantifies the effect:
on average, each additional person in a household results in 0.25 additional shopping trips each
day, and an additional $10,000 in income would increase daily shopping trips by 0.24. For work
trips, some of the βw values are negative, indicating that an increase in the corresponding variable
(such as income or vehicle ownership) would result in a decrease in the number of work trips made.
Perhaps most puzzling is βwn < 0, which at first glance would suggest that larger households make
fewer work trips, which seems counterintuitive. Can you explain what’s going on here?

Creating the regression equations accomplishes the first step. The second is to use each zone’s
demographic data to estimate the number of trips produced. Neptune City is divided into four
zones, as shown in Table 2. For each zone, the table reports the total number of households in
that zone, the average income, vehicle ownership, household size, and household employment data,
as well as the total office space and retail space (reported in millions of square feet). Using the
regression equations, an average household in Zone 1 would make 0.30 − (4.8 × 10−6)(30000) −
0.041(1.4)− 0.0024(2.1) + 0.82(1.4) = 1.3 work trips and −0.80 + (2.4× 10−5)(30000) + 0.14(1.4) +
0.25(2.1) + 0.028(1.4) = 0.65 shopping trips each day. Multiplying by the number of households
(23,000), we expect this zone to produce 29,000 work trips and 15,000 shopping trips on an average
day, rounding to two significant figures.2 (Here’s where the “miracle of aggregation” comes in!
Even though a single household may make more or less trips on any given day, when we look at all
23,000 households, a lot of these daily fluctuations cancel out.) Substituting values for the other
zones, we obtain the total productions in Table 3.

If the city were different, or if the travel survey were different, this procedure could still be fol-

2All numbers in this example are rounded to two significant figures when presented in these notes. When doing
the computations, it’s important to keep as many digits as possible. Only round when you are reporting the numbers
in final form.
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Table 4: Neptune City productions and attractions
Zone Aw (Raw) As (Raw) Pw Ps Aw (Scaled) As (Scaled)

1 11,000 17,000 29,000 15,000 12,000 17,000
2 15,000 57,000 50,000 22,000 16,000 57,000
3 43,000 37,000 100,000 125,000 48,000 37,000
4 103,000 77,000 14,000 27,000 116,000 78,000

Total 170,000 188,000 192,000 189,000 192,000 189,000

lowed with minor modifications. Perhaps the travel survey collected different information (e.g., the
number of children in a household, the ages of the household members, etc.), in which case the
regression equations would involve different variables. Even with the same variables, different travel
surveys will almost certainly produce different regression equations (that is, different β values —
although we hope they’re close!). Finally, in a different city, the number of zones and the zonal
demographic data is different, which would result in different numbers of productions even with
the same regression equation.

2.2 Attractions

Determining the number of trips attracted to each zone is based on the same principle as estimating
productions: obtain a regression equation relating zonal characteristics to number of attractions.
Collecting this type of data is more difficult than for productions, where travel surveys were enough.
To get attraction information, we would either have to cross-reference all of the travel survey records
to identify the destination zone (which is time consuming and error-prone) or collect detailed infor-
mation on all the types of businesses, schools, and so forth in each zone (this is not in the census, so
very labor-intensive). For these reasons, in CE 3500 I will give you the regression equa-
tions for attractions directly. In practice, more detailed methods are available. For example,
the Institute of Transportation Engineers publishes a large handbook entitled Trip Generation,
which provides estimated trip attractions for a wide variety of land use types.

Continuing with the Neptune City example, assume that someone has performed one of the labor-
intensive procedures mentioned in the last paragraph, and derived the following estimations for the
number of work and shopping attractions (Aw and As, respectively).

Aw = 2500 + I/3000 + So/250 (5)

As = −3500 + I/100 + Sr/250 (6)

where I is the average household income in that zone, and So and Sr are the total office space and
retail space in that zone, measured in square feet. Using the data in Table 2, we can calculate the
number of trips attracted to each zone. For instance, zone 1 attracts 2500 + 30000/3000 + (2 ×
106)/250 = 11000 work trips and −3500 + 30000/100 + (5× 106)/250 = 17000 shopping trips each
day. Table 4 shows these values in the columns labeled “Aw (Raw)” and “As (Raw).”

However, we need to apply one more step. Remember that every trip involves both a production
and an attraction, so the total number of work productions must equal the total number of work

7



attractions, and the total number of shopping productions must equal the total number of shopping
attractions. There’s no guarantee that the linear regression formulas will give numbers consistent
with this requirement, and indeed Table 4 reveals this to be the case. The model predicts 170,000
work attractions, as compared to 192,000 work productions, with a similar discrepancy for shopping
productions and attractions. In order to get consistent values, we apply a scaling factor to the
attractions so they match the productions, while keeping the production values fixed. (This reflects
our greater confidence in the production calculations, because the data availability is so much
better.) Thus, in this example, we multiply each zone’s work attractions by 192/170, and each
zone’s shopping attractions by 189/188, obtaining the values in the two rightmost columns of
Table 4. As shown by the last row in the table, the productions and attractions now match.

2.3 Linear Regression

Linear regression is a statistical technique used to identify a general relationship between variables
in a data set. It is very widely used in virtually every scientific field, and many software packages are
capable of performing linear regression. SAS, SPSS, and Excel are common commercial software
for doing this type of analysis. Many free/open-source options are available as well, including
Gnumeric, OpenOffice Calc, and R, and these are often more accurate!

The main concept is to assume that one variable of interest y (the dependent variable) is related to
other variables x1, . . . , xn (independent variables) through a linear equation of the form

y = β0 +
n∑
i=1

βixi

where β0, . . . , βn are unknown parameters which need to be estimated from the data. This equation
will only be exact if all of the data lie on the same line, which almost never occurs in practice because
it is impossible to measure (or even observe) all of the relevant factors. Otherwise, it is not possible
to choose β values so that the equation matches all of the data. Instead, linear regression finds a
“best-fit” line which does the best possible job given this fact.3 For example, Figure 4 plots work
trips against number of employed household members, using the survey data from Table 1. The
linear regression line is also shown on this figure; notice that it does not intersect all of the data
points (or any of them, for that matter), but gives a decent approximation.

