Simplex tableau

CE 377K

April 2, 2015

Reduced costs

Basic and nonbasic variables

Simplex tableau

OUTLINE

- Review by example: simplex method demonstration
- Simplex tableau

Example

You own a small firm producing construction materials for the EERC building. Your firm produces three materials: concrete, mortar, and grout. Producing one ton of each these materials requires the use of a limited resource, as shown in the following table:

Resource	Concrete	Mortar	Grout	Availability
Labor	1 hour	2 hours	2 hours	20 hours
Blending time	2 hours	1 hour	2 hours	20 hours
Storage capacity	2 m ³	2 m ³	1 m ³	20 m ³
Sales price	\$20	\$30	\$40	
Manufacturing cost	\$10	\$18	\$28	

What is your optimal production strategy?

A first attempt at writing down the optimization problem is:

$$\begin{array}{ll} \max_{x_1, x_2, x_3} & 10x_1 + 12x_2 + 12x_3 \\ \text{s.t.} & x_1 + 2x_2 + 2x_3 & \leq 20 \\ & 2x_1 + x_2 + 2x_3 & \leq 20 \\ & 2x_1 + 2x_2 + x_3 & \leq 20 \\ & x_1, x_2, x_3 & \geq 0 \end{array}$$

After putting the problem in standard form we have:

$$\min_{x_1,...,x_6} -10x_1 - 12x_2 - 12x_3 s.t. x_1 + 2x_2 + 2x_3 + x_4 = 20 2x_1 + x_2 + 2x_3 + x_5 = 20 2x_1 + 2x_2 + x_3 + x_6 = 20 x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Simplex method

- Identify an initial feasible basis $\{x_1^B, \ldots, x_m^B\}$.
- **2** Calculate the reduced cost $\overline{c^k} = c^k c^B B^{-1} A^k$ for each nonbasic decision variable.
- If all of the reduced costs are nonnegative, the current basis is optimal. STOP.
- Otherwise, choose some nonbasic decision variable x^k with a negative reduced cost to enter the basis.
- Set $x^k = \min_{i:\Delta x_i < 0} x_i / |\Delta x_i|$; the basic variable leaving the basis is one where this minimum is obtained.
- **6** Return to step 2.

By inspection, a feasible basis is $\{x_4, x_5, x_6\}$, which corresponds to the the extreme point (0, 0, 0, 20, 20, 20). We have

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore $\boldsymbol{B}^{-1}=\boldsymbol{B}$ and the reduced cost vector is

$$\overline{\mathbf{c}} = \mathbf{c} - \mathbf{c}^{\mathbf{B}} \mathbf{B}^{-1} \mathbf{A} = \begin{bmatrix} -10 & -12 & -12 & 0 & 0 & 0 \end{bmatrix} - \\ \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} -10 & -10 & -12 & 0 & 0 & 0 \end{bmatrix}$$

The reduced cost of x_1 is negative, so we choose it to enter the basis. We calculate the change in the existing basic variables:

$$\Delta \mathbf{x}^{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{A}^{1} = \mathbf{A}^{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

Checking the ratio test, we see that $x_4/\Delta x_4 = 20$, $x_5/\Delta x_5 = 10$, and $x_6/\Delta x_6 = 10$, so one of x_5 and x_6 must leave the basis; let's assume that x_5 leaves, so the new basis is $\{x_4, x_1, x_6\}$. Now

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 0.5 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

The current solution is $\boldsymbol{B^{-1}b} = \begin{bmatrix} 10 & 0 & 10 & 0 & 0 \end{bmatrix}$ and

$$\overline{\mathbf{c}} = \begin{bmatrix} -10 & -12 & -12 & 0 & 0 & 0 \end{bmatrix} - \\ \begin{bmatrix} 0 & -10 & 0 \end{bmatrix} \begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 0.5 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 0 & -7 & -2 & 0 & 5 & 0 \end{bmatrix}$$

The reduced cost of x_3 is negative, so we choose it to enter the basis. We calculate

$$\Delta \mathbf{x}^{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{A}^{3} = \begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 0.5 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Checking the ratio test, we see that $x_4/\Delta x_4 = 10$ and $x_1/\Delta x_1 = 10$, so one of x_4 and x_1 must leave the basis; let's assume that x_4 leaves, so the new basis is $\{x_3, x_1, x_6\}$.

