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BIG M METHOD



With our simplex method examples so far, it has been easy to find a
feasible basis.

It is not always obvious how to do this. The big M method is a technique
for starting the simplex method.

Our process was easy because we found an identity matrix inside A which
could serve as the initial basis.
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If there are m constrains, introduce m new “artificial” decision variables
y1, · · · , ym. (You do not need to introduce an artificial variable if a column
in A is already a column from the identity matrix.)

We want to add these variables into the optimization problem (objective
and constraints) in such a way that:

1 It is easy to find an initial feasible solution to the problem.

2 The presence of the artificial variables does not affect the optimal
solution.

Think of the artificial variables as scaffolding. They help the construction
process but are not part of the final building.
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For the m-th constraint, add +ym. (This will form an identity matrix in
the columns corresponding to these variables.)

The objective function is changed by giving each yi a coefficient of +M
(where M is a “big number”)
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min
x1,...,x4

x1 + x2 + x3

s.t. x1 + 2x2 + 3x3 = 3

− x1 + 2x2 + 6x3 = 2

4x2 + 9x3 = 5

3x3 + x4 = 1

x1, x2, x3, x4 ≥ 0
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min
x1,...,x4,y1,...,y3

x1 + x2 + x3 + My1 + My2 + My3

s.t. x1 + 2x2 + 3x3 + y1 = 3

− x1 + 2x2 + 6x3 + y2 = 2

4x2 + 9x3 + y3 = 5

3x3 + x4 = 1

x1, x2, x3, x4, y1, y2, y3 ≥ 0
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Example

min
x1,...,x3,y1,...,y4

x1 + x2 + x3 + My1 + My2 + My3

s.t. x1 + 2x2 + 3x3 + y1 = 3

− x1 + 2x2 + 6x3 + y2 = 2

4x2 + 9x3 + y3 = 5

3x3 + y4 = 1

x1, x2, x3, y1, y2, y3 ≥ 0

With this problem, it is easy to find an initial solution: choose y1, . . . , y3, x4
as our basis.
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Example

min
x1,...,x3,y1,...,y4

x1 + x2 + x3 + My1 + My2 + My3

s.t. x1 + 2x2 + 3x3 + y1 = 3

− x1 + 2x2 + 6x3 + y2 = 2

4x2 + 9x3 + y3 = 5

3x3 + y4 = 1

x1, x2, x3, y1, y2, y3 ≥ 0

Furthermore, since M is a “big number,” the optimal solution will have all
yi = 0 (unless the original problem is infeasible).
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To start the simplex method, we calculate the initial reduced costs:

c = c− cBB−1A =

[
1 1 1 0 M M M

]
−
[
M M M 0

]
I


1 2 3 0 1 0 0
−1 2 6 0 0 1 0
0 4 9 0 0 0 1
0 0 3 1 0 0 0


=
[
−1 −8M + 1 −18M + 1 0 0 0 0

]
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From here, we can run the simplex method as before:

−10M 1 −8M + 1 −18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

x3 enters the basis, x4 leaves
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−4M − 1/3 1 −8M + 1 0 6M − 1/3 0 0 0

2 1 2 0 −1 1 0 0
0 −1 2 0 −2 0 1 0
2 0 4 0 −3 0 0 1

1/3 0 0 1 1/3 0 0 0

x2 enters the basis, y2 leaves the basis.

Odds and ends Big M method



−4M − 1/3 −4M + 3/2 0 0 −2M + 2/3 0 4M − 1/2 0

2 2 0 0 −1 1 −1 0
0 −1/2 1 0 −1 0 1/2 0
2 2 0 0 1 0 −2 1

1/3 0 0 1 1/3 0 0 0

x1 enters the basis, y1 leaves the basis.
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−11/6 0 0 0 −1/12 2M − 3/4 2M + 1/4 0

1 1 0 0 1/2 1/2 −1/2 0
1/2 0 1 0 −3/4 1/4 1/4 0

0 0 0 0 0 −1 −1 1
1/3 0 0 1 1/3 0 0 0

x4 enters the basis, x3 leaves the basis.

Odds and ends Big M method



−7/4 0 0 1/4 0 2M − 3/4 2M + 1/4 0

1/2 1 0 −3/2 0 1/2 −1/2 0
5/4 0 1 9/4 0 1/4 1/4 0

0 0 0 0 0 −1 −1 1
1 0 0 3 1 0 0 0

All reduced costs are nonnegative, so we’re done. The optimal solution is
x1 = 1/2, x2 = 5/4, x7 = 0, x4 = 1, all other decision variables equal to
zero.
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What would have happened to the method if the right-hand side of one of
the constraints was negative? Could we fix this?
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SIMPLEX METHOD IN
PRACTICE



We have not yet talked about the computational complexity of the simplex
method.

In the worst case, the simplex method can require exponentially many
steps.

