
Notes on Linear Programming
CE 377K

Stephen D. Boyles
Spring 2015

1 Introduction

Linear programs are a special class of optimization problem, with restrictions that both the objective
function and constraints are linear (technically, affine1) functions of the vector of decision variables
x. The special structure of linear programs allows us to use specialized methods which are fast,
and proven to find the exact optimal solution in a finite number of iterations.

The quintessential algorithm for solving linear programs is the simplex method, which has an
intuitive geometric interpretation and is amenable to efficient computer implementation. A compact
representation of this algorithm demands a new standard form for linear programs, described in the
following section. The simplex method works by considering extreme points of the feasible region
(a well-defined notion if all of the constraints are linear). This is not restrictive: an examination of
the geometry of linear programs shows that if a finite optimal solution exists, one of the extreme
points must be optimal. The simplex tableau is a compact and efficient form for performing the
simplex algorithm’s manipulations.

One other advantage of linear programs is the ease of performing sensitivity analysis: that is, how
would the objective function and optimal decision change if some of the input problem data were
to change; this is covered at the end of these notes.

Certain examples in these notes were adapted from Introduction to Linear Optimization, by Bert-
simas and Tsitsiklis.

1The difference is that a linear function cannot include a constant term, while an affine function can. For instance,
f(x) = 3x + 2 is affine but not linear, while f(x) = 3x is both affine and linear. However the word “linear” is often
used for both cases.

1

2 What is a linear program?

The standard form of a linear program is

min
x1,...,xn

n∑
i=1

cixi

s.t.

n∑
i=1

ai1xi = b1

...
n∑

i=1

aimxi = bm

x1, . . . , xn ≥ 0

Notice that all of the constraints are equalities (rather than inequalities), and that each decision
variable is required to be nonnegative. Depending on the problem, it may take some effort to
transform a given linear problem to standard form. The following are common “tricks” for doing
so:

Inequality constraints: A constraint of the form
∑n

i=1 aijxi ≤ bj can be converted to standard
form by adding a new slack variable xn+1, rewriting the constraint as

∑n
i=1 aijxi +xn+1 = bj

and requiring xn+1 ≥ 0. Similarly, if
∑n

i=1 aijxi ≥ bj , then the constraint can be rewritten as∑n
i=1 aijxi−xn+1 = bj with xn+1 ≥ 0. The slack variable can be interpreted as the “distance”

between the actual value of the left hand side, and its upper or lower bound. We are justified
in making this a decision variable: when we decide one, we decide the other, so the original
problem is essentially unchanged.

Free variables: If a variable xi is not constrained to be nonnegative in the original problem,
we can introduce a new pair of nonnegative decision variables x+

i and x−i , and substitute
xi = x+

i − x
−
i throughout the problem. One can interpret x+

i as the “positive” component
of xi and x−i the “negative component.” If we want xi to be positive, we could set x+

i = xi
and x−i = 0. If xi is negative, we could set x+

i = 0 and x−i = |xi|. Either way, these two
nonnegative variables can represent the original free variable.

The standard form is important because of the simplex algorithm; so unless we’re using this algo-
rithm, there is no need to write a linear program in standard form.

A more compact way to write a standard-form linear program is to use vector/matrix notation:

min
x

c · x

s.t. Ax = b

x ≥ 0

where x, c ∈ Rn, A is a m×n matrix, and b ∈ Rm with m and n denoting the number of constraints
and decision variables, respectively.

2

3 Linear Programming Geometry

Because all of the constraints are linear functions, the feasible region will have well-defined corner
points defined by the intersection points of the constraint equations. (Figure 1). The corner points
are usually called extreme points, which are defined as points not belonging to the interior of any line
segment in the feasible set. Figure 1 shows some examples of these: points A and B are not extreme
points, since they lie on the interior of feasible line segments, while points C and D are extreme
points since they must be an endpoint of any feasible line segment containing them. Clearly, if the
problem is feasible, the number of extreme points is finite. Extreme points are important because
of the following result:

Theorem 1. If a linear program has a global optimal solution and the feasible region has an extreme
point, at least one of the extreme points is globally optimal.