Now

$$\mathbf{B} = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 1 & -0.5 & 0 \\ -1 & 1 & 0 \\ 1 & -1.5 & 1 \end{bmatrix}$$

so the current solution is $\boldsymbol{B^{-1}b} = \begin{bmatrix} 0 & 0 & 10 & 0 & 10 \end{bmatrix}$ and

$$\overline{\mathbf{c}} = \begin{bmatrix} -10 & -12 & -12 & 0 & 0 \end{bmatrix} - \\ \begin{bmatrix} -12 & -10 & 0 \end{bmatrix} \begin{bmatrix} 1 & -0.5 & 0 \\ -1 & 1 & 0 \\ 1 & -1.5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 0 & -4 & 0 & 2 & 4 & 0 \end{bmatrix}$$

The reduced cost of x_2 is negative, so we choose it to enter the basis. We calculate

$$\Delta \mathbf{x}^{\mathbf{B}} = \mathbf{B}^{-1} A^2 = \begin{bmatrix} 1 & -0.5 & 0 \\ -1 & 1 & 0 \\ 1 & -1.5 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.5 \\ -1 \\ 2.5 \end{bmatrix}$$

Checking the ratio test, we see that $x_3/\Delta x_3 = 6.67$ and $x_6/\Delta x_6 = 4$, so x_6 must leave the basis, and the new basis is $\{x_3, x_1, x_2\}$.

Now

$$\mathbf{B} = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 0.4 & 0.4 & -0.6 \\ -0.6 & 0.4 & 0.4 \\ 0.4 & -0.6 & 0.4 \end{bmatrix}$$

so the current solution is $\mathbf{B}^{-1}\mathbf{b}=\begin{bmatrix} 4 & 4 & 4 & 0 & 0 \end{bmatrix}$ and

$$\overline{\mathbf{c}} = \begin{bmatrix} -10 & -12 & -12 & 0 & 0 & 0 \end{bmatrix} - \\ \begin{bmatrix} -12 & -10 & -12 \end{bmatrix} \begin{bmatrix} 0.4 & 0.4 & -0.6 \\ -0.6 & 0.4 & 0.4 \\ 0.4 & -0.6 & 0.4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 0 & 0 & 0 & 3.6 & 1.6 & 1.6 \end{bmatrix}$$

All reduced costs are nonnegative, so the current basis is optimal.

The optimal solution is $\mathbf{x}^* = \begin{bmatrix} 4 & 4 & 4 & 0 & 0 \end{bmatrix}$, and the optimal objective function value is $\mathbf{c} \cdot \mathbf{x}^* = -136$.

SIMPLEX TABLEAU

The *simplex tableau* is a more convenient way to perform the computations needed by the simplex method.

The tableau is a table containing the following elements:

-Z	 $c^k - \mathbf{c}^{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A}^{\mathbf{k}}$	
$\begin{array}{c} \vdots \\ x_i^B \\ \vdots \end{array}$	 $B^{-1}A^k$	

-Z	 $c^k - \mathbf{c}^{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A}^{\mathbf{k}}$	
$\begin{array}{c} \vdots \\ x_i^B \\ \vdots \end{array}$	 $B^{-1}A^k$	

- There are n + 1 columns and m + 1 rows, numbered starting from zero.
- **2** \mathcal{T}_{ij} is the value in the *i*-th row and the *j*-th column.
- **③** \mathcal{T}_{00} is the *negative* of the objective function value.
- \mathcal{T}_{0i} is the reduced cost of x_i .
- **③** T_{i0} has the current value of the *i*-th basic variable.
- O The other entries T_{ij} show the rate by which x_i would decrease if x_j is added to the basis.

After finding an initial feasible basis, all remaining steps of the simplex method can be computed using the tableau.

