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STEP SIZE SELECTION



There are a number of ways to choose the step size λ after the target has
been chosen. We’ll go through three:

The method of successive averages is simplest and fastest, but not
very intelligent.

The line minimization rule tends to work well in practice, but can
be slower.

The Armijo rule uses trial and error to quickly find a “reasonably
good” λ value.
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Method of successive averages

The method of successive averages uses a fixed sequence of λ values,
rather than trying to customize λ at each step of the algorithm.

There are two risks with using fixed values of λ : if λ is too small,
convergence will be very slow. If λ is too large, the algorithm may not
converge at all.

The method of successive averages tries to avoid both of these difficulties
by starting with larger values of λ and moving to smaller ones.

A typical sequence of λ values is 1/2, 1/3, 1/4, etc.
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Example

(Conditional gradient method plus MSA).

When we started the conditional gradient method with
[
0 0

]
the target

point was
[
2 2

]
.

Using the method of successive averages the new point is
1/2

[
2 2

]
+ (1− 1/2)

[
0 0

]
=

[
1 1

]
(objective reduced from 17 to

1.16).
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Example

(Conditional gradient method plus MSA).

When we started the conditional gradient method with
[
0 0

]
the target

point was
[
2 2

]
.

Using the method of successive averages the new point is
1/2

[
2 2

]
+ (1− 1/2)

[
0 0

]
=

[
1 1

]
(objective reduced from 17 to

1.16).

At this point the gradient is
[
0 −4

]
; the new target is any point where

x2 = 2. If (1, 2) is the new target, then x is updated to
1/3

[
12
]

+ 2/3
[
1 1

]
=

[
14/3

]
. (Objective reduced from 1.16 to 0.358)

Here you see one downside of MSA — the global optimum would have been
reached if we had chosen λ = 1. MSA does not have the ability to detect
such cases, it always follows the pre-set sequence of step sizes.
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Line minimization rule

The line minimization rule chooses the value of λ ∈ [0, 1] which minimizes
the objective function along the line connecting x to x∗.

This value can be found using the bisection method or Newton’s method.

Specifically, we want to choose λ to minimize f (λx∗ + (1− λ)x) subject to
0 ≤ λ ≤ 1.
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Example

(Conditional gradient plus line minimization). When we started the
conditional gradient method with

[
0 0

]
the target point was

[
2 2

]
.

Using the line minimization rule, λ = 0.705 and the new point is[
1.41 1.41

]
. (Objective reduced from 17 to 0.289)
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Example

(Conditional gradient plus line minimization). When we started the
conditional gradient method with

[
0 0

]
the target point was

[
2 2

]
.

Using the line minimization rule, λ = 0.705 and the new point is[
1.41 1.41

]
. (Objective reduced from 17 to 0.289)

At this point the gradient is
[
0.82 −2.36

]
. The new target minimizes

0.82x1 − 2.36x2, so x∗ =
[
0 2

]
.

Using the line minimization rule, λ = 0.328 and the new point is[
0.948 1.60

]
. (Objective reduced to 0.027)
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Armijo rule

The Armijo rule tries to overcome disadvantages of both MSA (not very
smart) and line minimization (it takes too long).

The Armijo rule does not try to find the value of λ which minimizes f , but
is content to find a value of λ which reduces f “enough.”

This rule is a “trial-and-error” technique, where we try different values of
λ until we find an acceptable one.
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An “acceptable” λ is defined as one for which

f (x)− f (x(λ))

λ
≥ α|f ′(x(0))|

where x(λ) is the new point as a function of λ, and f ′ is the derivative of
f at x, in the direction of x∗.

 Acceptable range

Slope
f'(x(0))

Slope
f'(x(0))
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A good rule of thumb is to set α = 0.1, and to try the sequence
{1, 1/2, 1/4, 1/8, ...} of λ values until one of them is acceptable.

 Acceptable range

Slope
f'(x(0))

Slope
f'(x(0))
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Example

(Conditional gradient plus Armijo rule with α = 0.1). At the initial point[
0 0

]
, the target point was

[
2 2

]
, so

x(λ) = λ
[
2 2

]
+ (1− λ)

[
0 0

]
=

[
2λ 2λ

]
So, f (x(λ)) = (2λ− 1)2 + (2λ− 2)4 and
f ′(x(0)) = 4(2(0)− 1) + 8(2(0)− 2) = −20

For a point to be acceptable in the Armijo rule, the decrease in the
objective function (from 17) divided by λ must be at least 2 = 0.1× 20.

