
Techniques for Simple Problems
CE 377K

Stephen D. Boyles
Spring 2015

These notes describe ways to solve two types of simple optimization problems: problems with no
constraints, and problems with only a single variable. Most realistic problems of any real interest
involve constraints and more than one variable. However, solution techniques for those types of
problems are necessarily more complicated. These simple settings let us develop building blocks of
solution methods which can be modified for more complicated problems.

1 Unconstrained Optimization

1.1 One-dimensional unconstrained optimization

In this section, we are considering an optimization problem with no constraints whatsoever, so that
each decision variable can take any real number. By the convention described in the previous notes,
there is no harm in assuming that this is a minimization problem. In the simplest case, there is
only one decision variable, so the optimization problem is simply

min
x
f(x) (1)

where x can take any real number. (You have probably seen this type of problem before in calculus.
We are going through it again both to review and to preview what will be done for trickier problems.)

Assume that f is a differentiable function, that is, the derivative f ′ exists everywhere. (This implies
that f is continuous.) We say that the point x is stationary point of f if f ′(x) = 0. As in the
previous notes, x∗ is a global optimum if f(x∗) ≤ f(x) for all x. If f(x∗) ≤ f(x) only when x is
close to x∗, then x∗ is a local optimum. More specifically, x∗ is a local optimum of f if there is
some open interval (`, h) containing x∗ such that f(x∗) ≤ f(x) for all x ∈ (`, h).

Theorem 1. Assume that f is differentiable. Then every global optimum of f is a local optimum,
and every local optimum is a stationary point.

Proof. Assume x∗ to be a global optimum, so f(x∗) ≤ f(x) for all real x. Then certainly f(x∗) ≤
f(x) for all x in any interval, so x∗ is a local optimum as well.

Now assume that x∗ is any local optimum, and by contradiction assume that x∗ is not a stationary
point, so f ′(x∗) 6= 0. If f ′(x∗) > 0, then f is strictly increasing at x∗, so for points x′ < x∗

sufficiently close to x∗ we have f(x′) < f(x∗), contradicting the assumption that x∗ is a local
optimum. If f ′(x∗) < 0, then f is strictly decreasing at x∗, so for points x′ > x∗ sufficiently close
to x∗ we have f(x′) < f(x∗), again a contradiction.

The theorem does not apply in the reverse direction: it is not hard to come up with examples
where there are local optima which are not global optima, and stationary points which are not

1

local optima. As a result, the intuitive-sounding procedure of finding all the stationary points
and choosing the one with the least f value is not guaranteed to work. If f(x) = −x2, then
f ′(x) = −2x and the only stationary point is x = 0. However, this point actually corresponds to a
global maximum, not a global minimum. Or, if f(x) = x3, then f ′(x) = x2 and the only stationary
point is x = 0, however this point is neither a global maximum nor a global minimum. For this
result to be helpful we need another condition.

We say that the function f is coercive if lim|x|→∞ f(x) = +∞, that is, as x grows large in either the
positive or negative direction, f(x) grows large as well. In this case we have the following result:

Theorem 2. If f is differentiable and coercive. Then the global minimum of f is the stationary
point of f with the least objective function value.

Proof. If f is differentiable and coercive, then there is at least one global minimum. After all,
if f does not have a global minimum, then it must take arbitrary large negative values. Since f
is coercive this cannot happen in the limit as x becomes very large or very small; and since f is
differentiable it is continuous and exists everywhere, so it cannot have any vertical asymptotes. By
Theorem 1, each such global minimum must be a stationary point, and by definition must be a
stationary point with the least objective function value.

Example 1. Find the value of x which minimizes f(x) = x2 − 3x+ 5.