To do this using Excel, enter all of the data contiguously, as in Figure 5. Then, in a blank space in
your spreadsheet, select a horizontal range of cells. The number of cells to select is the number of
independent variables (one for each of the βi), plus one more for the constant β0. For this example,
there are four independent variables (income, vehicle ownership, household size, and employment
level), so you select five cells horizontally. You will use the LINEST formula to do linear regression,
which takes four arguments: (1) the range of data corresponding to the dependent variable (2)
the range of data corresponding to the independent variables, (3) whether or not to include a
constant β0 (always enter TRUE), and (4) whether to return additional statistical data (it’s OK to

3Readers interested in the formulas and mathematical details are referred to an elementary statistics textbook or
website such as http://mathworld.wolfram.com/LeastSquaresFitting.html

8



Figure 4: Illustration of linear regression.

enter FALSE). For this example, the formula is =LINEST(F2:F21,B2:E21,TRUE,FALSE). Once you
type the formula, press CTRL+SHIFT+ENTER. Simply pressing ENTER will not
perform the complete regression. You should see values appear in the range you selected.
Unfortunately, Excel is a bit confusing in the order in which it gives the β values.

1. The rightmost column is always the constant β0.

2. The remaining columns correspond to the independent variables in the reverse order, that is,
βn, βn−1, . . . , β1.

The labels in Figure 5 show this correspondence.

As with any other statistical procedure, certain assumptions are required for linear regression to
be valid. In particular, we have to assume that any one household’s deviation from the overall
trend is unrelated to any other household (that is, the fact that I make more trips on average
is completely unrelated to anything my neighbor does), and that the impact of the dependent
variables is linear within the range of the data set (that is, an additional $1,000 in income would
affect my tripmaking the same way, regardless of whether my old income was $10,000 or $100,000).
Both of these assumptions have been found to be reasonable in transportation planning, although
researchers have also developed more sophisticated models which do not require these assumptions.
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Figure 5: Conducting linear regression in Excel.

3 Trip Distribution

The second step is trip distribution, which takes the total number of zonal trips as input, and returns
the origins and destinations of these trips as output. The end result is an origin-destination matrix
or OD matrix, which shows the total number of trips departing each origin to each destination.
One way of thinking about this is converting productions and attractions into specific origins and
destinations. In the previous section, we estimated that zone 3 in Neptune City would produce
100,000 work trips — but where are these work trips going? How many are going to zone 1, how
many are going to zone 2, and so forth. Similarly, we estimated that zone 3 would attract 77,000
work trips. How many of these trips are coming from each zone? Answering these questions is the
goal of trip distribution.

Usually, several OD matrices are estimated for different times of day: it is common to have an
OD matrix for the morning peak period, for the evening peak period, and for the off-peak period.
This reflects the fact that one “trip” may involve more than one journey. For instance, I
may leave for work in the morning, so I travel from my apartment (the origin) to my office (the
destination). But when I return home in the evening, there is a second journey, from my office
(the origin for this journey) to my apartment (the new destination). These two journeys have a
different origin and destination, so the morning peak OD matrix and evening peak OD matrix will
be different. To reflect this, let Sti and Eti represent the number of trips starting and ending at
zone i during time period t (we’ll use the abbreviations AM, PM, and OP for the morning peak,
evening peak, and off-peak). So SAM1 is the number of trips starting at zone 1 during the morning
peak, EPM3 is the number of trips ending at zone 3 during the evening peak, and so forth.
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In this class, we’ll make the following assumptions. A work trip results in one journey
from the production to the attraction during the morning peak, and one journey from
the attraction back to the production in the evening peak. A shopping trip results
in both a journey from the production to the attraction, and the return from the
attraction to the production, during the off-peak period. That is, SAMi = EPMi = Pwi ,
EAMi = SPMi = Awi , and SOPi = EOPi = P si + Asi . In reality, the situation is not so simple, and
planners use more sophisticated techniques to distribute trips throughout the day.

Let’s say we’re given two zones i and j, we know the number of starting and ending trips Si and Ej ,
and want to know how many trips are going between these two zones. Using our intuition, we make
several reasonable assumptions: (1) the more trips starting at zone i, the more trips from i to j;
(2) the more trips ending at zone j, the more trips from i to j; (3) the farther away the two zones,
the fewer the trips between them. So, given the average length Lij of a trip between zone i and j,
we calculate a friction factor φ(Lij) using a decreasing function φ. (For instance, φ(Lij) = 1/Lij
or φ(Lij) = e−Lij . As a starting point, we’ll say that the number of trips dij between i and j is
proportional to Pi, Aj , and φ(Lij):

dij ∝ SiEjφ(Lij)

This is the simplest model which satisfies these assumptions, and is called a gravity model based on
an analogy with Newton’s law of gravitation: the heavier the mass of two bodies (i.e., the magnitude
of the productions and attractions), the greater the force betwen them; the farther apart they are,
the lesser the force. In practice, we have to add an adjustment factor µj for each zone so that the
table “balances” properly (the reason for this become clear in the example that follows):

dij = CiµjSiEjφ(Lij)

where Ci is the proportionality constant. These constants are chosen so that the total number of
trips from each origin is correct. That is, we need∑

j

CiµjSiEjφ(Lij) = Si

so

Ci =
1∑

j µjEjφ(Lij)

and

dij =
µjSiEjφ(Lij)∑
j µjEjφ(Lij)

(7)

The general process for estimating each of the three OD matrices is as follows:

1. Calculate the number of trips starting and ending at each zone (S and E) during the current
time period.

2. Set the initial adjustment factors µj = 1 for all zones j.

3. Create an OD matrix using the gravity model equation (7).
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Table 5: Interzonal distances in Neptune City.
1 2 3 4

1 5 15 15 25
2 15 5 25 15
3 15 25 5 15
4 25 15 15 5

Table 6: Friction factors in Neptune City.
1 2 3 4

1 0.20 0.067 0.067 0.040
2 0.067 0.20 0.040 0.067
3 0.067 0.040 0.20 0.067
4 0.040 0.067 0.067 0.20

4. If the table is balanced, we are done. Otherwise, create new adjustment factors and repeat
the last step.

The first step is explained above and the second step is self-explanatory. As an example, let’s create
the AM peak OD matrix for Neptune City. The first step is to calculate SAM and EAM using the
productions and attractions data from Table 4; we get SAM =

[
29, 000 50, 000 100, 000 14, 000

]
and EAM =

[
12, 000 16, 000 48, 000 116, 000

]
. We also initialize µ =

[
1 1 1 1

]
as the

second step.

We also need to calculate the friction factors; if Table 5 shows the distance between each pair of
zones, and the friction factor is given by the simple relation φ(Lij) = 1/Lij , then we can tabulate
the friction factors as in Table 6

In the third step, we create an OD matrix one row (origin) at a time using the formula (7) and the
vectors S, E, and µ, producing the following table:

1 2 3 4 Total

1 6100 2800 8200 12,000 29,000
2 2900 12,000 7000 28,000 50,000
3 4200 3500 51,000 41,000 100,000
4 230 540 1600 11,000 14,000

Total 13,000 19,000 68,000 92,000

(Using spreadsheet software will greatly simplify the number of calculations which have to be done!)