Start by trying λ = 1. In this case, the objective function decreaes to 1;
16/1 > 2 so this point is acceptable and we move to

[
2 2

]
.
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The new point is
[
2 2

]
, the gradient is

[
2 0

]
, so the new target point

minimizes 2x1; say x∗ =
[
0 2

]
.

So, x(λ) =
[
2− 2λ 2

]
, f (x(λ)) = (1− 2λ)2, and

f ′(x(0)) = −4(1− 2(0)) = −4.

For a point to be acceptable in the Armijo rule, the decrease in the
objective function (from 1) divided by λ must be at least 0.4.

If λ = 1, the new point is
[
0 2

]
and the objective function is 1, so there

is no decrease... unacceptable.

If λ = 1/2, the new point is
[
1 2

]
and the objective function is 0; since

(1− 0)/2 > 0.4 this point is acceptable.
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A SURVEY OF
OPTIMIZATION



We started by giving a few examples of optimization problems:

Transit frequency-setting problem

Roadway maintenance scheduling

Shortest path

Facility location

Since then we’ve also seen toll-setting and signal timing problems.
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We then looked at techniques for solving simple kinds of problems:

Stationary points for unconstrained problems — generalized with
Lagrange multipliers and KKT conditions

Line search (bisection and Newton’s) for single dimension problems
— also used for descent method “subproblems” and with a single
Lagrange multiplier
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At the other end of the scale were heuristics for solving very complicated
problems:

Simulated annealing — how does it relate to the descent methods we
just learned?

Genetic algorithms — mimicing biological evolution
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Another place where heuristics have been used is for locating real-time
travel information

Placing these signs in appropriate locations can help keep drivers away from
congestion or accidents, but there is a limited budget for locating these
signs.
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This can also be framed as providing personalized alternate routes through
a mapping service
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Decision variables: 0-1 decision variable for each intersection

Constraint: Budget

Objective: More complicated — has to account for travel time
probability distributions; potentially multiple drivers with
different origins and destinations; and potentially congestion
issues from re-routing.

The objective function was complicated enough that heuristic approaches
(simulated annealing and some tailor-made heuristic) performed much bet-
ter.

Optimization survey A Survey of Optimization



Optimization survey A Survey of Optimization



Network optimization problems were discussed next, because the network
structure shows up often in practice and leads to specialized algorithms.

Minimum spanning tree

Shortest path problem

Maximum flow problem

Minimum cost flow problem

Note that every network optimization problem we saw could also be solved
as a linear (or even nonlinear) program.
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Variants of the shortest path problem show up very frequently in
transportation. Some fancier versions include:

Link costs can change over time

Link costs are random variables which take some probability
distribution

I Minimize expected travel time
I Minimize travel time standard deviation
I Maximize probability of on-time arrival
I Path can update based on real-time information

More than one “cost” (e.g., time, distance, and cost)
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Searching for on-streetparking is a probabilistic shortest path problem.

How can we better manage parking?
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Electric vehicles have the potential to reduce noise, pollution, and energy
consumption.

However, their range is significantly shorter than gasoline vehicles. What
can we do about “range anxiety?”
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From here, we moved to the general linear programming problem. These
are useful both because they can be solved exactly and efficiently (simplex
method) and as the subproblem in the conditional gradient method.

They also lend themselves very easily towards a sensitivity analysis based
on reduced costs and the simplex tableau.
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In transportation, traffic congestion can be approximated by linear
equations

nh ni nj

Cell h i j

yhi yij

(Cell Transmission Model)
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The problem of determining the most efficient way to move a certain
vehicle load through a congestible traffic system can be written as a linear
program which encodes the CTM.
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Finally, we discussed the most general class of nonlinear optimization
problems. When the objective function and feasible region are convex, we
can use descent methods to solve the problem.

Solving nonlinear problems drew on a lot of concepts from elsewhere in the
course: stationary points, line search methods, linear programs, sensitivity
analysis
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How should signals be timed over a network (not just a single
intersection)?
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What is the best way to manage an intersection when there are
autonomous vehicles?

Optimization survey A Survey of Optimization


	Announcements
	A Survey of Optimization

