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1 Convex Functions

In general, it is difficult to find the optimum value with a nonlinear objective function. For instance,
the function in Figure 1 has many local minima and is unbounded below as x → −∞, both of
which can cause serious problems if we’re trying to minimize this function. Usually, the best that
a software program can do is find a local minimum. If it finds one of the local minima for this
function, it may not know if there is a better one somewhere else (or if there is, how to find it).
Or if it starts seeking x values which are negative, we could run into the unbounded part of this
function.

Figure 1: A function which is not convex.

On the other hand, some functions are very easy to minimize. The function in Figure 2 only has
one minimum point, is not unbounded below, and as we will see in the coming weeks, there are
many algorithms which can find that minimum point efficiently.

What distinguishes these is a property called convexity. Confusingly, the word convex can refer to
both functions and sets, and it has two distinct meanings. This section focuses on convex functions,
while the next section focuses on convex sets. They are similar, however, in that convex functions
and convex sets are extremely desirable. If the feasible region is a convex set, and if the objective
function is a convex function, then it is much easier to find the optimal solution.

Geometrically, a convex function lies below its secant lines. Remember that a secant line is the line
segment joining two points on the function. As we see in Figure 3, no matter what two points we
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Figure 2: A convex function.

pick, the function always lies below its secant line. On the other hand, in Figure 4, not every secant
line lies above the function: some lie below it, and some lie both above and below it. Even though
we can draw some secant lines which are above the function, this isn’t enough: every possible secant
must lie below the function.

The following definition makes this intuitive notion formal, using mathematical language:

Definition 1. A function f : X → R is convex if, for every x1, x2 ∈ X and every λ ∈ [0, 1],

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) (1)

and strictly convex if
f((1− λ)x1 + λx2) < (1− λ)f(x1) + λf(x2) (2)

for all distinct x1, x2 ∈ X,λ ∈ (0, 1)

Essentially, x1 and x2 are the two endpoints for the secant line. Since this entire line segment must
be above the function, we need to consider every point between x1 and x2. This is what λ does:
as λ varies between 0 and 1, the points λx2 + (1− λ)x1 cover every point between x1 and x2. You
can think of λx2 + (1− λ)x1 as a “weighted average,” where λ is the weight put on x2. For λ = 0,
all the weight is on x1. For λ = 1, all the weight is on x2. For λ = 1/2, equal weight is put on the
two points, so the weighted average is the midpoint. λ = 1/3 corresponds to the point a third of
the way between x1 and x2.

So we need to say that, at all such intermediate x values, the value of f is lower than the y-
coordinate of the secant. The value of the function at this point is simply f((1 − λ)x1 + λx2).
Because the secant is a straight line, its y-coordinate can be seen as a weighted average of the
y-coordinates of its endpoints, that is, f(x1) and f(x2). This weighted average can be written as
(1− λ)f(x1) + λf(x2), so requiring the function to lie below the secant line is exactly the same as
enforcing condition (1) for all possible secant lines: that is, for all x1, x2 ∈ X and all λ ∈ [0, 1].
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Figure 3: A convex function lies below all of its secants.

Figure 4: A nonconvex function does not lie below all of its secants.
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Figure 5: All of the relevant points for the definition of convexity.

Figure 5 explains this in more detail. Along the horizontal axis, the secant endpoints x1 and x2 are
shown, along with an intermediate point λx2 + (1−λ)x1. The y-coordinates are also shown: at the
endpoints, these are f(x1) and f(x2). At the intermediate point, the y-coordinate of the function
is f(λx2 + (1 − λ)x1), while the y-coordinate of the secant is λf(x2) + (1 − λ)f(x1). Because the
function is convex, the former can be no bigger than the latter. Time spent studying this diagram
is very well spent. Make sure you understand what each of the four points marked on the diagram
represents, and why the given mathematical expressions correctly describe these points. Make sure
you see what role λ plays: as λ increses from 0 to 1, the central vertical line moves from x1 to x2.
(What would happen if we picked x1 and x2 such that x1 > x2? What if x1 = x2?)

Example 1. Is the function f(x) = |x|, x ∈ R convex? Is it strictly convex?

