Maximum flow problem

CE 377K

March 3, 2015



Informal evaluation results

@ 2 slow, 16 OK, 2 fast

@ Most unclear topics: max-flow/min-cut, WHAT WILL BE ON THE
MIDTERM?

@ Most helpful things: review at start of class, posting lecture slides,
notes, algorithm demonstrations

@ Things to improve: making expectations more clear, more homework,
more real-world applications



Practice midterm will be posted later this week.



Course project

Find a group of approximately 3 students, choose a topic.

Each group should formulate and solve a real-world problem which involves
optimization.

In the last week of class, each group will present their project to the class.
A final report will also be due.

By the end of March, each group should give me a project abstract — but
| recommend starting earlier.



HW 2 due Thursday



REVIEW



Max flow problem

Residual graph

Augmenting path algorithm

Max flow-min cut duality

Proof of augmenting path algo AND max flow-min cut

Max flow Review



COMPLEXITY OF
AUGMENTING PATH
ALGORITHM



COMPLEXITY



The other issue is proving that the augmenting path algorithm must
terminate.

This is easy to do if we assume that the capacities are integers.

(If they are fractional, multiply by a sufficiently large number.)

Each iteration adds at least 1 to b, so b will reach its maximum value b*
in a finite number of iterations.

Max flow Complexity



If U is the largest capacity on any link, then the capacity of the min cut is
bounded by nU. (Look at a cut where R is just the source.)

So, the augmenting path algorithm requires O(nU) iterations.

Each iteration must construct a residual network (O(m) steps), and
identify a path with positive capacity.

The basic search algorithm for finding a path also has O(m) steps.

So, the augmenting path algorithm in all requires O(nmU) steps.



What could possibly go wrong? This is especially a problem when we have
fractional capacities.

Max flow Complexity



A FASTER ALGORITHM



Capacity scaling

We can make the augmenting path algorithm faster if we require that it
only choose paths with a high capacity.

One choice is to force it to find the path in the residual network with the
highest bottleneck capacity.

However, this problem is a bit lengthy to solve. (It is essentially requires
solving a shortest path problem, O(n?) at each step.)

So, instead of augmenting flow along a path of maximum capacity, we
choose to augment flow along a path of sufficiently high capacity. J




Let A be a “threshold” capacity value.

In the augmenting path algorithm, we will ignore any link whose capacity
is less than A.

Finding such a path (or determining none exists) is nothing more than the
basic search algorithm, requiring O(m) steps.

The idea of capacity scaling is to start with a high value of A, then
decrease it whenever there are no paths in the residual network with
capacity A.



Algorithm

Initialize A to be the greatest power of 2 which does not exceed U.
Initialize the flow with x < 0, b < 0.

Construct the residual network R(x) corresponding to flows x.

© 000

Identify a path 7 in R connecting s and t which has at least A
capacity on each of its arcs. (If no such path exists, divide A by 2
and try again. If A is less than 1, terminate.)

Find the minimum capacity u* of all of the arcs in 7 (whether forward
or reverse).

O For each forward arc (i,j) in 7%, x;; <= x;; + u*. For each reverse arc
U, i) in 7k, x;j < x; — u*.

@ Increase b by u*, and return to step 2.



Example

Max flow A faster algorithm



Correctness

If at any point the algorithm becomes stuck, A will decrease.

When A =1 there is no difference between the capacity scaling and
regular augmenting path algorithms, and we know the regular algorithm is
correct.

Max flow A faster algorithm



Complexity

Look at the flow in the network just before A is reduced. At this point
there is no path from s to t in the residual network, using links of capacity
more than U.

Therefore the only cut links in the residual network have capacity no more
than A, and the remaining flow which can be sent cannot be increased by
more than mA.

Max flow A faster algorithm



Since the next steps will use a threshold of A/2, this means that at most
2m steps will be taken before A is reduced again.

Furthermore, in O(log U) steps A will be reduced to 1.

So, in all this version of the algorithm only requires O(mlog U) reductions
of Aj or O(m?log U) steps in all.

Max flow A faster algorithm