Here is some quick (but imprecise) justification for the theorem: let x∗ represent a globally optimal
solution to a linear programming problem, and let x represent any extreme point. We assume x∗ is
not an extreme point, or else the theorem is trivial. Construct the function f(λ) = c·((1−λ)x∗+λx).
When λ ∈ [0, 1], (1−λ)x∗+λx is feasible. Further, f is differentiable. There are three possibilities:
if f ′(0) < 0, x∗ is not optimal, because f(δ) < f(0) for some small positive δ. Likewise, if f ′(0) > 0,
f(−δ) < f(0) for some small δ and again x∗ is suboptimal. Thus f ′(0) = 0. By linearity of the
objective function, f ′ is uniformly equal to zero on [0, 1], and thus f(0) = f(1) ⇐⇒ c · x∗ = c · x
and x is optimal as well.

This argument is not entirely rigorous (why?), but illustrates the general idea. Curious readers are
referred to Bertsimas & Tsitsiklis’ book for a formal proof.

Because of this theorem, this means that we only need to look at extreme points of the feasible
region, and it is precisely this property which lets us solve linear programs exactly. Even though
there may be infinitely many feasible solutions, there are only finitely many extreme points, which
we can check one at a time. The simplex method provides a more efficient way of doing this, but
in principle you can solve any linear program by performing the following two steps:

1. Identify all of the extreme points.

2. Calculate the value of the objective function at each extreme point.

This will allow us to find the optimum solution. So how do we find the extreme points?

Recall that extreme points must (1) be feasible and (2) lie at the intersection of multiple constraints.
How many constraints? In two dimensions, the constraints are lines, and two lines are needed to
identify an intersection point. In three dimensions, linear constraints are planes, and three planes
are needed to identify an intersection point (the intersection of two planes is a line, not a point;
in general, the intersection of four or more planes is empty). In general, if there are n decision
variables, we need n active constraints to identify an intersection point.

3

A

B

C

D

Figure 1: Extreme points of a linear program.

Any equality constraints (‘=’) must be satisfied no matter what; let’s say there are m of these.
The remaining n − m constraints can be chosen from the inequality constraints. Replacing the
inequality with an equality, we can solve for the point x1, . . . , xn which solves these n equations. If
this point satisfies all of the remaining constraints, it is feasible, and thus an extreme point.

Example 1. Identify all of the extreme points of the feasible region in R2 defined by the constraints

x1 + x2 ≤ 9 (1)

x1 ≤ 6 (2)

x2 ≤ 6 (3)

x1 ≥ 0 (4)

x2 ≥ 0 (5)

In this example, extreme points correspond to the intersection of two lines, because there are
two decision variables. Furthermore, there are no equality constraints, so both of these lines are
inequality constraints which we convert to equalities. There are 10 possible pairs:

• (1) and (2). Solving x1 + x2 = 9 and x1 = 6 simultaneously gives (x1, x2) = (6, 3). This
satisfies the other constraints, so this is an extreme point.

• (1) and (3). Solving x1 + x2 = 9 and x2 = 6 simultaneously gives (x1, x2) = (3, 6). This
satisfies the other constraints, so this is an extreme point.

• (1) and (4). Solving x1 + x2 = 9 and x1 = 0 simultaneously gives (x1, x2) = (0, 9). This
violates constraint (3), so this is not an extreme point.

4

• (1) and (5). Solving x1 + x2 = 9 and x2 = 0 simultaneously gives (x1, x2) = (9, 0). This
violates constraint (2), so this is not an extreme point.

• (2) and (3). Solving x1 = 6 and x2 = 6 simultaneously gives (x1, x2) = (6, 6). This violates
constraint (1), so this is not an extreme point.

• (2) and (4). x1 = 6 and x1 = 0 cannot be solved simultaneously, so this is not an extreme
point.

• (2) and (5). x1 = 6 and x2 = 0 satisfies all of the constraints, so this is an extreme point.

• (3) and (4). x2 = 6 and x1 = 0 satisfies all of the constraints, so this is an extreme point.

• (3) and (5). x2 = 6 and x2 = 0 cannot be solved simultaneously, so this is not an extreme
point.

• (4) and (5). x1 = 0 and x2 = 0 satisfies all of the constraints, so this is an extreme point.

Thus, the five extreme points are (0, 0), (0, 6), (6, 0), (6, 3) and (3, 6).

As we can see, extreme points can be identified by the active constraints at that point: for instance,
(0, 0) is defined by the intersection of (4) and (5). This leads to the concept of adjacent extreme
points. Two extreme points are called adjacent if all but one of the active constraints at these
points are the same. For instance, (0, 0) is adjacent to (0, 6), because the sets of active constraints
are (4) and (5) in the first case, and (4) and (3) in the second. On the other hand, (6, 0) is not
adjacent to (0, 6), because the set of active constraints for the former is (2) and (5), neither of
which is active at (0, 6).