You’ll notice that the sum of each row is correct (and forms the vector S), but the sum of each
column is not correct: the column sums should match E =

[
12, 000 16, 000 48, 000 116, 000

]
.

Here’s where the adjustment factors µj come into play. We will set each µj so that the destinations
which do not receive enough trips become more attractive, and so that the destinations which
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receive too many trips become less attractive. Specifically, we multiply each component of
[
µj
]

by Ej/
∑

i dij , so in this case µ =
[
0.89 0.88 0.71 1.25

]
(that is, in reality zone 1 only attracts

89% of the trips assigned in the first matrix, zone 2 only attracts 88%, and so on).

Using the new µ values, we apply (7) again to construct a new OD matrix:

1 2 3 4 Total

1 5400 2500 5900 15,000 29,000
2 2400 9800 4600 33,000 50,000
3 3900 3200 38,000 54,000 100,000
4 180 400 960 12,000 14,000

Total 12,000 16,000 50,000 115,000

This is closer, but not quite there. So we update µ again, multiplying each component by
Ej/

∑
i dij =

[
0.99 1.02 0.97 1.01

]
to obtain µ =

[
0.88 0.90 0.69 1.27

]
For instance, to

get the first component we multiply 0.89 (the value of µ from the last iteration) by 0.99, to get the
second component we multiply 0.88 by 1.02, and so forth. Again applying (7), we obtain

1 2 3 4 Total

1 5400 2600 5700 15,000 29,000
2 2400 10,000 4400 33,000 50,000
3 3900 3400 37,000 55,000 100,000
4 180 420 920 12,000 14,000

Total 12,000 16,000 48,000 116,000

and now the trip ends correctly match. Thus, we now know the number of people traveling from
every zone to every other zone during the morning peak period. Clearly zone 4 receives the bulk
of the trips, because it contains the most office space. Note that we predict a certain level of
“intrazonal” trips as well: 5000 trips will both start and end in zone 1, 9500 will start and end in
zone 2, and so forth. These represent people whose workplaces are located within the same zone
as their residence.

Repeating the same procedure, one can find the offpeak and PM peak OD matrices to be

1 2 3 4 Total

1 11,000 9100 6800 6700 34,000
2 9100 68,000 10,000 28,000 114,000
3 6800 10,000 37,000 20,000 75,000
4 6700 27,500 20,000 101,000 156,000

Total 34,000 114,000 75,000 156,000

and
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1 2 3 4 Total

1 5400 2400 3900 180 12,000
2 2600 10,000 3400 420 16,000
3 5700 4400 37,000 920 48,000
4 15,000 33,000 55,000 12,000 116,000

Total 29,000 50,000 100,000 14,000

and respectively. Note that the PM peak OD matrix is the transpose of the AM peak OD matrix...
can you explain why?

4 Mode Choice

The third step uses the OD matrix from trip distribution as a starting point, and divides the trips
according to the mode of transportation. Usually modes correspond to different vehicle types:
driving a car, riding the bus, riding a train, riding a bicycle, and so forth. Walking can also
be considered a mode, and different vehicle modes can be subdivided further: driving alone vs.
carpooling; taking an express bus vs. a local one; taking a subway train vs. light rail, etc.

The foundations of mode choice are utility theory and discrete choice, two conceptual frameworks
developed by economists during the last century. The central ideas are (1) a person traveling from
one zone to another must choose between one of several competing modes; (2) each choice results in
a certain level of utility for the traveler (reflecting his or her satisfaction or happiness with traveling
via that mode); and (3) this utility is closely related to characteristics of the mode (travel time,
out-of-pocket cost) and to characteristics of the traveler (income, vehicle ownership, and so forth).

Utility is an abstract concept, and can represent virtually anything that would cause a person to
choose one option over another. Different components of the utility function may include the travel
time associated with a given mode (possibly separated into in-vehicle and out-of-vehicle travel time,
if someone has to wait for a bus or walk from a parking lot), the monetary cost (transit fare, gas
expenses, roadway toll, etc.), the reliability of the mode, the number of vehicles available to a
household, their income, and so on. A linear form is usually used: Um = βm +

∑
i βm,ixm,i + ε

where Um is the utility of mode m, xm,i is the i-th attribute of mode m (travel time, etc.), and
βm,i is a coefficient showing how important that attribute is. There are other, less tangible factors
associated with each mode (for instance, some people prefer to drive alone because of the control
they have, while others prefer to take transit so they don’t have to worry about driving, or so they
can read or do work while commuting), so even if driving and taking the bus were to take exactly
the same amount of time and cost exactly the same amount, you would still see preferences for
one or the other. These factors are captured in an attribute-specific constant βm. ε represents an
“unobserved” or random component of utility. No matter how thorough we are, there will still be
factors which are not included in the model. People can also be inconsistent in their choices from
day to day. Both of these ideas are encapsulated in the ε term.

The ε can be something of a problem: we can’t know its value because, by definition, it represents
things which we are not modeling. So, it’s useful to rewrite just the known part of the utility
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function: Vm = βm +
∑

i βm,ixm,i so Um = Vm + ε, because V is something we can actually work
with. Don’t worry, though, ε will end up playing a role in the end. We can call U the total utility
and V the known part of the utility.

The β values are estimated using the maximum likelihood technique, which bears some similarity
to linear regression in that it takes survey data as input, and returns the β values which fit the
surveys as closely as possible. We won’t be covering maximum likelihood in this class, so the β
values will be given to you. As a concrete example, if I is household income in thousands of dollars,
t is travel time in minutes, and c is cost in dollars, we might have the following equations:

Vcar = 1 + 0.003I − 0.04tcar − 0.24ccar (8)

Vbus = −3− 0.001I − 0.04tbus − 0.24cbus (9)

Notice the signs of the β coefficients: as income increases, the utility for driving a car increases
and for taking the bus decreases (perhaps representing social pressure, that “the bus is for poor
people”4). As travel time or out-of-pocket cost increases, the utility for both modes decreases,
which makes sense: the longer my commute, or the more expensive, the less happy I am and the
lower my utility.

Now, given the known part of the utilities Vcar and Vbus of two different modes, we need to say
what proportion of travelers will choose each mode (Pcar and Pbus). At the very least, our formulas
for Pcar and Pbus should satisfy the following properties:

1. Every traveler should choose one of the two modes, that is, Pcar + Pbus = 1.

2. The greater the utility of either mode, the more people will use it; that is, Pcar is increasing
in Vcar, and Pbus is increasing in Vbus.

3. No matter what, at least some people will be using both modes, that is, Pcar > 0 and Pbus > 0.
(This reflects the unknkown ε term.)

