
Networks and Algorithms

CE 377K

February 10, 2015

REVIEW

HW 1 due Thursday

Networks and Algorithms Review

Simulated annealing and genetic algorithms

Networks and Algorithms Review

NETWORK OPTIMIZATION

A network is a mathematical object consisting of nodes connected by links.

Bus stop

Bus route

Park-and-ride Park-and-ride

Bus stop

Roadway link
Bus route link
Transfer link

Physical infrastructure Network representation

The set of nodes is N, the set of links is A, and the network is denoted
G = (N,A)

Networks and Algorithms Network Optimization

Networks are used to represent many types of systems:

Transportation infrastructure

Telecommunications and computer networks

Power grids

Project structure and task dependencies

Social connections among people

Since there is a common structure among all of these systems, it is very
worthwhile to study optimization problems on abstract networks.

Networks and Algorithms Network Optimization

Nodes are typically denoted i , j , etc.

Links are typically denoted (i , j), where i is the upstream node (the tail)
and j is the downstream ndoe (the head).

A path is a sequence of nodes, typically denoted [i , j , · · · , z], where there
is a link connecting each consecutive pair of nodes.

A network is strongly connected if there is a path between every pair of
nodes in the network.

A network is weakly connected if adding “mirrors” to each link would
make it strongly connected.

Networks and Algorithms Network Optimization

A path is a cycle if its start and end nodes are the same.

A network is acyclic if it contains no cycles.

A network is a tree if it contains no cycles even when “mirrors” are added.

A network is a spanning tree if it is a tree and is weakly connected.

There are slightly different versions of this terminology in use. This slide is
the convention for this class.

Networks and Algorithms Network Optimization

In many network problems, we introduce additional information for nodes
and links. (Not all problems use all of these.)

A link (i , j) may have a flow xij , a cost cij , and a capacity uij . (Rarely, a
link may have a lower bound `ij on its flow.)

A node i may have a supply or demand bi . (Positive for supply, negative
for demand.)

A node with supply is a source, a node with demand is a sink.

We have already seen the notation A(i) and B(i) for the sets of links
leaving and entering node i .

Networks and Algorithms Network Optimization

SOME NETWORK
PROBLEMS

Minimum Spanning Tree

Identify a subset of links which form a spanning tree, where the total cost
of the links in the tree is minimized.

Networks and Algorithms Some network problems

Applications

Building roads in rural areas

Providing utilities and other infrastructure

Espionage networks, passing messages between spies

Networks and Algorithms Some network problems

Shortest Path Problem

Identify a path connecting a given origin and destination, where the total
cost of the links in the path is minimized.

Networks and Algorithms Some network problems

Applications

Vehicle routing

Critical path analysis in project management

Six degrees of Kevin Bacon

Networks and Algorithms Some network problems

Maximum Flow Problem

What is the greatest amount of flow that can be shipped between a given
source and sink without exceeding link capacities?

Networks and Algorithms Some network problems

Applications

Determining the capacity of a network

Identifying critical links in a network

Rounding a matrix

Networks and Algorithms Some network problems

Minimum Cost Flow Problem

Respecting capacities, find link flows which balance supply and demand
among sources and sinks, with minimum total cost.

Networks and Algorithms Some network problems

Applications

Logistics and shipping

Earthwork in roadway construction

Passenger selection in ridesharing

Networks and Algorithms Some network problems

Traveling Salesman Problem

Find a path which passes through all nodes and returns to the origin with
minimum total cost.

Networks and Algorithms Some network problems

ALGORITHMS AND
COMPLEXITY

Several times in this class, we’ve alluded to the large size of real-world
optimization problems.

Now that we are looking at specific types of problems and algorithms, we
can more precisely relate the size of a problem to the time it takes to solve
it.

Networks and Algorithms Algorithms and Complexity

More specifically, we are given both a problem and a solution algorithm,
and want to know how long it takes to solve it.

Example. In the bisection method, if the initial interval has a width of 10,
how many iterations will it take before the optimal solution is known to
within 0.1? Within 0.01?

Networks and Algorithms Algorithms and Complexity

In network optimization problems, the time is usually expressed in terms of
the number of links m and the number of nodes n, although it can depend
on other problem features as well.

A few difficulties:

The number of steps can vary, even for problems of the same size.
(Sometimes we are lucky, sometimes we are not.)

It can be difficult to calculate the exact number of steps required.

The solution to these difficulties is the use of “big O” notation.

Networks and Algorithms Algorithms and Complexity

The big O notation is used to express the worst case behavior as the
problem grows asymptotically larger and larger.

Formally, a function f (x) is O(g(x)) if f (x) ≤ Cg(x) for some constant
g(x) and when x is sufficiently large.

Examples.

x2 + 2x + 100 is O(x2)

3(x − 2)3 is O(x3)

3(x − 2)3 is O(x4)

x1000 + ex is O(ex)

Networks and Algorithms Algorithms and Complexity

It is often much easier to calculate the number of steps an algorithm needs
in terms of “big O” notation, for a few reasons:

We don’t have to keep track of details, only the most significant
terms.

If something is difficult to calculate, we can work with upper bounds.

Examples.

If a network has no “parallel” links, m is O(n2).

If the number of links adjacent to each node is no more than a
constant, m is O(n).

Networks and Algorithms Algorithms and Complexity

Over the next few weeks, as we see different kinds of network algorithms
we will be comparing their big-O complexity as well.

(This is surprisingly important. Even switching from an O(n2) to an
O(n log n) algorithm can make a huge difference for large problems.)

A “brute force” solution to the shortest path problem is to list off all
possible paths between two nodes in a network. What is the complexity of
this?

This method is O(n!) — you really don’t want to do this. In fact you can
solve this problem easily in O(n2) time, and can reduce this further by
being clever.

Networks and Algorithms Algorithms and Complexity

If the big-O complexity of an algorithm is polynomial in the problem size,
it is said to be a polynomial algorithm (in P).

Intuitively, problems in P are “easy” while problems not in P are
considered “hard.”

Interestingly: the shortest path problem is in P, but not the longest path
problem or the traveling salesperson problem.

The minimum spanning tree, shortest path, maximum flow, and minimum
cost flow problems are also in P.

This is related to one of the biggest open problems in computer science. If
you can find a polynomial algorithm for the traveling salesperson problem,
you will win a $1 million prize and almost certainly win the Nobel prize in
economics.

Networks and Algorithms Algorithms and Complexity

	Review
	Network Optimization
	Some network problems
	Algorithms and Complexity