4 Simplex Method: Algebra

The simplex method is one of the most common algorithms for solving linear programs. Carefully
implemented, it is guaranteed to terminate with an optimal solution after a finite number of itera-
tions, and performs very well in practice. Theorem 1 is the key to the simplex method: since there
must be an optimal extreme point2 we can confine our attention to extreme points. We did this
in the previous section, but it is tedious to solve multiple systems of equations, especially as the
dimension of the problem grows large.

The simplex method moves from one extreme point to another, adjacent extreme point where the
objective function is either the same, or better. The simplex method is highly based in matrix
algebra, and solutions of simultaneous equations. In fact, this turns out to be the motivating factor
behind writing the constraints as Ax = b in standard form. Recall that A is an m × n matrix,
representing the m constraints and n variables. We can safely assume that m ≤ n: if m > n, some

2Assuming that the problem is feasible and that a global optimum existss, of course. We take these assumptions
throughout these notes unless otherwise stated.

5

of the constraints are linearly dependent, meaning the problem is either infeasible, or that one or
more constraints is redundant and can be eliminated.

Now, recall that (a) an extreme point consists of the solution to n simultaneous equations; (b)
n ≥ m; and (c) all m equality constraints must be satisfied for feasibility. This means we must
pick n −m of the nonnegativity constraints to be binding. Equivalently, we force n −m decision
variables to equal zero, and allow the remaining m decision varaibles to take nonzero values. These
m variables are called a basis, and for a standard-form linear program, these characterize the set
of extreme points.

Let xB and xNB represent the vectors of basic and nonbasic decision variables. By definition,
xNB ≡ 0. We can also separate the columns of A according to whether the corresponding decision
variable is basic or nonbasic, producing matrices B and N. Because we are free to rearrange the
columns of A in any order we choose (so long as we rearrange x and c in the same way), without
loss of generality we can assume that A = [B|N], x = [xB|xNB], and c = [cB|cNB] (that is, that
we list the basic variables first).

With this convention, the constraint equation Ax = b can be written BxB + NxNB = b. Because
xNB = 0, we simply have BxB = b or xB = B−1b. This represents exactly the same procedure
applied in the previous section; we are solving a system of m equations in m unknowns, where the
coefficients are given by the basic columns B.

Assume we have a feasible basis (that is, a basis matrix B such that xB = B−1b ≥ 0). This
represents an extreme point; we want to know if we can improve the objective by moving to an
adjacent extreme point. Recall that all but one of the binding constraints at an adjacent extreme
point is the same. From the standpoint of bases, this means all but one of the basic variables is
the same; that is, a nonbasic decision variable must enter the basis (become nonzero), and a basic
decision variable must leave the basis (become zero).

Let’s say that we pick some nonbasic decision variable xk to enter the basis. We need to see whether
this will improve the objective function. It’s not obvious how to do this, because we can’t just change
xk and leave the other variables at their old values. Instead, to maintain the constraints Ax = b,
we will have to change the basic variables xB simultaneously, that is, to xB + dB. If xk = λ, we
have to satisfy B(xB + dB) + Akλ = b, where Ak is the k-th column of the constraint matrix.
Simplifying, we obtain

B(xB + dB) + Akλ = b

⇐⇒ BdB + λAk = 0

⇐⇒ dB = −λB−1Ak

providing a formula showing how the basic variables must change if we set xk = λ. For shorthand,
we write ∆xB = B−1Ak.

This allows us see how the objective function will change. If xk increases from 0 to λ, certainly the
objective function will increase by ckλ. At the same time, the change in the basic variables will
decrease the objective function by λcBB−1Ak. If the net effect is negative, the objective function

6

improves by adding xk to the basis. This can be written as λck where ck = ck−cBB−1Ak is called
the reduced cost of the k-th decision variable.

Of course, if xk enters the basis, some other decision variable should leave it. Because the problem
is linear, if it is beneficial to increase xk from zero to some positive number, we want to make xk

as large as possible (unlike nonlinear programs, there is no worry about taking too far a step).
Taking into account the change in the basic variables, we can continue to increase xk as long as
each element of xB is strictly positive. Once any of the basic variables equals zero, we can’t move
any further. That variable then leaves the basis, and we finish moving to the new extreme point.

