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Change to the requirement vector

Assume that the j-th component of b changes from bj to b′j = bj + δ.

If the previous optimal basis is feasible, then it is still optimal.

Why? The reduced costs are ck = ck − cBB−1Ak.

These do not depend on b, so if the reduced costs were nonnegative with
b, they will also be nonnegative under b′.
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However, if δ is large enough, the old basis is no longer feasible (and thus
not optimal).

We have a formula for the new basic variables: xB = B−1b so

(xB)′ = B−1b′ = xB + δB−1ej

where ej is a column vector of all zeroes (except for a value of 1 in the
j-th row)
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Since (xB)′ = B−1b′ = xB + δB−1ej, we know that the old optimal
solution xB is perturbed by δB−1ej.

Remember the bottom right portion of the tableau represents B−1A.

So, if one of the columns of the constraint matrix is ej , we just need to
look at that column of the final tableau.

If we were using the big-M method, there will always be such a column.
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So, if (xB)′ = xB + δB−1ej ≥ 0, then the old basis is still feasible.

This vector equation breaks down into m scalar equations of the form

xi + δTik ≥ 0

This means that if Tik > 0, we need δ ≥ −xi/Tik for the current basis to
remain feasible.

If Tik < 0, we need δ ≤ −xi/Tik .
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Since each of the m constraints imposes such a restriction on δ, we have
that the current basis remains optimal iff

max
i :Tik>0

− xi
Tik
≤ δ ≤ min

i :Tik<0
− xi
Tik

From linear to nonlinear Outline



Example

The problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

has optimal tableau
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

What is the optimal solution? How much can the right-hand side of the
first constraint change without affecting the optimal basis?
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12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

Since the third column of A was e1 =

[
1
0

]
, the third column of the tableau

gives us the information we need.

If δ ∈ [−2/5, 2/3] the current basis remains feasible.
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Change to the cost vector c

Now, assume that the requirement vector b is the same, but one of the
cost coefficients is changed from ci to c ′i = ci + δ

Here, there are no concerns about feasibility since none of the constraints
have changed.

However, the old solution may no longer be optimal.

The reduced costs are the key to checking optimality.
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As before, assume that we have the optimal solution (and optimal tableau)
for the original optimization problem.

The old basis remains optimal as long as all of the reduced costs remain
nonnegative.

So, we need
c′ = c′ − cB

′
B−1A ≥ 0

which is equivalent to n scalar equations of the form c ′k − cB
′
B−1Ak ≥ 0
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The easy case: assume that xi is nonbasic. Then cB
′

= cB, and all of the
equations stay the same except for the one involving xi .

This one is simply cBB−1Ai ≤ c i + δ or δ ≥ −c i = −T0i which is easily
obtained from the final tableau.
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Example

The problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

has optimal tableau
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

How much can x3 change for the current solution to remain optimal?
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12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

Since x3 is nonbasic, we simply need δ ≥ −c3 = −2. For any such δ the
current solution remains optimal.
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The slightly harder case is if xi is basic (say it is the `-th basic variable).
In this case cB changes as well as c.

So, the new reduced cost equation is cBB−1A + δe`B
−1A ≤ c + ei which

simplifies to
δ[B−1Aj]` ≤ cj − cBB−1A = c j

or, from the tableau,
T`iδ ≤ c j

for all j .
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As we did for changes in the requirement vector, this last formula
simplifies to

max
j 6=i :T`j<0

{
c j
T`j

}
≤ δ ≤ min

j 6=i :T`j>0

{
c j
T`j

}
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Example

The problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

has optimal tableau
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

How much can x1 change for the current solution to remain optimal?
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12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

Since x1 is basic, we need to compare the ratios of reduced costs for each
nonbasic variable to the tableau entry: δ ∈ [−2/3, 7/2] for the current
basis to remain optimal.

From linear to nonlinear Outline



NONLINEAR
OPTIMIZATION



Many optimization problems cannot be put into the form of a linear
program.

min
n

D(n) =
∑
r∈R

drTr

2nr

s.t. nr ≥ Lr ∀r ∈ R
nr ≤ Ur ∀r ∈ R

The next few weeks discuss techniques that can be used when the objective
and/or constraints are nonlinear.
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The standard form for a nonlinear optimization problem is

min
x

f (x)

s.t. g1(x) ≤ 0
...

gl(x) ≤ 0
h1(x) = 0

...
hm(x) = 0

The objective function is to be minimized; all other constraints are of the
form ≤ or =.
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The general nonlinear optimization problem (where f , g , and h can be any
functions whatever) is extremely difficult and probably impossible.

However, if the objective and constraints are “nice” functions, there are
efficient algorithms for finding the global minimum.
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At the start of this class, we saw some of these conditions (continuity,
differentiability, unimodality, coercivity, boundedness, etc.)

For nonlinear optimization problems the most important condition in
practice is convexity.

There are actually two definitions of convexity, one applies to sets and the
other applies to functions.

We will see that finding the global minimum of a convex function over a
convex feasible set is achievable.
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CONVEX SET



Intuitively, a convex set does not have any “holes” or “bites” in it.
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The more precise definition is that for any two points in the set, the
straight line connecting those two points also lies in the set.

