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Global minima, local minima, stationary points
Coercive function
One decision variable and multiple decision variables
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ONE-DIMENSIONAL
OPTIMIZATION



Assume we are solving a one-dimensional optimization problem of the form

min
x

f (x)

subject to x ∈ [a, b]

Why do we assume the interval [a, b] is closed?
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Since there are constraints, we need to change the definition of a local
minimum slightly:

x∗ is a local minimum if there is some interval (`, h) containing x∗ such
that f (x∗) ≤ f (x) if x ∈ (`, h) ∩ [a, b].

A one-dimensional function is unimodal on [a, b] if it is continuous and
there is exactly one local minimum in [a, b]

(In this case, the local minimum must also be the global minimum.)

If f is unimodal, there are several line search techniques that can be used
to solve the problem.
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Since there are constraints x ≥ a and x ≤ b, f ′(x) may not be zero at the
optimal solution.

If f is differentiable, there are three possibilities for the optimal solution x∗:

Case I : x ∈ (a, b) and f ′(x) = 0

Case II : x = a and f ′(x) ≥ 0

Case III : x = b and f ′(x) ≤ 0

A line search technique searches over the interval [a, b] in search of a point
satisfying one of these cases.
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There are many different line search techniques that can be used; different
techniques require different assumptions on f .

If f is twice differentiable, Newton’s method is available.

If f is differentiable, the bisection method is available.

If f is merely continuous, the golden section method works.

We’ll cover Newton’s method and bisection in class; the homework will
explore golden section.
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NEWTON’S METHOD



Assume first that the optimum solution happens in the first case, where
f ′(x) = 0.

Then finding the optimum solution is as simple as finding the zero of f ′.

So, if the
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Remember the basic idea of Newton’s method for an arbitrary function g .

Starting with an initial guess x , approximate g with its linear
approximation at that point: g(y) ≈ g(x) + g ′(x)(y − x).

In this case, the zero happens at x − g(x)/g ′(x)

So, we update x ← x − g(x)/g ′(x) and repeat the process.
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Newton’s method will always work if we also assume that f is a convex
function.

If f is twice differentiable, it is convex if f ′′(x) ≥ 0 for all x ∈ [a, b].

(There are more general definitions of convexity we will cover later in this
course.)

What about the constraint x ∈ [a, b]?
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Newton’s method specialized for finding the minimum of a convex, twice
differentiable function f :

1 Make an initial guess x

2 Calculate f ′(x) and f ′′(x)

3 If f ′(x) ≈ 0, stop.

4 Update x ← x − f ′(x)/f ′′(x)

5 If x < a, set x ← a; if x > b set x ← b.

6 Return to step 2.

If f ′′(x) = 0 at some point, move all the way to a if f ′(x) ≥ 0 or all the
way to b if f ′(x) ≤ 0.
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Example

Use Newton’s method to find the minimum of f (x) = (x − 1)4 + ex on the
interval x ∈ [0, 3], performing seven iterations.

The first and second derivatives of f (x) are

f ′(x) = 4(x − 1)3 + ex

and
f ′′(x) = 12(x − 1)2 + ex

.
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As an initial guess, choose the midpoint: x = 1.5. Here f ′(x) = 4.982 and
f ′′(x) = 7.482

The new value of x is 1.5− 4.982/7.482 = 0.834. Here f ′(x) = 2.285 and
f ′′(x) = 2.633

The new value of x is 0.834− 2.285/2.633 = −0.034. This is less than
a = 0, so we set x ← 0.

And so on...
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Iteration x f ′(x) f ′′(x) x − f ′(x)/f ′′(x)

1 1.5 4.982 7.482 0.834
2 0.834 2.285 2.633 −0.034
3 0 −3.000 13.000 0.231
4 0.231 −0.561 8.360 0.298
5 0.298 −0.0375 7.263 0.30304
6 0.30304 −2.058× 10−4 7.1829 0.3030725347
7 0.30307 −6.307× 10−9 7.1825 0.3030725355
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Our discussion to date assumed the optimum solution is the first case.
Does Newton’s method still work in the other cases?
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BISECTION METHOD



Another line search technique is the bisection method.

Advantages and disadvantages, relative to Newton’s:

(+) It only requires the function to be differentiable once, not twice.

(+) It does not require calculation of a second derivative (so each
iteration if faster).

(-) Convergence usually requires more iterations.
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Bisection works by narrowing the interval where the optimum solution
must be found.

Initially, we only know that the optimum solution is somewhere in [a, b].
How can we narrow down the search?

Calculate the value of the derivative f ′(x) at the midpoint x = (a + b)/2.

What does the sign of f ′(x) tell us about where the optimum solution
must be?
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If f ′(x) > 0, then the optimum solution must lie in the lower half of the
interval [a, (a + b)/2].

If f ′(x) < 0, then the optimum solution must lie in the upper half of the
interval [(a + b)/2, b].

(What if f ′(x) = 0?)

We can repeat this process over and over, halving the interval at each
iteration.

Eventually, the interval is narrow enough and we can stop with the
approximate optimum.
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Algorithm

Step 0: Initialize. Set the iteration counter k ← 1, a1 ← a, b1 ← b.

Step 1: Evaluate midoint. Calculate the derivative of f at the middle of
this interval, dk ← f ′((ak + bk)/2)

Step 2: Bisect. If dk > 0, set ak+1 ← ak , bk+1 ← (ak + bk)/2. Otherwise,
set ak+1 ← (ak + bk)/2, bk+1 = b.

Step 3: Iterate. Increase the counter k by 1 and check the termination
criterion. If bk − ak < ε, then terminate; otherwise, return to
step 1.
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Example

Use the bisection method to find the minimum of f (x) = (x − 1)4 + ex on
the interval x ∈ [0, 3], performing seven iterations.

The derivative of f (x) is

f ′(x) = 4(x − 1)3 + ex

.

Initially the interval is [0, 3], and f ′(1.5) = 4.98 > 0

The next interval is [0, 1.5], and f ′(0.75) = 2.05 > 0

The next interval is [0, 0.75], and f ′(0.375) = 0.478 > 0

The next interval is [0, 0.375], and f ′(0.1875) = −0.939 < 0

The next interval is [0, 1875, 0.375], etc.
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k ak bk (ak + bk)/2 dk
1 0 3 1.5 4.98 > 0
2 0 1.5 0.75 2.05 > 0
3 0 0.75 0.375 0.478 > 0
4 0 0.375 0.1875 −0.939 < 0
5 0.1875 0.375 0.28125 −0.160 < 0
6 0.28125 0.375 0.328125 0.175 > 0
7 0.28125 0.328125 0.3046875 0.0116 > 0
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How can we be sure that the bisection method will always work?
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