The first basic variable to equal zero can be found by examining the elements of xB and ∆xB.
The value of the i-th basic variable is xi; if ∆xi < 0 (that is, xi decreases when xk is added to
the basis), we need xi + λ∆xi ≥ 0 ⇐⇒ λ ≤ −xi/∆xi. If ∆xi ≥ 0, xi will never run afoul of its
nonnegativity constraint, and plays no role in bounding λ. Because these restrictions must hold
for all i, we have xk = λ = mini:∆xi<0 xi/|∆xi|, and the decision variable leaving the basis is one
where this minimum value is obtained.

Thus, the basic simplex method can be presented as follows:

1. Identify an initial feasible basis {xB1 , . . . , xBm}.

2. Calculate the reduced cost ck = ck − cBB−1Ak for each nonbasic decision variable.

3. If all of the reduced costs are nonnegative, the current basis is optimal. STOP.

4. Otherwise, choose some nonbasic decision variable xk with a negative reduced cost to enter
the basis.

5. Set xk = mini:∆xi<0 xi/|∆xi|; the basic variable leaving the basis is one where this minimum
is obtained.

6. Return to step 2.

Example 2. Solve the linear program

min
x1,x2,x3

− 10x1 − 12x2 − 12x3

s.t. x1 + 2x2 + 2x3 ≤ 20

2x1 + x2 + 2x3 ≤ 20

2x1 + 2x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

using the simplex method.

7

Solution. We first have to write the problem in standard form:

min
x1,...,x6

− 10x1 − 12x2 − 12x3

s.t. x1 + 2x2 + 2x3 + x4 = 20

2x1 + x2 + 2x3 + x5 = 20

2x1 + 2x2 + x3 + x6 = 20

x1, x2, x3, x4, x5, x6 ≥ 0

By inspection, a feasible basis is {x4, x5, x6}, which corresponds to the the extreme point (0, 0, 0, 20, 20, 20).
We have

B =

1 0 0
0 1 0
0 0 1


so B−1 = B and

c = c− cBB−1A =
[
−10 −12 −12 0 0 0

]
−
[
0 0 0

] 1 0 0
0 1 0
0 0 1

1 2 2 1 0 0
2 1 2 0 1 0
2 2 1 0 0 1


=
[
−10 −10 −12 0 0 0

]
The reduced cost of x1 is negative, so we choose it to enter the basis. We calculate

∆xB = B−1A1 = A1 =

1
2
2


Checking the ratio test, we see that x4/∆x4 = 20, x5/∆x5 = 10, and x6/∆x6 = 10, so one of x5

and x6 must leave the basis; let’s assume that x5 leaves, so the new basis is {x4, x1, x6}. Now

B =

1 1 0
0 2 0
0 2 1

 B−1 =

1 −0.5 0
0 0.5 0
0 −1 1


so the current solution is B−1b =

[
10 0 0 10 0 0

]
and

c =
[
−10 −12 −12 0 0 0

]
−
[
0 −10 0

] 1 −0.5 0
0 0.5 0
0 −1 1

1 2 2 1 0 0
2 1 2 0 1 0
2 2 1 0 0 1


=
[
0 −7 −2 0 5 0

]
The reduced cost of x3 is negative, so we choose it to enter the basis. We calculate

∆xB = B−1A3 =

1 −0.5 0
0 0.5 0
0 −1 1

2
1
1

 =

 1
1
−1


8

Checking the ratio test, we see that x4/∆x4 = 10 and x1/∆x1 = 10, so one of x4 and x1 must leave
the basis; let’s assume that x4 leaves, so the new basis is {x3, x1, x6}. Now

B =

2 1 0
2 2 0
1 2 1

 B−1 =

 1 −0.5 0
−1 1 0
1 −1.5 1


so the current solution is B−1b =

[
0 0 10 0 0 10

]
and

c =
[
−10 −12 −12 0 0 0

]
−
[
−12 −10 0

]  1 −0.5 0
−1 1 0
1 −1.5 1

1 2 2 1 0 0
2 1 2 0 1 0
2 2 1 0 0 1


=
[
0 −4 0 2 4 0

]
The reduced cost of x2 is negative, so we choose it to enter the basis. We calculate

∆xB = B−1A2 =

 1 −0.5 0
−1 1 0
1 −1.5 1

2
1
2

 =

1.5
−1
2.5


Checking the ratio test, we see that x3/∆x3 = 6.67 and x6/∆x6 = 4, so x6 must leave the basis,
and the new basis is {x3, x1, x2}. Now

