# Course Orientation and Overview 

## CE 391F

January 17, 2012

## INTRODUCTIONS

(1) Who are you?
(2) Where are you from?
(3) How long have you been at UT?
(9) Who is your advisor?
(6) Something interesting about yourself...

## COURSE OVERVIEW

# SYLLABUS AND <br> ADMINISTRATIVE DETAILS 

Office hours: MW 12:30-2:00 or by appointment Course website:
http://webspace.utexas.edu/~sdb382/teaching/ce391f/index.html (not Blackboard)
Text: Revised Monograph on Traffic Flow Theory, and papers and notes as posted.
http:
//www.fhwa.dot.gov/publications/research/operations/tft/

| Category | Weight |
| ---: | :--- |
| Homeworks | $30 \%$ |
| Exam | $30 \%$ |
| Project | $30 \%$ |
| Paper presentation | $10 \%$ |

$+/-$ grading will be used. If you need an extension, you must ask at least 48 hours in adavnce.

## Miscellanea

- Consult catalog and departmental advisors for add/drop policy.
- Please coordinate with me and Services for Students with Disabilities if you have a disability requiring alternate accomodations.


## WHAT IS TRAFFIC FLOW THEORY?

## What is traffic flow theory?



Mathematical descriptions of the interactions between vehicles, operators, and infrastructure.


These include models for car following, speed selection, lane changing, gap acceptance, signalized and unsignalized intersections, and so forth.

## How does traffic flow theory relate to traffic assignment?

Traffic assignment requires some kind of flow model, often simplified versions of the ones we will see in this course.


Course Orientation and Overview

## Some applications of traffic flow theory...



Development of traffic simulation software. (By the end of this course, you will have the methodological knowledge to write a simulator.)

## Some applications of traffic flow theory...



Operational analysis

## Some applications of traffic flow theory...



Safety and emissions modeling

## COURSE PREVIEW

Continuum flow models


This includes the quintessential LWR model.

## Driver behavior and vehicle dynamics



How can we represent human and vehicle limitations in these models?

Moving beyond continuum models

Figure 1
Car-following vehicle dynamics


Car-following, cellular automata, gap accpetance...

Developing a simulator


Random number generation, Monte Carlo sampling

## FUNDAMENTAL CONCEPTS

## Consider a single-lane, one-way roadway

## Figure 1

Car-following vehicle dynamics


There are several ways to describe the vehicle stream.

Flow: Rate at which vehicles pass a fixed point, denoted $q$. [veh/hr]
Volume: Another term for flow

Density: Spatial concentration of vehicles at one point in time, denoted $k$ [veh/mi]

Speed: Velocity of a single vehicle, denoted $u$ [mi/hr]
Time headway: Time between vehicle arrivals at a single point. [sec]
Space headway: Physical distance between vehicles (front bumper to front bumper). [ft]

Cumulative count: Total number of vehicles which have passed a given point since a given reference time, denoted $N$. [veh]

These quantities can be visualized on a trajectory diagram.


The flow $q$ is the rate trajectories cross a horizontal line.


The density $k$ is the rate trajectories cross a vertical line.


How is speed represented in a trajectory diagram? What about time and space headway?

Time headway, space headway, and speed are characteristics of individual vehicles.

Volume is an aggregate measure of time headways; density is an aggregate measure of space headways; what is an aggregate measure of speed?

How do we compute average speed? On the surface, it seems easy enough. For instance:


I travel from $A$ to $B$ at $10 \mathrm{mi} / \mathrm{hr}$; I then return from $B$ to $A$ at $5 \mathrm{mi} / \mathrm{hr}$. What is my average speed?


Answer 1: You drive ten miles at $10 \mathrm{mi} / \mathrm{hr}$ and ten miles at $5 \mathrm{mi} / \mathrm{hr}$. Therefore the average speed is 7.5 mph

Answer 2: You drive one hour at $10 \mathrm{mi} / \mathrm{hr}$ and two hours at $5 \mathrm{mi} / \mathrm{hr}$. Therefore the average speed is $\mathbf{6 . 7} \mathbf{~ m p h}(6.7=(2 * 5+10) / 3)$

Which answer is right?

It depends on what we're trying to measure. Both are valid in some sense... but the usual definition of average speed is total distance divided by total time.

Total distance: 20 mi
Total time: 3 hr
Average speed: $6.7 \mathrm{mi} / \mathrm{hr}$

This is not to say that Answer 1 is completely wrong; it's just not what we're usually interested in.

## Another way to look at average speed



Track circumference: 5 mi

## Another way to look at average speed



From the aerial photo, it seems obvious that the average speed is $(5+5$ $+10) / 3=6.7 \mathrm{mph}$

What if we couldn't get an aerial photo with speeds? Let's try another approach.


## After one hour, what speeds will be recorded?



So, there are two different types of average speed... we call them time-mean speed and space-mean speed

Time-mean speed is what the radar gun gives us; space-mean speed is what an aerial photo would give us.

Why do they have these names?


The radar gun is fixed in space but records speeds over time. Therefore you get time-mean speed.


The radar gun is fixed in space but records speeds over time. Therefore you get time-mean speed.


One way to remember this is by analogy with time headway (which was also measured horizontally)


## Time ( $t$ )

The aerial photo is at a single instant in time but records speeds over space. Therefore you get space-mean speed.


## Time ( $t$ )

One way to remember this is by analogy with space headway (which was also measured vertically)

Generaly, space-mean speed is what we are interested in. (Time-mean speed is biased toward faster vehicles.)

## Time-mean

## Space-mean



However, time-mean speed is easier to measure and automate.

Luckily, we can calculate space-mean speed from time-mean measurements. Let $u_{i}$ be the speed of the $i$-th vehicle measured by a point detector (out of $n$ total readings.)

The time-mean speed is just the simple (arithmetic) average of these:

$$
\bar{u}_{t}=\frac{\sum_{i=1}^{n} u_{i}}{n}
$$

The space-mean speed is the harmonic average: the reciprocal of the average of the reciprocals:

$$
\bar{u}_{s}=\frac{1}{\left(\sum_{i=1}^{n}\left(1 / u_{i}\right) / n\right)}=\frac{n}{\sum_{i=1}^{n}\left(1 / u_{i}\right)}
$$

## Example:

$\bar{u}_{t}=(5+5+10+10) / 4=7.5$
$\bar{u}_{s}=4 /(1 / 5+1 / 5+1 / 10+1 / 10)=6.7$