Solution. To see if f is convex, we need to see if (1) is true; to see if it is strictly convex, we
need to check (2). Furthermore, these inequalities have to be true for every x1, x2 ∈ R, and every
λ ∈ [0, 1]. It is not enough to simply pick a few values randomly and check the equations. So, we
have to work symbolically. In this case,

f((1− λ)x1 + λx2) = |(1− λ)x1 + λx2|
≤ |(1− λ)x1|+ |λx2| by the triangle inequality

= (1− λ)|x1|+ λ|x2| because λ, 1− λ ≥ 0

= (1− λ)f(x1) + λf(x2)

Therefore (1) is satisfied, so f is convex. To show that it is strictly convex, we would have to show

4



that the inequality
|(1− λ)x1 + λx2| ≤ |(1− λ)x1|+ |λx2|

can be replaced by a strict inequality <. However, we can’t do this: for example, if x1 = 1,
x2 = 2, λ = 0.5, the left side of the inequality (|1/2 + 2/2| = 3/2) is exactly equal to the right side
(|1/2|+ |2/2| = 3/2). So f is not strictly convex. �

Note that proving that f(x) is convex requires a general argument, where proving that f(x) was not
strictly convex only required a single counterexample. This is because the definition of convexity is
a “for all” or “for every” type of argument. To prove convexity, you need an argument that allows
for all possible values of x1, x2, and λ, whereas to disprove it you only need to give one set of values
where the necessary condition doesn’t hold.

Example 2. Show that every affine function f(x) = ax + b, x ∈ R is convex, but not strictly
convex.

Solution.

f((1− λ)x1 + λx2) = a((1− λ)x1 + λx2) + b

= a((1− λ)x1 + λx2) + ((1− λ) + λ)b

= (1− λ)(ax1 + b) + λ(ax2 + b)

= (1− λ)f(x1) + λf(x2)

So we see that inequality (1) is in fact satisfed as an equality. That’s fine, so every affine function
is convex. However, this means we can’t replace the inequality ≤ with the strict inequality <, so
affine functions are not strictly convex. �

Sometimes it takes a little bit more work, as in the following example:

Example 3. Show that f(x) = x2, x ∈ R is strictly convex.

Solution. Pick x1, x2 so that x1 6= x2, and pick λ ∈ (0, 1).

f((1− λ)x1 + λx2) = ((1− λ)x1 + λx2)
2

= (1− λ)2x21 + λ2x22 + 2(1− λ)λx1x2

What to do from here? Since x1 6= x2, (x1−x2)2 > 0. Expanding, this means that x21+x22 > 2x1x2.
This means that

(1− λ)2x21 + λ2x22 + 2(1− λ)λx1x2 < (1− λ)2x21 + λ2x22 + (1− λ)(λ)(x21 + x22)

= (1− 2λ− λ2 + λ+ λ2)x21 + (λ− λ2 + λ2)x22

= (1− λ)x21 + λx22

= (1− λ)f(x1) + λf(x2)

which proves strict convexity. �

This last example shows that proving convexity can be difficult and nonintuitive, even for simple
functions like x2. The good news is that oftentimes there are simpler conditions that we can check.
These conditions involve the first and second derivatives of a function.
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Figure 6: A convex function lies above its tangents.

Proposition 1. Let f : X → R be a function, where X ⊆ R, 1 and let f be differentiable on X.
Then f is convex if and only if

f(x2) ≥ f(x1) + f ′(x1)(x2 − x1)

for all x1, x2 ∈ X.

Proposition 2. Let f : X → R be a function, where X ⊆ R, and let f be twice differentiable on
X. Then f is convex if and only if f ′′(x) ≥ 0 for all x ∈ X

Equivalent conditions for strict convexity can be obtained in a natural way, changing ≥ to > and
requiring that x1 and x2 be distinct in Proposition 1. If you’re interested, I can provide you with
detailed proofs of these statements but in my opinion they are not particularly instructive given
their length. Essentially, Proposition 1 says that f lies above its tangent lines (Figure 6), while
Proposition 2 says that f is always “curving upward.” (A convex function lies above its tangents,
but below its secants.)

These conditions are usually easier to verify than that of Definition 1.

Example 4. Show that f(x) = x2 is strictly convex using Proposition 1

Solution. Pick any x1, x2 ∈ R with x1 6= x2. We have f ′(x1) = 2x1, so we need to show that

x22 > x21 + 2x1(x2 − x1)

Expanding the right-hand side and rearranging terms, we see this is equivalent to

x21 − 2x1x2 + x22 > 0

1This is a fancy mathematical way of saying that f is a function of one variable only
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or
(x1 − x2)2 > 0

which is clearly true since x1 6= x2. Thus f is strictly convex. �

Example 5. Show that f(x) = x2 is strictly convex using Proposition 2

Solution. f ′′(x) = 2 > 0 for all x ∈ R, so f is strictly convex. �

Much simpler! If f is differentiable (or, better yet, twice differentiable) checking these conditions
is almost always easier.