B =

2 1 2
2 2 1
1 2 2

 B−1 =

 0.4 0.4 −0.6
−0.6 0.4 0.4
0.4 −0.6 0.4


so the current solution is B−1b =

[
4 4 4 0 0 0

]
and

c =
[
−10 −12 −12 0 0 0

]
−
[
−12 −10 −12

]  0.4 0.4 −0.6
−0.6 0.4 0.4
0.4 −0.6 0.4

1 2 2 1 0 0
2 1 2 0 1 0
2 2 1 0 0 1


=
[
0 0 0 3.6 1.6 1.6

]
so all reduced costs are nonnegative, and the current basis is optimal. Thus the optimal solution
is x∗ =

[
4 4 4 0 0 0

]
, and the optimal objective function value is c · x∗ = −136. �

5 Simplex Method: Tableau

As presented in the previous section, the simplex method still involves a lot of computational
overhead, namely, inverting the basis matrix repeatedly. Much of this work is redundant, because
m − 1 columns of the basis matrix are identical to the previous iteration. The tableau method
provides a compact and efficient way to calculate these without duplicating effort. The tableau
method maintains a table containing the following elements:

9

−Z . . . ck − cBB−1Ak . . .
...
xBi . . . B−1Ak . . .
...

Key features of the simplex tableau are

• The tableau contains n + 1 columns and m + 1 rows, where n is the number of decision
variables and m the number of constraints.

• We will start counting rows and columns from zero, so the top row and left column are the
zero-th. This way, the n-th column corresponds to xn, and the m-th row corresponds to the
m-th basic variable. We describe the entry in the i-th row and j-th column by Tij .

• The upper left cell contains the negative of the objective function value.

• The remainder of the top row contains the reduced cost of each decision variable.

• After the top row, each row corresponds to one of the basic variables. The leftmost column
contains the value of that basic variable, and the other columns contain the appropriate
element of B−1Ak (the amount by which that basic variable decreases if xk were to enter the
basis).

To see how to use the simplex tableau, recall the step-by-step algebraic version of the simplex
method given in the previous section. After initialization, each of these steps can be performed
using the tableau.

1. An initial feasible basis must still be found; the big-M method in the next section shows how
to provide this.

2. The reduced costs for all variables are present in the first row of the tableau.

3. We can visually see whether all the reduced costs are positive, in which case we can stop.

4. Otherwise, we can visually pick one of the xk with a negative reduced cost to enter the basis.

5. To find out which variable leaves, we can calculate the ratio between the current value of
each basic variable (in the leftmost column) and the amount by which that variable decreases
when xk enters (in the column corresponding to xk).

6. Update the reduced costs and the B−1Ak, and return to step 2.

All of these steps should be clear, except for the last. Let’s assume that xk is entering the basis, and
x` is leaving. Because xk is taking the place of x` in the basis, we want to make the k-th column
look like the `-th column currently does. We do this through the use of matrix row manipulations:

10

1. Divide every element in the `-th row by T`k. This sets T`k = 1

2. For each of the other rows i, multiply the `-th row by Tik and subtract it from the i-th row.
This sets Tik = 0 for all i 6= `.

Caution! Although this resembles the row reductions used to solve a system of equations, it is not
quite the same procedure, and these matrix operations must be performed in this order. A different
sequence of row reductions will result in a different tableau, even if the k-th column looks correct.

Example 3. Resolve Example 2 using a tableau.

Solution. Starting as before, we can write the initial tableau

0 −10 −12 −12 0 0 0

20 1 2 2 1 0 0
20 2 1 2 0 1 0
20 2 2 1 0 0 0

Examining the reduced costs in the first row, we see that the reduced cost of x1 is negative, so it
enters the basis. Checking the ratio test involves calculating T10/T11, T20/T21, and T30/T31, or 20,
10, and 10 respectively. We thus choose x5 to leave the basis. The first row operation thus requires
dividing the second row by 2:

0 −10 −12 −12 0 0 0

20 1 2 2 1 0 0
10 1 0.5 1 0 0.5 0
20 2 2 1 0 0 0

We then add ten times the second row to the zero-th row; subtract the second row from the first
row; and subtract twice the second row from the third row:

