CE 377K: Homework 1 Solutions

Problem 1. Many potential answers, but here is one possibility.

- 1. Decision variables: x_b , objective is to maximize $\sum_{b \in \mathcal{B}} V_b(x_b)$, constraints are $x_b \ge 0$ for all b and $\sum_{b \in \mathcal{B}} x_b \le X$.
- 2. The objective function and decision variables are the same as before, and we will retain the same constraints and add a few more. We can represent equitable allocation by dividing the budget based on the number of bridges in each district (denoted $|\mathcal{D}_i|$). We will forbid any district from using more than 110% of its fair share of the budget, represented by adding constraints of the form $\sum_{b \in \mathcal{D}_i} x_b \leq 1.1X \left(|\mathcal{D}_i| / \sum_{j=1}^n |\mathcal{D}_j| \right)$ for each district $i \in \{1, \dots, n\}$.
- 3. Start with the same optimization problem as in the first part, and add constraints restricting the average benefit to each district to be no more than 110

Problem 2.

- (a) $f'(x) = 4x^3 6x^2$, which vanishes when x = 0 or x = 3/2. Since f is coercive the global minimum occurs at a stationary point, and since f(3/2) = -1.69 < 0 = f(0), the global optimum is x = 3/2.
- (b) $\nabla f(x) = [4x_1 x_2, -x_1 + 2x_2 7]^T$, which is equal to the zero vector if $x_1 = 1$ and $x_2 = 4$. The function is coercive so this must be the global optimum.
- (c) $\nabla f(x) = [6x_1^5 6x_1x_2^2, -6x_1^2x_2 + 6x_2^5]^T$, which is equal to the zero vector if $x_1 = x_2 = 0$, or for any combination of $x_1 = \pm 1$ and $x_2 = \pm 1$. Testing each of these five values, there are four global minima: $(\pm 1, \pm 1)$.
- (d) $\nabla f(x) = [2(x_1 4) + x_2 + x_3, 2(x_2 2) + x_1 + x_3, 2x_3 + x_1 + x_2]^T$, which vanishes at (5/2, 1/2, -3/2). Since f is coercive this must be the global optimum.

Problem 3.

- (a) Coercive, since x^4 dominates as $x \to \pm \infty$, but not convex since $f''(x) = 12x^2 12x$ is negative if x = 1/2.
- (b) Coercive, since x^2 dominates as $x \to \pm \infty$, and convex since f''(x) = 4 > 0 for all x.
- (c) Neither coercive (since $\lim_{x\to\infty} f(x) = -\infty$) nor convex (f''(x) = -2 < 0 everywhere).
- (d) Not coercive $(\lim_{x\to\infty} f(x) = -\infty)$, but convex (f''(x) = 0)
- (e) Not coercive $(\lim_{x\to-\infty} f(x) = \infty)$, but convex $(f''(x) = e^x > 0)$
- (f) Coercive, since $2x_1^2 + x_2^2 \ge x_1^2 + x_2^2 = |\mathbf{x}|$ so surely $f(\mathbf{x})$ tends to infinity if $|\mathbf{x}|$ does.

(g) Not coercive, since $f(x_1, x_2) = 0$ if $x_1 = x_2$. So if these go to infinity together f does not tend to infinity.

Problem 4.

- (a) See figures, in the two cases the function values at the endpoints and midpoint are the same, but the optimum occurs on different sides of the midpoint.
- (b) There are three possibilities: $f(c_k) > f(d_k)$, $f(c_k) < f(d_k)$, and $f(c_k) = f(d_k)$. In the first case, since f is unimodal we must also have $f(a_k) \ge f(c_k)$, in which case the lower interval $[a_k, c_k)$ can be eliminated. In the second case, again by unimodality we have $f(b_k) \ge f(d_k)$, so the upper interval $(d_k, b_k]$ can be eliminated. In the third case, the global minimum must lie between c_k , and d_k , so either the upper or lower interval can be safely removed.
- (c) Because $\alpha = \gamma$, regardless of whether the upper or lower interval is eliminated, the ratio of the new interval width to the old is $(alpha + \beta)/(\alpha + \beta + \gamma)$. Substituting the given values for α , β , and γ provides the answer. If the lower interval is eliminated, then $a_{k+1} = c_k$, so

$$c_{k+1} = a_{k+1} + \frac{3 - \sqrt{5}}{2}(b_{k+1} - a_{k+1}) \tag{1}$$

$$=c_k + \frac{3-\sqrt{5}}{2}\frac{\sqrt{5}-1}{2}(b_k - a_k)$$
(2)

$$= c_k + (\sqrt{5} - 2)(b_k - a_k) \tag{3}$$

$$=d_{k} \tag{4}$$

A parallel derivation provides the result when the upper interval is eliminated.

Problem 5. See attached code.