
Maximum flow problem

CE 377K

February 26, 2015



REVIEW



HW 2 due in 1 week

Max flow Review



Label setting vs. label correcting

Bellman-Ford algorithm

Max flow Review



MAXIMUM FLOW
PROBLEM



Maximum Flow Problem

What is the greatest amount of flow that can be shipped between a given
source and sink without exceeding link capacities?

Max flow Maximum flow problem



Applications

Determining the capacity of a network

Identifying critical links in a network

Rounding a matrix

Max flow Maximum flow problem



In the maximum flow problem, we are given...

A network G = (N,A) with a specified “source” node r and “sink” node s.

Each link (i , j) has a capacity uij . (Costs are irrelevant in the maximum
flow problem.)

The objective is to ship as much flow as possible from r to s while
respecting the link capacities.

Max flow Maximum flow problem



Formulation

max
b,x

b

s.t.
∑

(h,i)∈A

xhi −
∑

(i ,j)∈A

xij =


−b i = r

+b i = s

0 otherwise

0 ≤ xij ≤ uij ∀(i , j) ∈ A

A feasible solution x to this problem is called a flow. The amount of flow
shipped is given by b.

Max flow Maximum flow problem



RESIDUAL GRAPHS



A very useful concept in solving maximum flow problems is the residual
graph R(x)

1

3

4

23 2

2 2

1

Capacity

Flow

2

2
0

2

2

1

3

4

21 0

0 0

1
2

2
0

2

2

Residual Graph

b = 4

In a residual graph, each link is replaced by two links: a forward link with
capacity uij − xij , and a reverse link with capacity xij .

Max flow Residual graphs



Residual graphs tell us how we can change the flow x (usually with the
aim of trying to add more.) Forward links tell us how much more flow can
be added to a link; reverse links tell us how much can be removed.

1

3

4

23 2

2 2

1

Capacity

Flow

2

2
0

2

2

1

3

4

21 0

0 0

1
2

2
0

2

2

Residual Graph

b = 4

Note that the same network will have a different residual graph for each
possible flow x.

Max flow Residual graphs



AUGMENTING PATH
ALGORITHM



Example

1

3

4

23 2

2 2

1

Capacity

Flow

0

0
0

0

0

1

3

4

23 2

2 2

1
0

0
0

0

0

Residual Graph

Max flow Augmenting path algorithm



Algorithm

1 Initialize the flow with x← 0, bk ← 0.

2 Construct the residual network R(x) corresponding to flows x.

3 Identify a path π in R connecting s and t which has positive capacity
on each of its arcs. (Terminate if no such path exists.)

4 Find the minimum capacity u∗ of all of the arcs in π (whether forward
or reverse).

5 For each forward arc (i , j) in πk , xij ← xij + u∗. For each reverse arc
(j , i) in πk , xij ← xij − u∗.

6 Increase b by u∗, and return to step 2.

If you were writing code to do this, how would you implement step 3?

Max flow Augmenting path algorithm



MAX-FLOW/MIN-CUT
DUALITY



To prove correctness of the augmenting path algorithm, we’ll take a short
detour.

1

3

4

23 2

2 2

1

Capacity u(R,S) = 7

7

8

63 2

2 2

1

5
2 3

In a network, a cut is a partitioning of the nodes into two sets R and S ,
where the source is in R and the sink is in S .
A cut link is a link whose tail node is in R and whose head node is in S .

Max flow Max-flow/min-cut duality



To prove correctness of the augmenting path algorithm, we’ll take a short
detour.

1

3

4

23 2

2 2

1

Capacity u(R,S) = 7

7

8

63 2

2 2

1

5
2 3

In a network, a cut is a partitioning of the nodes into two sets R and S ,
where the source is in R and the sink is in S .
A cut link is a link whose tail node is in R and whose head node is in S .

Max flow Max-flow/min-cut duality



The capacity of a cut u(R, S) is the sum of the capacities in the cut links.

1

3

4

23 2

2 2

1

Capacity u(R,S) = 7

7

8

63 2

2 2

1

5
2 3

Max flow Max-flow/min-cut duality



1

3

4

23 2

2 2

1

Capacity u(R,S) = 5

7

8

63 2

2 2

1

5
2 3

Max flow Max-flow/min-cut duality



1

3

4

23 2

2 2

1

Capacity u(R,S) = 10

7

8

63 2

2 2

1

5
2 3

Max flow Max-flow/min-cut duality



Weak max-flow/min-cut theorem

.

If (b, x) is a feasible solution to the max flow problem, and if (R, S) is a
cut, then b ≤ u(R,S)

Proof sketch: Any unit of flow shipped from r to s must cross one of
the cut links. So, the total amount of flow moving from r to s cannot
exceed the sum of the capacities in the cut links.

Max flow Max-flow/min-cut duality



Strong max-flow/min-cut theorem

.

If (b∗, x∗) is an optimal solution to the max flow problem, and if u∗ =
min{u(R,S)} among all possible cuts, then b∗ = u∗

This is a “duality” type of result: finding the maximum flow in a network
is equivalent to finding the cut with minimum capacity.

We will prove this theorem in conjunction with the correctness of the
augmenting path algorithm.

Max flow Max-flow/min-cut duality



Assume for now that the augmenting path algorithm terminates with some
flow x. When it does so, there are no paths in R(x) from r to s with
positive capacity.

Let R be the set of nodes for which paths with positive capacity do exist
in the residual network (including r itself), and let S be all other nodes.

Max flow Max-flow/min-cut duality



Since r ∈ R and s ∈ S , (R,S) is a valid cut. Furthermore, by definition
every cut link has zero capacity.

Therefore, the capacity of the cut is exactly equal to the sum of the flow
on the cut arcs, so b = u(R,S).

By the weak max-flow/min-cut theorem, this means b must be maximal
and u(R, S) must be minimal. (Strong theorem has been proved.)

Therefore, the augmenting path algorithm terminates with the correct
answer.

Max flow Max-flow/min-cut duality



COMPLEXITY



The other issue is proving that the augmenting path algorithm must
terminate.

This is easy to do if we assume that the capacities are integers.

(If they are fractional, multiply by a sufficiently large number.)

Each iteration adds at least 1 to b, so b will reach its maximum value b∗

in a finite number of iterations.

Max flow Complexity



If U is the largest capacity on any link, then the capacity of the min cut is
bounded by nU. (Look at a cut where R is just the source.)

So, the augmenting path algorithm requires O(nU) iterations.

Each iteration must construct a residual network (O(m) steps), and
identify a path with positive capacity.

The basic search algorithm for finding a path also has O(m) steps.

So, the augmenting path algorithm in all requires O(nmU) steps.

Max flow Complexity



INFORMAL EVALUATIONS



Pace of class? Fast/slow/OK

Most unclear concept at this point

What is working well?

What can I improve on?

Any other comments or suggestions

Max flow Informal Evaluations


	Review
	Maximum flow problem
	Residual graphs
	Augmenting path algorithm
	Max-flow/min-cut duality
	Complexity
	Informal Evaluations