One simple equation which satisfies all of these properties is the logistic curve

Pcar =
eVcar

eVcar + eVbus
Pcar =

eVbus

eVcar + eVbus
(10)

Clearly the two add up to one; clearly as the utility of each mode increases, it will grab a larger
share of travelers; and because ex is always strictly greater than zero, both proportions will be
positive.

So, let’s figure out the mode split for Neptune City during the morning peak hour. We need to be
given the zone-to-zone travel times and travel costs by car and by bus; these are shown in Tables 7
and 8.5

4Whether such a perception should exist or not is irrelevant for mode choice; the fact is that it does exist, and
does impact mode choice behavior.

5Do the travel costs by car seem high to you? By the time you account for insurance, depreciation, maintenance,
accident risk, and fuel consumption, the cost is much higher than you would think. The official federal government
figure is around 55 cents per mile.
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Table 7: Zone-to-zone travel times, minutes
Auto 1 2 3 4

1 5 13 17 33
2 13 5 25 15
3 17 25 5 14
4 33 15 14 5

Bus 1 2 3 4

1 13 20 35 45
2 20 7 55 23
3 35 55 10 30
4 45 23 30 5

Table 8: Zone-to-zone travel costs, dollars
Car 1 2 3 4

1 2.75 8.25 8.25 13.75
2 8.25 2.75 13.75 8.25
3 8.25 13.75 2.75 8.25
4 13.75 8.25 8.25 2.75

Bus 1 2 3 4

1 0.75 0.75 0.75 1.25
2 0.75 0.75 1.25 0.75
3 0.75 1.25 0.75 0.75
4 1.25 0.75 0.75 0.75

With this information, we can calculate the utilities using the equations (8) and (9). For each
origin and destination, we substitute the origin zone’s average income (from Table 2), and the
zone-to-zone travel times and costs, resulting in the known utilities shown in Table 9. Once we
know these, we can substitute into equations (10), to get the proportions of people that will use
each mode (Table 10). Finally, we can multiply the proportion by the total number of people
traveling between each pair of zones to get the mode split (Table 11).

A few “idiot checks” worth mentioning: the utilities for driving are higher than for the bus, so the
mode split should be tilted in this direction. The proportions for bus and driving add up to one;
and the total number of people traveling between each OD pair is equal to the sum of the people
driving and taking the bus.

5 Route Choice

5.1 Shortest Path Assumption and User Equilibrium

The fourth and final step is route choice: taking the OD matrix from mode choice, and assigning
those trips onto specific routes. For example, if I know that 1,000 people per day travel between
Laramie and Ft. Collins, route choice would tell me how many would use US-287, and how many

Table 9: Zone-to-zone known parts of utility, by mode
Auto 1 2 3 4

1 0.23 −1.41 −1.57 −3.53
2 −1.42 0.22 −3.22 −1.50
3 −1.50 −3.13 0.30 −1.38
4 −3.37 −1.32 −1.28 0.40

Bus 1 2 3 4

1 −3.73 −4.01 −4.61 −5.13
2 −4.00 −3.48 −5.52 −4.12
3 −4.64 −5.56 −3.64 −4.43
4 −5.18 −4.18 −4.47 −3.47
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Table 10: Zone-to-zone mode proportions
Auto 1 2 3 4

1 0.98 0.93 0.95 0.83
2 0.93 0.98 0.91 0.93
3 0.96 0.92 0.98 0.96
4 0.86 0.95 0.96 0.98

Bus 1 2 3 4

1 0.02 0.07 0.05 0.17
2 0.07 0.02 0.09 0.07
3 0.04 0.08 0.02 0.04
4 0.14 0.05 0.04 0.02

Table 11: Zone-to-zone OD matrices, by mode
Auto 1 2 3 4

1 5900 2600 7800 9700
2 2600 12,000 6300 26,000
3 4000 3200 50,000 39,000
4 200 510 1500 11,000

Bus 1 2 3 4

1 110 190 370 2000
2 200 290 630 1900
3 170 280 970 1800
4 33 29 63 240

would use I-80/I-25 through Cheyenne. If we wanted, we could repeat the “utility function” ap-
proach that we used for mode choice, and when there are only a few options this would work well.
However, in a major metropolitan area there are literally thousands of potential routes that connect
most origins and destinations. (Imagine a grid network, and all the combinations of turns that can
get you from one point to another.) For this reason, transportation planners use a simpler ap-
proach: assume that all travelers choose the route that lets them reach the destination
as quickly as possible. This is sometimes called the shortest path assumption.

For example, if you have to choose between two routes, one of which takes ten minutes and the
other fifteen, you would always opt for the first one. If you are the only one traveling, this is all
well and good. The situation becomes more complicated, however, if there are others traveling. If
there are ten thousand people making the same choice, and all ten thousand pick the first route,
congestion will form and the travel time will rapidly increase. If this were to happen, some people
would switch from the first route to the second route, because the first would no longer be faster.

Congestion effects are represented using a delay function t(x), which gives the time required to
travel on a roadway segment as a function of the number of people wanting to use it x. Examples
of different delay functions are shown in Figure 6. They are usually increasing (or at the least
nondecreasing — the more people on a road, the more congested it will be) and convex (the more
congested the roadway, the greater the impact of one more vehicle). The most common delay
function was developed by the Bureau of Public Roads (BPR) in 1964, and uses four parameters:
the “free flow” travel time t0, the roadway capacity c, and two shape parameters α and β which
are fit to observed data:

t(x) = t0

(
1 + α

(x
c

)β)
(11)

The free flow travel time is the time required to drive assuming that you are on the only vehicle
on the road (as you can verify, t(0) = t0). The capacity represents the maximum number of people
who can travel on the roadway during the study period. It’s worth noting that (1) the travel time
begins to increase even when x < c, and (2) nothing prevents x from exceeding the capacity. The
first observation reflects the fact that average speeds begin to slow even before capacity is reached,
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Figure 6: Two delay functions for different roadways.

as it becomes more difficult to pass slow drivers and drive at your desired speed. The second
reflects the fact that x is the demand for travel on the roadway, not the actual number of people
who can pass through during the study period. If x > c, then more people want to use the road
than capacity allows, and congestion will definitely form. Typically, α = 0.15 and β = 4 are good
choices for these parameters. Figure 6 shows two different BPR functions with different free-flow
times and different capacities. Note that the travel time increases very rapidly when x > c.

So, given two routes with delay functions t1(x1) and t2(x2), and a total of x travelers who have
to pick between these two routes, the shortest path assumption forces one of the following three
scenarios to be true:

• Route 1 is faster even if all x people choose it (that is, t1(x) < t2(0)). Then x1 = x and
x2 = 0.

