
Minimum Spanning Trees

CE 377K

February 17, 2015

REVIEW

HW 2 coming soon

Minimum Spanning Trees Review

Trees and spanning trees

Big O notation

n and m

Basic search algorithm

Minimum Spanning Trees Review

Algorithm

1 Set C (r)← {r}
2 Initialize the scan eligible list SEL← {r}
3 Choose some node i ∈ SEL and remove it from SEL.
4 “Scan” node i by repeating the following steps for each link

(i , j) ∈ A(i):
1 If node j is not in C (r), add it to SEL: SEL← SEL ∪ {j}
2 Mark node j as reachable: C (r)← C (r) ∪ {j}

5 If SEL is empty, terminate. Otherwise, return to step 3.

Minimum Spanning Trees Review

Proof of correctness

To show that an algorithm is “correct” we must show two things:

It must eventually terminate.

When it terminates, it must have the correct answer.

Minimum Spanning Trees Review

How do we know that our search algorithm terminates?

At each iteration, one node is removed from SEL.

If the algorithm does not terminate, this means that some node must be
added to SEL infinitely many times.

However, a node is only added to SEL if it is not already in C (r), and then
it is added to C (r) immediately afterwards.

Therefore, no node can enter SEL more than once.

So the algorithm must terminate.

Minimum Spanning Trees Review

How do we know that it terminates with the right answer?

By contradiction, assume that when the algorithm terminates C (r) is not
the set of all nodes connected to r .

There are two possibilities. C (r) either contains nodes which are not
connected to r , or there are nodes connected to r not in C (r).

For the first case, we can show that at any point in time C (r) only
contains nodes connected to r . (It does so upon initialization, and nodes
are only added to C (r) when there is a link to that node from another
node connected to C (r))

For the second case, assume that there is some path between r and i but
i /∈ C (r) when the algorithm terminates. Find the last node j in the path
which is in C (r), so the next node in the path k is not in C (r).

When j was added to C (r), it was also added to SEL. Since the algorithm
terminated, j must have been removed from SEL and scanned.

When this happened, k would have been added to both SEL and C (r), a
contradiction.

Minimum Spanning Trees Review

Complexity

We have already shown that nodes are scanned at most once.

When node i is scanned, we must perform 3|A(i)| steps (checking if a
node is in SEL, adding it to SEL if not, and adding it to C (r).)

So at worst
∑

i∈N 3|A(i)| = 3m computations are performed, which is
O(m).

Minimum Spanning Trees Review

As stated, the algorithm only determines whether or not paths exist
between i and other nodes, it does not actually tell you what the paths are.

Is there some way to modify the algorithm to provide specific connecting
paths as well?

Minimum Spanning Trees Review

MINIMUM SPANNING
TREES

Minimum Spanning Tree

Identify a subset of links which form a spanning tree, where the total cost
of the links in the tree is minimized.

Minimum Spanning Trees Minimum Spanning Trees

Applications

Building roads in rural areas

Providing utilities and other infrastructure

Espionage networks, passing messages between spies

Minimum Spanning Trees Minimum Spanning Trees

In the minimum spanning tree problem, the direction of all links is ignored.
(This is called an undirected network.) Connections can go in either
direction.

How many links must be in a spanning tree?

In any spanning tree, adding a link will create exactly one cycle.

In a minimum spanning tree, any new link which is added must have a
cost at least equal to the maximum cost of the other links in that cycle.

Minimum Spanning Trees Minimum Spanning Trees

PRIM’S ALGORITHM

Example

Minimum Spanning Trees Prim’s Algorithm

Notation

Let G = (N,A) be the original network; let T = (NT ,AT) be the links in
the spanning tree.

At first T is empty, but over time NT and AT will grow.

T is called a subnetwork of G , because NT ⊆ N and AT ⊆ A.

A link is admissible if exactly one of its end nodes is in NT .

Minimum Spanning Trees Prim’s Algorithm

Algorithm

(Assumes that the network is connected.)

1 Arbitrarily choose some root note s.

2 Initialize NT ← {s}, AT ← ∅
3 Identify all of the admissible links; if there are none, terminate.

4 Choose an admissible link (u, v) with minimum cost. (Assume u is in
NT , but not v .)

5 Add this link to the tree: NT ← NT ∪ {v}, AT ← AT ∪ (u, v)

6 Return to step 3.

Minimum Spanning Trees Prim’s Algorithm

Correctness

Does it terminate?

Each iteration adds an admissible link to the tree. By doing so, one more
node is added to the tree.

After n − 1 admissible links have been added, NT = N.

There are no more admissible links at this point, so the algorithm must
terminate.

Minimum Spanning Trees Prim’s Algorithm

Correctness

When it terminates, do we have a minimum spanning tree?

There are three ways it can go wrong: at termination, T might not be a
tree; or it might be a tree, but not a spanning tree; or it might be a
spanning tree, but not a minimum cost one.

Is T a tree? Only admissible links are added; admissible links have one end
node not in NT , so no cycles are created.

Is T a spanning tree? Since the network is connected, if NT 6= N then
there must be an admissible link.

Minimum Spanning Trees Prim’s Algorithm

Must T be a minimum spanning tree? Here is a proof sketch (with some
handwaving).

Assume not, and let T ′ be a minimum spanning tree.

Let (u, v) be the first link chosen by the algorithm which is not part of T ′.

Let (u, v ′) be a link connected to u in T (with v 6= v ′)

Since Prim’s algorithm chose (u, v), cuv ≤ cuv ′ .

If cuv < cuv ′ , it could be swapped into T ′ to reduce its cost (eliminating
another link on the cycle created.) However this is impossible since T ′ is a
minimum spanning tree.

Therefore, cuv = cuv ′ whenever the algorithm chooses a link not part of
T ′, so its total cost is the same.

Minimum Spanning Trees Prim’s Algorithm

Complexity

There are O(n) iterations (technically n − 1).

At each iteration, we must identify all admissible links (of which there are
at most m), and identify one with minimum cost (which again takes m
steps).

So, Prim’s algorithm is O(nm).

There are more clever ways of identifying admissible links and finding one
with minimum cost, which can reduce the running time to O(m log n) or
O(m+n log n). These do so by avoiding “duplication of effort” in subsequent
iterations.

Minimum Spanning Trees Prim’s Algorithm

	Review
	Minimum Spanning Trees
	Prim's Algorithm