Specifically, the set X is convex if, for any x1 ∈ X , x2 ∈ X , and λ ∈ [0, 1],
the point λx1 + (1− λ)x2 ∈ X . (Such a point is a convex combination of
x1 and x2.
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Example

The one-dimensional set X = {x : x ≥ 0} is convex.

Pick any x1 ≥ 0, x2 ≥ 0, and λ ∈ [0, 1].

Because all three of these are nonnegative, so is λx1 + (1− λ)x2.

Therefore the set is convex.
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Example

The plane X = {(x , y , z) : 3x + 4y − 3z = 1} is convex.

Pick any (x1, y1, z1) and (x2, y2, z2) in X , and any λ ∈ [0, 1].

Then the convex combination is
(λx1 + (1− λ)x2, λy1 + (1− λ)y2, λz1 + (1− λ)z2). Does this satisfy the
conditions to be part of X?
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We know 3x1 + 4y1 − 3z1 = 1 and 3x2 + 4y2 − 3z2 = 1.

Therefore λ(3x1 + 4y1 − 3z1) = λ and (1− λ)(3x2 + 4y2 − 3z2) = 1− λ.

Adding these shows that the convex combination
(λx1 + (1− λ)x2, λy1 + (1− λ)y2, λz1 + (1− λ)z2) also satisfies the
equation of the plane, so it is convex.
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Example

Is the region X = {(x , y) : x2 + y2 ≥ 1} convex?

The points (1, 0) and (−1, 0) are in X . Pick λ = 1/2.

The resulting point (0, 0) is not in X , so X is not convex.

To show that a set is convex, you have to show that every convex combi-
nation of every two points in the set lie within the set. To show that a set
is not convex, you only need one case where that is false.
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CONVEX FUNCTIONS



Function convexity is a bit different than set convexity.

We have already seen one definition of convexity early in the class (a
one-dimensional, twice-differentiable function is convex if f ′′(x) ≥ 0
everywhere.)

We will now generalize this definition to higher-dimension functions and to
functions which are not twice differentiable.

Throughout this discussion, assume that the function’s domain is a convex
set.
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Intuitively, a convex set lies below its secant lines.
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The mathematical way to express this is:

A function f : X → R is convex if, for every x1, x2 ∈ X and every λ ∈ (0, 1),

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1) + λf (x2) (1)

Such a function is strictly convex if the ≤ can be replaced by <

From linear to nonlinear Convex functions



Compare this definition with the figure:
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Example

Is the function f (x) = |x | convex? Is it strictly convex?

Pick any x1, x2, and λ ∈ (0, 1).

f ((1− λ)x1 + λx2) = |(1− λ)x1 + λx2|

≤ |(1− λ)x1|+ |λx2| by the triangle inequality

= (1− λ)|x1|+ λ|x2|

= (1− λ)f (x1) + λf (x2).
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This definition can be unwieldy to work with, so there are alternative
characterizations.
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If the function is differentiable, convexity can be characterized in terms of
a function’s tangent lines.

The function f is convex if it lies above all of its tangents.
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Mathematically, if f is differentiable on its domain, then f is convex if and
only if

f (x2) ≥ f (x1) + f ′(x1)(x2 − x1)

for all x1, x2 ∈ X .
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Example

Is x2 convex?

Pick any x1, x2. Since f ′(x1) = 2x1, we need to show that

x22 ≥ x21 + 2x1(x2 − x1)

This is equivalent to or
(x1 − x2)2 ≥ 0

which is always true, so f is convex.
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If f is twice differentiable on its domain, then f is convex if and only if
f ′′(x) ≥ 0 everywhere.

Example: x2 is convex because f ′′(x) = 2 ≥ 0.

This is the definition we used earlier in the class.
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When f is a function of multiple variables, the convexity conditions
involving first and second derivatives must change.

The analogue of the first derivative is the gradient vector

∇f =
[
∂f /∂x1 ∂f /∂x2 · · · ∂f /∂xn

]T
The analogue of the second derivative is the Hessian matrix

Hf =


∂2f /∂x21 ∂2f /∂x1∂x2 · · · ∂2f /∂x1xn

∂2f /∂x2∂x1 ∂2f /∂x22 · · · ∂2f /∂x2xn
...

...
. . .

...
∂2f /∂xn∂x1 ∂2f /∂xn∂x2 · · · ∂2f /∂x2n
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For twice-differentiable multidimensional functions, f is convex if any of
these equivalent conditions are satisfied:

1. For all x1 and x2 in X ,

f (λx2 + (1− λ)x1) ≤ λf (x2) + (1− λ)f (x1)

2. For all x1 and x2 in X ,

f (x2) ≥ f (x1) +∇f (x1)T (x2 − x1)

3. For all x in X , H(x) is positive semidefinite (that is, yTH(x)y ≥ 0 for
all vectors y).

These conditions can be tedious to check. In this class I will not ask you
to apply these definitions directly to multidimensional functions.
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However, there are some facts which we can use (even in higher
dimensions):

Any linear function is convex.

A nonnegative multiple of a convex function is convex.

The sum of convex functions is convex.

The composition of convex functions is convex.
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