• Route 2 is faster even if everyone chooses it (that is, t2(x) < t1(0)). Then x2 = x and x1 = 0.

• Most commonly, neither route dominates the other. Then people will choose routes so the
travel times are equal. That is, x1 and x2 satisfy t1(x1) = t2(x2), with x1 + x2 = x.

Because the third case is most common, this basic route choice model is called user equilibrium:
the two routes are in equilibrium with each other. Why must the travel times be equal? If the first
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route was faster than the second, people would switch from the second to the first. This would
decrease the travel time on the second route, and increase the travel time on the first, and people
would continue switching until they were equal. The reverse is true as well: if the second route
were faster, people would switch from the first route to the second, decreasing the travel time on
the first route and increasing the travel time on the second. The only outcome where nobody has
any reason to change their decision, is if the travel times are equal on both routes.

This is important enough to state again: at equilibrium, every used route connecting an origin
and destination has equal and minimal travel time. Unused routes may have a higher travel
time, and used routes connecting different origins and destinations may have different travel times.

Let’s take a concrete example: Figure 7 shows 6000 travelers traveling from zone 1 to zone 2 during
one hour, and choosing between the two routes mentioned above: route 1, with free-flow time 20
minutes and capacity 4400 veh/hr, and route 2, with free-flow time 10 minutes and capacity 2200
veh/hr. That means we have

t1(x1) = 20

(
1 + 0.15

( x1
4400

)4)
(12)

t2(x2) = 10

(
1 + 0.15

( x2
2200

)4)
(13)

We need to choose x1 and x2 so that t1(x1) = t2(x2) (equilibrium) and x1+x2 = 7000. Substituting
x2 = 7000− x1 into the second delay function, the equilibrium equation becomes

20

(
1 + 0.15

( x1
4400

)4)
= 10

(
1 + 0.15

(
7000− x1

2200

)4
)

(14)

Using an equation solver (or guess-and-check, or Newton’s method) we find that equilibrium occurs
for x1 = 3560, so x2 = 7000 − 3560 = 2440, and t1(x1) = t2(x2) = 20.3 minutes. Alternately, we
can use a graphical approach. Figure 8 plots the travel time on both routes as a function of the
flow on route 1 (because if we know the flow on route 1, we also know the flow on route 2). The
point where they intersect is the equilibrium: x1 = 3560, t1 = t2 = 20.3.

In more complicated networks, writing all of the equilibrium equations and solving them simulta-
neously is much too difficult. Instead, a more systematic approach is taken, described in the next
subsection.

5.2 General Framework for Larger Problems

In a large network, there is no solution methods which gives you the right answer immediately.
That is, there isn’t any “step one, step two, step three, and then we’re done” recipe for solving
large-scale equilibrium problems6. Instead, an iterative approach is used where we start with some
assignment of drivers to routes and links, and move closer and closer to the equilibrium solution

6If you can think of one, please let me know. You’ll win the Nobel prize in economics. I’m not exaggerating.
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Figure 7: Small example using the two links.
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as you repeat a certain set of steps over and over, until you’re “close enough” to quit and call it
good.7

Broadly speaking, all equilibrium solution algorithms repeat the following three steps:

1. Based on current link volumes, calculate the travel times. If we’re close to equilibrium, stop;
otherwise, go to step 2.

2. Find the fastest path between each origin and each destination.

3. Shift travelers from slower paths to faster ones, and return to step one.

The first step is straightforward, and is nothing more than evaluating the delay functions on each
link with the current flows. The second step isn’t too difficult either — the problems we’ll be
solving in class are small enough that you can spot the shortest path by inspection, and in larger
real-world networks there are relatively fast computer algorithms for finding shortest paths. The
third step requires the most care; the danger here is shifting either too few travelers onto faster
paths, or shifting too many. If we shift too few, then it will take a long time to get to the equilibrium
solution. On the other hand, systematically shifting too many can be even more dangerous, because
it creates the possibility of “infinite cycling” and never finding the true equilibrium.

Recall the example in Figure 7, where the equilibrium is for 3560 travelers to choose the top route,
and 2440 to choose the bottom route, with an equal travel time of 20.3 minutes on both paths.
Solving this example using the above process, initially (i.e., with nobody on the network) the travel
times on top and on bottom are 20 minutes and 10 minutes, respectively. The fastest path is the
bottom one one (step two), so let’s assign all 6000 travelers onto the bottom path (step three).
Returning to the first step, we recalculate the travel times as 20 minutes on the top link, and 93
minutes on the bottom. This is not at all an equilibrium, so we go back to the first step, and see
that the bottom path is now faster, so we have to shift some people from the top to the bottom. If
we wanted, we could shift travelers one at a time, that is, assigning 1 to the top route and 5999 to
the bottom, seeing that we still haven’t found equilibrium, so trying 2 and 5998, then 3 and 5997,
and so forth, until finally reaching the equilibrium with 3560 and 2440. Clearly this is not efficient,
and is an example of shifting too few travelers at a time.

At the other extreme, let’s say we shift everybody onto the fastest path in the third step. That is,
we go from assigning 0 to the top route and 6000 to the bottom, to assigning 6000 to the top and 0
to the bottom. Recalculating link travel times, the top route now has a travel time of 30.4 minutes,
and the bottom a travel time of 10. Repeating the process, we try to fix this by shifting everybody
back (0 on top, 6000 on bottom), but now we’re just back in the original situation. If we kept up
this process, we’d keep bouncing back and forth between these solutions. This is even worse than
shifting too few, because we never reach the equilibrium no matter how long we work! You might
think it’s obvious to detect if something like this is happening. With this small example, it might
be. Trying to train a computer to detect this, or trying to detect cycles with over 2 million OD
pairs (as in Chicago), is much much harder.

7One iterative algorithm you probably saw in calculus was Newton’s method for finding zeroes of a function.
Repeat the same step over and over until the function is sufficiently close to zero.
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5.3 Method of Successive Averages

Although the method of successive averages (MSA) is not competitive with other equilibrium
solution algorithms, its simplicity and clarity in applying the three-step iterative process make
it an ideal starting place. The first and second steps of MSA operate the same as in all other
equilibrium algorithms, so this section and all following ones focus only on step three: once you’ve
found the shortest paths, how do you decide how many travelers to shift onto these, and how many
stay on their current paths? As shown above, there are problems if you shift too few travelers, and
potentially even bigger problems if you shift too many. MSA adopts a reasonable middle ground:
initially, we shift a lot of travelers, but as the algorithim progresses, we shift fewer and fewer until
we settle down on the average. The hope is that this avoids both the problems of shifting too few
(at first, we’re taking big steps, so hopefully we get somewhere close to equilibrium quickly) and of
shifting too many (eventually, we’ll only be moving small amounts of flow so there is no worry of
infinite cycling).