Solution. f ′(x) = 2x− 3, which vanishes if x = 3/2, so this is a stationary point. Furthermore f
is coercive since it f(x) tends to +∞ as x grows very positive or negative. Therefore x = 3/2 is
the global minimum of f(x). �

1.2 Multi-dimensional unconstrained optimization

The following results transfer in a similar way when there is more than one decision variable. If
there are n decision variables with no constraints, then let the vector x be an n-dimensional vector,
and f(x) a function of n variables. For a function of more than one variable, the analogue of the
derivative is the gradient ∇f , which is the vector of all first partial derivatives:

∇f(x) =
[

∂f
∂x1

(x) ∂f
∂x2

(x) · · · ∂f
∂xn

(x)
]

(2)

A stationary point of a function of multiple variables is a point where the gradient is the zero vector:
f(x) = 0, that is, a point where all of the partial derivatives simultaneously vanish. Furthermore,
the same definition of a coercive function works in higher dimensions if the absolute value in the
limit |x| → ∞ is taken to mean the length of the vector, |x| =

√
x21 + x22 + ·+ x2n.

All of the results for single-dimension functions given in Section 1.1 generalize to multi-dimensional
functions with the new definition of a stationary point: global optima are all local optima, and all
local optima are stationary points, and if the objective function is coercive then its global optima
are the stationary points with the least objective function values.

2

2 Line Search Techniques

The previous section explored the case when there were no constraints, even though there could be
multiple decision variables. This section explores the opposite case, when there is a single decision
variable, but potentially constraints. In one-dimensional optimization, it is very common that the
only constraint is that the decision variable x must lie in some closed interval [a, b]. (Can you see
why open intervals are problematic?)

In this case, we can use a line search technique to find the optimal solution. Such techniques are
iterative, which means that a particular step is repeated over and over. In general, line search
techniques are not guaranteed to find the optimal solution, but will converge to it in the limit as
more and more iterations are performed. For line search to work, a function needs to be fairly
well-behaved. A one-dimensional function defined on an interval [a, b] is unimodal if it has only
one local minimum in [a, b]. Since this section adds the constraint that x ∈ [a, b], the definition of
a local minimum shold be changed slightly as well: x is a local minimum of f on [a, b] if there is
some open interval (`, h) containing x∗ such that f(x∗) ≤ f(x) for all x ∈ (`, h) ∩ [a, b]. (In other
words, points outside of [a, b] don’t count when checking for a local optimum.) Throughout this
section, assume that the function f is unimodal. If this is not the case, the techniques can still
be used, but there is no guarantee that they will find the global optimum. Since f is unimodal, it
has only one local optimum on [a, b], so this must be the global optimum as well. In this section,
we also assume that f is differentiable. There are other line search techniques which can be used
when this is not the case.

As shown in Figure 2, this one optimum (call it x∗) can occur in one of three ways. In the first
case, if x∗ lies in the interior of the feasible region, that is, x∗ ∈ (a, b) so there are feasible points in
both directions around x∗, then the derivative of f must be zero at x∗, because the constraints are
essentially irrelevant at this point and the unconstrained optimality condition applies. However,
if x∗ lies at one of the boundary points a or b, this analysis must be modified. If x∗ = a, then
for x∗ to be an optimum solution, f must be increasing at this point (or at least nondecreasing),
that is, f ′(x∗) ≥ 0. Otherwise, f could be decreased by choosing an x value slightly larger than a.
Likewise, if x∗ = b, then for x∗ to be an optimum solution, f must be nonincreasing at this point,
so f ′(x∗) ≤ 0.

This section discusses two line search techniques that can be used. The first is an adaptation of
Newton’s method, which tends to be very fast but requires that the function f be twice differentiable
and convex (defined below). The second is the bisection method, which is somewhat slower but
only requires f to have one derivative, not two. In each of these cases, we need to show that the
method converges to one of the three cases in the previous paragraph: either a point where the
derivative is zero; or the lower bound a if the derivative there is nonnegative; or the upper bound
b if the derivative there is nonpositive.

