
CE 377K: Homework 3
Solutions

Problem 1. Using the augmenting path algorithm, we first identify path 1-3-4-5-7-8, which has a capacity
two. In the resulting residual graph, the path 1-2-6-8 exists, also with capacity two. At this point we are
shipping four units of flow from 1 to 8; since arcs (7,8) and (6,8) form a cut of capacity 4, this is maximal.
Increasing capacity on either one of these arcs would allow more flow between 1 and 8.

Problem 2. Choose nodes 1 and 2 as the source and sink; the shortest path is [1,2] which has capacity 2,
so augment 2 units of flow on this path and update the supply and demand of nodes 1 and 2 to +2 and
−2. Again choose nodes 1 and 2 as the source and sink; the shortest path in the residual network is [1,3,4,2]
which has capacity 3, so augment 2 units of flow on this path and update the supply and demand of nodes
1 and 2 to zero. Choose nodes 6 and 8 as the source and sink; the shortest path in the residual network is
[6,7,8] with capacity 2, so augment 2 units of flow and update the supply and demand of nodes 6 and 8 to
+1 and 0. Choose nodes 6 and 7 as the source and sink; the shortest path in the residual network is [6,7]
with capacity 1, so augment 1 unit of flow and update the supply and demand of nodes 6 and 7 to 0 and
−1. Finally choose nodes 3 and 7 as the source and sink. The shortest path in the residual graph is
[3,4,6,8,7] — note the presence of a reverse link with negative cost. We can send one unit of flow
along this link. This provides the flow shown in Figure 1. All sources and sinks are balanced, so this is the
optimal solution.

Problem 3. Label the equations as follows:

x1 + x2 + x3 = 1 (1)

3x1 + 2x2 − x4 = 3 (2)

2x1 + x3 + x4 ≤ 5 (3)

2x2 + x3 + x4 ≤ 7 (4)

x1 ≥ 0 (5)

x2 ≥ 0 (6)

1. Constraints (1), (2), (5), and (6) are active at the extreme point (0, 0, 1,−3) (1) and (2) must be active
at any feasible solution, beacuse they are equality constraints. Thus, the only potential extreme points
adjacent to (0, 0, 1,−3) lie at the intersection of constraints (1), (2), (3), and (6); constraints (1), (2), (4),
and (6); constraints (1), (2), (3), and (5); and constraints (1), (2), (4), and (5). Solving these systems of
equations simultaneously, we obtain the points (1.75, 0,−0.75, 2.25), (4.5, 0,−3.5, 10.5), (0, 7,−6, 11),
and (0, 3,−2, 3), respectively. (4.5, 0,−3.5, 10.5) and (0, 7,−6, 11) are infeasible; the remaining points
are all feasible, and thus extreme points adjacent to (0, 0, 1,−3).

2. The only other potential combination of active constraints is (1), (2), (3), and (4); solving these
simultaneously gives the feasible point (1.2, 2.2,−2.4, 5), which is also an extreme point of X.

Problem 4.
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(a) Let τi be the toll in hour i. The optimization problem can be stated

max
τ1,τ2,τ3,τ4

(2500− 500τ1) + (3100− 1000τ2) + (4000− 1500τ3) + (3400− 1000τ4)

s.t. 2500− 500τ1 ≤ 2000
3100− 1000τ2 ≤ 2000
4000− 1500τ3 ≤ 2000
3400− 1000τ4 ≤ 2000
|τ1 − τ2| ≤ 0.25
|τ2 − τ3| ≤ 0.25
|τ3 − τ4| ≤ 0.25
τ1, τ2, τ3, τ4 ≥ 0

(b) Conversion to standard form requires changing maximize to minimize, replacing the absolute values by
two equivalent constraints (|x − y| ≤ z is the same as both x − y ≤ z and y − x ≤ z), and adding
slack variables s. Furthermore, constants can be removed from the objective function and the first four
constraints can be simplified.

min
τ ,s

500τ1 + 1000τ2 + 1500τ3 + 1000τ4

s.t. τ1 − s1 = 1
τ2 − s2 = 1.1
τ3 − s3 = 1.33
τ4 − s4 = 1.4
τ1 − τ2 + s5 = 0.25
−τ1 + τ2 + s6 = 0.25
τ2 − τ3 + s7 = 0.25
−τ2 + τ3 + s8 = 0.25
τ3 − τ4 + s9 = 0.25
−τ3 + τ4 + s10 = 0.25
τ1, . . . , τ4, s1, . . . , s10 ≥ 0

(c) See attached code (homework3.c has the C code, tableau.txt shows the tableaux at each step). The
big M method was used, introducing four auxiliary variables so that the initial basis was these four
variables, and s5, . . . , s10. The optimal solution is τ1 = 1, τ2 = 1.1, τ3 = 1.33, and τ4 = 1.4.

(d) Refer to the final tableau in tableau.txt. The optimal basis for this problem includes all four toll
variables (indicating each should be set at their lowest possible level), and slack variables for each of the
constraints limiting the change in tolls between periods (indicating that none of these constraints are
currently binding). Notice that we turned each of the capacity constraints into τi ≥ Ki ≡ (Di − Ci)/Si
where Di is the total demand in period i, Ci is the capacity in period i, and Si is the toll sensitivity in
period i. The sensitivity analysis methods from class will tell us the maximum allowable change in Ki

before the basis changes, and we will use the formula Ki = (Di −Ci)/Si to calculate the corresponding
changes in capacity since Ci = Di −KiSi, so ∆Ci = −Si∆Ki.

For example, in the first time period, the “original” constraint 2500−500τ1 ≤ 2000 has been transformed
into τ1 ≥ 1. For the sensitivity analysis to changing the right-hand side of this first constraint, look at
the 15th column of the tableau (because this is the first column of the identity matrix, correpsonding to
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Figure 1: Solution for problem 2.

the first auxiliary variable for the big M method.) Comparing the ratios of each basic decision variables
to the tableau entry in the 15th column, K1 can increase by up to 0.35 or decrease by up to 0.15 before
the basis changes; this corresponds to capacity changes of ∆Ci = 500∆Ki in the range [−175, 75]. These
bounds correspond to s6 and s5, respectively; the limit that the toll cannot increase or decrease by more
than 25 cents between hours becomes binding if the change in capacity falls outside this range.

Proceeding in a similar way, the allowable ranges for periods 2, 3, and 4 are [−150, 17], [−25.5, 274.5],
and [183, 317], respectively.
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