100 0 −7 −2 0 5 0

10 0 1.5 1 1 −0.5 0
10 1 0.5 1 0 0.5 0
0 0 1 −1 0 −1 1

This completes the first iteration. Notice that we can tell which variables are basic by seeing which
columns form the identity matrix in the lower-right section of the tableau. Taking the fourth, first,
and sixth columns (in that order) forms the identity matrix, so the basis is {x4, x1, x6} and their
values are given by the zero-th column (in that order). Returning to the second step, we see that
the reduced cost of x3 is negative, so it enters the basis. Checking the ratio test, we calculate
10/1 = 10 for x4 and 10/1 = 10 for x1, ignoring x6 because T33 < 0. We force x1 to leave the basis.
Thus, we divide the first row by one (no change), add twice the first row to the zero-th; subtract
the first row from the second; and add the first row to the third:

11

120 0 −4 0 2 4 0

10 0 1.5 1 1 −0.5 0
0 1 −1 0 −1 1 0
10 0 2.5 0 1 −1.5 1

This completes the second iteration. The reduced cost of x2 is negative, so it enters the basis.
Checking the ratio test, we calculate 10/1.5 = 6.67 for x3 and 10/2.5 = 4 for x6. Thus x6 leaves
the basis; and we divide the third row by 2.5, then add four times the third row to the zero-th,
subtract 1.5 times the third row from the first, and add the third row to the second:

136 0 0 0 3.6 1.6 1.6

4 0 0 1 0.4 0.4 −0.6
4 1 0 0 −0.6 0.4 0.4
4 0 1 0 0.4 −0.6 0.4

All reduced costs are nonnegative, so we have found the optimal solution. The identity matrix
can be found in the third, first, and second columns, so the basis is {x3, x1, x2}, the final optimal
solution is x =

[
4 4 4 0 0 0

]
, and the optimal objective function value is −136. �

6 The Big-M Method

Whether we needed a tableau or not, we needed a feasible basic solution. For large problems, this
may not be easy or trivial; and if possible, we’d like to never have to worry about analytically
inverting a matrix at all. The big-M method gets around this problem. Consider the optimization
problem

min
x1,...,x4

x1 + x2 + x3

s.t. x1 + 2x2 + 3x3 = 3

− x1 + 2x2 + 6x3 = 2

4x2 + 9x3 = 5

3x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

The constraint matrix for this problem is

A =


1 2 3 0
−1 2 6 0
0 4 9 0
0 0 3 1


and to find an initial basis, we want a 4 × 4 identity matrix somewhere in A. The last column
of A can serve as the fourth column of the identity matrix, but we need the other three columns.

12

The easiest way to do this is to add three new decision variables to the problem, with the right
constraints to form an identity matrix:

s.t. x1 + 2x2 + 3x3 + x5 = 3

− x1 + 2x2 + 6x3 + x6 = 2

4x2 + 9x3 + x7 = 5

3x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

so the new constraint matrix is

A =


1 2 3 0 1 0 0
−1 2 6 0 0 1 0
0 4 9 0 0 0 1
0 0 3 1 0 0 0


However, we don’t want these new variables to appear in the solution, since they aren’t part of the
original problem. Since it’s a minimization problem, we multiply these variables by a very large,
positive constant M in the objective function:

min
x1,...,x7

x1 + x2 + x3 +Mx5 +Mx6 +Mx7

The exact value of M isn’t important so long as it’s much larger than all of the problem data.
Alternately, you don’t need to fix a value for M , as long as you treat M as larger than any other
number whenever performing any comparisons.

Returning to this problem, we can now see that {x5, x6, x7, x4} forms a basis, corresponding to the
extreme point(0, 0, 0, 1, 3, 2, 5). The objective function value corresponding to this solution is 10M ,
which is extremely large. However, the first few iterations of the simplex method will reducethis
dramatically. We still have to calculate the initial reduced costs for starting the simplex method:

c = c− cBB−1A =

[
1 1 1 0 M M M

]
−
[
M M M 0

]
I


1 2 3 0 1 0 0
−1 2 6 0 0 1 0
0 4 9 0 0 0 1
0 0 3 1 0 0 0


=
[
−1 −8M + 1 −18M + 1 0 0 0 0

]
so the initial tableau is

−10M 1 −8M + 1 −18M + 1 0 0 0 0

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

13

The reduced cost of x3 is negative (because M is very large), so x3 enters the basis. Using the
ratio test, we see that x4 (the last row) must exit. Thus, we divide by fourth row by three; then
add (18M − 1) times the fourth row to the zero-th, subtract thrice the fourth row from the first,
subtract six times the fourth row from the second, and nine times the fourth row from the third:

