
Shortest paths: label setting

CE 377K

February 19, 2015



REVIEW



HW 2 posted, due in 2 weeks

Shortest paths Review



Basic search algorithm

Prim’s algorithm

Shortest paths Review



Algorithm

(Assumes that the network is connected.)

1 Arbitrarily choose some root note s.

2 Initialize NT ← {s}, AT ← ∅
3 Identify all of the admissible links; if there are none, terminate.

4 Choose an admissible link (u, v) with minimum cost. (Assume u is in
NT , but not v .)

5 Add this link to the tree: NT ← NT ∪ {v}, AT ← AT ∪ (u, v)

6 Return to step 3.

Shortest paths Review



Complexity

There are O(n) iterations (technically n − 1).

At each iteration, we must identify all admissible links (of which there are
at most m), and identify one with minimum cost (which again takes m
steps).

So, Prim’s algorithm is O(nm).

There are more clever ways of identifying admissible links and finding one
with minimum cost, which can reduce the running time to O(m log n) or
O(m+n log n). These do so by avoiding “duplication of effort” in subsequent
iterations.

Shortest paths Review



SHORTEST PATH
PROBLEM



Shortest Path Problem

Identify a path connecting a given origin and destination, where the total
cost of the links in the path is minimized.

Shortest paths Shortest path problem



Applications

Vehicle routing

Critical path analysis in project management

Six degrees of Kevin Bacon

Shortest paths Shortest path problem



In a shortest path problem, we are given a network G = (N,A) in which
each link has a fixed cost tij , an origin r , and a destination s. The goal is
to find the path in G from r to s with minimum travel time.

Unlike the minimum spanning tree problem, the direction of links is
important in the shortest path problem.

To find this path efficiently, we need to avoid enumerating every possible
path.

Shortest paths Shortest path problem



One odd twist of shortest path problems: it’s not much harder to find the
shortest path from r to s than to find many shortest paths at the same
time. Two broad approaches:

One-to-all: Find the shortest paths from node r to all destination nodes.

All-to-one: Find the shortest paths from all origin nodes to node s.

For the purposes of this course, either will work. For clarity, we’ll stick with
one-to-all shortest paths.

Shortest paths Shortest path problem



One-to-all shortest path relies on Bellman’s Principle, which lets us
re-use information between different origins and destinations:

If π∗ = [r , i1, i2, . . . , in, s] is a shortest path from r to s, then the subpath
[r , i1, . . . , ik ] is a shortest path from r to ik

The upshot: we don’t have to consider the entire route from s to d at
once. Instead, we can break it up into smaller, easier problems. (This is
why the “one-to-all” problem is no harder than the “one-to-one” problem.)

Shortest paths Shortest path problem



Why does Bellman’s principle hold?

s

i1

i2

d

If there is a shorter path from r to ik , I could “splice” that into π∗ and
obtain a shorter path from r to s.

Shortest paths Shortest path problem



A compact way to store all of the shortest paths from r to every other
node is to maintain two labels Lr

i and qr
i for each node.

Lr
i is the cost label, giving the travel time on the shortest known path

from r to i .

qr
i is the path label, which specifies the previous node on the shortest

known path from r to i .

By convention, Lr
r = 0 and qr

r = −1; Lr
i = ∞ and qr

i = −1 if we haven’t
yet found any path from r to i

Shortest paths Shortest path problem



min
x

∑
(i ,j)∈A

cijxij

s.t.
∑

(i ,j)∈A(i)

xij −
∑

(h,i)∈B(i)

xij =


1 if i = r

−1 if i = s

0 otherwise

∀i ∈ {1, . . . , I}

xij ∈ {0, 1} ∀(i , j) ∈ A

Shortest paths Shortest path problem



DIJKSTRA’S ALGORITHM



Dijkstra’s algorithm is a label-setting shortest path algorithm.

That is, once we scan a node, its labels are set permanently and never
changed again.

Shortest paths Dijkstra’s algorithm



Notation

Dijkstra’s algorithm maintains a set of finalized nodes F , which we have
already found the shortest path to.

An arc is admissible (or eligible) if its tail node is in F , but not its head
node; E is the set of admissible arcs.

Shortest paths Dijkstra’s algorithm



Dijkstra’s Algorithm

(Assume there is at least one path from r to all other nodes in the
network, and that cij ≥ 0 for all links.)

1 Initialize all labels Li ←∞, except for the origin Lr ← 0

2 Initialize F ← {r}, and the path vector q← −1
3 Find the set of admissible arcs E .

4 For each admissible arc, calculate a temporary label Ltemp
ij = Li + cij

5 Find the arc (i∗, j∗) for which Ltemp
ij is minimal.

6 Set Lj ← Ltemp
ij , add j∗ to F , and set qj∗ = i∗

7 If F = N, terminate. Otherwise, return to step 3.

Shortest paths Dijkstra’s algorithm



Example

Shortest paths Dijkstra’s algorithm



Correctness

Each iteration adds one more node to F . Eventually it must include all
nodes in N.

When it terminates, do the path labels represent shortest paths from r?

By contradiction, assume that this is not the case.

Shortest paths Dijkstra’s algorithm



What if there were a shorter path through another node (say h)? Consider
what happened when Dijkstra’s algorithm chose (i , j).

j

i

h
r

Shortest paths Dijkstra’s algorithm



If h had already been finalized, then Lh + chj = Ltemp
hj would have been less

than Li + cij = Ltemp
ij .

If h had not yet been finalized, then Lh > Ltemp
ij since Dijkstra’s algorithm

finalizes nodes in order of their L value.

Since chj ≥ 0, if Lh > Ltemp
ij then Ltemp

hj > Ltemp
ij , again a contradiction.

Shortest paths Dijkstra’s algorithm



Complexity

There are O(n) iterations (one for each node except the origin).

At each iteration, we must perform O(m) work: finding the set of
admissible arcs, calculating temporary labels, and finding the arc with
minimal temporary label.

So, this implementation of Dijkstra’s algorithm requires O(nm) steps.

It is not hard to do better and reduce the complexity to O(n2).

Shortest paths Dijkstra’s algorithm



Fancier Dijkstra

(Assume there is at least one path from r to all other nodes in the
network, and that cij ≥ 0 for all links.)

1 Initialize all labels Li ←∞, except for the origin Lr ← 0

2 Initialize F ← ∅, and the path vector q← −1
3 Find the node i not in F with minimum Lr value.

4 For each arc (i , j) ∈ A(i), repeat these steps:

5 Calculate Ltemp
ij ← Li + cij

6 If Ltemp
ij < Lj , then update Lj ← Ltemp

ij and set qj = i .

7 Add i to F .

8 If F = N, terminate. Otherwise, return to step 3.

This implementation of Dijkstra’s algorithm only requires O(n2) steps.
Why?

Shortest paths Dijkstra’s algorithm



The bottleneck is finding the node with minimum Lr value.

There are even more efficient versions of Dijkstra’s, targeted at this step,
which can reduce the running time to O(n log n) steps.

Shortest paths Dijkstra’s algorithm


	Review
	Shortest path problem
	Dijkstra's algorithm

