
CE 377K: Homework 4
Due Thursday, May 7

Problem 1. Determine whether the following functions are convex or not. Prove your answer.

1. No. Let x1 = 1, x2 = e2, λ = (e− 1)/(e2 − 1). Then f(x1) = 0, f(x2) = 2, and log((1− λ)x1 + λx2) =
log e = 1, which is clearly greater than (1 − λ)f(x1) + λf(x2) = 2(e − 1)/(e2 − 1) = 2(e − 1)/[(e +
1)(e− 1)] = 2/(e+ 1).

2. Yes. d2f/dx2 = −6x ≥ 0 for x ≤ 0.

3. No. Let x1 = −π, x2 = 0, λ = 1/2. Then f(x1) = f(x2) = 0 ⇒ (1 − λ)f(x1) + λf(x2) = 0, which is
greater than f(−π/2) = −1.

4. Yes. We know ex, x2, and −2x − 3 are convex (check second derivatives). Since the sum of convex

function is convex, x2− 2x− 3 is as well. Since the composition of convex function is convex, ex
2−2x−3

is convex as well.

Problem 2. Determine whether the following sets are convex or not. Prove your answer.

1. Yes. This is a hyperplane in the form of Example 10 (with a1 = 4, a2 = −3, b = 0), and thus is convex.

2. Yes. This set is the same as X = {x ∈ R : ex−4 ≤ 0}. Since ex−4 is a convex function, X is a convex
set.

3. Yes. Choose any x1 = (0, x12, x
1
3), x2 = (0, x22, x

2
3) ∈ X and any λ ∈ [0, 1]. (1 − λ)x1 + λx2 =

(0, (1− λ)x12 + λx22, (1− λ)x13 + λx23) which is in X because its first component is zero.

4. No. Let x1 = (−1, 0, 0), x2 = (1, 0, 0), λ = 1/2. Then (1− λ)x1 + λx2 = (0, 0, 0) 6= X.

Problem 3. You’ve been called upon to install a traffic signal at 46th & Guadalupe. Assuming a simple
two-phase cycle (where Guadalupe moves in phase 1, and 46th Street in phase 2), no lost time when the
signal changes, and ignoring turning movements, the total delay at the intersection can be written as

λ1(c− g1)2

2c
(

1− λ1

µ1

) +
λ2(c− g2)2

2c
(

1− λ2

µ2

)
where g1 and g2 are the effective green time allotted to Guadalupe and 46th Street, respectively; c = g1 + g2
is the cycle length, λ1 and µ1 are the arrival rate and saturation flow for Guadalupe, and λ2 and µ2 are the
arrival rate and saturation flow for 46th Street.

The cycle length must be 60 seconds to maintain progression with adjacent signals, and the arrival rate and
saturation flow are 2200 veh/hr and 3600 veh/hr for Guadalupe, and 300 veh/hr and 1900 veh/hr for 46th
Street. Furthermore, no queues can remain at the end of the green interval; this means that µigi must be at
least as large as λic for each approach i.
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1. Using the notation in the problem, we seek a solution to

min
g1,g2

2∑
i=1

λi(c− gi)2

2c
(

1− λi

µi

)
s.t.

2∑
i=1

gi = c

µigi ≥ λic ∀i ∈ {1, 2}
gi ≥ 0 ∀i ∈ {1, 2}

Substituting specific numerical values and eliminating the redundant nonnegativity constraints, we
have:

min
g1,g2

47.14(60− g1)2 + 2.969(60− g2)2

s.t. g1 + g2 = 60

g1 ≥ 36.7

g2 ≥ 9.47

2. At the initial solution g1 = 45, g2 = 15, the value of the objective function is 16618, and the gradient is
[−1414,−267]. So, the linearized version of the objective function is 16618−1414(g∗1−45)−267(g∗2−15),
to be minimized over the same constraints as in the original problem. Removing constants, we need to
minimize −1414g∗1 − 267g∗2 subject to g1 + g2 = 60, g1 ≥ 36.7, and g2 ≥ 9.47. This is a linear program
with only two extreme points — (36.7, 23.3) and (51.53, 9.47) — so one of these must be an optimal
solution. Testing both shows that the latter point is optimal, so the target solution is (51.53, 9.47).
With the method of successive averages, we take a step of size λ = 1/2 towards this target, giving the
solution g1 = 48.26 and g2 = 12.74.

At this new solution, the value of the objective function is 13407, and the gradient is [−1106,−287].
After removing constants, the new linearized objective function is to minimize −1106g∗1−267g∗2 . Check-
ing the two extreme points, the target solution is again (51.53, 9.47). Taking a step of size λ = 1/3
gives a solution g1 = 49.35, g2 = 10.65, which has an objective function value of 12577.

3. Introducing a Lagrange multiplier κ for the equality constraint and two KKT multipliers π1 and π2
for the minimum cycle length constraints, the KKT conditions for this problem are as follows:

94.29g1 + κ− π1 = 5657 (1)

5.938g2 + κ− π2 = 356.2 (2)

g1 + g2 = 60 (3)

g1 ≥ 36.7 (4)

g2 ≥ 9.47 (5)

π1, π2 ≥ 0 (6)

with π1 = 0 unless g1 = 36.7 and π2 = 0 unless g2 = 9.47. So, there are three cases:
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(a) Neither of the inequality constraints is binding; in this case π1 = π2 = 0. Solving equations 1–3
simultaneously yields g1 = 56.44, g2 = 3.58, κ = 335. This violates constraint 5, so this cannot
be an optimal solution.

(b) The constraint g1 ≥ 36.7 is binding. This means g1 = 36.7, so g2 = 23.3 by equation 3, and
therefore π2 = 0. Substituting these into equation 2 gives κ = 217.8. Substituting this and
g1 = 36.7 into equation 1 gives π1 = −1978 which violates the requirement that KKT multipliers
on inequality constraints be nonnegative, so this cannot be an optimal solution either.

(c) The constraint g2 ≥ 9.47 is binding. This means g2 = 9.47, so g1 = 50.53 by equation 3, and
therefore π1 = 0. Substituting these into equation 1 gives κ = 892.5. Substituting this and
g2 = 9.47 into equation 2 gives π2 = 592.6. This solution satisfies all of the constraints, so it is
the optimal solution.

The optimal solution to the problem is g1 = 51.53 and g2 = 9.47, which has an objective function value
of 11807.
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