−4M − 1/3 1 −8M + 1 0 6M − 1/3 0 0 0

2 1 2 0 −1 1 0 0
0 −1 2 0 −2 0 1 0
2 0 4 0 −3 0 0 1

1/3 0 0 1 1/3 0 0 0

The reduced cost of x2 is negative, so it enters the basis and x6 exits from the ratio test (the second
row). So, we divide the second row by two; add (8M − 1) times the second row from the zero-th;
subtract twice the second row from the first; and subtract four times the second row from the third:

−4M − 1/3 −4M + 3/2 0 0 −2M + 2/3 0 4M − 1/2 0

2 2 0 0 −1 1 −1 0
0 −1/2 1 0 −1 0 1/2 0
2 2 0 0 1 0 −2 1

1/3 0 0 1 1/3 0 0 0

Now, x1 enters and x5 leaves:

−11/6 0 0 0 −1/12 2M − 3/4 2M + 1/4 0

1 1 0 0 1/2 1/2 −1/2 0
1/2 0 1 0 −3/4 1/4 1/4 0
0 0 0 0 0 −1 −1 1

1/3 0 0 1 1/3 0 0 0

Then x4 enters and x3 leaves:

−7/4 0 0 1/4 0 2M − 3/4 2M + 1/4 0

1/2 1 0 −3/2 0 1/2 −1/2 0
5/4 0 1 9/4 0 1/4 1/4 0
0 0 0 0 0 −1 −1 1
1 0 0 3 1 0 0 0

All of the reduced costs are now nonnegative (since 2M >> 3/4), so this is an optimal basis. The
identity matrix can now be found in the first, second, seventh, and fourth columns, so the optimal
basis is {x1, x2, x7, x4} and the optimal solution is {1/2, 5/4, 0, 1, 0, 0, 0}. Note that M drove all of
the “artificial” variables out of the optimal solution. (Although x7 is in the optimal basis, its value
is zero.) If any of the artificial variables were positive in an optimal solution, the original problem
was infeasible, because M is so large that literally any feasible solution to the original problem is
better than any solution involving a strictly positive artificial variable.

14

7 Sensitivity Analysis

One of the main advantages linear programs have over nonlinear programs is the ease of performing
sensitivity analysis, that is, studying how optimal solutions change if the problem input data (such
as the objective function, constraint matrix, or requirement vector b) change. With linear programs,
analytical formulas are readily available, and insightful theoretical results can be obtained. While
this may be true for certain nonlinear programs, oftentimes there is nothing better than simply
re-solving the problem from scratch.

This section discusses the two most common types of sensitivity analysis needed for linear programs:
changes in the cost vector c, and changes in the requirement vector b. Changes to the constraint
matrix A are less common in practice (A usually represents factors more under your control,
and more predictable, while c and b depend more on external factors which are less well known).
Further, studying the impact of these changes is more complicated mathematically, and not treated
in these notes.

The basic question can be formulated like this: we have an optimal basis B and an optimal
solution x∗ to the standard-form linear program minx c · x such that Ax = b and x ≥ 0. If
the objective function changes slightly (say, to c + δei, where ei represents the i-th unit vector[
e1 = 0 . . . ei−1 = 0 ei = 1 ei+1 = 0 . . .

]
), is B still an optimal basis, or do we need to redo

the simplex method? Likewise, if the requirement vector changes to b+ δej, do we need to change
the basis? In the latter case, the actual optimal solution x∗ = B−1b will almost certainly change,
but the same basis may still be optimal.

In short, there are two things which can cause the previous optimal basis to lose their optimality.

1. The original basis is no longer feasible. If xB = B−1b � 0, we need to find a new basis
which satisfies the nonnegativity constraints.

2. The original basis is no longer optimal. Recall that a basis is optimal if the reduced
cost of every other decision variable is nonnegative. If, in the new problem, some variable
has a strictly negative reduced cost, the original basis is not optimal. The simplex method
should continue by having that variable with a negative reduced cost enter the basis.

As you might suspect, these two cases correspond exactly to changes in the requirement vector,
and to changes in the cost vector.

7.1 Changes to the requirement vector b

Assume that the j-th component of b changes by δ, so b′ = b+δej. The reduced costs are unaffected
by this change: they depend on c, B, and A, but not the requirement vector b. Therefore, as long
as this basis is feasible, it will remain optimal.

