
Unconstrained Optimization

CE 377K

January 27, 2015



ANNOUNCEMENTS



Exam date and ITE conference
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REVIEW



Example problems: what were the “tricks”?
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min
x

∑
a∈A

taxa

s.t.
∑

a∈A(i)

xa −
∑

a∈B(i)

xa =


1 if i = r

−1 if i = s

0 otherwise

∀i ∈ {1, . . . , I}

xa ∈ {0, 1} ∀a ∈ {1, . . . ,A}
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Optimization problems from your own life?
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SOME DEFINITIONS AND
USEFUL FACTS



A feasible solution x∗ ∈ X is a global minimum of f if f (x∗) ≤ f (x) for all
feasible x, and a global maximum if f (x∗) ≥ f (x) for all feasible x

An optimal solution is a global minimum (for a minimization problem) or a
global maximum (for a maximization problem).
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It is easy to convert back and forth between maximization and
minimization problems. If the feasible set is X , the feasible solution x∗ is a
global maximum of f iff it is a global minimum of −f .

As a result, we do not need to develop different techniques for
maximization or minimization problems. The default convention in this
class is to work with minimization problems.
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Other useful facts:

Constants can be added or subtracted to an objective function
without changing the optimal solutions.

You can multiply an objective function by a nonnegative constant
without changing the optimal solutions.
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UNCONSTRAINED
OPTIMIZATION: ONE

DIMENSION



To start solving optimization problems, first consider optimization
problems with no constraints at all.

In one dimension, the optimization problem is simply minx f (x)

This was the kind of problem you saw in calculus.
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Assume that f is differentiable (and therefore continuous).

A stationary point of f is a value x such that f ′(x) = 0.

A local minimum of f is a value x∗ such that f (x∗) ≤ f (x) for all x in
some open interval (`, h) containing x∗.

(Remember that a global minimum is a value x∗ such that f (x∗) ≤ f (x)
for all x .)
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Every global optimum of f is a local optimum, and if f is differentiable every
local optimum is a stationary point.

Proof sketch. The first half is trivial.

For the second half, argue by contradiction. What if f was differentiable,
but there was some local optimum which was not a stationary point?
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This result does not hold in the opposite direction.

Some examples:

f (x) = −x2

f (x) = x3

So, in general, we can’t hope to find the global minimum by enumerating
all stationary points and seeing which has the least value.
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However, with some additional assumptions on f this approach can work.
One condition (there are others) is that f is coercive.

f is coercive if f (x)→ +∞ as |x | → ∞.

If f is differentiable and coercive, then f has a global minimum, which is
the stationary point with least value of f .

Proof sketch. Differentiability and coercivity imply existence of a global
minimum. Global minima must be local minima, which must be stationary
points.
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Examples:

f (x) = x2 − 3x + 5

f (x) = x4 − 2x2

f (x) = ex + e−x
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UNCONSTRAINED
OPTIMIZATION: MULTIPLE

DIMENSIONS



Similar techniques apply when there is more than one decision variable and
x is a vector.

The equivalent of the derivative is the gradient ∇f , the vector of all first
partial derivatives:

∇f (x) =
[
∂f
∂x1

(x) ∂f
∂x2

(x) · · · ∂f
∂xn

(x)
]

A stationary point is a point where the gradient is the zero vector (all
partial derivatives equal zero)

A coercive function is one that tends to +∞ as

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n →∞
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The same results from the one dimensional case transfer to the
multi-dimensional case:

Every global minimum is a local minimum.

If f is differentiable, then every local minimum is a stationary point.

If f is coercive, then a global minimum exists.

If f is differentiable and coercive, the global minimum is the
stationary point with least objective value.
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Examples:

f (x1, x2) = x2
1 + x2

2

f (x1, x2) = 2x2
1 + x2

2 − x1x2 − 7x2

f (x1, x2) = 1
2x

2
1 − 1

2x
2
2 + x1x2 − 2x1

f (x1, x2) = −x1x2 exp
(
−1

2 (x2
1 + x2

2 )
)
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