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REVIEW



What is the method of Lagrange multipliers?

What are three interpretations?
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OUTLINE



Karush-Kuhn-Tucker conditions

Descent methods for convex optimization
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INEQUALITY
CONSTRAINTS



An equivalent way of phrasing the Lagrange multiplier technique is :

At an optimal solution x∗ to the problem minx f (x) subject to hi (x) = 0 for
i ∈ {1, . . . ,m}, we have

∇f (x) +
m∑
i=1

λi∇h(x) = 0

for some λi , and furthermore hi (x) = 0 for all i ∈ {1, . . . ,m}.

The Karush-Kuhn Tucker conditions are as follows:

At an optimal solution x∗ to the problem minx f (x) subject to hi (x) = 0 for
i ∈ {1, . . . ,m} and gj(x) ≤ 0 for j ∈ {1, . . . , `} we have

∇f (x) +
m∑
i=1

λi∇h(x) +
∑̀
j=1

µj∇g(x) = 0

for some λi and nonnegative µj , and furthermore hi (x) = 0 for all i ∈
{1, . . . ,m}, gj(x) ≤ 0 for j ∈ {1, . . . , `}, and µj = 0 for any inactive
constraint.
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Unpacking the KKT conditions:

A multiplier µj is introduced for each inequality constraint, just like a
λi is introduced for each equality.

We distinguish between an active and an inactive inequality
constraint. The constraint gj(x) ≤ 0 is active if gj(x) = 0 and
inactive if gj(x) < 0.

The multiplier for each µj must be nonnegative, and zero for each
inactive constraint.

The second and third points warrant further explanation.
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If a constraint is inactive at the optimum solution, it is essentially
irrelevant, and changing the right-hand side by a small amount will not
affect the optimal solution at all.

Therefore µj = 0 for any inactive constraint.

Increasing the right-hand side of the constrant gj(x) can only improve the
optimal value of the objective function. So µj cannot be negative.

(Why is this not true for equality constraints?)
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A simple example

Minimize f (x) = (x + 5)2 subject to x ≤ 0.

The optimal solution is clearly x = −5. The inequality constraint is active,
so µ = 0.

Here ∇f (x) = 2(x + 5) and ∇g(x) = 1; if we set x = −5 and µ = 0, then

∇f (x) + µ∇g(x) = 0

so this is (potentially) the optimal solution.
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A simple example

Minimize f (x) = (x − 5)2 subject to x ≤ 0.

The optimal solution is now x = 0. The inequality constraint is active, so
µ ≥ 0.

Here ∇f (x) = 2(x − 5) and ∇g(x) = 1; if we set x = 0 then

∇f (x) + µ∇g(x) = 0

is true when µ = 10.

The interpretation: by changing the constraint from x ≤ 0 to x ≤ 1, the
objective function can be reduced by approximately 10.
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DESCENT METHODS



Assume that we are given a convex optimization problem.

A descent method is an iterative algorithm consisting of the following
steps:

1 Choose an initial feasible solution x← x0.

2 Identify a feasible “target” solution x∗ in a “downhill direction.”

3 Choose a step size λ ∈ [0, 1] and set x← λx∗ + (1− λ)x

4 Test for termination, and return to step 2 if we need to improve
further.
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Hiking analogy
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The two key questions are:

1 How do I choose the target solution?

2 How do I choose λ

You might also ask how to choose the initial solution x0. For a convex
optimization problem, it won’t matter too much, and if we answer the
previous two questions correctly we will converge to the global optimum
from any starting point.
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Today and next class, I’ll give a few different ways these steps can be
performed:

For choosing the target x∗, I will show you the conditional gradient and
gradient projection methods.

For choosing the step size λ, I will show you the method of successive
averages, limited minimization rule, and Armijo rule.

For a convex optimization problem, any combination of these will converge
to the global optimum from any starting point.
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Target selection

Both of the target selection rules are based on the gradient at the current
point, ∇f (x).

Remember that the gradient is a vector pointing in the direction of
steepest ascent. Since our standard form is a minimization problem, we
will want to move in the opposite direction as the gradient.

However, just using the gradient as a search direction creates problems,
because it fails to account for the constraints.

The conditional gradient and gradient projection methods are designed to
provide reasonable target points while accounting for constraints.
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Conditional gradient

In the conditional gradient rule, we assume that the slope of the objective
is the same throughout the feasible region. (This is not true, but gives us
a direction to move in.)

This is equivalent to replacing the objective function with its linear
approximation at the current point x.

We then solve the optimization problem for the approximate objective
function f (x∗) = f (x) +∇f (x)(x∗ − x) with the same constraints, and use
the optimal x∗ value for the target.

If all of the constraints are linear, the conditional gradient method is nothing
more than solving a linear program.
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Example

Transit frequency setting problem with just 2 routes, same data as before:

Minimize 1/n1 + 4/n2 subject to n1 + n2 = 6, n1 ≥ 0, n2 ≥ 0.
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Gradient projection

In the gradient projection method, the target is found by calculating the
point x− s∇f (x) (where s is another step size), and then calculating the
projection of that point onto the feasible region.

The projection of a point x onto a set X is the point in X closest to x, and
is denoted by ΠXx.
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Examples of projection

Project the point (5, 10) onto the set defined by 0 ≤ x1 ≤ 7, 0 ≤ x2 ≤ 7.

Project the point (4, 2) onto the set defined by x1 + x2 = 5

Minimize 1/n1 + 4/n2 subject to n1 + n2 = 6, n1 ≥ 0, n2 ≥ 0.
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