Specifically, on the i-th iteration, MSA shifts 1/i of the travelers onto the shortest paths. So,
the first time through the three steps, everybody is assigned to shortest paths. The second time
through, half of the people stay on their current paths and half shift to the new shortest paths. On
the third iteration, a third of the people shift to new paths, and two thirds stay on their old paths,
and so forth. A complete description of MSA is as follows; in these steps, xi is the vector of link
flows after the i-th iteration of MSA.

1. Set the iteration counter i = 0.

2. (Re)-calculate the link travel times.

3. Find the shortest path between each origin and destination.

4. Shift travelers onto shortest paths:

(a) Find the link flows if everybody were traveling on the shortest paths found in step 1,
store these in x∗.

(b) If this is the zero-th iteration, x0 = x∗. Otherwise, xi = (1/i)x∗ + (1− 1/i)xi−1.

5. Decide if we are close enough to equilibrium to stop. If not, increase the iteration counter i
by one and return to step 1.

Here’s how MSA would work using that same example. Without any vehicles (free-flow conditions),
route 1 is faster (10 < 20), so the initial link flows are x1 =

[
x11 x12

]
=
[
6000 0

]
. With these

flows, the travel time on route 1 is t1(6000) = 92.9 and the travel time on route 2 is t2(0) = 20. At
this point, the fastest route is route 2, so x∗ =

[
0 6000

]
and x1 = 1/2

[
0 6000

]
+1/2

[
6000 0

]
=[

3000 3000
]
. Now the travel times are t1(3000) = 15.2 and t2(3000) = 20.6, so the fastest route

is route 1, x∗ =
[
6000 0

]
, and x1 = 1/3

[
6000 0

]
+ 2/3

[
3000 3000

]
=
[
4000 2000

]
. Table 12

shows the progress of subsequent iterations; at iteration 5, the difference in travel times between
the two routes is only 0.5 minutes (30 seconds!), a difference of about 2%, so we stop the algorithm,
and have the (approximate) equilibrium solution x1 = 3600, x2 = 2400.
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Table 12: Method of successive averages demonstration.
Iteration x1 x2 t1 t2 x∗1 x∗2

0 0 0 10.00 20.00 6000 0
1 6000 0 92.99 20.00 0 6000
2 3000 3000 15.19 20.65 6000 0
3 4000 2000 26.39 20.13 0 6000
4 3000 3000 15.19 20.65 6000 0
5 3600 2400 20.76 20.27
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Figure 9: Zone map of Neptune City, and associated network representation.

Now, let’s look at a more realistic example. Figure 9 shows a map of the major streets in Neptune
City, along with the network representation. The left part of Table 11 tells us the number of driving
trips from each origin to each destination. Intrazonal trips (i.e., trips starting and ending
at the same zone) are assumed to use minor roads, and are ignored during the route
choice step. Table 13 gives information on each roadway link (identified by the zone where the
link starts and ends). Note that two links have been created for each roadway, representing travel
in both directions. (If there was a one-way street, there would be a link only in one direction.)

Now, we can start MSA. With no vehicles at first, the travel times from the first step are simply
the free-flow times. The second step is to find the fastest path from every zone to every other zone,
using the free-flow times. These are shown in Table 14. To find the flow on each link, see which
zones use it as a fastest path. For instance, link (1,2) is part of the fastest path from zone 1 to
zone 2, from zone 1 to zone 3, and from zone 1 to zone 4; so, consulting Table 11, its initial volume
is 2600 + 7800 + 9700 = 20, 100. Or, for link (2,3), it is part of the fastest paths from zone 1 to
zone 3, and from zone 2 to zone 3, so its initial volume is 7800 + 6300 = 14, 100. These are shown
as x0 in Table 15, along with the travel times which correspond to these link volumes (using the
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Table 13: Link data for Neptune City.
Street Link ID Free-flow time Capacity

A St. (eastbound) (1,2) 10 18,000
A St. (westbound) (2,1) 10 18,000
B St. (eastbound) (4,2) 20 14,000
B St. (westbound) (2,4) 20 14,000
C St. (eastbound) (4,3) 15 44,000
C St. (westbound) (3,4) 15 44,000
D St. (northbound) (3,2) 15 8,000
D St. (southbound) (2,3) 15 8,000

Table 14: Fastest paths with free-flow travel times.
1 2 3 4

1 — 1-2 1-2-3 1-2-4
2 2-1 — 2-3 2-4
3 3-2-1 3-2 — 3-4
4 4-2-1 4-2 4-3 —

standard BPR function).

For the next step, we see if any of the fastest paths have changed with the new travel times. We
see that for those traveling from zone 1 to zone 4, the new fastest path is 1-2-3-4, rather than 1-2-4;
and for those traveling from zone 2 to zone 4, the new fastest path is 2-3-4 instead of 2-4. Both
of these replaced link (2, 4) with the path (2, 3), (3, 4), because the latter has a travel time of 53
minutes, as opposed to 149 minutes on (2, 4). Knowing this, we find the new x∗ by again seeing
which fastest paths use which link. The only links which are different are (2,4) (which is now not
used by any fastest path, so its volume is 0), and links (2,3) and (3,4) (which now carry vehicles
traveling from zone 1 to zone 4, and from zone 2 to zone 4, in addition to the previous load). So
(2, 3), being used by travelers from zone 1 to zone 3, from zone 1 to zone 4, from zone 2 to zone 3,
and from zone 2 to zone 4, now has volume 7800 + 6300 + 9700 + 26, 000 = 50, 000. The new flows
x1 are the average of x0 and x∗.

Again, we calculate the new travel times with respect to x1, and see that the shortest paths between
zones 1 and 4, and zones 2 and 4, have changed back: 1-2-4 is now faster than 1-2-3-4, and 2-4
is faster than 2-3-4 (see boldfaced values in Table 11). Thus, x∗ is the same as x0 (because the
current fastest paths are the same as the fastest paths at free flow), and the new flows x2 are the
weighted average of x1 and x∗, with a weight of 2/3 on x1 and 1/3 on x∗. This process continues
for additional iterations, as shown in the table. After six iterations, the difference between paths
2-4 and 2-3-4 (the boldfaced values) is under two percent, and we terminate.
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Table 15: MSA for Neptune City.
Iteration (1,2) (2,1) (2,4) (4,2) (2,3) (3,2) (3,4) (4,3) (2,3)+(3,4)

x0 20122 6869 35852 711 14081 7179 38914 1515
t(x0) 12.34 10.03 149.02 20.00 36.59 16.46 16.38 15.00 52.97