Furthermore, once we know that some functions are convex, we can use this to show that many
other combinations of these functions must be convex as well.

Proposition 3. If f and g are convex functions, and α and β are positive real numbers, then
αf + βg is convex as well.

Proposition 4. If f and g are convex functions, then f ◦ g is convex as well.

Some common convex functions are |x|, x2, ex, and ax+b. So, Proposition 3 tells us that 3x2 +4|x|
is convex. It also tells us that any quadratic function ax2 + bx + c is convex as long as a > 0.
Proposition 4 says that the composition of two convex functions is convex as well. For instance,
ex

2
is convex, and x4 = (x2)2 is convex as well.

What about functions of more than one variable? The “shortcut” conditions in Propositions 1
and 2 only apply if the domain of f is one-dimensional. It turns out that very similar conditions
can be given for the multivariable case. The multi-dimensional equivalent of the first derivative is
the gradient ∇f , which is the vector of all partial derivatives:

∇f ≡
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]
and the equivalent of the second derivative is the Hessian H(f), which is the matrix of all second
partial derivatives:

H(f) =



∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n


For example, if f(x1, x2) = x1 + 3x21x

2
2, the gradient is ∇f = [1 + 6x1x

2
2, 6x

2
1x2], and the Hessian is

H(f) =

[
6x22 12x1x2

12x1x2 6x21

]
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Note that the Hessian is symmetric if all of the second partial derivatives are continuous, due to
Clairaut’s theorem.

The equivalent conditions on convexity are

Proposition 5. Let f : X → R be a function whose gradient exists everywhere on X. Then f is
convex if and only if

f(x2) ≥ f(x1) +∇f(x1)(x2 − x1)
for all x1, x2 ∈ X.

Proposition 6. Let f : X → R be a function whose Hessian exists everywhere on X. Then f is
convex if and only if H(f) is positive semidefinite2 for all x ∈ X

Unfortunately, neither of these is as easy to check as the single-dimension equivalents. In particular,
it is rather tedious to check whether or not a matrix is positive semidefinite or not. For this reason,
in this class I will not ask you to check the convexity of a function of more than one variable.

2 Convex Sets

The previous section discussed, in much detail, what it means for a function to be convex. We
also need to talk about what it means for a set to be convex, in particular, the feasible set for an
optimization problem. The good news is that set convexity is usually much simpler to prove than
function convexity.

Let X be any subset of Rn (that is, X is an n-dimensional set). If X is convex, geometrically this
means that line segments connecting points of X lie entirely within X. For example, the set in
Figure 7 is convex, while those in Figure 8 and Figure 9 are not. Intuitively, a convex set cannot
have any “holes” punched into it, or “bites” taken out of it.

Mathematically, we write this as follows:

Definition 2. A set X ⊆ Rn is convex if, for all x1, x2 ∈ X and all λ ∈ [0, 1], the point λx2 + (1−
λ)x1 ∈ X.

(There is no such thing as “strict convexity” for sets.)

The definition of set convexity has several similarities with the definition of function convexity. Both
involve a condition that has to be satisfied for all pairs of points x1 and x2, and for some scalar
λ ∈ [0, 1]. This happens because both definitions involve line segments: for function convexity, the
secant line segment must lie above the function. For set convexity, the line segment between any
two points in the set must lie within the set. One of the most convenient ways to express the line
segment between any two points is λx2 + (1 − λ)x1, since you will cover the entire line between
x1 and x2 as λ varies between 0 and 1, regardless of how close or far apart these two points are
located.

2A symmetric matrix A is positive semidefinite if xTAx ≥ 0 for all x ∈ Rn.
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Figure 7: A convex set.

Figure 8: A nonconvex set with a “bite” taken out of it.
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Figure 9: A nonconvex set with a “hole” in it.

Example 6. Show that the one-dimensional set X = {x : x ≥ 0} is convex.

Solution. Pick any x1, x2 ≥ 0 and any λ ∈ [0, 1]. Because x1, x2, and λ are all nonnegative, so
are λx2, (1− λ)x1, and therefore so is λx2 + (1− λ)x1. Therefore λx2 + (1− λ)x1 belongs to X as
well. �

Example 7. Show that the hyperplane X = {x :
∑n

i=1 aixi − b = 0} is convex.