However, for practical problems it is usually very fast.

This is one place where big O notation can be misleading, since it is a “worst
case” performance bound.
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There are other algorithms which have been developed for solving linear
programs:

The ellipsoid method has polynomial worst-case complexity, but is
actually very slow in practice.

The interior point method is worst-case polynomial, and is
comparable to the simplex method for practical problems.
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SENSITIVITY ANALYSIS OF
LINEAR PROGRAMS



Often the “input data” for the problem is not known exactly, or may
change without warning.

In particular, we might ask the following questions?

What if one of the requirements bj changes?

What if one of the objective function coefficients ci changes?

What if the structure of the constraints aij changes?

Assume we know the optimal solution for some A, b, and c; what happens
if one of these changes?
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The results of the simplex method make it easy to see some of these
changes. In this class we’ll focus on changes to the requirement vector bi ,
and changes to the objective coefficients ci .

If there is a change to the problem, there are two possible concerns:

Is the previous optimal basis still feasible?

Is the previous optimal basis still optimal?

Odds and ends Sensitivity analysis of linear programs



Change to the requirement vector

Assume that the j-th component of b changes from bj to b′j = bj + δ.

If the previous optimal basis is feasible, then it is still optimal.

Why? The reduced costs are ck = ck − cBB−1Ak.

These do not depend on b, so if the reduced costs were nonnegative with
b, they will also be nonnegative under b′.
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However, if δ is large enough, the old basis is no longer feasible (and thus
not optimal).

We have a formula for the new basic variables: xB = B−1b so

(xB)′ = B−1b′ = xB + δB−1ej

where ej is a column vector of all zeroes (except for a value of 1 in the
j-th row)
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Since (xB)′ = B−1b′ = xB + δB−1ej, we know that the old optimal
solution xB is perturbed by δB−1ej.

Remember the bottom right portion of the tableau represents B−1A.

So, if one of the columns of the constraint matrix is ej , we just need to
look at that column of the final tableau.

If we were using the big-M method, there will always be such a column.
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So, if (xB)′ = xB + δB−1ej ≥ 0, then the old basis is still feasible.

This vector equation breaks down into m scalar equations of the form

xi + δTik ≥ 0

This means that if Tik > 0, we need δ ≥ −xi/Tik for the current basis to
remain feasible.

If Tik < 0, we need δ ≤ −xi/Tik .
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Since each of the m constraints imposes such a restriction on δ, we have
that the current basis remains optimal iff

max
i :Tik>0

− xi
Tik
≤ δ ≤ min

i :Tik<0
− xi
Tik
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Example

The problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

has optimal tableau
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

What is the optimal solution? How much can the right-hand side of the
first constraint change without affecting the optimal basis?
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12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

Since the third column of A was e1 =

[
1
0

]
, the third column of the tableau

gives us the information we need.

If δ ∈ [−2/5, 2/3] the current basis remains feasible.
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Change to the cost vector c

Now, assume that the requirement vector b is the same, but one of the
cost coefficients is changed from ci to c ′i = ci + δ

Here, there are no concerns about feasibility since none of the constraints
have changed.

However, the old solution may no longer be optimal.

The reduced costs are the key to checking optimality.
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As before, assume that we have the optimal solution (and optimal tableau)
for the original optimization problem.

The old basis remains optimal as long as all of the reduced costs remain
nonnegative.

So, we need
c′ = c′ − cB

′
B−1A ≥ 0

which is equivalent to n scalar equations of the form c ′k − cB
′
B−1Ak ≥ 0
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The easy case: assume that xi is nonbasic. Then cB
′

= cB, and all of the
equations stay the same except for the one involving xi .

This one is simply cBB−1Ai ≤ c i + δ or δ ≥ −c i = −T0i which is easily
obtained from the final tableau.
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Example

The problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

has optimal tableau
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

How much can x3 change for the current solution to remain optimal?
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12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

Since x3 is nonbasic, we simply need δ ≥ −c3 = −2. For any such δ the
current solution remains optimal.
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The slightly harder case is if xi is basic (say it is the `-th basic variable).
In this case cB changes as well as c.

So, the new reduced cost equation is cBB−1A + δe`B
−1A ≤ c + ei which

simplifies to
δ[B−1Aj]` ≤ cj − cBB−1A = c j

or, from the tableau,
T`iδ ≤ c j

for all j .
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As we did for changes in the requirement vector, this last formula
simplifies to

max
j 6=i :T`j<0

{
c j
T`j

}
≤ δ ≤ min

j 6=i :T`j>0

{
c j
T`j

}
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Example

The problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

has optimal tableau
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

How much can x1 change for the current solution to remain optimal?
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12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

Since x1 is basic, we need to compare the ratios of reduced costs for each
nonbasic variable to the tableau entry: δ ∈ [−2/3, 7/2] for the current
basis to remain optimal.
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