x∗ 20122 6869 0 711 49933 7179 74765 1515

x1 20122 6869 17926 711 32007 7179 56839 1515
t(x1) 12.34 10.03 28.06 20.00 591.48 16.46 21.27 15.00 612.75

x∗ 20096 6045 42937 528 9348 6755 52181 866

x2 20122 6869 23901 711 26031 7179 50864 1515
t(x2) 12.34 10.03 45.49 20.00 267.24 16.46 19.02 15.00 286.26

x∗ 20096 6045 42937 528 9348 6755 52181 866

x3 20122 6869 26889 711 23044 7179 47876 1515
t(x3) 12.34 10.03 60.82 20.00 169.89 16.46 18.15 15.00 188.05

x∗ 20096 6045 42937 528 9348 6755 52181 866

x4 20122 6869 28681 711 21251 7179 46084 1515
t(x4) 12.34 10.03 72.85 20.00 127.04 16.46 17.71 15.00 144.74

x∗ 20096 6045 42937 528 9348 6755 52181 866

x5 20122 6869 30730 711 19203 7179 44035 1515
t(x5) 12.34 10.03 89.64 20.00 89.69 16.46 17.26 15.00 106.95

x∗ 20096 6045 42937 528 9348 6755 52181 866

x6 20122 6869 31370 711 18562 7179 43395 1515
t(x6) 12.34 10.03 95.63 20.00 80.22 16.46 17.13 15.00 97.34
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5.4 Frank-Wolfe

One of the biggest drawbacks with MSA is that it has a fixed step size (or, more informally, a
“dumb” step size). Iteration i moves exactly 1/i of the travelers onto the new shortest paths, no
matter how close or far away we are from the equilibrium. Essentially, MSA decides its course of
action before it even gets started, then sticks stubbornly to the plan of moving 1/i travelers each
iteration. The Frank-Wolfe (FW) algorithm fixes this problem by using an adaptive step size. At
each iteration, FW calculates exactly the right amount of flow to shift to get as close to equilibrium
as possible.

So, at each iteration we calculate the new flows with the equation xi = λx∗ + (1 − λ)xi−1. With
MSA we always chose λ = 1/i, but with FW λ is chosen adaptively. The extreme values λ = 0
and λ = 1 mean we keep everybody on the current path, or shift everybody to the shortest path,
respectively. We want to pick λ in this range in such a way that xi is as close to equilibrium is
possible. The key to doing this is to move just enough people that both the old flows xi−1 and the
target flows x∗ are “balanced,” that is, with the updated costs t(xi), both xi−1 and x∗ are equally
good.

More precisely, we need
∑

a∈A x
i−1
a ta(x

i
a) =

∑
a∈A x

∗
ata(x

i
a). (Study this equation carefully: xi−1

is the old vector of flows from the last iteration; xi is the new vector of flows after we shift λ of
drivers to the shortest paths x∗.) What happens if the two sides of this equation are not equal?
Let’s say

∑
a∈A x

i−1
a ta(x

i
a) >

∑
a∈A x

∗
ata(x

i
a). This essentially means that the old flows xi−1 have

too high of a cost, and people want to shift towards x∗, which has lower cost — in other words, we
haven’t shifted enough people to the shortest paths, and we need a bigger λ. On the other hand,
if
∑

a∈A x
i−1
a ta(x

i
a) <

∑
a∈A x

∗
ata(x

i
a), then we’ve shifted too many people, and the old flows xi−1

look better than the “target” flows x∗. Only if the two sums are exactly equal do drivers have no
incentive to move either back towards xi−1 (smaller λ) or closer to x∗ (bigger λ).

Because the difference
∑

a∈A x
i−1
a ta(x

i
a) −

∑
a∈A x

∗
ata(x

i
a) is strictly decreasing, it is easy to find

the right λ value either using an equation solver (like that in Excel) or by guess-and-check in any
spreadsheet program. The steps for FW can be described as follows:

1. Set the iteration counter i = 0.

2. (Re)-calculate the link travel times.

3. Find the shortest path between each origin and destination.

4. Shift travelers onto shortest paths:

(a) Find the link flows if everybody were traveling on the shortest paths found in step 1,
store these in x∗.

(b) If this is the zero-th iteration, x0 = x∗. Otherwise, xi = λx∗ + (1 − λ)xi−1 where λ is
chosen so that∑

a∈A
xi−1a ta(λx∗ + (1− λ)xi−1) =

∑
a∈A

x∗ata(λx∗ + (1− λ)xi−1)
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5. Decide if we are close enough to equilibrium to stop. If not, increase the iteration counter i
by one and return to step 1.

Returning to the Neptune City example, we re-do route choice using FW instead of MSA. The first
iteration proceeds in the same way: identify the shortest paths and assign all trips to these (the
row labeled x0 in Table 16). t(x0) and x∗ are again the same as in MSA. However, choosing x1

is done differently. Recall that in MSA we simply averaged x0 and x∗. In FW, we seek to find a
weighted average, with the weight chosen more cleverly to balance the costs of x0 and x∗. This
means we need to choose λ such that

∑
a∈A x

0
ata(λx∗ + (1− λ)x0) =

∑
a∈A x

∗
ata(λx∗ + (1− λ)x0).

Using an equation solver (Excel or a graphing calculator), we find that λ = 0.123 accomplishes
exactly this. To wit:

1. You may verify that 0.123x0 + (1− 0.123)x∗ provides the row x1 in Table 16.

2. Likewise, you can easily check that the row t(x1) results from substituting the values x1 into
the BPR functions with parameters given in Table 13.

3. Finally, we need to check that the FW “balancing” condition is satisfied. Multiply the element
of x0 for each arc by the corresponding element of t(x1), and add them together:

20122× 12.34 + 6869× 10.03 + 35852× 96.33 + 711× 20.00+

+ 14081× 79.21 + 7179× 16.46 + 38914× 17.11 + 1515× 15.00 = 5707268

Repeating the same with x∗ and t(x1) gives

20122× 12.34 + 6869× 10.03 + 0× 96.33 + 711× 20.00+

+ 49933× 79.21 + 7179× 16.46 + 74765× 17.11 + 1515× 15.00 = 5707268

These two are equal, so the flows are “balanced.”

Notice that we have found the exact equilibrium after only one step! The travel times on paths
2-4 and 2-3-4 have exactly the same travel time, so no travelers have an incentive to switch routes.
In larger networks, FW cannot find the equilibrium in one step 8, but FW is faster than MSA in
almost all instances.