Solution. This set is the same as {x :
∑n

i=1 aixi = b} Pick any x1, x2 ∈ X and any λ ∈ [0, 1].
Then

n∑
i=1

ai(λ(x2)i + (1− λ)(x1)i) = λ

n∑
i=1

ai(x2)i + (1− λ)

n∑
i=1

ai(x1)i

= λb+ (1− λ)b

= b

so λ(x2)i + (1− λ)(x1)i ∈ X as well. �

Although proving set convexity is usually easier than proving function convexity, sometimes com-
plicated arguments are still needed.

Example 8. Show that the two-dimensional ball B = {[x, y] : x2 + y2 ≤ 1} is convex.

Solution. Pick any b1, b2 ∈ B and any λ ∈ [0, 1]. The point λb2 + (1 − λ)b1 is the vector
[λ(b2)x + (1 − λ)(b1)x, λ(b2)y + (1 − λ(b1)y). To show that it is in B, we must show that the sum
of the squares of these components is no greater than 1.

(λ(b2)x + (1− λ)(b1)x)2 + (λ(b2)y + (1− λ(b2)y))2

= λ2((b2)
2
x + (b2)

2
y) + (1− λ)2((b1)

2
x + (b1)

2
y) + 2λ(1− λ)((b1)x(b2)x + (b1)y(b2)y)

≤ λ2 + (1− λ)2 + 2λ(1− λ)((b1)x(b2)x + (b1)y(b2)y)
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because b1, b2 ∈ B (and therefore and (b2)
2
x + (b2)

2
y ≤ 1). Notice that (b1)x(b2)x + (b1)y(b2)y is

simply the dot product of b1 and b2, which is equal to ||b1||||b2|| cos θ, where θ is the angle between
the vectors b1 and b2. Since ||b1|| ≤ 1, ||b2|| ≤ 1 (by definition of B), and since cos θ ≤ 1 regardless
of θ, (b1)x(b2)x + (b1)y(b2)y ≤ 1. Therefore

λ2 + (1− λ)2 + 2λ(1− λ)((b1)x(b2)x + (b1)y(b2)y)

≤ λ2 + (1− λ)2 + 2λ(1− λ) = (λ+ (1− λ))2 = 1

so the point λb2 + (1− λ)b1 is in B regardless of the values of b1, b2, or λ. Thus B is convex. �

Example 9. Show that the complement of the ball BC = {[x, y] : x2 + y2 > 1} is not convex.

Solution. Let b1 = [2, 0], b2 = [−2, 0], λ = 1/2. Then λb2 + (1 − λ)b1 = [0, 0] /∈ BC even though
b1, b2 ∈ BC and λ ∈ [0, 1]. Therefore BC is not convex. �

Again, notice that proving that a set is convex is harder and requires showing that something is
true for all possible values of x1, x2 ∈ X, and λ ∈ [0, 1], whereas disproving convexity only requires
you to pick one set of these values where the definition fails.

Even though convex sets are different than convex functions, they are very closely related:

Proposition 7. If g : Rn → R is a convex function, then the set X = {x : g(x) ≤ 0 is a convex
set.

Proposition 8. If the sets X1 and X2 are convex, then the set X = X1 ∩X2 is convex as well.

These last two propositions are extremely important for letting us verify whether the feasible region
for a nonlinear program is convex.

Theorem 1. Consider a nonlinear program in standard form. If g1(x), . . . , gl(x) are convex func-
tions, and if h1(x), . . . , hm(x) are hyperplanes, then the feasible region X = {x ∈ Rn : gi(x) ≤
0, hj(x) = 0, i ∈ {1, . . . , l}, j ∈ {1, . . . ,m}} is convex.

Proof. Let Yi = {x ∈ Rn : gi(x ≤ 0} represent the values of x which satisfy the i-th inequality
constraint, and let Zj = {x ∈ Rn : hi(x = 0} be the values of x which satisfy the j-th equality
constraint. From Proposition 7, all of the sets Yi are convex. From Example 7, all of the sets Zj are
convex. The feasible region X is the set of vectors x which satisfy all of the inequality and equality
constraints, that is, the intersection of all of the sets Yi and Zj . By Proposition 8, therefore, X is
convex.

This is a very common situation in nonlinear optimization, where the functions representing the
inequality constraints are convex, and the functions representing equality constraints are hyper-
planes. From this theorem, this means that the feasible region must be convex. This is one reason
why the standard form is relevant! If the inequality constraints were written as g′(x) ≥ 0, just
because the g are convex would not mean that the feasible region is convex.3

3You can’t flip the inequality in Proposition 7, that is, just because g is convex, it is not true that X = {x : g(x) ≥ 0
is convex.
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