CE 3500: Homework 4

Due Monday, April 5

Problem 3. Derive the braking-distance formula

$$
D_{b}=\frac{u_{0}^{2}}{2 g(f+G)}
$$

using a free-body diagram, where u_{0} is the initial velocity, g is acceleration due to gravity, f is the coefficient of braking friction, and G is the percent grade (uphill is positive). Assume that the vehicle's brakes are powerful enough that the limiting factor is friction between the tires and road. Remember that D_{b} is measured horizontally, not along the angle of the roadway (that is, D_{b} is the distance between the initial and stopping points as measured from an aerial photo), and that the grade $G=\tan \theta$, where θ is the angle between the horizontal and the roadway surface in the direction of travel.

Begin by drawing a free body diagram:

Note that the coordinate system in the free-body diagram has been chosen so that the axes are parallel and perpendicular to the road surface; and that the vehicle is traveling uphill. The forces acting on the vehicle are its weight $W=m g$, with an x-component of $-m g \sin \theta$ and a y-component of $-m g \cos \theta$; the normal force N; and the frictional force F_{f}. The vehicle is not accelerating in the y-direction, so $N=m g \cos \theta$. The friction force is equal to the coefficient of friction times the normal force, so $F_{f}=-f m g \cos \theta$. Thus, the net force is $-m g(f \cos \theta+\sin \theta)$ in the x direction, so by $F=m a$ the net acceleration is $a=-g(f \cos \theta+\sin \theta)$. Under constant acceleration, the speed at any point in time is $u_{0}+a t$ and the distance traveled is $u_{0} t+a t^{2} / 2$ by integration. Therefore, the vehicle comes to a stop when $u_{0}+a t=0$, that is, at time $t=-u_{0} / a$; and during this time the vehicle travels a distance of $-u_{0}^{2} / a+u_{0}^{2} / 2 a=-u_{0}^{2} / 2 a$. Substituting $a=-g(f \cos \theta+\sin \theta)$ gives a distance of $u_{0}^{2} / 2 g(f \cos \theta+\sin \theta)$. However, this is the distance along the roadway surface. The braking distance D_{b} is the horizontal projection of this, or

$$
D_{b}=\frac{u_{0}^{2} \cos \theta}{2 g(f \cos \theta+\sin \theta)}=\frac{u_{0}^{2}}{2 g(f+G)}
$$

after dividing through by $\cos \theta$ and using $G=\tan \theta=\sin \theta / \cos \theta$.