- **9** Reduced costs for all variables are already shown in the first row.
- We can see by inspection whether reduced costs are all nonnegative, in which case we are done.
- If not, we can visually pick one of the xk with negative reduced cost to enter the basis.
- O To see which variable leaves the basis, compare the ratio of the values in the zero-th column to the k-th column.
- **③** Changing the basis, updating $B^{-1}A$ and reduced costs.

All steps but the last are easy.

The initial tableau corresponding to the example problem is:

0	-10	-12	-12	0	0	0
20 20 20	1	2	2	1	0	0
20	2	1	2	0	1	0
20	2	2	1	0	0	0

By choosing x_4, x_5, x_6 as the initial basis, $\mathbf{B}^{-1} = \mathbf{I}$ and $\mathbf{c}^{\mathbf{B}} = \mathbf{0}$ so the tableau was easy to write down. Next class we'll see how we can start off in general.

0	-10	-12	-12	0	0	0
20 20 20	1	2	2	1	0	0
20	2	1	2	0	1	0
20	2	2	1	0	0	0

The reduced cost of x_1 is negative, so choose it to enter the basis.

0	-10	-12	-12	0	0	0
20	1	2	2	1	0	0
20 20	2	1	2	0	1	0
20	2	2	1	0	0	0

In the ratio test, $T_{10}/T_{11} = 20$, $T_{20}/T_{21} = 10$, and $T_{30}/T_{31} = 10$ so we could choose either x_5 or x_6 to leave the basis.

Since x_1 is entering the basis and x_5 is leaving, we want to make column x_1 of the tableau look like x_5 does currently.

We accomplish this with the following matrix row manipulations (performed in this order):

- Divide every element in the second row by 2.
- Add ten times the second row to the zero-th row.
- Subtract the second row from the first row.
- Subtract twice the second row from the third row.

0	-10	-12	-12	0	0	0
20	1	2	2	1	0	0
10	1	0.5	1	0	0.5	0
20	2	2	1	0	0	0

100	0	-7	-2	0	5	0
10	0		1	1	-0.5	0
10	1	0.5	1	0	0.5	0
0	0	1	-1	0	-1	1

This is the end of the first iteration.

In general, to change the basis, assume that x_k is entering the basis, and that x_ℓ is leaving.

- **(**) Divide every element in the ℓ -th row by $\mathcal{T}_{\ell k}$. This sets $\mathcal{T}_{\ell k} = 1$
- **②** For each of the other rows *i*, multiply the ℓ -th row by \mathcal{T}_{ik} and subtract it from the *i*-th row. This sets $\mathcal{T}_{ik} = 0$ for all $i \neq \ell$.

Here is the tableau at the end of the first iteration:

100	0	-7	-2	0	5	0
10	0	1.5	1	1	-0.5	0
10	1	0.5	1	0	0.5	0
0	0	1	-1	0	-1	1

- The basic variables correspond to the columns which form the identity matrix (x₄, x₁, x₆)
- One of them to enter the basis.
 Output
 Ou

Say we chose x_3 to enter the basis. Based on the ratio test, we force x_4 (row 1) to leave the basis.

- Divide the first row by 1 (no change)
- 2 Add twice the first row to the zero-th row
- Subtract the first row from the second row
- 4 Add the first row to the third row

Here is the tableau at the end of the second iteration:

120	0	-4	0	2	4	0
10	0	1.5	1	1	-0.5	0
0	1	-1	0	-1	1	0
10	0	2.5	0	1	-1.5	1

- The basic variables correspond to the columns which form the identity matrix (x₃, x₁, x₆)
- **2** The reduced cost of x_2 is still negative, so it enters the basis.

Since x_2 is entering the basis, the ratio test forces x_6 (row 3) to leave the basis.

- Divide the third row by 2.5
- Add four times the third row to the zero-th row.
- Subtract 1.5 times the third row to the first row.
- Add the third row to the second row.

Here is the tableau at the end of the third iteration:

136	0	0	0	3.6	1.6	1.6
4	0	0	1	0.4	0.4	-0.6
4	1	0	0	-0.6	0.4	0.4
4	0	1	0	0.4	-0.6	0.4

All reduced costs are nonnegative, so this is the optimal solution. The basis is $x_3 = 4$, $x_1 = 4$, $x_2 = 4$ and the objective function value is -136.