2.1 Newton’s method

Assume that f is twice differentiable. If the optimal solution x∗ lies in the interior of the feasible
set [a, b], then x∗ must be a stationary point, so f ′(x∗) = 0. Newton’s method is a simple procedure
for finding the zeroes of a function, which often converges quite quickly. Recall that in general, to

3

(a) Convex function where neither constraint is binding.

(b) Convex function where the constraint is binding at the
lower bound.

(c) Convex function where the constraint is binding at the up-
per bound.

4

find a zero of a function g(x), Newton’s method involves repeating the following steps:

1. Make an initial guess x

2. Calculate g(x) and its derivative g′(x)

3. If g(x) ≈ 0, stop.

4. Update x← x− g(x)/g′(x) and return to step 2.

The last step is the key step. The idea is to approximate the (possibly nonlinear) function g(x) with
its linear approximation, since the zero of a linear function can be found in closed form. Newton’s
method does not in general work; however it can be shown to converge for convex functions. If f is
twice differentiable, it is convex if its second derivative f ′′(x) is nonnegative on the interval [a, b].
(There are other, more general definitions of convexity which we will see later in this course.)

Furthermore, we need to make sure that the search stays within the feasible region [a, b]. The
easiest way to do this is to “truncate” the Newton search by projecting the updated x value onto
the set [a, b]. That is, if the x value is less than the lower bound a, change it to a; if it is greater
than the upper bound b set it to b; and otherwise leave it as is. So, the modified Newton’s method
for minimizing a function of a single variable on the interval [a, b] is as follows:

1. Make an initial guess x

2. Calculate f ′(x) and f ′′(x)

3. If f ′(x) ≈ 0, stop.

4. Update x← x− f ′(x)/f ′′(x)

5. If x < a, set x← a; if x > b set x← b.

6. Return to step 2.

In step 4, if f ′′(x) = 0, then you can treat the division by zero as resulting in either +∞ or −∞,
depending on the sign of f ′(x). After performing the projection in the next step, this essentially
means that if f ′(x) > 0 but f ′′(x) = 0 (f is increasing), move as far as possible to the left so x← a;
if f ′(x) < 0 but f ′′(x) = 0 (f is decreasing), move as far as possible to the right so x→ b.

Example 2. Use Newton’s method to find the minimum of f(x) = (x − 1)4 + ex on the interval
x ∈ [0, 3], performing seven iterations.

Solution. You may find it useful to follow along in Table 1. The first and second derivatives of
f(x) are f ′(x) = 4(x−1)3+ex and f ′′(x) = 12(x−1)2+ex. As an initial guess, choose the midpoint:
x = 1.5. At this point, f ′(x) = 4.982 and f ′′(x) = 7.482, so the update is x ← 1.5 − 4.982/7.482,
so the new value is x = 0.834. At this point, f ′(x) = 2.285 and f ′′(x) = 2.633, so the formula gives
x← 0.834− 2.285/2.633 = −0.034. Since this value is less than the lower limit 0, “project” x back
to the feasible region and set x = 0. Continuing on for seven iterations, at x = 0.30307 the value of

5

Table 1: Demonstration of Newton’s method with f(x) = (x− 1)4 + ex, x ∈ [0, 3].
Iteration x f ′(x) f ′′(x) x− f ′(x)/f ′′(x)

1 1.5 4.982 7.482 0.834
2 0.834 2.285 2.633 −0.034
3 0 −3.000 13.000 0.231
4 0.231 −0.561 8.360 0.298
5 0.298 −0.0375 7.263 0.30304
6 0.30304 −2.058× 10−4 7.1829 0.3030725347
7 0.30307 −6.307× 10−9 7.1825 0.3030725355

the first derivative is f ′(x) = −6.307× 10−9 which is very, very close to zero. Therefore this value
of x is very close to the minimum value on [0, 3].

