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Unconstrained optimization
Line search: Newton's method and bisection
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MORE COMPLICATED
PROBLEMS AND
HEURISTICS



Last week we saw techniques for solving simple problems (no constraints,
or a single decision variable.)

Of course, most real-world problems are much more complicated.
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Think back to the problems we formulated in the first week and imagine
the number of decision variables and constraints involved.

Transit frequency setting: 89 decision variables, 189 constraints

Maintenance scheduling: 795,350 decision variables; 1,590,710
constraints

Shortest path: 18,961 decision variables; 26,349 constraints

It is not at all unusual to have tens of thousands, or even millions, of decision
variables and constraints.
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Being able to efficiently solve these kinds of problems requires specialized
techniques, which we will see as the course goes on.

Efficiency

>
Range of application

Remember our rule of thumb: there is a tradeoff between a method’s effec-
tiveness and its generality.
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Some of the most broadly applicable methods are called heuristics (or
sometimes metaheuristics).

A heuristic is not guaranteed to find the global optimum, but often works
well in practice.
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In practice, heuristics are only used for very large problems, or problems
where there is no known exact method which is efficient enough to use.

Sometimes, finding a “good enough” solution in a short amount of time is
better than spending a lot of time to find the exact optimal solution. Why?
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Many heuristic techniques are inspired by the natural world.

Very commonly living systems successfully (if not optimally) accomplish
complicated tasks with relatively simple rules

Simulated Annealing



How do humans find shortest paths?
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How does an ant colony find food sources?
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How does natural selection work?
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This week, we will see two heuristic methods.
e Simulated annealing, which searches through the feasible region in a
half-systematic, half-random way.

@ Genetic algorithms, which maintain a “population” of feasible
solutions which are selectively “bred” with each other.

Unlike last week, we are making no assumptions on the number of decision
variables or constraints.
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SIMULATED ANNEALING



Imagine a hiker walking through a mountainous park area.

The hiker is trying to find the lowest elevation point in the park. (The
park is the feasible region, the elevation profile is the objective function.)
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However, there is a dense fog and the hiker has no map, so they have to
rely on what they can see nearby.

What strategy should they use to try to find the lowest point?
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One approach is to always walk in a downbhill direction.
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The downside of this “local search” strategy is that it is very easy to get
trapped in a local minimum which is not global.
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So, sometimes we need to walk uphill... but we can’t do it all the time.

The simulated annealing algorithm incorporates randomization into local
search.

A typical step of simulated annealing works as follows:

@ Given a current feasible solution x, generate a new feasible solution x’

which is close to x.

e Compare f(x) and f(x'). If x' is better, accept x’ as the new current
solution and repeat.

e If x’ is worse, accept x’ with some probability and repeat. Otherwise,
generate another x’.
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How should this probability be chosen? We run into problems if the
probability is too high or too low.

Simulated annealing uses a parameter T called the temperature to reflect
the probability of moving uphill. When the temperature is high, uphill
moves are more likely to be chosen. When the temperature is low, uphill
moves are unlikely to be chosen. The algorithm uses a cooling schedule to
gradually decrease the temperature over time.

The hope is that having an initially high temperature allows a large portion
of the feasible space to be explored, but that lowering the temperature
ensures that over time there is more and more preference for lower points.

One common formula (not the only choice) for the probability of moving
uphill is exp(—[f(x") — f(x)/T).
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One common cooling schedule is to start with an initial temperature Ty,
and multiply it by a common factor k € (0,1) every n iterations.

Finally, since there is no guarantee that the algorithm will end up in the
lowest point found during the search, you should keep track of the best
solution found so far (call it x*).

This is like the hiker keeping a record of their journey, and at the end of
their search returning to the lowest point found so far. J
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Then, the entire algorithm is:
@ Choose some initial feasible solution x € X, and calculate the value of
the objective function f(x).
@ Initialize the best solution to the initial one x* + x.
© Set the temperature to the initial temperature: T < Ty

@ Repeat the following steps n times:
(a) Randomly generate a new feasible solution x” which neighbors x.
(b) If £(x") < f(x*), it is the best solution found so far, so update x* + x’.
(c) If f(x") < f(x), it is a better solution than the current sone, so update

X+ x.

(d) Otherwise, update x <— x’ with probability exp(—[f(x") — f(x)]/T)

@ If T > Ty, then reduce the temperature (T < kT) and return to
step 4.

O Report the best solution found x*
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Some questions:

@ How should the cooling schedule be chosen? Hard to give general
guidance, very problem-specific. Trial and error is common.

@ How should the initial solution be chosen? If you can come up
with a good rule of thumb quickly, use it. Otherwise, just randomize.

e What is a neighboring solution? Again problem-specific; should be
similar to the current solution, but should eventually be able to reach
any other feasible point.

@ How can | perform an action with probability p?

Generate a uniform random number between 0 and 1, perform the
action if that number is less than p.
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Some neighborhood examples:
o Transit frequency setting: Swap two buses between their routes.

@ Maintenance scheduling: Swap two facilities to be maintained
during a given year.

@ Facility location: Change the location of one of the three facilities.

These are not the only choices! It's a good exercise to think up someJ
others.
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EXAMPLE



Let's return to the facility location problem. In this instance, there are 100
eligible facility locations (costs shown below):
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Here are the locations of the 30 customers.
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Through trial and error, the following cooling schedule was chosen:

Initial temperature Ty = 1000

o Final temperature T = 100

@ Temperature reduction factor k = 0.75
o

Iterations before reducing temperature n = 8
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Initial solution: locate facilities at (5,1), (8,6), and (6,1), objective is 158.

Randomly generate neighboring solution (5,1), (8,6), (1,0), which has cost
136.4

This cost is lower, so accept this as the new current solution.

Randomly generate neighboring solution (8,2), (8,6), (1,0), which has cost
149.1.

The cost is higher, the probability of accepting this move is 0.881.

Assume this move is rejected, generate another neighboring solution from
the same point and repeat.
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