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REVIEW



The standard form for a nonlinear optimization problem is

min
x

f (x)

s.t. g1(x) ≤ 0
...

g`(x) ≤ 0
h1(x) = 0

...
hm(x) = 0

The objective function is to be minimized; all other constraints are of the
form ≤ or =.
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What is a convex set?

What is a convex function?

What are some useful facts about convex sets and functions?
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What is the method of Lagrange multipliers?
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OUTLINE



Interpretation of Lagrange multipliers

Solving the transit frequency setting problem with Lagrange
multipliers

Inequality constraints

Karush-Kuhn-Tucker conditions
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MORE PERSPECTIVES ON
LAGRANGE MULTIPLIERS



Sensitivity analysis

The numerical value of the Lagrange multiplier is useful in sensitivity
analysis, and shows how much the objective function would change if the
constraint was changed.

Assume that a constraint was changed from h(x) = 0 to h(x) = u, so the
optimal solution changes from x∗ to x∗(u).

The ratio of the difference between f (x∗(u) and f (x∗) to the perturbation
u is approximately −λ when u is small.

df (x∗)

du
= −λ

This is often called a shadow cost.
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The stationary point of min(−x1 − x2) subject to x21 + x22 = 1 was
x1 = x2 = λ = 1/

√
2

If the right-hand side of the constraint was changed slightly (say, to 1.1),
u = 0.1 so the change in the objective function will be approximately
−0.1/

√
2
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A geometric interpretation

At a stationary point of the Lagrangian, ∇L(x,λ) = 0.

This gradient has two parts: the partial derivatives with respect to x and
those with respect to λ.

The partial derivatives with respect to λ give you the original constraints
back and ensure the stationary point is feasible.

The partial derivatives with respect to x give ∇f (x) +
∑m

i=1 λi∇h(x) = 0

In the case of a single equality constraint, this means ∇f (x) and ∇h(x)
are parallel (or antiparallel).
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The stationary point of min(−x1 − x2) subject to x21 + x22 = 1 was
x1 = x2 = λ = 1/

√
2

For this function, ∇f (x) =
[
−1 −1

]
and ∇h(x) =

[
2x1
2x2

]
=

[√
2√
2

]
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A penalty interpretation

The Lagrangian function is the original function, plus some multiple of the
left-hand side of each constraint.

These multipliers can be thought of as “penalties” for violating the
constraint. At the optimal solution, L(x,λ) = f (x).

If the penalty is too low or too high, the optimal solution will violate the
constraint.
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THE TRANSIT
FREQUENCY SETTING

PROBLEM



Here is a “modified” version without explicit upper and lower limits on the
number of buses on each route.

min
n

D(n) =
∑
r∈R

drTr

2nr

s.t.
∑
r∈R

nr = N

From Lagrange to Karush The transit frequency setting problem



Assume there are 3 routes with this problem data:

Route 1 has demand 1, and the route requires 2 hours to traverse

Route 2 has demand 8, and the route requires 1 hour to traverse

Route 3 has demand 6, and the route requires 3 hours to traverse

Furthermore, there are 6 buses to assign to these routes.
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The Lagrangian is L(n, λ) =
∑

r∈R
drTr
2nr

+ λ(
∑

r∈R nr − N)

The stationary point of the Lagrangian occurs when:

∂L
∂nr

= 0 for all routes r ; this means each nr =
√

drTr
2λ

∂L
∂λ = 0; this means

∑
r∈R nr = N
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Substituting the first equations into the second we have

∑
r∈R

√
drTr

2λ
= N

which we can solve for λ.

Using the given data for this problem, the equation simplifies to

1√
λ

+
2√
λ

+
3√
λ

= 6

which is solved when λ = 1.

If the functions and values are not so nice, you can use Newton’s method
or the bisection method to solve for λ.
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Substituting λ = 1 into each equation, we find that the optimal solution is
n1 = 1, n2 = 2, and n3 = 3.

The interpretation of the Lagrange multiplier λ = 1 is that (at the
margin), adding one more bus to the fleet will reduce total waiting time by
approximately one hour if allocated optimally.

The requirement nr =
√

drTr
2λ can also be interpreted in saying that the

marginal impact of an additional bus on each route must be equal at the
optimal solution.
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INEQUALITY
CONSTRAINTS



The theory of Lagrange multipliers dates to the 18th century; techniques
for handling inequality constraints are more recent.

This theory is generalized in the Karush-Kuhn-Tucker conditions, which
accounts for both inequality and equality constraints.

Karush first came up with this idea in his 1939 MS thesis.

Kuhn and Tucker independently came up with the idea in 1951.
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An equivalent way of phrasing the Lagrange multiplier technique is :

At an optimal solution x∗ to the problem minx f (x) subject to hi (x) = 0 for
i ∈ {1, . . . ,m}, we have

∇f (x) +
m∑
i=1

λi∇h(x) = 0

for some λi , and furthermore hi (x) = 0 for all i ∈ {1, . . . ,m}.

The Karush-Kuhn Tucker conditions are as follows:

At an optimal solution x∗ to the problem minx f (x) subject to hi (x) = 0 for
i ∈ {1, . . . ,m} and gj(x) ≤ 0 for j ∈ {1, . . . , `} we have

∇f (x) +
m∑
i=1

λi∇h(x) +
∑̀
j=1

µj∇g(x) = 0

for some λi and nonnegative µj , and furthermore hi (x) = 0 for all i ∈
{1, . . . ,m}, gj(x) ≤ 0 for j ∈ {1, . . . , `}, and µj = 0 for any inactive
constraint.
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Unpacking the KKT conditions:

A multiplier µj is introduced for each inequality constraint, just like a
λi is introduced for each equality.

We distinguish between an active and an inactive inequality
constraint. The constraint gj(x) ≤ 0 is active if gj(x) = 0 and
inactive if gj(x) < 0.

The multiplier for each µj must be nonnegative, and zero for each
inactive constraint.

The second and third points warrant further explanation.
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If a constraint is inactive at the optimum solution, it is essentially
irrelevant, and changing the right-hand side by a small amount will not
affect the optimal solution at all.

Therefore µj = 0 for any inactive constraint.

Increasing the right-hand side of the constrant gj(x) can only improve the
optimal value of the objective function. So µj cannot be negative.

(Why is this not true for equality constraints?)
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A simple example

Minimize f (x) = (x + 5)2 subject to x ≤ 0.

The optimal solution is clearly x = −5. The inequality constraint is active,
so µ = 0.

Here ∇f (x) = 2(x + 5) and ∇g(x) = 1; if we set x = −5 and µ = 0, then

∇f (x) + µ∇g(x) = 0

so this is (potentially) the optimal solution.
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A simple example

Minimize f (x) = (x − 5)2 subject to x ≤ 0.

The optimal solution is now x = 0. The inequality constraint is active, so
µ ≥ 0.

Here ∇f (x) = 2(x − 5) and ∇g(x) = 1; if we set x = 0 then

∇f (x) + µ∇g(x) = 0

is true when µ = 10.

The interpretation: by changing the constraint from x ≤ 0 to x ≤ 1, the
objective function can be reduced by approximately 10.
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