Examples of Optimization Problems

CE 377K

January 22, 2015

REVIEW

Objective function, decision variables, constraints...

Transit frequency setting problem

Notation

Feasible solutions and set

MORE EXAMPLES OF FORMULATIONS

You must schedule routine maintenance on a set of pavement sections over the next 10 years. Each section can be described by a condition index from 0 to 100. Each section deteriorates at a known, constant rate, but if you perform maintenance in a given year, its condition will improve by a constant ammount. Given a budget for each year, when and where should you perform maintenance to maximize the average condition? Let the decision variable $x_f^t = 1$ if maintenance is performed on facility f during year t, and 0 otherwise.

Let k_f be the cost of maintenance on facility f, and B^t the budget in year t.

There are 10 budget constraints, of the form $\sum_{f \in F} k_f x_f^t \leq B^t$

Let the condition of facility f at the end of year t be c_f^t , let d_f be the annual deterioration rate, and i_f the improvement if maintenance is performed. (Which of these are decision variables?)

Then $c_f^t = c_f^{t-1} - d_f + x_f^t i_f$, plus the requirement that the condition be between 0 and 100.

What is the objective function?

$$\begin{split} \min_{\mathbf{x},\mathbf{c}} & \frac{1}{10|F|} \sum_{f \in F} \sum_{t=1}^{10} c_f^t \\ \text{s.t.} & \sum_{f \in F} k_f x_f^t \leq B^t \\ & c_f^t = \begin{cases} 100 & \text{if } c_f^{t-1} - d_f + x_f^t i_f > 100 \\ 0 & \text{if } c_f^{t-1} - d_f + x_f^t i_f < 0 \\ c_f^{t-1} - d_f + x_f^t i_f \end{cases} \quad \forall f \in F, t \in \{1, 2, \dots, 10\} \\ & x_f^t \in \{0, 1\} \end{cases} \quad \forall f \in F, t \in \{1, 2, \dots, 10\}$$

Facility location

You must locate three bus terminals in a city with a grid network. You know the locations of customers throughout the city, and the cost of building a terminal at each intersection. Passengers walk from their home locations to the nearest terminal. Where should the terminals be located to minimize total walking distance and construction cost?

2	3		
	2	2 3	2 3

Let x(i) and y(i) be the coordinates of intersection i (out of I in total). Let H_p be the intersection corresponding to the home location of passenger p, and L_1 , L_2 , and L_3 the intersections where the three terminals are located. Let C(i) be the cost of building a terminal at i.

The walking distance between intersections i and j is

$$d(i,j) = |x(i) - x(j)| + |y(i) - y(j)|$$

So, the walking distance for customer p is

$$D(p, L_1, L_2, L_3) = \min\{d(H_p, L_1), d(H_p, L_2), d(H_p, L_3)\}$$

How do we write the objective? There are two parts, total walking distance $\sum_{p \in P} D(p, L_1, L_2, L_3)$ and construction cost $C(L_1) + C(L_2) + C(L_3)$.

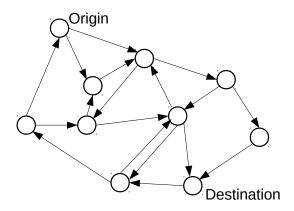
One "trick" is to add them together, using the weighting parameter $\Theta \in [0, 1]$ to show how important each objective is:

$$f(L_1, L_2, L_3) = \Theta[C(L_1) + C(L_2) + C(L_3)] + (1 - \Theta) \left[\sum_{p \in P} D(p, L_1, L_2, L_3) \right]$$

$$\min_{L_1,L_2,L_3} \quad \Theta[C(L_1) + C(L_2) + C(L_3)] + (1 - \Theta) \left[\sum_{p \in P} D(p, L_1, L_2, L_3) \right]$$
s.t. $L_f \in \{1, 2, \dots, I\} \quad \forall f \in \{1, 2, 3\}$

Shortest path

Each roadway link in the network has a known travel time. What is the fastest route connecting the origin to the destination?



Number the roadway links from 1 to A and the intersections from 1 to I. Let $x_a = 1$ if link a is part of the route and 0 otherwise.

The travel time on the route is then $\sum_{a=1}^{A} t_a x_a$.

What are the constraints?

For the path to be valid, we need *flow conservation constraints* at each intersection.

Let F(i) and R(i) be the links leaving and entering intersection *i*.

For any intersection i, what can we say about how the x values for links in F(i) and R(i) are related?

$$\begin{array}{ll} \min_{\mathbf{x}} & \sum_{a \in A} t_a x_a \\ \text{s.t.} & \sum_{a \in F(i)} x_a - \sum_{a \in R(i)} x_a = \begin{cases} 1 & \text{if } i = r \\ -1 & \text{if } i = s \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in \{1, \dots, I\} \\ 0 & \text{otherwise} \end{cases}$$
$$\forall a \in \{0, 1\} \qquad \qquad \forall a \in \{1, \dots, A\}$$

MORE DEFINITIONS AND USEFUL FACTS

A feasible solution $\mathbf{x}^* \in X$ is a global minimum of f if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all feasible \mathbf{x} , and a global maximum if $f(\mathbf{x}^*) \geq f(\mathbf{x})$ for all feasible \mathbf{x}

An *optimal* solution is a global minimum (for a minimization problem) or a global maximum (for a maximization problem).

It is easy to convert back and forth between maximization and minimization problems. If the feasible set is X, the feasible solution \mathbf{x}^* is a global maximum of f iff it is a global minimum of -f.

As a result, we do not need to develop different techniques for maximization or minimization problems. **The default convention in this class is to work with minimization problems.** Other useful facts:

- Constants can be added or subtracted to an objective function without changing the optimal solutions.
- You can multiply an objective function by a nonnegative constant without changing the optimal solutions.

INFORMAL ASSIGNMENT

Identify an optimization problem from your life. Define notation, the objective function, decision variables, and constraints. We'll discuss next class.