5.5 Stopping Criteria

A general issue is how one chooses to stop the iterative process, that is, how one knows when a
solution is “good enough” or close enough to equilibrium. This is called a convergence criterion.
Many convergence criteria have been proposed over the years; perhaps the most common is the

8In fact there are much faster methods for complicated networks which, unfortunately, are themselves more
complicated and thus beyond the scope of this course.
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Table 16: FW for Neptune City.
Iteration (1,2) (2,1) (2,4) (4,2) (2,3) (3,2) (3,4) (4,3) (2,3)+(3,4)

x0 20122 6869 35852 711 14081 7179 38914 1515
t(x0) 12.34 10.03 149.02 20.00 36.59 16.46 16.38 15.00 52.97

x∗ 20122 6869 0 711 49933 7179 74765 1515

x1 20122 6869 31442 711 18490 7179 43323 1515
t(x1) 12.34 10.03 96.33 20.00 79.21 16.46 17.11 15.00 96.33

relative gap, which is defined here. If we let urs represent the time spent on the fastest path between
origin r and destination s, the relative gap γ is commonly defined as follows:

γ =

∑
a∈A taxa∑

(r,s)∈D u
rsdrs

− 1 =
t · x
u · d

− 1 (15)

where drs is the number of trips from r to s.

Notice that the numerator of the fraction is the total time spent by everybody traveling – this
is called the total system travel time (TSTT) and we’ll see it again shortly. The relative gap is
always nonnegative, and it is equal to zero if and only if the flows xa satisfy the principle of user
equilibrium.9 It is these properties which make the relative gap a useful convergence criterion:
once it is close enough to zero, our solution is “close enough” to equilibrium. For most practical
purposes, a relative gap of 10−6 is small enough. Unless you’re using specialized software, it may
take a long time to obtain a gap this small, so for homeworks and course projects in this class,
repeating the above steps five times (that is, five iterations of calculating travel times, finding
shortest paths, and shifting flows) is enough.

6 Conclusion

OK, so we’ve just spent two or three weeks on the four-step model. What’s the point? The
four-step model is usually used by a metropolitan planning organization (MPO), a government
entity responsible for transportation planning in cities.10 One of the requirements of an MPO is
to generate a long-range transportation plan (LRTP) and a transportation improvement program
(TIP), outlining a plan for meeting the transportation needs of their city given budget limitations.
Many MPOs use the four-step model to identify which projects will be most cost-effective, through
the following process:

1. Forecast demographic data into the future (5-year time horizon for TIP, 20+ years for LRTP).

2. Run the four-step model to get “do-nothing” conditions. (What will things look like in 5, 20,
etc. years if absolutely nothing at all is done?)

9It is worthwhile studying this equation closely until you understand these properties perfectly clearly.
10A city with more than 50,000 residents is required to have an MPO in order to receive federal funding for

transportation projects.

28



3. Identify several different improvements or policy options (more lanes, new roadways, expanded
bus system, toll roads, etc.) which fit within the budget.

4. For each of these options, run the four-step model again, and measure the system conditions.

5. Identify the most cost-effective combination of improvement projects, schedule them in the
TIP/LRTP, and begin the process of implementation.

“Measure the system conditions” in step 4 will be different depending on your MPO’s goals and
objectives, and the output of the four-step model can be plugged into air quality models, economic
models, and a variety of other evaluation tools. Perhaps the most universal goal is to reduce
congestion. An easy way to measure the total level of congestion is to calculate the total system
travel time TSTT :

TSTT =
∑

xijtij(xij)

for every roadway segment (i, j) in the network. In the previous example, the total system travel
time can be calculated as follows:

(1,2) 20,100 veh × 12.3 min = 248,000 veh-min
(2,1) 6900 veh × 10.0 min = 68,000 veh-min
(2,4) 31,400 veh × 95.6 min = 3,000,000 veh-min
(4,2) 710 veh × 20.0 min = 14,000 veh-min
(2,3) 18,600 veh × 80.2 min = 1,489,000 veh-min
(3,2) 7200 veh × 16.5 min = 118,000 veh-min
(3,4) 43,000 veh × 17.1 min = 743,000 veh-min
(4,3) 1500 veh × 15.0 min = 23,000 veh-min

TOTAL: 5,705,000 veh-min

or, in more convenient units, 95,000 vehicle-hours. This represents the total amount of time spent
driving by all interzonal travelers during the morning peak period.

One potential improvement might be to increase the capacity on link (2,4) from 14,000 vehicles
to 18,000 vehicles (perhaps by building an additional lane, or by optimizing the signal timing).
To see the impact of this, run the four-step model again with the higher capacity on this link.
The roadway capacity only plays a role in route choice, so that is the only step that needs to be
repeated. Without going through the details, with this change, the equilibrium route flow on (2,4)
would increase to 34,700 vehicles, and the flow on (2,3) and (3,4) would decrease to 15,300 vehicles
and 40,100 vehicles, respectively; and likewise, the travel times on (2,4), (2,3), and (3,4) would
change to 61.3 minutes, 44.8 minutes, and 16.6 minutes, respectively. With these changes, the new
total system travel time is
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(1,2) 20,100 veh × 12.3 min = 248,000 veh-min
(2,1) 6900 veh × 10.0 min = 68,000 veh-min
(2,4) 34,700 veh × 61.3 min = 2,126,000 veh-min
(4,2) 710 veh × 20.0 min = 14,000 veh-min
(2,3) 15,300 veh × 44.8 min = 683,000 veh-min
(3,2) 7200 veh × 16.5 min = 118,000 veh-min
(3,4) 40,100 veh × 16.6 min = 664,000 veh-min
(4,3) 1500 veh × 15.0 min = 23,000 veh-min

TOTAL: 3,945,000 veh-min

or 66,000 vehicle-hours. So, the effect of this change would be to decrease the total time spent
traveling during the morning peak by approximately 29,000 vehicle-hours, a substantial savings. A
similar analysis could be done to calculate the benefits during the evening peak and off-peak hours
as well; adding these up would give the total benefits of the project. These benefits can them be
compared with the cost of the project, and with the costs and benefits of other options, in order
to pick the best improvements available.

A few miscellaneous comments on the four-step model to serve as closure for this section:

• You may have noticed that the travel times or distances used for trip distribution and mode
choice may not match those which come out of route choice. If they’re pretty far out of
alignment, it’s good practice to repeat the four-step model again with the more realistic
travel times, and iterate until they agree. (However, even though it’s good practice, a lot of
cities fail to do this.)

• Another good practice (rarely followed) is to consider multiple future scenarios. Because it’s
so hard to predict travel patterns, demographics, etc. into the future, it is a good idea to
generate several different scenarios. For example, four scenarios might be “growth continues
the same as in the last 20 years,” “there is an economic boom and growth is faster than usual,”
“there is an extended recession and growth is very slow,” and “new technologies reduce the
need for people to travel to work.” Different options can then be compared under all of the
scenarios, identifying options that will work well under many different possible futures.
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