How can we show that Newton’s method always works? A full proof is difficult at this point in
the class, but we can give some intuition. The “direction” that Newton’s method moves in is
determined by the update step x ← x − f ′(x)/f ′′(x). Assume first that the optimum solution is
an interior point, so f ′(x∗) = 0. Then Newton’s method works as it always does, moving towards
a zero of f ′(x). If f ′(x) > 0 and f ′′(x) ≥ 0, then f is increasing and convex at that point, so
Newton’s method will decrease x. If f ′(x) < 0 and f ′′(x) ≥ 0, then f is decreasing and convex at
that point, so Newton’s method will increase x. In either case, we are moving toward the point
where f ′(x) = 0. In the second case, the optmium solution is at the lower bound and f ′(a) ≥ 0.
If f is convex, then this means that f ′(x) ≥ 0 for all points x ∈ [a, b] as well as f ′(x) ≥ 0, so
Newton’s method will always decrease x at each step until the lower bound is reached. Similarly,
if the optimum solution is at the upper bound and f ′(b) ≤ 0, then since f is convex f ′(x) ≤ 0 for
all x ∈ [a, b] and Newton’s method will increase x until the upper bound is reached.

2.2 Bisection Method

The bisection is another line search method. It is not as fast as Newton’s method, but it has several
other advantages: (a) it does not require f to have two derivatives, just one; (b) it will always work
when f is unimodal, not just when f is convex; and (c) it is easier to prove that it works.

The bisection method works by constantly narrowing down the region where the optimal solution
lies. It is an iterative algorithm, in that it repeats the same steps over and over until a termination
criterion is reached. After the k-th iteration, the bisection method will tell you that the optimum
solution lies in the interval [ak, bk], with this interval shrinking over time (that is, bk − ak <
bk−1− ak−1). A natural termination criterion is to stop when the interval is sufficiently small, that
is, when bk − ak < ε, where ε is the precision you want for the final solution. (For example, phase
lengths for many signal controllers have to be in multiples of half a second, so there is no point in
determining the optimal phase length to any greater precision than this.)

Here’s how the algorithm works.

Step 0: Initialize. Set the iteration counter k = 1, a1 = a, b1 = b.

Step 1: Evaluate midoint. Calculate the derivative of f at the middle of this interval, dk =

6

Table 2: Demonstration of the bisection algorithm with f(x) = (x− 1)4 + ex, x ∈ [0, 3].
k ak bk (ak + bk)/2 dk
1 0 3 1.5 4.98 > 0
2 0 1.5 0.75 2.05 > 0
3 0 0.75 0.375 0.478 > 0
4 0 0.375 0.1875 −0.939 < 0
5 0.1875 0.375 0.28125 −0.160 < 0
6 0.28125 0.375 0.328125 0.175 > 0
7 0.28125 0.328125 0.3046875 0.0116 > 0

f ′((ak + bk)/2)

Step 2: Bisect. If dk > 0, set ak+1 = ak, bk+1 = (ak + bk)/2. Otherwise, set ak+1 = (ak + bk)/2,
bk+1 = b.

Step 3: Iterate. Increase the counter k by 1 and check the termination criterion. If bk − ak < ε,
then terminate; otherwise, return to step 1.

Example 3. Use the bisection algorithm to find the minimum of f(x) = (x − 1)4 + ex on the
interval x ∈ [0, 3] for seven iterations.

Solution. You may find it useful to follow along in Table 2. We start off with k = 1, a1 = 0, and
b1 = 3. We calculate the derivative at the midpoint: f ′(x) = 4(x − 1)3 + ex, so f ′(1.5) = 4.98,
which is positive. Since f ′ is positive at x = 1.5, the minimum must occur to the left of this point,
that is, somewhere in the interval [0, 1.5]. We set a2 and b2 equal to these new values, and repeat.
The new midpoint is 0.75, and f ′(0.75) = 2.05 is positive, so the minimum must occur to the left
of this point. Thus, the new interval is [0, 0.75], and we repeat as shown in Table 2. At the end
of the seventh iteration, our best guess of the optimum as the midpoint of the interval at this
point: x∗ ≈ 0.3047. The true minimum point occurs at x∗ = 0.3031; if we had chosen a smaller
tolerance ε, the algorithm would have narrowed the interval further, with both ends converging
towards this value. Note that the value of the derivative at this point is 0.01158, which is zero at
the true minimum. By comparison, after the same number of iterations Newton’s method returned
a point with derivative −6.3 × 10−9, which is much closer to zero. This is typical performance:
Newton’s method converges faster in terms of number of iterations, but each iteration requires more
calculation.

