
Shortest paths: label correcting

CE 377K

February 19, 2015



REVIEW



HW 1 returned at end of class today

HW 2 posted

Shortest paths Review



Bellman’s principle

Dijkstra’s algorithm

Shortest paths Review



Fancier Dijkstra

(Assume there is at least one path from r to all other nodes in the
network, and that cij ≥ 0 for all links.)

1 Initialize all labels Li ←∞, except for the origin Lr ← 0

2 Initialize F ← ∅, and the path vector q← −1
3 Find the node i not in F with minimum Lr value.

4 For each arc (i , j) ∈ A(i), repeat these steps:

5 Calculate Ltemp
ij ← Li + cij

6 If Ltemp
ij < Lj , then update Lj ← Ltemp

ij and set qj = i .

7 Add i to F .

8 If F = N, terminate. Otherwise, return to step 3.

This implementation of Dijkstra’s algorithm only requires O(n2) steps.
Why?

Shortest paths Review



The bottleneck is finding the node with minimum Lr value.

There are even more efficient versions of Dijkstra’s, targeted at this step,
which can reduce the running time to O(n log n) steps.

Shortest paths Review



LABEL CORRECTING
SHORTEST PATH



The “bottleneck” in the fancy version of Dijkstra’s was finding the node
with minimum Lr value (the link with minimum Lij in the plain version).

Scanning nodes in increasing order of their L values was critical (remember
the proof of correctness.)

Label correcting methods do not need to scan nodes in order of L values;
the “cost” of this added flexibility is the possibility of having to re-scan
nodes.

Unlike Dijkstra’s algorithm, until a label correcting algorithm terminates we
are not sure of the shortest path to any nodes.

Shortest paths Label Correcting Shortest Path



Label correcting methods also work when links may have negative cost.

A

B

C

5

0

-10

Shortest paths Label Correcting Shortest Path



Further, you can’t get around negative costs by adding something to all
the link costs.

A

B

C

5

0

-10

Shortest paths Label Correcting Shortest Path



Bellman-Ford Algorithm

1 Initialize all labels Li ←∞, except for the origin Lr ← 0

2 Initialize the scan list SEL← {r} and the path vector q← −1
3 If SEL is empty, terminate.

4 Choose a node i ∈ SEL to scan (removing it from the list).

5 For each link (i , j) ∈ A(i), repeat these steps:

6 Calculate Ltemp
ij ← Li + cij

7 If Ltemp
ij < Lj , then update Lj ← Ltemp

ij , set qj = i , and add j to SEL.

8 Return to step 3.

Shortest paths Label Correcting Shortest Path



Example

Shortest paths Label Correcting Shortest Path



There are different ways to choose a node in SEL for scanning.

The approach which leads to the simplest analysis is the first-in, first-out
(FIFO) rule. Nodes are scanned in the order they are added to SEL.

Shortest paths Label Correcting Shortest Path



Correctness

Here is a sketch of a proof showing that label correct terminates (and does
so with the right answer.)

We want to show that after km iterations with the FIFO rule, we have
found the shortest paths from r to all nodes that use k links or fewer.

After scanning r , SEL will consist of all nodes reachable from r by only
one link.

After scanning all of these nodes, SEL will consist of all nodes reachable
from r by using two links.

...and so on.

Shortest paths Label Correcting Shortest Path



So, after the k-th pass through the list, the labels Lk consider all possible
shortest paths to these nodes using only k links.

It is possible to reach any node from r using less than n links.

So, after n passes through the SEL, we have found the shortest paths to
all nodes.

Furthermore, this gives the complexity immediately: O(n) passes through
SEL; each pass requires at most O(m) calculations, so the running time of
the algorithm is O(mn).

Shortest paths Label Correcting Shortest Path



Compare with Dijkstra’s: O(mn) is worse than O(n2) if m is worse than
O(n).

In “sparse” networks (like transportation), label correcting tends to work
well. In “dense” networks (like telecommunication), label setting tends to
work well.

Shortest paths Label Correcting Shortest Path



There are other possible rules for choosing a node from SEL. One rule
which works very well in practice is Pape’s rule:

Follow the FIFO rule except when a node you are adding to SEL has already
been scanned before. In that case, move it to the front of the list.

The intuition is that if we re-scan a node, it could influence the labels of
many other nodes as well. So there is no point in updating the other
nodes first if we might have to scan them again.

Pape’s rule works very well in practice (at least in transportation).
Interestingly, its worst-case complexity is very bad: O(m2n)

Shortest paths Label Correcting Shortest Path



Which shortest path algorithm to use?

Here are some general rules of thumb (but you can usually find
exceptions.)

Dijkstra’s algorithm requires fewer iterations than Bellman-Ford.

Bellman-Ford requires less work per iteration.

You can stop Dijkstra’s algorithm once you have finalized the destination
node.

You can’t use Dijkstra’s algorithm if there are negative link costs.
Bellman-Ford works either way.

Shortest paths Label Correcting Shortest Path



HOMEWORK 1 RETURNED



Problem 1

I like the variety in the approaches proposed.

But remember that adding or multiplying by contants doesn’t change the
objective function.

Shortest paths Homework 1 returned



Problem 4

When asked to show that something is always true, it is not enough to just
show one case where it is.

Shortest paths Homework 1 returned



INFORMAL EVALUATIONS



Pace of class? Fast/slow/OK

Most unclear concept at this point

What is working well?

What can I improve on?

Any other comments or suggestions

Shortest paths Informal Evaluations