The question, then, is what range of δ maintains feasibility of the original basis B. We have an

15

explicit formula for the values of the decision variables: (xB)′ = B−1(b + δej) = xB + δB−1ej, and
each of these needs to be nonnegative. Furthermore, note that B−1ej is simply the j-th column
of the inverse of the basis matrix. If we have an optimal tableau, this is easy to find as long as
one of the columns of A is ej (which will always be true if we use the big-M method, or are given
a problem in the “easy” form of Example 2), because if Ak = ej, the k-th column of the simplex
tableau contains the vector B−1Ak = B−1ej.

Thus, each one of the basic variables xi provides a constraint of the form

xi + δTik ≥ 0

If Tik > 0, then this equation simplifies to

δ ≥ −xi/Tik
so certainly

δ ≥ max
i:Tik>0

−xi/Tik

Likewise, if Tik < 0, then we have
δ ≤ −xi/Tik

so
δ ≤ min

i:Tik<0
−xi/Tik

Putting this together, the current basis remains optimal if and only if

max
i:Tik>0

− xi
Tik
≤ δ ≤ min

i:Tik<0
− xi
Tik

Example 4. Consider the linear programming problem

min
x1,x2,x3,x4

− 5x1 − x2 + 12x3

s.t. 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16

x1, x2, x3, x4 ≥ 0

for which
12 0 0 2 7

2 1 0 −3 2
2 0 1 5 −3

is the tableau for the optimal solution. How much can the right-hand side of the first constraint
change before the current basis is no longer feasible?

Solution. The optimal basis for the problem is {x1, x2}, and the optimal solution is (2, 2, 0, 0).
(Why?) For this problem, the requirement vector is changing from

[
10 16

]
to
[
10 + δ 16

]
,

that is, to
[
10 16

]
+ δ

[
0, 1
]

=
[
10 16

]
+ δe1. Because the third column of A is e1, the third

column of the optimal tableau gives us B−1e1 =
[
−3 5

]
. Thus, the lower bound on δ is given by

−x2/T23 = −2/5, while the upper bound is given by −x1/T13 = 3/5. Therefore, the right-hand side
of the first constraint must either increase by 3/5, or decrease by −2/5 before the current basis is
infeasible. If we are confident that the true value of the right-hand side is within this tolerance, we
can be assured that this basis will be optimal no matter what. �

16

7.2 Changes to the cost vector c

The case of a change to c is in many ways the opposite of a change to b. When b changed, the
optimality condition (nonnegative reduced costs) never changed; we only had to worry about the
basis becoming infeasible. On the other hand, when the cost vector changes, we never have to
worry about feasibility, because xB = B−1b will never change. On the other hand, with the new
cost vector, it may be worthwhile to have a new variable enter the basis in favor of one of the
current basic variables.

By analogy, assume that the cost vector changes to c′ = c+δei. The current basis remains optimal
if and only if c′ = c′ − cB

′
B−1A ≥ 0. If xi (the decision variable corresponding to the changed

element in the cost vector) is nonbasic, cB
′
= cB, and we have cBB−1A ≤ c + δei as the condition

which needs to be satisfied.

This is a vector equation, but all of the components except the i-th are the same as before. There-
fore, the only condition we have on δ is

cBB−1Ai ≤ ci + δ

or
δ ≥ −ci = −T0i

which can be easily obtained from the final tableau.

On the other hand, if xi is basic (say, the `-th basic variable), we must satisfy cBB−1A+δe`B
−1A ≤

c + ei. Decomposing this vector equation by components, we must have

δ[B−1Aj]` ≤ cj − cBB−1A = cj

for j 6= i (because xi is basic, its reduced cost is always zero so we don’t have to consider that
case.) Thus

T`iδ ≤ cj
for all j, and, as before, we find the δ must lie in the interval

max
j 6=i:T`j<0

{
cj
T`j

}
≤ δ ≤ min

j 6=i:T`j>0

{
cj
T`j

}
Example 5. Continuing with the previous example, how much could the cost coefficients change
for x1 and x3 before the current basis is suboptimal?

Solution. x1 is the first basic variable, so
[
T11 T12 T13 T14

]
=
[
1 0 −3 2

]
. Thus, the lower

bound on δ is provided by the third column, and is c3/T13 = −2/3, while the upper bound is
provided by the fourth column: c4/T14 = 7/2. Thus, if x1 changes by δ, the current basis is optimal
if and only if −2/3 ≤ δ < 7/2.

x3 is not a basic variable, so we simply need δ ≥ −c3 = −2 for the current basis to remain optimal.
�

17