How do we know the bisection algorithm always works? We can prove it using the optimality
conditions derived in the previous section. Remember that x∗ is an optimal solution to min f(x),
x ∈ [a, b] if one of these three conditions is true:

• f ′(x∗) = 0 and x ∈ [a, b]

• f ′(x∗) ≥ 0 and x = a

• f ′(x∗) ≤ 0 and x = b

Now, it is clear that the two endpoints ak and bk converge towards a common point as k → ∞.
Mathematically, this happens because bk− ak = (bk−1− ak−1)/2, which implies bk− ak → 0, which

7

implies ak → x̂ and bk → x̂ for some point x̂ ∈ [a, b]. We need to show that x̂ satisfies one of the
three conditions above. This is formalized as the following theorem.

Theorem 3. Let ak and bk be determined by the bisection method, and let x̂ be the point ak and
bk converge to. Then x̂ is a minimum for the optimization problem min f(x) subject to x ∈ [a, b].

Proof. Recall our assumption that f is convex and continuously differentiable. This implies that
f ′(a) ≤ f ′(b), so one of three cases must be true.

Case I. f ′(a) ≥ 0 and f ′(b) ≥ 0, that is, f is increasing at both endpoints of [a, b]. This is the
situation in Figure 1(b). Because f is convex, f ′((ak + bk)/2) ≥ 0 no matter what a and b are.
Then, according to Step 2 of the bisection method, ak = ak−1 at every iteration k. Thus ak = a
for all k, so certainly ak → a, implying x̂ = a. Since f(a) ≥ 0, optimality condition 2 is satisfied
and x̂ is optimal.

Case II. f ′(a) < 0 and f ′(b) < 0, that is, f is decreasing at both endpoints of [a, b]. This is the
situation in Figure 1(c). Because f is convex, f ′((ak + bk)/2) < 0 no matter what a and b are.
Then, according to Step 2 of the bisection method, bk = bk−1 at every iteration k. Thus bk = a for
all k, so certainly bk → b, implying x̂ = b. Since f(b) ≤ 0, optimality condition 3 is satisfied and x̂
is optimal.

Case III. f ′(a) < 0 and f ′(b) ≥ 0, that is, f is decreasing at a but increasing at b. This is the
situation in Figure 1(a). After initialization of the algorithm, we have f ′(a0) < 0 ≤ f ′(b0). Consider
each iteration k, starting with k = 0, and assume that f ′(ak) < 0 ≤ f ′(bk). If f ′((ak + bk)/2) < 0,
then ak+1 = (ak + bk)/2, bk+1 = bk, so we have f ′(ak+1) < 0 ≤ f ′(bk+1). On the other hand, if
f ′((ak + bk)/2) > 0, then ak+1 = ak, bk+1 = (ak + bk)/2, so again we have f ′(ak+1) < 0 ≤ f ′(bk+1).
Thus f ′(ak+1) < 0 ≤ f ′(bk+1) for all k by induction. Since f ′(ak) < 0 for all k, by continuity we
have f ′(x̂) = limk→∞ f

′(ak) ≤ 0. Since f ′(bk) ≥ 0 for all k, we also have f ′(x̂) = limk→∞ f
′(bk) ≥ 0.

Since f ′(x̂) ≤ 0 and f ′(x̂) ≥ 0, we must have f ′(x̂) = 0, so x̂ is optimal by condition 1.

8

